高三文科数学12月份月考试卷及答案
- 格式:doc
- 大小:414.01 KB
- 文档页数:3
文科数学一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设函数()()2lg 1f x x =-,集合A 为函数()f x 的定义域,集合(] 0B =-∞,,则图中阴影部分表示的集合为( )A .[]1 0-,B .()1 0-,C .()[) 10 1-∞-,, D .(]() 10 1-∞-,,2.下列说法正确的是( )A .“220x x +->”是“1x >”的充分不必要条件B .“若22am bm <,则a b <”的逆否命题为真命题C .命题“x R ∃∈,使得2210x -<”的否定是“x R ∀∈,均有2210x ->”D .命题“若4x π=,则tan 1x =”的逆命题为真命题3.若1sin 63πα⎛⎫-= ⎪⎝⎭,则22cos 162πα⎛⎫+-= ⎪⎝⎭( )A .13B .13- C .79 D .79-4.如图为某几何体的三视图,则其体积为( )A .243π+ B .243π+ C.43π+ D .3π4+ 5.在等差数列{}n a 中,16a =-,公差为d ,前n 项和为n S ,当且仅当6n =时,n S 取得最小值,则d 的取值范围为( )A .71 8⎛⎫-- ⎪⎝⎭,B .()0 +∞, C.() 0-∞, D .61 5⎛⎫ ⎪⎝⎭,6.根据如图所示的框图,当输入x 为2017时,输出的y 等于( )A .28B .10 C.4 D .2 7.已知平面向量 a b ,是非零微量,()2 2a a a b =⊥+,,则向量b 在向量a 方向上的投影为( ) A .1 B .1- C.2 D .2- 8.函数()1sin ln 1x f x x -⎛⎫= ⎪+⎝⎭的图象大致为( )A .B . C. D .9.抛物线223y x x =--与坐标轴的交点在同一个圆上,则交点确定的圆的方程为( ) A .()2212x y +-= B .()()22114x y -+-= C.()2211x y -+= D .()()22115x y -++=10.已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程()()f x a a R =∈实根个数不可能为( )A .2个B .3个 C.4个 D .5个 二、填空题(每题5分,满分25分,将答案填在答题纸上)11.已知抛物线()220y px p =>上一点()1 M m ,到其焦点的距离为5,双曲线221y x a-=的左顶点为A ,若双曲线一条渐近线与直线AM 垂直,则实数a = .12.如图,为测量出山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒,以及75MAC ∠=︒,从C 点测得60MCA ∠=︒,已知山高100BC m =,则山高MN = m .13.从圆224x y +=内任取一点P ,则P 到直线1x y +=的概率是 . 14.已知变量 x y ,满足约束条件240240x y y x y k -+≤⎧⎪≥⎨⎪-+≥⎩且目标函数3z x y =+的最小值为1-,则实数k = .15.设函数()()21 x x xf xg x x e+==,,对任意()12 0 x x ∈+∞,,,不等式()()121g x f x k k ≤+恒成立,则正数k 的取值范围是 .三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)已知函数()cos sin 6f x x x π⎛⎫=++ ⎪⎝⎭.(Ⅰ)作出()f x 在一个周期内的图象;(Ⅱ) a b c ,,分别是ABC △中角 A B C ,,的对边,若() 1a f A b ===,,,求ABC △的面积.17.(本小题满分12分)设等差数列{}n a 的前n 项和为n S ,且12n n n S na a c =+-(c 是常数,*n N ∈),26a =.(Ⅰ)求c 的值及数列{}n a 的通项公式; (Ⅱ)设122n n n a b +-=,求数列{}n b 的前n 项和为n T . 18.(本小题满分12分)如图,在四棱锥P ABCD -中,PA ABCD ⊥底面,60ABC ∠=︒,PA AB BC ==,AC CD ⊥,E ,F 分别是PC ,AC 的中点.(1)证明:BF PCD ∥平面; (2)证明:AE PCD ⊥平面. 19.(本小题满分12分)在创城活动中,海曲市园林公司设计如图所示的环状绿化景观带.已知该景观带的内圈由两条平行线段(图中的 AB CD ,)和两个半圆构成,设计要求AB 长为()80x x ≥.(Ⅰ)若内圈周长为400米,则x 取何值时,矩形ABCD 的面积最大? (Ⅱ)若景观带的内圈所围成区域的面积为222500m π,则x 取何值时,内圈周长最小?20.(本小题满分12分)已知点()0 2A -,,椭圆()2222:10x y E a b a b+=>>,F 是椭圆的右焦点,直线AF O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于 P Q ,两点,当POQ △的面积最大时,求l 的方程. 21.(本小题满分10分) 已知函数()()()12ln 20f x a x ax a x=-++≤. (1)当0a =时,求()f x 的极值; (2)当0a <时,讨论()f x 的单调性.现代中学高三12月份检测一、选择题 1.D 2.B 3.A4.D 【解析】由三视图可知,该几何体是一个半圆柱(所在圆柱1OO )与四棱锥的组合体,其中四棱锥的底面ABCD 为圆柱的轴截面,顶点P 在半圆柱所在圆柱的底面圆上(如图所示),且P 在AB 上的射影为底面的圆心O .由三视图数据可得,半圆柱所在的圆柱的底面半径1r =,高2h =,故其体积221111222V r h πππ==⨯⨯=;四棱锥的底面ABCD 为边长为2的正方形,PO ABCD ⊥底面,且1PO r ==,故其体积2211421333ABCD V S PO =⨯=⨯⨯=正方形,故该几何体的体积1243V V V π=+=+.5.D6.C7.B8.B 【解析】由101x x ->+解得1x <-或1x >,所以函数()f x 的定义域为()() 1 1 -∞-+∞,,,故排除A ; 设()1ln1x g x x -=+,则()()111ln ln ln 111x x x g x g x x x x --+--===-=--+-+, 所以()()()()()()()()sin sin sin f x g x g x g x f x -=-=-=-=-, 所以()f x 为奇函数,其图象关于原点对称,故排除C ; 取3x =,()()3113ln ln ln 2 1 0312g -===-∈-+,,()()()()3sin 30f g g =<,所以排除D ,故选B.9.D 【解析】抛物线223y x x =--的图象关于1x =对称,与坐标轴的交点为()1 0A -,,()3 0B ,,()0 3C -,,令圆心坐标为()1 M b ,,可得222MA MC r ==,()222413b b r +=++=,∴ 1 b r =-=,,所以圆的轨迹方程为()()22115x y -++=.10.D 二、填空题 11.14 12.150 13.24ππ+ 15.121k e ≥- 14.答案9 【解析】由题意作出平面区域如图,结合图象可知,当过点() 2A x ,时,目标函数3z x y =+取得最小值1-,故321x +=-,解得,1x =-,故()1 2A -,,故1420k --⨯+=,故9k =.三、解答题16.解:(Ⅰ)()cos sin cos cos sin sin sin 666f x x x x x x πππ⎛⎫=++=-+ ⎪⎝⎭1sin sin 23x x x π⎛⎫=+=+ ⎪⎝⎭.……………………2分 利用“五点法”列表如下:……………………………………………………4分 画出()f x 在5 33ππ⎡⎤-⎢⎥⎣⎦,上的图象,如图所示:又203B π<<,∴6B π=,∴2C π=,∴11122S ab ===.因此ABC △.…………………………12分 17.解:(Ⅰ)由已知12n n n S na a c =+-,所以当1n =时,11112S a a c =+-,解得12a c =,当2n =时,222S a a c =+-,即1222a a a a c +=+-,解得23a c =,所以36c =,解得2c =.…………………………4分则14a =,数列{}n a 的公差212d a a =-=,所以()1122n a a n d n =+-=+. (Ⅱ)因为112222222n n n n n a n n b ++-+-===,…………………………8分 所以231232222n n nT L =++++,① 2341112322222n n nT L +=++++,② ①-②得2341111111111222222222n n n n n n nT L ++=+++++-=--,所以222n n nT +=-.…………………………………………12分 18.证明:(1)因为60ABC ∠=︒,AB BC =,所以ABC △为等边三角形,又F 是AC 中点,所以BF AC ⊥,又CD AC ⊥,且 BF CD AC ,,都在平面ABCD 内,所以BF CD ∥,因为CD PCD ⊂平面,BF PCD ⊄平面,所以BF PCD ∥平面. (2)由(1)知,ABC △为等边三角形,且PA PB =,所以PA AC =, 又E 为PC 的中点,所以AE PC ⊥,因为PA ABCD ⊥底面,CD ABCD ⊂平面, 所以PA CD ⊥,又CD AC ⊥,PAAC A =,所以CD PAC ⊥平面,又AE PAC ⊂平面,所以CD AE ⊥,又PCCD C =,所以AE PCD ⊥平面.19.解(Ⅰ)设半圆的半径为r ,由题意得80200x ≤<,且22400x r π+=, 即200x r π+=,矩形ABCD 的面积为()2222000022x r S rx x r πππππ+⎛⎫==⋅≤= ⎪⎝⎭,当且仅当100x r π==时,矩形的面积取得最大值220000m π;………………6分(Ⅱ)设半圆的半径为r ,由题意可得2225002r xr ππ+=,可得225002x r rππ=-, 即有内圈周长2250022c x r r rπππ=+=+,………………………………9分 由80x ≥,可得22500160r rππ-≥,解得090r π<≤, 设()22500f r r r ππ=+,()2222250022500'10f r r r ππππ⎛⎫=-=-< ⎪⎝⎭,即有()f r 在900 π⎛⎤ ⎥⎝⎦,上递减,即有90r π=,即80x m =时,周长c 取得最小值340m .…………………………13分20.(Ⅰ)设() 0F c ,,由条件知2c ,得c =,又c a =2a =, 221b a c 2=-=,故E 的方程为2214x y +=.(Ⅱ)当l x ⊥轴时不合题意,故可设:2l y kx =-,()11 P x y ,,()22 P x y ,, 将:2l y kx =-代入2214x y +=中得()221416120k x kx +-+=,当()216430k ∆=->时,即234k >,由韦达定理得12122216121414k x x x x k k +==++,,从而PQ ==, 又点O 到直线PQ 的距离为d =,所以POQ △的面积12POQS d PQ =⋅=△,t =,则0t >,24444OPQ t S t t t==++△,因为44t t+≥,当且仅当2t =,即k =时等号成立,且满足0∆>,所以当OPQ △的面积最大时,l的方程为2y =-或2y =-. 21.【解析】(Ⅰ)当0a =时,()12ln f x x x=+,定义域为()0 +∞,, ()f x 的导函数()222121'x f x x x x-=-=. 当102x <<时,()'0f x <,()f x 在10 2⎛⎫ ⎪⎝⎭,上是减函数;当12x >时,()'0f x >,()f x 在1 2⎛⎫+∞ ⎪⎝⎭,上是增函数, ∴当12x =时,()f x 取得极小值为122ln 22f ⎛⎫=- ⎪⎝⎭,无极大值. (Ⅱ)当0a <时,()()12ln 2f x a x ax x=-++的定义域为()0 +∞,,()f x 的导函数为()()()()222222121121'2ax a x x ax a f x a x x x x +---+-=-+==, 由()'0f x =得1102x =>,210x a=->,1211222a x x a a +⎛⎫-=--= ⎪⎝⎭,(1)当20a -<<时,()f x 在10 2⎛⎫ ⎪⎝⎭,上是减函数,在11 2a ⎛⎫- ⎪⎝⎭,上是增函数,在1 a ⎛⎫-+∞ ⎪⎝⎭,上是减函数; (2)当2a =-时,()f x 在()0 +∞,上是减函数; (3)当2a <-时,()f x 在10 a ⎛⎫- ⎪⎝⎭,上是减函数,在11 2a ⎛⎫- ⎪⎝⎭,上是增函数,在1 2⎛⎫+∞ ⎪⎝⎭,上是减函数. 综上所述,当2a <-时,()f x 在10 a ⎛⎫- ⎪⎝⎭,,1 2⎛⎫+∞ ⎪⎝⎭,上是减函数,在11 2a⎛⎫- ⎪⎝⎭,上是增函数;当2a =-时,()f x 在()0 +∞,上是减函数; 当20a -<<时,()f x 在10 2⎛⎫ ⎪⎝⎭,,1 a ⎛⎫-+∞ ⎪⎝⎭,上是减函数,在11 2a ⎛⎫- ⎪⎝⎭,上是增函数.。
