当前位置:文档之家› 淬火裂纹及预防措施

淬火裂纹及预防措施

淬火裂纹及预防措施
淬火裂纹及预防措施

模具钢热处理中,淬火是常见工序。然而,因种种原因,有时难免会产生淬火裂纹,致使前功尽弃。分析裂纹产生原因,进而采取相应预防措施,具有显著的技术经济效益。常见淬火裂纹有以下10类型。

1、纵向裂纹

裂纹呈轴向,形状细而长。当模具完全淬透即无心淬火时,心部转变为比容最大的淬火马氏体,产生切向拉应力,模具钢的含碳量愈高,产生的切向拉应力愈大,当拉应力大于该钢强度极限时导致纵向裂纹形成。以下因素又加剧了纵向裂纹的产生:(1)钢中含有较多S、P、Sb、Bi、Pb、Sn、As等低熔点有害杂质,钢锭轧制时沿轧制方向呈纵向严重偏析分布,易产生应力集中形成纵向淬火裂纹,或原材料轧制后快冷形成的纵向裂纹未加工掉保留在产品中导致最终淬火裂纹扩大形成纵向裂纹;(2)模具尺寸在钢的淬裂敏感尺寸范围内(碳工具钢淬裂危险尺寸为8-15mm,中低合金钢危险尺寸为25-40mm)或选择的淬火冷却介质大大超过该钢的临界淬火冷却速度时均易形成纵向裂纹。

预防措施:(1)严格原材料入库检查,对有害杂质含量超标钢材不投产;(2)尽量选用真空冶炼,炉外精炼或电渣重熔模具钢材;(3)改进热处理工艺,采用真空加热、保护气氛加热和充分脱氧盐浴炉加热及分级淬火、等温淬火;(4)变无心淬火为有心淬火即不完全淬透,获得强韧性高的下贝氏体组织等措施,大幅度降低拉应力,能有效避免模具纵向开裂和淬火畸变。

2横向裂纹

裂纹特征是垂直于轴向。未淬透模具,在淬硬区与未淬硬区过渡部分存在大的拉应力峰值,大型模具快速冷却时易形成大的拉应力峰值,因形成的轴向应力大于切向应力,导致产生横向裂纹。锻造模块中S、P.Sb,Bi,Pb,Sn,As等低熔点有害杂质的横向偏析或模块存在横向显微裂纹,淬火后经扩展形成横向裂纹。

预防措施:(1)模块应合理锻造,原材料长度与直径之比即锻造比最好选在2—3之间,锻造采用双十字形变向锻造,经五镦五拔多火锻造,使钢中碳化物和杂质呈细、小,匀分布于钢基体,锻造纤维组织围绕型腔无定向分布,大幅度提高模块横向力学性能,减少和消除应力源;(2)选择理想的冷却速度和冷却介质:在钢的Ms点以上快冷,大于该钢临界淬火冷却速度,钢中过冷奥氏体产生的应力

为热应力,表层为压应力,内层为张应力,相互抵消,有效防止热应力裂纹形成,在钢的Ms—Mf之间缓冷,大幅度降低形成淬火马氏体时的组织应力。当钢中热应力与相应应力总和为正(张应力)时,则易淬裂,为负时,则不易淬裂。充分利用热应力,降低相变应力,控制应力总和为负,能有效避免横向淬火裂纹发生。CL-1有机淬火介质是较理想淬火剂,同时可减少和避免淬火模具畸变,还可控制硬化层合理分布。调正CL-1 淬火剂不同浓度配比,可得到不同冷却速度,获得所需硬化层分布,满足不同模具钢需求。

3弧状裂纹

常发生在模具棱角角、缺口、孔穴、凹模接线飞边等形状突变处。这是因为,淬火时棱角处产生的应力是平滑表面平均应力的10倍。另外,(1)钢中含碳(C)量和合金元素含量愈高,钢Ms点愈低,Ms点降低2℃,则淬裂倾向增加1.2倍,Ms点降低8℃,淬裂倾向则增加8倍;(2)钢中不同组织转变和相同组织转变不同时性,由于不同组织比容差,造成巨大组织应力,导致组织交界处形成弧状裂纹;(3)淬火后未及时回火,或回火不充分,钢中残余奥氏体未充分转变,保留在使用状态中,促进应力重新分布,或模具服役时残余奥氏体发生马氏体相变产生新的内应力,当综合应力大于该钢强度极限时便形成弧状裂纹;(4)具有第二类回火脆性钢,淬火后高温回火缓冷,导致钢中P,s等有害杂质化合物沿晶界析出,大大降低晶界结合力和强韧性,增加脆性,服役时在外力作用下形成弧状裂纹。

预防措施:(1)改进设计,尽量使形状对称,减少形状突变,增加工艺孔与加强筋,或采用组合装配;(2)圆角代直角及尖角锐边,贯穿孔代盲孔,提高加工精度和表面光洁度,减少应力集中源,对于无法避免直角、尖角锐边、盲孔等处一般硬度要求不高,可用铁丝、石棉绳、耐火泥等进行包