2021年秋四中高三12月考试数学〔文科〕试题本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
说明:本套试卷分为第Ⅰ、Ⅱ卷两局部,请将第一卷选择题之答案填在机读卡上第二卷可在各题后直接答题。
全卷一共150分,考试时间是是120分钟.第I卷(选择题一共60分)一.选择题(本大题一一共12题,每一小题5分,一共60分)1.设全集为R,函数的定义域为M,那么为〔〕A. (-∞,1)B. (1,+∞)C. (-∞,1]D. [1,+∞)【答案】A【解析】【分析】求出函数f〔x〕的定义域M,再写出它的补集即可.【详解】全集为R,函数的定义域为M={x|0}={x|x1},那么∁R M={x|x<1}=(-∞,1).应选:A.【点睛】此题考察了补集的定义与应用问题,是根底题目.,那么的值是〔〕A. 3B.C. 5D.【答案】C【解析】【分析】由z求出,然后直接利用复数代数形式的乘法运算求解.【详解】由z=,得z•〔2﹣i〕〔2+i〕=4﹣i2=5.应选:C.【点睛】此题考察了复数代数形式的乘法运算,是根底的计算题.3.“1<x<2〞是“x<2〞成立的〔〕A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】A【解析】试题分析:假设成立,那么成立;反之,假设成立,那么不一定成立,因此“〞是“〞成立的充分不必要条件;考点:充分必要条件;4.,那么值为〔〕A. B. C. D.【答案】D【解析】分析:由题意结合诱导公式求得的值,然后求解其平方即可.详解:由诱导公式可得:,那么.此题选择D选项.点睛:此题主要考察诱导公式及其应用,意在考察学生的转化才能和计算求解才能.的图象大致是〔〕【答案】A【解析】试题分析:因为,所以函数为奇函数,图像关于原点对称,故排除BC,当时,,故排除D.故A正确.考点:函数图像.6.为两个平面,l为直线,假设,那么下面结论正确的选项是〔〕A. 垂直于平面的平面一定平行于平面B. 垂直于平面的平面一定平行于平面C. 垂直于平面的平面一定平行于直线D. 垂直于直线l的平面一定与平面都垂直【答案】D【解析】因为相交不一定垂直,所以垂直于的平面可能与平面相交,A不正确;垂直于直线的直线可能在平面内,B不正确;如图可知,垂直于的平面与垂直,C不正确;设,而,由面面垂直断定可得,D正确,应选D表示的平面区域为,在区域内随机取一个点,那么此点到坐标原点的间隔大于1的概率是〔〕A. B. C. D.【答案】A【解析】试题分析:由表示的平面区域为,为一个边长为1的正方形,而在内随机取一个点,那么此点到点的间隔大于1,可转而找出到点的间隔小于等于1的点为;以为圆心,半径为1的圆,落在内的面积为,而间隔大于1的面积为:,由几何概型,化为面积比得:.考点:几何概型的算法.8.,〔〕,那么数列的通项公式是〔〕A. B. C. D.【答案】C【解析】由,得:,∴为常数列,即,故应选:C与在区间上都是减函数,那么的取值范围〔〕A. B. C. D.【答案】C【解析】略f(x)=x2-2x-4ln x,那么f′(x)>0的解集为〔〕A. (0,+∞)B. (-1,0)∪(2,+∞)C. (-1,0)D. (2,+∞)【答案】C【解析】试题分析:函数的定义域为,所以,解得.考点:导数与不等式.中,,假设, 那么的最小值等〔〕A. B. C. D.【答案】C【解析】【分析】由等比数列的性质,结合条件可求q,结合通项公式可求m+n,代入所求式子,利用根本不等式即可求.【详解】∵正项等比数列{a n}中,a2021=a2021+2a2021,a2021q4=a2021q2+2a2021,∵a2021>0,∴q4=q2+2,解可得,q2=2,∴,∵,4q m+n﹣2=4,∴m+n=6,那么〔〕〔m+n〕,当且仅当且m+n=6即m=n=3时取等号.应选:C.【点睛】此题主要考察了等比数列的性质及根本不等式的简单应用,求解最值的关键是进展1的代换.,直线与双曲线的左、右两支分别交于M、N两点,且都垂直于x轴〔其中分别为双曲线C的左、右焦点〕,那么该双曲线的离心率为( )A. B. C. D.【答案】D【解析】【分析】根据题意设点,,那么,又由直线的倾斜角为,得,结合点在双曲线上,即可求出离心率.【详解】直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴,根据双曲线的对称性,设点,,那么,即,且,又直线的倾斜角为,直线过坐标原点,,,整理得,即,解方程得,〔舍〕应选D.【点睛】此题考察双曲线的几何性质、直线与双曲线的位置关系及双曲线离心率的求法,考察化简整理的运算才能和转化思想,属于中档题.圆锥曲线离心率的计算,常采用两种方法:1、通过条件构建关于的齐次方程,解出.根据题设条件〔主要用到:方程思想,余弦定理,平面几何相似,直角三角形性质等〕借助之间的关系,得到关于的一元方程,从而解得离心率.2、通过条件确定圆锥曲线上某点坐标,代入方程中,解出.根据题设条件,借助表示曲线某点坐标,代入曲线方程转化成关于的一元方程,从而解得离心率.第二卷〔非选择题90分〕二.填空题〔本大题一一共4个小题,每一小题5分,一共20分〕13.函数f〔x〕=的图象在点〔1,f〔1〕〕处的切线过点〔-1,1〕,那么a=_______.【答案】-5【解析】【分析】求出函数的导数f′〔x〕=3x2+a,f′〔1〕=3+a,而f〔1〕=a+2,根据点斜式得到程,利用切线的方程经过的点求解即可.【详解】函数f〔x〕=x3+ax+1的导数为:f′〔x〕=3x2+a,f′〔1〕=3+a,而f〔1〕=a+2,切线方程为:y﹣a﹣2=〔3+a〕〔x﹣1〕,因为切线方程经过〔-1,1〕,所以1﹣a﹣2=〔3+a〕〔-1﹣1〕,解得a=-5.故答案为:-5.【点睛】这个题目考察了利用导数求函数在某一点处的切线方程;步骤一般为:一,对函数求导,代入点得到在这一点处的斜率;二,求出这个点的横纵坐标;三,利用点斜式写出直线方程.14.“斐波那契〞数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.详细数列为1,1,2,3,5,8,即从该数列的第三项数字开场,每个数字等于前两个相邻数字之和.数列为“斐波那契〞数列,为数列的前项和,假设那么__________.(用M表示)【答案】【解析】分析:由“斐波那契〞数列定义找与的关系。
2021-2022年高三12月月考数学(文)试题含答案(I) 一、选择题(本大题共12小题,每小题5分,满分共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
)1、函数最小正周期是()A、B、C、D、2、已知为虚数单位,则()A、B、C、D、53、已知函数的定义域为区间,值域为区间,则()A、B、C、D、4、等比数列中,,公比,则()A、2B、4C、8D、165、已知,且,则的最小值为()A、B、6 C、D、126、已知向量,若与共线,则()A、B、2 C、D、7、已知双曲线的一个焦点在圆上,则双曲线的离心率为()A、B、C、D、8、已知函数满足,则的单调减区间为()A 、B 、C 、D 、9、运行如图所示的程序框图,则输出的结果是( )A 、B 、2C 、5D 、710、若满足约束条件1133x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数仅在点处取得最小值,则的取值范围是( )A 、B 、C 、D 、11、一个直三棱柱被一个平面截后剩余部分的三视图如图,则截去部分的体积与剩余部分的体积之比为( )A 、B 、C 、D 、12、已知函数()()22812f x x a x a a =++++-,且,设等差数列的前项和为,若,则的最小值为( )A 、B 、C 、D 、II 卷二、填空题:(本大题共4小题,每小题5分,共20分。
)13、从中任取两个不同的数,则能够约分的概率为 。
14、已知函数()()(),ln ,ln 1x f x x e g x x x h x x =+=+=-的零点依次为,则从大到小的顺序为 。
15、有一个球心为,半径的球,球内有半径的截面圆,截面圆心为,连接并延长交球面于点,以截面为底,为顶点,可以做出一个圆锥,则圆锥的体积为 。
16、经过椭圆的右焦点的直线,交抛物线于、两点,点关于轴的对称点为,则 。
三、解答题:(本大题共6小题,满分70分。
解答须写出文字说明、证明过程或演算步骤。
2021年高三12月月考试题数学 文 试题 含答案一、选择题:本大题共12小题,每小题5分,共60分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.设,则是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.下列函数中,在其定义域中,既是奇函数又是减函数的是( )A. B. C. D.3.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a,b ”类比推出“若a,b ”;②“若a,b,c,d d b c a di c bi a R ==⇒+=+∈,,则复数”类比推出“若a,b,c,d 则”;③“若a,b ” 类比推出“若a,b ”;其中类比结论正确的个数是 ( )A. 0B. 1C. 2D. 34.已知等比数列的前项和为,,则实数的值是A .B .C .D .5.已知非零向量、,满足,则函数是A. 既是奇函数又是偶函数B. 非奇非偶函数C. 偶函数D. 奇函数4.已知各项为正的等比数列中,与的等比数列中项为,则的最小值A.16B.8C.D.45.在平面直角坐标系中,直线与圆相交于A 、B 两点,则弦AB 的长等于A. B. C. D.16.已知命题;命题的极大值为6.则下面选项中真命题是A. B. C. D.7.设变量满足约束条件,则的最小值为A.-2B.-4C.-6D.-88.已知命题;命题的极大值为6.则下面选项中真命题是A. B. C. D.9.设变量满足约束条件,则的最小值为A.-2B.-4C.-6D.-810.若函数在区间上存在一个零点,则的取值范围是A .B .或C .D .11.设是定义在上的奇函数,当时,,则A. B. C.1D.312.已知函数,且,则A.B.C.D.第Ⅱ卷(非选择题 90分)二、填空题:本大题共4小题,每小题4分,共16分。
13.已知角的终边上一点的坐标为,则角的最小正值为 .14.已知,则 .15.已知函数的图象由的图象向右平移个单位得到,这两个函数的部分图象如图所示,则= .16.已知定义在R的奇函数满足,且时,,下面四种说法①;②函数在[-6,-2]上是增函数;③函数关于直线对称;④若,则关于的方程在[-8,8]上所有根之和为-8,其中正确的序号 .三、解答题:本大题共6个小题.共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在中,已知,.(1)求的值;(2)若为的中点,求的长.18.(本小题满分12分)已知函数.(Ⅰ)求函数的最小正周期和单调递减区间;(Ⅱ)若,求的值。
高三12月月考试题(一)文科数学参考解答一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1. C 【解析】()()()[)020323.R A B C A B ==⇒=,,,,2. D 【解析】()2,234,3,4,7.a bi b ai i i b a a b i+=--=-==-∴-=-由已知 3. C【解析】()()3|2|f x a x a =+-在()1+∞,上为增函数()()3023532.44812a a P a +>⎧--⎪⇔⇔-<≤⇒==⎨--≤⎪⎩4. A 【解析】1ln02a =<,1π024<<且正弦函数sin y x =是增函数,,即10sin 22∴<<1212122c -====,a b c ∴<<. 5. C【解析】由已知圆心322⎛⎫⎪⎝⎭,在直线0ax by -=上,所以35.44b e a =⇒=6. C 【解析】()()()()22ln 1cos 222cos 24cos x f x e x x f x f x x x x x x =++⇒--=+=24cos .33333f f πππππ⎛⎫⎛⎫⇒--=⨯= ⎪ ⎪⎝⎭⎝⎭7. B 【解析】675,125,100,125,100100,NO c 125MOD10025,a 100,b 25a b c aMODb a b c ======⇒=⇒====否,100250,25,0,0,YES,a 25.c MOD a b c ======输出 8 C 【解析】图象过点()1110sin ,||;22226121262f x f k πππππϕϕϕωπ⎛⎫⎛⎫⇒=<⇒=≤⇒⨯+=+ ⎪ ⎪⎝⎭⎝⎭,min 244,(,0) 4.k k Z ωωω⇒=+∈>⇒=9.B 【解析】由题意满七进一,可得该图示为七进制数, 化为十进制数为321737276510.⨯+⨯+⨯+= 10. C 【解析】由题意知该几何体是放倒的圆柱,底面半径为1,高为2,右侧是一个半径为1的四分之一球组成的组合体,则该几何体的体积为2314712+1=433,故选C . 11. D 【解析】22=2+11x y x x =--的对称中心为()1,2 在抛物线上得2,p=设221212,,,,44y y A y y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭易得124y y =-,由抛物线定义得22221212212133 3.4442y y y y AF BF ⎛⎫+=+++=++≥= ⎪⎝⎭ 所以选D.12. C 【解析】画出函数()f x 的图象,如图所示,则221e x ,且()()122222ln f x f x x x x x ==,记 函数2ln ()(1e )x g x x x ,则21ln ()xg'x x,令()0g'x ,得e x ,当(1,e)x 时,()0g'x ;当2(e,e )x时,()0g'x ,故当e x 时,函数()g x 取到最大值,最大值为1e ,即()12f x x 的最大值为1e,故选C .第Ⅱ卷本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分)13.898.14..15.7.16.36.3 ,13.【解析】各组抽到的编号按从小到大构成公差为10的等差数列,其通项为()1011293103107132098.22n a a a n a ++=-=⇒==抽到的个号码的中位数为14.【解析】()()()12||31;33AB AC AB AC AM BC AB BMAC AB AB AC AC AB ⎛⎫+=⇒⋅=-⋅=+-=+- ⎪⎝⎭221211818.3333333AB AC AB AC =-+-⋅=-++=15. 【解析】1222(log 3)(log 3)(log 3)f f f ,因为2log 312(log 3)2f 1 2log 32217,故12(log 3)7.f16.【解析】由题知0)1(,0)1(==-f f ,因为函数)(x f 的图象关于直线3=x 对称,所以(7)(1)0f f 且(5)(1)0f f ,即⎩⎨⎧=++⨯=++0)525(240)74948b a b a (,解得35,12=-=b a ,所以)(x f =)3512)(1(22+--x x x =)7)(5)(1)(1(---+x x x x =)76)(56(22--+-x x x x ,设162--=x x t (10-≥t ),则)(t f =)6)(6(-+t t (10-≥t )=362-t ≥-36,故函数)(x f 的值域为[-36,+∞).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分) 【解析】(Ⅰ)由条件得1221(1)2n n a a n n +=+,又1n =时,21na n =,故数列2n a n ⎧⎫⎨⎬⎩⎭构成首项为1,公比为12的等比数列.从而2112n n a n -=,即212n n n a -=.……6分(Ⅱ)由22(1)21222n nn n n n n b ++=-=得 23521222n n n S +=+++231135212122222nn n n n S +-+⇒=++++, 两式相减得:23113111212()222222n n n n S ++=++++-,所以2552n nn S +=-. ……12分 18.【解析】 (Ⅰ)设这200名学生中男生对19大“比较关注”与“不太关注”的人数分别为,.x y 则女生对19大“比较关注”与“不太关注”的人数分别为85, 5.y y 由题意110100,10.4853x y x y x y222001001575102.597 6.6351752511090k ,所以没有99%的把握认为男生与女生对19大的关注有差异.(Ⅱ)该校学生会从对两19大“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,则男生抽取4人,记为,,,.a b c d 女生抽取3人,记为,,.x y z 从中选2人共有,,,,,,,,,,,,,,,,,,,,ab ac ad ax ay az bc bd bx by bz cd cx cy cz dx dy dz xy xz yz 共21种,其中全为男生的有,,,,,,ab ac ad bc bd cd 共 6种.所以全为男生的概率为62=.21719.(本小题满分12分) 【解析】(Ⅰ)因为,,,.PD PE PD PF PE PF P PD PEF EF PEF PD EF ⊥⊥=⇒⊥⊂⇒⊥平面平面…….5分(Ⅱ)设EF 、BD 相交于O ,连结PO .1BF =,1PE PF ==,EF =2, 则222EF PE PF =+,所以△PEF 是直角三角形,……7分比较关注 不太关注 合计 男生 100 10 110 女生 75 15 90 合计17525200易得,.EF PO EF PD EF PBD ⊥⊥⇒⊥平面,.PBD BEDF PBD BEDF BD ⇒⊥=平面平面平面平面则122OP EF ==,3242OD BD PD ===,……9分 作PH BD H PH BEDF P BEDF d ⊥⇒⊥于平面,设到面的距离,则2.3PO PD OD PH d PH ⋅=⋅⇒==……11分 则四棱锥P BEDF -的体积`3111224.(3323189BEDF A BEDF V S d -=⋅=⋅⋅==四棱椎 …….12分. 20. (本小题满分12分)【解析】(Ⅰ)由题意椭圆C 的标准方程为12422=+y x ,所以42=a ,22=b ,从而224222=-=-=b a c ,所以22==a c e …….2分 (Ⅱ)直线AB 与圆222=+y x 相切.证明如下:设点),(00y x A ,)2,(t B ,其中00≠x ,因为OB OA ⊥,所以0=•,即0200=+y tx ,解得02x y t -=,…….4分 当t x =0时,220t y -=,代入椭圆C 的方程得2±=t ,此时直线AB 与圆222=+y x 相切. …….6分当t x ≠0时,直线AB 的方程为)(2200t x tx y y ---=-,即02)()2(0000=-+---ty x y t x x y ,…….8分 圆心到直线AB 的距离为202000)()2(|2|t x y ty x d -+--=,又422020=+y x ,02x y t -=, 故22168|4|4|22|20204002020202020020=+++=++-=x x x x x x y y x x y x d .故此直线AB 与圆222=+y x 相切. …….12分21. (本小题满分12分)【解析】(Ⅰ)函数()f x 的定义域是()-+∞∞,,(),x f x e a =-‘.()0a > ……1分 ()'0ln f x x a >⇒>⇒()f x 的单调增区间是()ln ,;a +∞()'0ln f x x a <⇒<⇒()f x 的单调减区间是()-ln ;a ∞,……3分 ()()()()()()()()'''ln ln ln ,00,1;01,.g a f x f a a a g a a g a a g a a ===-⇒=->⇒∈<⇒∈+∞极小值所以()g a 在()0,1上单调递增,在()1,+∞上单调递减. ……5分所以1a =是函数()g a 在()0+∞,上唯一的极大值点,也是最大值点,所以()()()max =1 1.g a g a g ==极大值……6分(Ⅱ)由(Ⅰ)()()(]ln ln 0,f x f a a a a a e 极小值0==-≥⇒∈……8分()(]()()2''',0,22,a a a f a e a a e f a e a f a e =-∈⇒=-⇒=-'''min0ln ,ln ,ln 222ln 20f a aa ef af 在, ……10分()(]()()()(220011.e e f a e f f e e e f a e e ⎤∴⇒=<=-⇒-⎦在,的范围是, ……12分请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程【解析】(Ⅰ)由2sin ρθ=,得22sin ρρθ=,又cos x ρθ=,sin y ρθ=, 所以曲线C 的直角坐标方程为2220x y y +-=.……5分 (Ⅱ)直线l 为经过点(1,0)P -倾斜角为α的直线,由1cos sin x t y t αα=-+⎧⎨=⎩代入2220x y y +-=,整理得22(sin cos )10t t αα-++=,由2[2(sin cos )]40αα∆=-+->,得|sin cos |1αα+>,设B A ,对应的参数分别为12,t t ,则122(sin cos )t t αα+=+,1210t t ⋅=>, 则12||||||||PA PB t t +=+12||2|sin cos |t t αα=+=+,又1|sin cos |αα<+≤2||||PA PB <+≤所以||||PA PB +的取值范围为(2,.……10分 23.(本小题满分10分)选修4-5:不等式选讲【解析】 (Ⅰ)要使不等式()|1|f x m ≥-有解,只需max ()|1|f x m ≥-. 又()|3||2|(3)(2)5f x x x x x =--+≤--+=,当且仅当2x ≤-时等号成立. 故15m -≤,46m ∴-≤≤,故实数m 的最小值4M =-;……5分 (Ⅱ)因为正数,a b 满足34a b M +=-=,313194()(3)()6612a b a b b a b a b a ∴+=++=++≥=313b a∴+≥.……10分高考语文备考——议论文万能写作模板所有使用过该模板的同学,在历次60满分的作文考试中,最高仅得到58分,但最低也没有低于43分。
2021年高三12月月考数学(文)试卷word版含答案3.函数的零点的个数为()A.0 B.1 C.2 D.34.定义在上的函数满足则的值为()A.-4 B.2 C.D.45.已知,函数在区间上单调递减, 则的取值范围是()A. B. C.D.6.已知向量, 若, 则实数等于()A.B.C.或 D.07.已知等差数列的公差, 且依次成等比, 则这个等比数列的公比是()A.B.2 C.D.38.正三棱锥的高和底面边长都等于6,则其外接球的表面积为()A.B.C.D.9.设变量满足约束条件则目标函数的取值范围是()A.B.C.[-1,6] D.10.过点作直线与圆交于两点,如果,则的方程为()A.B.C.或 D.或11.设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为()A.B.C.D.12.已知各项为正的等比数列中,与的等比中项为,则的最小值为()A.1 B.8 C.D.4二、填空题(本大题共4小题,每道题5分,共20分)13.已知在上是增函数,则实数的取值范围是______.14. 若椭圆的焦点在轴上,过点作圆的切线,切点分别为,直线恰好经过椭圆的右焦点和上顶点,则椭圆方程是_________.15.在中,若,,的面积为,则_______________16.在平面直角坐标系内, 到点的距离之和最小的点的坐标是__________三、解答题(本大题共6小题,17题10分,18-22每道题12分,共70分)17.在中,分别为角的对边,,且.(1) 求角;(2) 若,求的面积.18.已知公差不为0的等差数列的前项和为,,且成等比数列. (Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和公式.19.已知椭圆的两焦点为,离心率。
(1)求此椭圆的方程;(2)设直线,若与此椭圆相交于两点,且等于椭圆的短轴长,求的值.20.如图,四棱锥中,底面为矩形,,为的中点。
(I)证明:;(II)设置,三棱锥的体积,求到平面的距离。
2021年高三12月考数学文试题 含答案第Ⅰ卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,满分60分) 1.已知全集为,集合,,则( ) A. B. C. D.2.在复平面内,复数对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限3.设p :,q :,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 若变量满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则的最大值为( )A.4B.3C.2D.1 5.设是两条不同的直线,是两个不同的平面,下列命题正确的是( ) A .若//,,,m n αβαβ⊂⊂则m//n B .若,,,m m n n αβαβα⊥=⊥⊥则C .若,//,//,m n m n αβαβ⊥⊥则D .若//,//,,,//m n m n ααββαβ⊂⊂则6.右图给出的是计算的值的一个程序框图,判断其中框内应填入的条件是( ) A . B . C .D .7. 等比数列的前项和为,且成等差数列.若,则=( )A .7B .8C .15D .168.一个几何体的三视图如图所示,则该几何体的体积为( ) A. B. C. D.9.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中 任何两个数的和不等于6,则取出这样的子集的概率为( ).A .B .C .D .10. 双曲线的左焦点为F ,点P 为左支下半支上任意一点(异于顶点), 则直线PF 的斜率的变化范围是 ( )A. (-∞,0)B.(1,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)11. 已知函数212,2()1|log |,2x x f x x x ⎧≤⎪=⎨⎪>⎩,,若函数有两个不同的零点, 则实数的取值为( ) A .或 B .或 C .或 D .或 12. 已知椭圆M :(a>b>0),D (2,1)是椭圆M 的一条弦AB 的中点,点P (4,-1)在直线AB 上,求椭圆M 的离心率 ( ) A. B. C. D.第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置上.) 13..曲线在点处的切线方程为 14.已知向量,,.若向量与向量的夹角为锐角, 则实数k 的取值范围为15.已知P 是△ABC 所在平面内一点,,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是_____________.16. 有下列命题:①圆与直线sin 10(,2x y R πθθθ+-=∈≠,相交;②过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|= 8③已知动点C 满足则C 点的轨迹是椭圆; 其中正确命题的序号是___ _____三、解答题:(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.) 17.(本题12分)在锐角中,已知内角A 、B 、C 所对的边分别为,向量 2(2sin(),3),(cos 2,2cos1)2Bm A C n B =+=-,且向量. (1)求角的大小; (2)如果,求的面积的最大值.18.(本题12分)某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ)求分数在内的频率,并补全这个频率分布直方图;(Ⅱ)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至多有人在分数段的概率.19.(本题12分)如图,在直三棱柱ABC-A 1B 1C 1中,∠BAC =90°,AB =AC =2,AA 1=3,D 是BC 的中点,点E 在棱BB 1上运动. (Ⅰ)证明:AD ⊥C 1E ;(Ⅱ)当异面直线AC ,C 1E 所成的角为60°时, 求三棱锥C 1-A 1B 1E 的体积.第18题20.如图所示,椭圆C:的离心率,左焦点为右焦点为,短轴两个端点为.与轴不垂直的直线与椭圆C交于不同的两点、,记直线、的斜率分别为、,且.(1)求椭圆的方程;(2)求证直线与轴相交于定点,并求出定点标.21.设,函数.(1)若,求函数的极值与单调区间;(2)若函数的图象在处的切线与直线平行,求的值;(3)若函数的图象与直线有三个公共点,求的取值范围.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC的中点,连结AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.23.(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,已知直线l的极坐标方程为,圆C的圆心是,半径为。
A B 中最小元素为(B .“优分”人数D .“优分”人数与非“优分”人数的比值1n S n +和23:2l x y +=的倾斜角依次为90α+ 180= C .90αβ=+ 90,则22||||PA PB+=(每题5分,共20分)3.已知向量31(2,1),(,a b==--()()a kb a kb+⊥-,则实数33x x m=-+的定义域[0,2],值域为B,当A B=∅时,分。
解答写出文字说明,证明过程或演算步骤与11所成角的余弦值。
PF PF且向量12两点,且满足sinOM ONθ=)()4+∞,三、解答题:(本大题共12n ⎛++ +⎝(Ⅱ在长方体中,112BO BC =1D 所成角的余弦值为)椭圆且向量12PF PF 的22212121||1()4x x kx x x x -=++-到直线l 的距离2|2|1k d k +=,4sin OM ON θ=263MON S ∴=△高三上学期12月月考数学(文科)试卷解析一、在每小题给出的四个选项中,只有一项是符合题目要求的。
(每题5分,共60分)1.【分析】由A与B,求出两集合的交集,确定出交集中的最小元素即可。
【解答】解:∵A={x|x=2n﹣1,n∈N*}={1,3,5,7,9,11,…},B={y|y=5m+1,m∈N*}={6,11,16,…},∴A∩B中最小元素为11,2.【分析】利用复数的运算法则、纯虚数的定义即可得出。
【解答】解:∵z==为纯虚数,∴=0,≠0,则m=﹣1.3.【分析】由程序框图知,最后输出的m 值是大于等于120分的人数,再根据表示的意义即可得出结论。
【解答】解:由程序框图可知,最后输出的m 值是大于等于120分的人数,即次考试数学分数不低于120分的同学的人数是m,因为表示这次考试数学分数不低于120分的“优分”率。
4.【分析】由等差数列的求和公式和性质可得=3•=2,解方程可得。
【解答】解:∵等差数列{a n}的前n项和为S n,且=,∴==2,由等差数列的求和公式和性质可得:===3•=2,∴=5.【分析】几何体为圆柱中挖去一个正四棱锥。
菱湖中学第一学期高三数学12月月考(文科)试卷一.选择题(每小题5分,共50分)1、设P 、Q 为两个非空实数集合,集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是( )A .9B .8C .7D .62、若复数ii a 213++(a ∈R ,i 为虚数单位位)是纯虚数,则实数a 的值为( ) A .-2B .4C .-6D .63、直线1)1(02322=+-=-+y x y x 被圆所截得的线段的长为 ( ) A .1B .2C .3D .24、对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( )A .1B .2C .3D .45、先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2=Y X 的概率为 ( )A .61B .365 C .121 D .216、已知直线nm l 、、及平面α,下列命题中的假命题是( )A .若//l m ,//m n ,则//l n .B .若l α⊥,//n α,则l n ⊥.C .若l m ⊥,//m n ,则l n ⊥.D .若//l α,//n α,则//l n .7、下列结论正确的是 ( )A .当2lg 1lg ,10≥+≠>xx x x 时且 B .21,0≥+>x x x 时当C .xx x 1,2+≥时当的最小值为2 D .当xx x 1,20-≤<时无最大值 8、函数|1|||ln --=x e y x 的图象大致是( )9、点P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的( )A .外心B .内心C .重心D .垂心10、已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( )A .324+B .13-C .213+ D .13+二.填空题 (每小题4分,共28分)11、下图是样本容量为200的频率分布直方图。
辽宁省实验中学分校-上学期阶段测试文科数学高三年级命题人:厉鸣校对人;侯军旺一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={1,2},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B的子集共有()A.2个 B.4个C.6个 D.8个2.若复数z=cosθ﹣+(﹣sinθ)i(i是虚数单位)是纯虚数,则tanθ的值为() A.﹣ B. C.﹣ D.±3.已知函数f(x)=,则f(f(2))等于()A.0 B.4 C.﹣ D.4..已知{a n}为等差数列,3a4+a8=36,则{a n}的前9项和S9=()A.9 B.17 C.36 D.815.在长方形ABCD中,AB=2,BC=1,O为AB中点,在长方形ABCD内随机取一点,取到的点到点O的距离不大于1的概率是()A. B.1﹣C. D.1﹣6.已知向量,满足•(+)=2,且||=1,||=2,则与的夹角为()A. B. C. D.7已知α,β是两个不同的平面,m,n是两条不同的直线,给出了下列命题:①若m⊥α,m⊂β,则α⊥β;②若m⊥n,m⊥α,则n∥α;③若m∥α,α⊥β,则m⊥β,④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α,n∥β()A.②④ B.①②④C.①④ D.①③8.已知sinφ=,且φ∈(,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A .B .﹣C .D .﹣9.如图所示,已知||=1,||=, =0,点C 在线段AB 上,且∠AOC=30°,设=m+n(m ,n∈R),则m ﹣n 等于( )A .B .C .﹣D .﹣ 10.已知椭圆C : +=1的左焦点为F ,A ,B 是C 上关于原点对称的两点,且∠AFB=90°,则△ABF 的周长为( ) A .10 B .12C .14D .1611.已知某几何体的三视图如图所示,其中俯视图中圆的直径为 4, 该几何体的表面积为( ) A .(4+4)π B .(6+4)πC .(8+4)π D .(12+4)π12.若存在两个正实数x ,y ,使得x+a (y ﹣2ex )(lny ﹣lnx )=0成立,其中e 为自然对数的底数,则实数a 的取值范围是( )A .(﹣∞,0)∪ C .,再将其按从左到右的顺序分别编号为第1组,第2组,,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.组号分组回答正确的人数回答正确的人数占本组的比例第1组 [18,28) 5 0.5 第2组 [28,38) 18第3组 [38,48) 270.9 第4组 [48,58)0.36 第5组30.2(Ⅰ)分别求出,的值;(Ⅱ)第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?a x a x 频率组距6858483828180.0100.0150.0200.0250.030(III )在(II )的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.19、(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为22,且过点A .直线y x m =+交椭圆C 于B ,D (不与点A 重合)两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)△ABD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.21、(本小题满分12分) 已知函数()ln af x x x=+(0)a >.(Ⅲ)讨论关于x 的方程32()1()22x bx a f x x ++=-的实根情况. 请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-4:坐标系与参数方程 已知在平面直角坐标系内,点 在曲线C :为参数,)上运动.以为极轴建立极坐标系,直线的极坐标方程为.(Ⅰ)写出曲线C 的标准方程和直线的直角坐标方程;(Ⅱ)若直线与曲线C 相交于A 、B 两点,点M 在曲线C 上移动,试求面积的xOy ),(y x P θθθ(sin ,cos 1⎩⎨⎧=+=y x R ∈θOx l 0)4cos(=+πθρl l ABM ∆最大值.23、(本小题满分10分)选修4-5:不等式选讲 关于的不等式 (Ⅰ) 当时,解不等式;(Ⅱ)设函数,当为何值时,恒成立x lg(|3||7|).x x m +--<1m =|)7||3lg(|)(--+=x x x f m m x f <)(辽宁省实验中学分校2016—2017学年度上学期阶段性测试数学文科参考答案 高三年级一、AACDA BCBBC DA 二、13. ﹣1﹣e 14. 15. -1 16. 0或-1三、17、(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+< ⎪⎝⎭.3A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为322⎛⎫ ⎪ ⎪⎝⎭,. 18、证明:由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形 ……………2分AEDBFC BFC AED -DAE 2==AE DA ⊥DA ABEF ABCD ABFE ,2FDA(1)连结,则是的中点, 在△中,,………4分 且平面,平面,∴∥平面 ………6分(2) 因为平面,平面,,又⊥,所以,⊥平面,∴四边形是矩形, 且侧面⊥平面 …………8分 取的中点,,且平面.…………10分所以,多面体的体积.………12分19、解:(I )第1组人数50.510÷=,所以100.1100n =÷=,第2组频率为:0.2,人数为:1000.220⨯=,所以18200.9a =÷=, …………………………………………………2分 第4组人数1000.2525⨯=,所以250.369x =⨯=. …………………………………………………4分(II )第2,3,4组回答正确的人数的比为18:27:92:3:1=, ………………………5分所以第2,3,4组每组应各依次抽取2人,3人,1人. ………………………7分 (III )记“所抽取的人中第2组至少有1人获得幸运奖”为事件A ,抽取的6人中,第2 组的设为1a ,2a ,第3组的设为1b ,2b ,3b ,第4组的设为c ,则从6名幸运者中任取2名的所有可能的情况有15种,它们是:12(,)a a ,11(,)a b ,12131(,),(,),(,)a b a b a c ,2122232(,),(,),(,),(,)a b a b a b a c ,12131(,),(,),(,)b b b b b c ,232(,),(,),b b b c 3(,)b c . ………………………………9分EB M EB EBC EC MN //EC ⊂CDEF MN⊄CDEF MN CDEF ⊥DA ABEF EF ⊂ABEF AD EF ⊥∴EF AE EF ADE CDEF CDEF DAE DE ,H ⊥DA ,AE 2==AE DA 2=∴AH⊥AHCDEF CDEF A -383131=⋅⋅=⋅=AH EF DE AH S V CDEF其中第2组至少有1人的情况有9种,他们是:12(,)a a ,11(,)a b ,12131(,),(,),(,)a b a b a c ,2122232(,),(,),(,),(,)a b a b a b a c . …………………10分93()155P A ==. ………………………………………………………………12分 20、【答案】(Ⅰ)a ce ==22, 22211a b+=,222c b a +=∴2=a ,2=b ,2=c ∴22142x y += (Ⅱ)设11(,)B x y ,22(,)D x y ,由22+142y x m x y ⎧⎪⎪⎨⎪+=⎪⎩2220x m ⇒++-= ∴282m 0∆=->22m ⇒-<<, 12,x x += ① 2122x x m =- ②121BD x =-=设d 为点A 到直线BD:=+2y x m 的距离,∴d =∴12ABD S BD d ∆==≤当且仅当m =(2,2)∈-时等号成立∴当m =时,ABD ∆的面积最大,21、【答案】(共14分)解:(Ⅰ) ()ln af x x x=+,定义域为(0,)+∞, 则|221()a x af x x x x-=-=. 因为0a >,由()0,f x '>得(,)x a ∈+∞, 由()0,f x '<得(0,)x a ∈, 所以()f x 的单调递增区间为(,)a +∞ ,单调递减区间为(0,)a . (Ⅱ)由题意,以00(,)P x y 为切点的切线的斜率k 满足00201()2x a k f x x -'==≤0(0)x >,所以20012a x x ≥-+对00x >恒成立. 又当00x >时, 2001122x x -+≤,所以a 的最小值为12.(Ⅲ)由题意,方程32()1()22x bx a f x x ++=-化简得 21ln 2b x x =-+12(0,)x ∈+∞ 令211()ln 22h x x x b =--+,则1(1)(1)()x x h x x x x +-'=-=.当(0,1)x ∈时, ()0h x '>,当(1,)x ∈+∞时, ()0h x '<, 所以()h x 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减. 所以()h x 在1x =处取得极大值即最大值,最大值为211(1)ln1122h b b =-⨯-+=-. 所以 当0b ->, 即0b <时,()y h x = 的图象与x 轴恰有两个交点,方程32()1()22x bx a f x x ++=-有两个实根, 当0b =时, ()y h x = 的图象与x 轴恰有一个交点,方程32()1()22x bx a f x x ++=-有一个实根, 当0b >时, ()y h x = 的图象与x 轴无交点,方程32()1()22x bx a f x x ++=-无实根 22、(本小题满分10分)选修4-4:坐标系与参数方程解:(1)消去参数,得曲线C 的标准方程:由得:,即直线的直角坐标方程为:θ.1)1(22=+-y x 0)4cos(=+πθρ0sin cos =-θρθρl .0=-y x(2)圆心到直线的距离为,则圆上的点M 到直线的最大距离为(其中为曲线C 的半径),.设M 点的坐标为,则过M 且与直线垂直的直线方程为:,则联立方程,解得,或,经检验舍去.故当点M 为时,面积的最大值为23、(本小题满分10分)选修4-5:不等式选讲解:(1)当时,原不等式可变为,可得其解集为(2)设, 则由对数定义及绝对值的几何意义知, 因在上为增函数, 则,当时,,故只需即可,)0,1(l 22111=+=d 122+=+r d r 2)22(12||22=-=AB ),(y x l l '01=-+y x ⎩⎨⎧=-+=+-011)1(22y x y x ⎪⎪⎩⎪⎪⎨⎧-=+=22122y x ⎪⎪⎩⎪⎪⎨⎧=+-=22122y x ⎪⎪⎩⎪⎪⎨⎧=+-=22122y x )22,122(-+ABM ∆=∆max )(ABM S .212)122(221+=+⨯⨯1m =0|3||7|10x x <+--<{|27}.x x <<|3||7|t x x =+--100≤<t x y lg =),0(∞+1lg ≤t 7,10≥=x t 1lg =t 1>m即时,恒成立.1m >m x f <)(第11页共11页。
耀华中学2021届高三12月月考数学〔文〕试题第一卷〔选择题一共48分〕一、选择题:本大题一一共12小题,每一小题4分,一共48分,在每一小题的4个选项里面,只有一项是哪一项符合题目要求的,将答案涂在答题卡上..........1.复数的虚部为〔〕.A. B. C. D.【答案】C【解析】虚部为.应选.2.是等差数列,,,那么该数列前10项和等于〔〕A. 64B. 100C. 110D. 120【答案】B【解析】试题分析:a1+a2=4,a7+a8=28,解方程组可得考点:等差数列通项公式及求和【此处有视频,请去附件查看】3.函数,那么以下判断中正确的选项是〔〕.A. 奇函数,在上为增函数B. 偶函数,在上为增函数C. 奇函数,在为减函数D. 偶函数,在上为减函数【答案】A【解析】,显然,那么为奇函数.又∵在上且在上.∴在上.∴是上的奇函数.应选.4.在数列中,a1=2,=+ln,那么等于( )A. 2+ln nB. 2+(n-1)ln nC. 2+n ln nD. 1+n+ln n【答案】A【解析】试题分析:在数列中,应选A.考点:纯熟掌握累加求和公式及其对数的运算性质【此处有视频,请去附件查看】的前项和为,假设,,那么等于〔〕A. -3B. 5C. -31D. 33【答案】D【解析】等比数列中,,所以.所以..应选D.6.在中,,,,那么的面积是〔〕.A. B. C. 或者 D. 或者【答案】C【解析】,∴,或者.〔〕当时,.∴.〔〕当时,.∴.应选.7.非零向量,满足,.假设,那么实数的值〔〕.A. B. C. D.【答案】B【解析】∵∴设,〔〕,又∵且.∴.即.即,.应选.8.数列的前项和为,,那么数列的前50项和为〔〕A. 49B. 50C. 99D. 100【答案】A【解析】试题分析:当时,;当时,,把代入上式可得.综上可得.所以.数列的前50项和为.故A正确.考点:1求数列的通项公式;2数列求和问题.9.等差数列的前项和为,,,那么的最小值为〔〕.A. B. C. D. 无最小值【答案】B【解析】由题意得,得.∴,.∴.∴.那么.∴当时,.当时,.∴为最小项,.应选.点睛:求解数列中的最大项或者最小项的一般方法:〔1〕研究数列的单调性,利用单调性求最值;〔2〕可以用或者;〔3〕转化为函数最值问题或者利用数形结合求解.10.向量,向量,向量,那么向量与向量的夹角的取值范围是〔〕.A. B. C. D.【答案】D【解析】不妨设∵,.∴、.∴点在以为圆心半径为的圆上.∴与的夹角为直线的倾斜角.设∴.即,那么.又∵,.∴、夹角.应选.,满足,且在上是减函数,又是锐角三角形的两个内角, 那么 ( ) A. B.C. D.【答案】D【解析】、为锐角三角形的两内角.∴,那么.∴.且、.又∵,在上单调递减.∴在上单调递减.又∵是上偶函数.∴在上单调递增.∴.应选.点睛:〔1〕在锐角三角形ABC中,,那么,有,同理有:〔2〕偶函数满足;〔3〕周期性:是周期为的函数.12.函数假设数列满足,且是递增数列,那么实数的取值范围是〔〕.A. B. C. D.【答案】A【解析】是递增数列.那么单调递增.∴,即.∴.应选.点睛:解决数列的单调性问题可用以下三种方法:①用作差比拟法,根据的符号判断数列是递增数列、递减数列或者是常数列;②用作商比拟法,根据与1的大小关系及符号进展判断;③结合相应函数的图像直观判断,注意自变量取值为正整数这一特殊条件.第二卷〔非选择题一共52分〕二、填空题:本大题一一共8小题,每一小题4分,一共32分,将答案填写上在答题纸上............13.集合,,假设,那么的取值范围__.【答案】【解析】,.∵,那么.∴.故答案为:.在区间上的解为___________ .【答案】【解析】试题分析:化简得:,所以,解得或者〔舍去〕,又,所以.【考点】二倍角公式及三角函数求值【名师点睛】三角函数值求角,根本思路是通过化简,得到角的某种三角函数值,结合角的范围求解. 此题难度不大,能较好地考察考生的逻辑推理才能、根本计算才能等.【此处有视频,请去附件查看】15.等差数列中,公差d≠0,a1,a3 ,a9成等比数列,那么= __________.【答案】【解析】∵为等差数列且,,成等比.∴,即.∴,那么.∴.∴.故答案为:.16.等差数列满足:,且,,成等比数列,那么数列的通项公式为_______.【答案】或者【解析】等差数列满足:,且,,成等比数列,设公差为,所以,有:,解得或者4.所以或者.故答案为:或者.17.在中,,,是的中点,点在线段上,,与交于点,,__________.【答案】【解析】由题意,,.设.∵为中点,那么.又∵、、三点一共线且.∴,.又∵.∴,得,.∴.又∵.∴.故答案为:.点睛:平面向量一共线定理的三个应用〔1〕证明向量一共线:对于非零向量a,b,假设存在实数λ,使a=λb,那么a与b一共线.(2)证明三点一共线:假设存在实数λ,使=λ,与有公一共点A,那么A,B,C三点一共线.(3)求参数的值:利用向量一共线定理及向量相等的条件列方程(组)求参数的值.f(x)=2x,等差数列{a x}的公差为2。
二中2021级高三上学期12月月考试题本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
数学〔文〕考前须知:1.答题时,先将本人的姓名、准考证号填写上在试卷和答题卡上,并将准考证号条形码贴在答题卡上的规定的正确位置。
2.选择题的答题:每一小题在选出答案以后,需要用2B铅笔把答题卡上对应题目之答案涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的答题:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选做题的答题:先把所做题目的题号在答题卡上指定的位置需要用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5.在在考试完毕之后以后,请将答题卡上交;第Ι卷〔选择题局部〕一、选择题.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.,那么中整数元素的个数为〔〕A. 3B. 4C. 5D. 6【答案】B【解析】由得:,结合得:,那么中整数元素为3,4,5,6,即个数为4个,应选B.点睛:研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解不等式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.解指数或者对数不等式要注意底数对单调性的影响.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍.,那么〔〕A. B. C. D.【答案】B【解析】,那么,,应选B,那么,,的大小关系是〔〕A. B. C. D.【答案】C【解析】【分析】直接利用中间量“0〞,“1〞判断三个数的大小即可.【详解】应选C.【点睛】此题主要考察数的大小比拟,一般来讲要转化为函数问题,利用函数的图象分布和单调性比拟,有时也用到0,1作为比拟的桥梁.4.以下有关命题的说法正确的选项是( )A. 命题“假设,那么〞的否命题为:“假设,那么〞.B. 假设为真命题,那么均为真命题.C. 命题“存在,使得〞的否认是:“对任意,均有〞.D. 命题“假设,那么〞的逆否命题为真命题.【答案】D【解析】【分析】否命题只需要否认结论,原命题为真,那么逆否命题也为真。
2021年高三数学12月月考试题文(含解析)【试卷综析】本试卷是高三文科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:不等式、函数的性质及图象、三角函数的图像与性质、解三角形、数列、平面向量、立体几何、圆锥曲线、程序框图、充分、必要条件、复数等;考查学生解决实际问题的综合能力,是份较好的试卷.第I卷【题文】一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.已知是虚数单位,则= ()A.B. C. D.【知识点】复数的代数运算L4【答案】【解析】B114ii===,所以选B.【思路点拨】复数的代数运算是常考知识点之一,熟练掌握复数的除法运算是本题解题的关键.【题文】2.已知,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【知识点】充分、必要条件A2【答案】【解析】A解析:若x+y=1,当x,y异号或有一个为0时,显然有,当x,y同号时,则x,y只能都为正数,此时1=x+y,得,所以对于满足x+y=1的任意实数x,y都有,则充分性成立,若,不妨取x=4,y=0.001,此时x+y=1不成立,所以必要性不成立,综上可知选A.【思路点拨】一般判断充分、必要条件时,可先分清命题的条件与结论,若从条件能推出结论,则充分性满足,若从结论能推出条件,则必要性满足.【题文】3. 在区间上随机取一个数,则事件:“”的概率为()A. B . C. D.【知识点】几何概型K3【答案】【解析】C解析:对于[-π, π],由cosx≥0,得x∈,所以所求的概率为,则选C.【思路点拨】先判断出是几何概型,归纳为所求概率为长度之比,即可解答.【题文】4.已知函数,若是的导函数,则函数在原点附近的图象大致是()【知识点】导数的计算,函数的图像B8 B11【答案】【解析】A解析:因为()()'22sin,''22cos0f x x x f x x=-=-≥,所以函数在R上单调递增,则选A.【思路点拨】一般判断函数的图像,可结合函数的定义域、值域、单调性、奇偶性、周期性及特殊位置的函数值或函数值的符号等进行判断.【题文】5.某几何体是由直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为()A. B.C. D.(第5直观图俯视图侧视图正视图【知识点】三视图椭圆的性质G2 H5【答案】【解析】D解析:设正视图中正方形的边长为2b,由三视图可知,俯视图中的矩形一边长为2b,另一边长为圆锥底面直径,即为正视图中的对角线长,计算得,所以2,,e2ca aa a======,则选D.【思路点拨】由三视图解答几何问题,注意三视图与原几何体的长宽高的对应关系,求椭圆的离心率,抓住其定义寻求a,b,c关系即可解答.【题文】6.在中,内角的对边分别为且,则的值为()A. B. C. D.【知识点】解三角形C8【答案】【解析】A解析:由得,又A为三角形内角,所以A=120°,则()()113cos sin222sin sin30sin(30)1 sin sin sin60sin2C C C CA Ca Cb c B C C C⎫⎫-⎪⎪︒-︒-⎝⎭==== --︒--,所以选A.【思路点拨】在解三角形中,若遇到边角混合条件,通常先利用正弦定理或余弦定理转化为单一的角的关系或单一的边的关系,再进行解答.【题文】7.设等比数列{an}的前n项和为Sn,若S10:S5=1:2,则 ( )A. B. C. D.【知识点】等比数列D3【答案】【解析】B解析:因为S10:S5=1:2,所以,由等比数列的性质得成等比数列,所以,得,所以,则选B.【思路点拨】在等比数列中,若遇到等距的和时,可考虑利用等比数列的性质成等比数列进行解答..【题文】8.已知x,y满足⎩⎪⎨⎪⎧y-2≤0,x+3≥0,x-y-1≤0,则的取值范围是 ( )A. B. C. D.【知识点】简单的线性规划E5【答案】【解析】C解析:不等式组⎩⎪⎨⎪⎧y-2≤0,x+3≥0,x-y-1≤0,表示的平面区域如图,因为,而为区域内的点与点(4,2)连线的斜率,显然斜率的最小值为0,点(-3,-4)与点(4,2)连线的斜率最大为,所以的取值范围为,则选C.【思路点拨】一般遇到由两个变量满足的不等式组求范围问题,通常利用目标函数的几何意义,利用数形结合进行解答.【题文】9.已知椭圆C:,点为其长轴的6等分点,分别过这五点作斜率为的一组平行线,交椭圆C 于,则直线这10条直线的斜率乘积为( ) A . B . C . D . 【知识点】椭圆的标准方程 椭圆的性质H5 【答案】【解析】B解析:由椭圆的性质可得,由椭圆的对称性可得,同理可得3856749212AP AP AP AP AP AP AP AP k k k k k k k k •=•=•=•=-,则直线这10条直线的斜率乘积为,所以选B..【思路点拨】抓住椭圆上的点与长轴端点的连线的斜率为定值是本题的关键. 【题文】10. 用表示非空集合中的元素个数,定义 若22{|140,},{||2014|2013,}A x x ax a RB x x bx b R =--=∈=++=∈,设,则等于( )A .1B .4C .3D .2 【知识点】集合的运算A1 【答案】【解析】B解析:∵x2-ax-14=0对应的判别式△=a2-4×(-14)=a2+56>0,∴n (A )=2,∵A*B=1,∴n (B )=1或n (B )=3.由|x2+bx+xx|=xx ,解得x2+bx+1=0①或x2+bx+4027=0②,①若集合B 是单元素集合,则方程①有两相等实根,②无实数根,∴b=2或-2.②若集合B 是三元素集合,则方程①有两不相等实根,②有两个相等且异于①的实数根,即△=b2-4×4027=0,且b≠±2,解得,综上所述b=±2或,∴设S={b|A*B=1}=,∴n (S )=4.故选B .【思路点拨】根据所给的定义,判断两个集合根的个数,由方程根的个数求b 值.第Ⅱ卷【题文】二.填空题(本大题5个小题,每题5分,共25分, 请把答案填在答题卷上)【题文】11. 已知的值为___________.【知识点】指数与对数的互化 对数的运算B6 B7 【答案】【解析】3 解析:由得,所以.【思路点拨】由已知条件先把x,y 化成同底的对数,再利用对数的运算法则进行计算. 【题文】12.若某程序框图如图所示,则该程序运行后输出的值为 .【知识点】程序框图L1 【答案】【解析】解析:第一次执行循环体得s=1,i=2; 第二次执行循环体得s=,i=3; 第三次执行循环体得s=,i=4; 第四次执行循环体得s=,i=5; 第五次执行循环体得s=,i=6; 第六次执行循环体得s= 此时不满足判断框跳出循环,所以输出的值为.【思路点拨】一般遇到循环结构的程序框图问题,当运行次数较少时就能达到目的,可依次执行循环体,直到跳出循环,若运行次数较多时,可结合数列知识进行解答. 【题文】13.已知函数的最大值为1, 则 .【知识点】三角函数的性质C3 【答案】【解析】0或解析:因为1()sin 2cos(2)a sin 2cos 2322f x a x x x x π⎛=++=-+ ⎝⎭的最大值为1,所以,解得a=0或.【思路点拨】研究三角函数的性质,一般先化成一个角的三角函数再进行解答,本意注意应用asinx+bcosx 的最值的结论进行作答. 【题文】14.过点作圆的弦, 其中弦长为整数的共有 条。
2021年高三12月月考数学(文)试题 Word 版含答案一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 为虚数单位,复数在复平面内对应的点位于( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知命题;和命题则下列命题为真的是( )A .B .C .D .3. 在△ABC 中,“”是“”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 4. 设,则( )A .B .C .D .5.已知函数()的图象在处的切线斜率为(),且当时,其图象经过,则( )A .B .C .D . 6.函数的零点所在的区间是( )A. B. C. D.7.已知P 是△ABC 所在平面内一点,++2=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A.14B.13C.23D.12 8.在△ABC 中,BC=1,∠B=,△ABC 的面积S =,则sinC=( )A 、B 、C 、D 、9. 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1O A →+a 2 014OC →,且A 、B 、C 三点共线(该直线不过点O ),则S 2 014等于 ( )A .1 007B .1 008C .2 013D .2 014 10.已知函数,若恒成立,则的取值范围是(A ) (B ) (C) (D)二.填空题:本大题共5小题,每小题5分,共25分,请将答案填在答题卡中对应题号后的横线上。
11. 已知,则12. 函数的单调减区间为________________。
13.已知函数的图像如图所示,则它的解析式为 _____ 14.已知平面向量, ,且,则向量与的夹角为 . 15. 如下图所示,设P 、Q 为△ABC 内的两点,且AP →=25AB →+15AC →, AQ →=23AB →+14AC →,则△ABP 的面积与△ABQ 的面积之比为______.三、解答题:本大题共6小题,共75分.解答题应写出文字说明、证明过程、或演算步骤。
2021年高三12月月考数学文试卷含解析一、选择题:共12题1.设集合,则A. B.C. D.【答案】B【解析】本题主要考查集合的运算及包含关系.,,故选B.2.下列函数中,在上为增函数A. B.C. D.【答案】B【解析】本题主要考查函数的单调性.在上是减函数;在上是减函数;在上不单调,故也不单调;在上在上为增函数.故选B.3.“勾股定理”在西方被称为“华达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用形数结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是A. B. C. D.【答案】A【解析】本题主要考查与面积有关的几何概型.由题知,直角三角形中较短的直角边长为,较长的直角边长为中间小正方形的边长为其面积为,则飞镖落在小正方形内的概率是.故选A.4.设向量满足,且,则A. B. C. D.【答案】A【解析】本题主要考查平面向量的数量积及模的运算.,,.故选A.5.设是两条不同的直线,是一个平面,下列命题正确的是A.若,则B.若,则C.若,则D.若,则【答案】B【解析】本题主要考查空间中线面之间的位置关系.对于A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;对于C,若,则或异面,不正确;对于D,平行于同一直线的两直线可能平行,相交,异面,不正确;对于B,由线面垂直的性质可得知:若两条平行线中的一条垂直于这个平面,则另一条也垂直这个平面.正确.故选B.6.已知数列满足,,则的前10项和等于A. B. C. D.【答案】C【解析】本题考查等比数列的定义和前项和公式.因为,,所以是等比数列,且公比为,首项为4,则的前10项和.故选C.7.已知函数y=A sin(ωx+φ)+k的最大值为4,最小值为0,最小正周期为,直线x=是其图像的一条对称轴,则下面各式中符合条件的解析式为A.y=4sin(4x+)B.y=2sin(2x+)+2C.y=2sin(4x+)+2D.y=2sin(4x+)+2【答案】D【解析】由题意得解得又函数y=A sin(ωx+φ)+k的最小正周期为,所以ω==4,所以y=2sin(4x+φ)+2.又直线x=是函数图像的一条对称轴,所以4×+φ=kπ+(k∈Z),所以φ=kπ-(k∈Z),故可得y=2sin(4x+)+2符合条件,所以选D.8.如图所示,在三棱柱中,平面,若规定主(正)视方向垂直平面,则此三棱柱的侧(左)视图的面积为A. B. C. D.【答案】A【解析】本题主要考查三视图与直观图,考查左视图的形状及面积计算.由题知,三棱柱是直棱柱;由得,在底面中,作在侧面中,作连接, 若主(正)视方向垂直平面,则此三棱柱的侧视图为矩形,侧视图的面积为.故选A.9.设变量满足的约束条件,则的最大值为A. B. C.2 D.4【答案】C【解析】本题主要考查简单的线性规划,考查数形结合的解题思想.作出不等组表示的可行域,如图所示,将最值转化为轴上的截距的最值,当直线经过点时,最大,由,.故选C.10.已知为奇函数,函数与的图像关于对称,若,则A.-1B.1C.-2D.2【答案】C【解析】本题主要考查函数的图像和性质.由题知,的图像关于原点对称,所以函数的图像关于点对称,又函数与的图像关于对称,所以的图像关于对称,所以点()和点()关于中心对称,.故选C.11.已知正四棱锥的底面边长为,体积为,则此棱锥的内切球与外接球的半径之比为A.1:2B.4:5C.1:3D.2:5【答案】D【解析】本题主要考查四棱锥的内切球与外接球的半径之比,考查棱锥的表面积、体积及学生的计算能力.设四棱锥的高为,斜高为,内切球半径为,外接球为半径.由,得,的表面积为由由(则此棱锥的内切球与外接球的半径之比为.故选D.12.设等差数列的前项和为,已知,则下列结论正确的是A. B.C. D.【答案】A【解析】本题主要考查等差数列的性质和前项和. 由得,;同理,.将已知两式相加得,,即,,.故选A.二、填空题:共4题13.则复数为虚数单位),则的虚部等于 .【答案】【解析】本题主要考查复数的概念及运算., 则的虚部等于.故答案为.14.化简 .【答案】【解析】本题主要考查指数运算和对数运算..故答案为.15.已知36的所有正约数之和可按如下方法得到:因为,所以36的所有正约数之和为参照上述方法,可求得200的所有正约数之和为 .【答案】465【解析】本题主要考查类比推理和因数分解.参照例子,可得:因为,所以200的所有正约数之和为故答案为.16.定义域为的函数满足,当时,,若时,恒成立,则实数的取值范围是 .【答案】或【解析】本题主要考查函数解析式、最值及恒成立问题.,时,,,函数满足,,,时,恒成立,,解得或.故答案为或.三、解答题:共7题17.如图所示,在四边形中,,且.(1)求的面积;(2)若,求的长.【答案】解(1因为,所以,所以的面积(2)在中,,所以.在中,把已知条件代入并化简的得,因为,所以.【解析】本题主要考查余弦定理、三角形面积公式、倍角公式及同角三角函数的关系.(1由二倍角的余弦公式及同角三角函数的关系可得,利用三角形面积公式可得结论;(2)由余弦定理可得的值,在中,利用余弦定理可得的值.18.如图所示,四棱锥的底面是一个直角梯形,平面为的中点,.(1)证明平面(2)求三棱锥的体积.【答案】解: (1)设的中点为,连接为的中点,,由已知条件知,所以,所以四边形是一个平行四边形,所以平面平面平面(2为的中点,且点到面的距离等于..【解析】本题主要考查线面平行的判定定理、棱锥的体积.(1)设的中点为,连接,由三角形中位线定理及平行线的传递性可得是一个平行四边形,得线线平行,利用线面平行的判定定理可得结论;(2)利用等积法及棱锥的体积公式可得结论.19.中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分旧井,取得了地质资料.进入全国勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据质料见小表:(1)1~6号旧井位置线性分布,借助前5组数据求旧井的回归直线方程为,求,并估计的预期值;(2)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的的值与(1)中的值差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?(注:其中的计算结果用四舍五入法保留1位小数【答案】解:(1)因为,回归直线必须过中心点,则,故回归直线方程为:,当时,,即的预报值为24.(2)因为,所以,,即.因为,均不超过10%,因此使用位置最接近的已有旧井6(1,24).【解析】本题主要考查线性回归方程的应用.(1)利用前5组数据求得,由回归直线必须过中心点的值;将代入回归方程可得的预期值;(2)利用1、3、5、7号井的数据求得,计算的大小并与10%比较,可得结论.20.已知椭圆的两个焦点分别为,离心率为.过焦点的直线斜率不为0)与椭圆交于两点,线段的中点为为坐标原点,直线交于椭圆两点.(1)求椭圆的方程;(2)当四边形为矩形时,求直线的方程.【答案】解:(1)由题意可得解得.故椭圆的方程为.(2)由题意可知直线斜率存在,设其方程为,点.,由得.所以,因为.所以中点.因此直线方程为.由解得.因此四边形为矩形,所以,即.所以.所以.解得,故直线的方程为.【解析】本题主要考查椭圆的性质、直线与椭圆的位置关系、向量数量积的应用.(1)由椭圆的离心率、焦点坐标及,可求得的值,从而可得椭圆的方程;(2)设出直线的点斜式方程及点的坐标,直线与椭圆方程联立,根据一元二次方程根与系数的关系及中点坐标公式可得中点的坐标,从而得到直线方程;直线与椭圆方程联立可得的坐标,利用矩形及数量积的性质可得直线的斜率,从而可得结论.21.已知函数,其中为自然对数的底数.(1)当时,求函数的单调区间和极值;(2)若是函数的两个零点,设,证明随着的增大而增大.【答案】(1)当时,,令,则,则单调递减.单调递增所以函数的极小值,无极大值.(2)令,则,因为函数有两个零点所以,可得,故设,则,且解得.所以,①令,则.令,得.当时,.因此,在上单调递增,故对于任意的.由此可得,故在上单调递增.因此,有①可得随着的增大而增大.【解析】本题主要考查利用导数研究函数的单调性、极值,考查函数的零点及构造法的应用.(1)当时,求出导函数,根据导数的正负与单调性的关系可得单调区间和极值;(2)求出两个零点,将表示成关于的函数,构造函数,利用导数研究函数的单调性和最值,从而可得结论.22.已知点,直线的参数方程是为参数).以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程式为.(1)求直线的普通方程和曲线的普通方程;(2)已知,若直线与曲线交于两点,且,求实数的值.【答案】(1)直线的参数方程是为参数),消去可得.由可得,故的直角坐标方程为.(2)把代入,得由解得,结合可知,,解得【解析】本题主要考查将极坐标方程、参数方程化为直角坐标方程,考查直线参数方程的应用.(1)将直线的参数方程消去参数可得普通方程;利用,可将的极坐标方程化为普通方程;(2)直线的参数方程与圆的普通方程联立,消去,由方程有解可得的范围,再由参数的几何意义可求得的值.23.已知函数,不等式的解集为.(1)求(2)记集合的最大元素为,若正数满足,求证.【答案】(1)由零点分段法化为:或或或所以集合.(2)集合中最大元素为,所以,其中因为,,三式相加得,所以.【解析】本题主要考查绝对值不等式的解法、基本不等式的应用.(1)利用绝对值的意义,分段讨论,化简函数解析式,求出每个不等式组的解集,再取并集,即得所求;(2)由(1)知利用“1”的代换及基本不等式可证得结论.。
2021年一中高2021级高三上期12月月考本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
数学试题卷〔文科〕第一卷〔选择题,一共60分〕一、选择题.〔本大题一一共12小题,每一小题5分,一共60分.在每一小题列出的四个选项里面,选出符合题目要求的一项〕,那么〔〕A. B. C. D.【答案】D【解析】【分析】解出集合A和集合B,取交集即可.【详解】由A中不等式得:x﹣1>0,解得:x>1,即A=〔1,+∞〕;由B中y=ln〔x2﹣1〕,得到x2﹣1>0,即x<﹣1或者x>1∴B=〔﹣∞,﹣1〕∪〔1,+∞〕那么A∩B=〔1,+∞〕.应选:D.【点睛】此题考察集合的交集运算,属于根底题.且,那么以下不等式中一定成立的是〔〕A. B. C. D.【答案】D【解析】【分析】利用不等式的性质逐个检验即可得到答案.【详解】A,a>b且c∈R,当c小于等于0时不等式不成立,故错误;B,a,b,c∈R,且a>b,可得a﹣b>0,当c=0时不等式不成立,故错误;,C,举反例,a=2,b=-1满足a>b,但不满足,故错误;D,将不等式化简即可得到a>b,成立,应选:D.【点睛】此题主要考察不等式的性质以及排除法的应用,属于简单题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进展检验,从而做出正确的判断,这种方法叫做特殊法. 假设结果为定值,那么可采用此法. 特殊法是“小题小做〞的重要策略. 常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.3.数列1,,,,…,,…,那么是它的〔〕A. 第62项B. 第63项C. 第64项D. 第68项【答案】B【解析】【分析】分析可得该数列的通项公式为,解方程=即可得答案【详解】数列1,,,,…,,…,那么该数列的通项公式为a n=,假设=,即2n﹣1=125,解可得n=63,那么是这个数列的第63项;应选:B.【点睛】此题考察数列的概念及数列通项的概念,属根底题.4.鞋柜里有4双不同的鞋,从中随机取出一只左脚的,一只右脚的,恰好成双的概率为〔〕A. B. C. D.【答案】A【解析】【分析】求出根本领件总数n,恰好成双包含的根本领件个数m,由概率公式即可得到答案.【详解】鞋柜里有4双不同的鞋,从中取出一只左脚的,一只右脚的,根本领件总数n==16,恰好成双包含的根本领件个数m==4,∴恰好成双的概率为p=.应选:A.【点睛】此题考察概率的求法,考察古典概型、排列组合等根底知识,考察运算求解才能,是根底题.的离心率为,那么的渐近线方程为〔〕A. B. C. D.【答案】C【解析】,故,即,故渐近线方程为.【考点定位】此题考察双曲线的根本性质,考察学生的化归与转化才能.满足约束条件,那么的最大值为〔〕A. 4B. 3C.D.【答案】B【解析】【分析】由约束条件作出可行域,化目的函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目的函数得答案.【详解】由约束条件作出可行域如图,联立,解得A〔1,1〕,化目的函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y轴上的截距最大,z有最大值为3.应选:B.【点睛】此题考察二元一次不等式组与平面区域问题、函数的最值及其几何意义,线性规划中的最值问题主要涉及三个类型:1.分式形式:与斜率有关的最值问题:表示定点P与可行域内的动点M(x,y)连线的斜率.2. 一次形式z=ax+by:与直线的截距有关的最值问题, 特别注意斜率范围及截距符号.7.以下说法中错误的选项是〔〕A. 先把高二年级的2000名学生编号为1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为,然后抽取编号为,,的学生,这样的抽样方法是系统抽样法;B. HY性检验中,越大,那么越有把握说两个变量有关;C. 假设两个随机变量的线性相关性越强,那么相关系数的值越接近于1;D. 假设一组数据1、a、3的平均数是2,那么该组数据的方差是.【答案】C【解析】【分析】对选项逐个进展分析,排除即可得到答案.【详解】对于A,根据个体数目较多,且没有明显的差异,抽取样本间隔相等,知这种抽样方法是系统抽样法,∴A正确;对应B,HY性检验中,越大,应该是说明两个变量有关系的可能性大,即有足够的把握说明两个变量有关,B正确;对于C,两个随机变量的线性相关性越强,那么相关系数|r|的值越接近于1,C错误;对于D,一组数据1、a、3的平均数是2,∴a=2;∴该组数据的方差是s2=×[〔1﹣2〕2+〔2﹣2〕2+〔3﹣2〕2]=,D正确.应选:C.【点睛】此题利用命题真假的判断考察了概率与统计的应用问题,是根底题.A. B. 2 C. D. 4【答案】B【解析】向量,两边平方得到化简得到联立两式得到。
南昌市正大学校高三数学(文科)月考试卷一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求)1.已知等差数数列{}n a 满足111nn na a a ++=-,若12a =,*n N ∈2009a =( ) A .3 B.2 C.-3 D.42.设n S 是等差数列{}n a 的前n 项和,若3613s s =,则612ss =( ) A .310 B. 13 C. 18 D. 193.等差数列{}n a 的公差0d <,且22111a a =,则{}n a 的前n 项和n S 取得最大值时的项数n ( )A .5 B.6 C.5或6 D. 6或7 4. 已知n S 为等差数列{}n a 的前n 项和,若132:6:5n n a a ++=,则6321:n n S S ++等于( ) A .5:2 B. 6:5 C. 49:18 D. 9:13 5.已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和nB ,且7453n n A n B n +=+,则使得n nab 为整数的正整数n 的个数是( )A .2 B.3 C.4 D.5 6.在正项等比数列{}n a 中,若24681032a a a a a ⋅⋅⋅⋅=,则27281log log 2a a -=( ) A.18 B. 16 C. 12 D. 147.若{}n a 是等差数列,首项,120052006200520060,0,0a a a a a >+>•<则使前n 项和0n S >成立的最大自然数n 是( )A .4009 B.4010 C.4011 D.40128.方程2log (2)2xa x -=-有解,则a 的最小值为( )A .12B.1C.2D.49.已知数列}{n a 的通项公式为中则}{,20032002n n a n n a --=( ) A 存在最大项与最小项,这两项和大于2 B 存在最大项与最小项,这两项和等于2 C 存在最大项与最小项,这两项和小于2 D 既不存在最大项,也不存在最小项 10.在ABC 中,依次tan ,tan ,tan A B C 成等差数列,则B 的取值范围是( )A. 20,,323πππ⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦B.50,,626πππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦C.,62ππ⎡⎫⎪⎢⎣⎭D.,32ππ⎡⎫⎪⎢⎣⎭ 11.若一个数列前n 项和1159131721(1)(43)n n S n -=-+-+-+⋅⋅⋅+--则152231S S S +-=( )A .80 B.76 C.-76 D.5612. 把数列依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号一个数,…循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),……则第50个括号内的各数之和为( )A .98 B. 197 C. 390 D. 392二.填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上)13. 设}a {n 是首项为1的正项数列, 且0a a na a )1n (n 1n 2n 21n =+-+++),3,2,1n ( =, 则它的通项公式是=n a ____ _____ .14.在一种细胞,每三分钟分裂一次(一个分裂为三个),把一个这种细胞放入一个容器内,恰好一小时把容器充满;若开始时间把九个这种细胞放入该容器内,那么细胞把容器充满时间为 分钟15.已知数列}{n a 中, n S 是前n 项和, 2(1)nn n S a =+-,则n a = 。
16.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}x m =。
在此基础上有函数{}()f x x x =-()x R ∈。
对于函数()f x ,现给出如下判断:①函数()y f x =是偶函数;②函数()y f x =是周期函数;③函数()y f x =在区间]11(,22-上单调递增④函数()y f x =的图象关于直线12x k =+(k Z ∈)对称。
则判断中正确的是 三.解答题(本大题共4小题,共44分。
解答应写出文字说明、证明过程或演算步骤) 17. 已知正数数列{}n a 满足11a=,且对一切自然数*n N ∈有2112n n n a a S ++-=。
(I )求数列{}n a 的通项公式;(II )求证:221211a a ++ (21)2na+<18.函数322()31(,)f x ax bx a x a b R =+-+∈在12,x x x x ==处取得极值,且122x x -=。
(I )若1a =,求b 的值,并求的单调区间;(II )若0a >,求b 的取值范围。
19.已知数列{}n a 满足176a =,nS 是{}n a 的前n 项和,点1(2,)nn n Sa S ++在11()23f x x =+的图象上。
(I )求数列{}n a 的通项公式;(II )若2(),3nnnc a n T =-为nc 的前n 项和,*n N ∈,求nT20.数列{}n a 满足10a =,22a =,222(1cos )4sin22n nn n a a ππ+=++,1n =,2,3,… (I )求34,a a ,并求数列{}n a 的通项公式;(II )设13k S a a =++…21k a -+,24k T a a =+++…2ka +,*2()2kk kS W k N T =∈+,求使1k W >的所有k 的值,并说明理由。
附加题已知数列{}n x 满足11()2n n n x x +-=-,*n N ∈,且11x =。
设3142n n a x =-,且212323n T a a a =+++…212(21)2n n n a na -+-+。
(1)求{}n x 的表达式;(2)求2n T ;(3)若2311(21)n n Q n +=-+(*n N ∈),试比较29n T 与n Q 的大小,并说明理由数学文科答案B AC AD C B D A D C D1n 54 212[2(1)]3n n --+- (1)(2)(4) 解 (1)由22*11112,2(2,),1n n n n n n n n aa S a a S n n N a a ++-+-=-=≥∈-=*(2,)n n N ≥∈ 而121,2a a ==也符合 ∴{}n a 为等差数列,即n a n = (2)∵当2211112(1)1k k a k k k k ≥=<=--1k-,即222212311112n a a a a +++⋅⋅⋅+<解 (1)由点1(2,)n n n S a S ++在11()23f x x =+上111(2)23n n n S S a +=⨯++,11123n n a a +=+ 1212()323n n a a +-=-, 12132a -= ∴ 21()32n n a -=,得12()23n n a =+(2) 2()3n n c a n =-2n n =, 即231232222n n n T =+++⋅⋅⋅+错位相减法得11222n n n nT -=--解 (1 )可得120,2a a == 当21n k =-*()k N ∈时 21214k k a a +-=+∴ 21{}k a -首项为0公差为4的等差数列,因此214(1)k a k -=- 当*2()n k k N =∈2222k k a a +=即2{}k a 为公比为2首项为2的等比数列, 222kk a =n a ={**22(1),21()2,2()n n n k k N n k k N -=-∈=∈(II )由(I )知,13k S a a =++…2104k a -+=++…4(1)2(1)k k k +-=⋅-, 24k T a a =++…2222k a +=++…112(1)222,22k k k k k k S k k W T +--+=-==+。
于是123456335150,1,,,,22416W W W W W W ======事实上,当6k ≥时,11(1)(1)(3)0222k k k k kk k k k k k W W +-+---=-=<即1k k W W +<。
又61W <,所以当6k ≥时,1k W <。
故满足1k W >的所有k 的值为3,4,5。
解'22()323f x ax bx a =+-。
①(I )当1a =时'2()323f x x bx =+-由题意知12,x x 为方程'2()323f x x bx =+-的两根,所以12x x -=。
由122x x -=,得0b =。
从而3()31f x x x =-+,'2()333(1)(1)f x x x x =-=+-。
故'()f x 在()1,1-上单调递减,在(),1,(1,)-∞-+∞上单调递增(II)12x x -=。
从而221229(1)x x b a a -=⇔+-由上式及题设知01a <≤考虑23()99g a a a =-'22()182727()3g a a a a a =-=--从而()g a 在(]0,1上的极大值为24()33g =,又()g a 在(]0,1上只有一个极值,所以24()33g =为()g a 在(]0,1上的最大值,且最小值为(1)0g =,所以240,3b ⎡⎤∈⎢⎥⎣⎦,即b的取值范围为,33⎡-⎢⎣⎦。
解(1)∵11()2n n n x x +-=-,∴12132()()n x x x x x x =+-+-+…1()n n x x -+-2111()()22=+-+-+…11()2n -+-11()2121331()2n--==+--×11()2n -- 又∵当1n =时上式也成立,∴n x =2133+×11()2n --*()n N ∈(2)311424n n a x =-=×11()2n --11()2n +=-。
∵212323n T a a a =+++…212(21)2n n n a na -+-+21()22=-+×31()2-3+×41()2-+…+22111(21)()2()22n n n n +-⋅-+⋅-。
①∴3211()222n T -=-+×41()2-+ (212211)(21)()2()22n n n n +++-⋅-+⋅-。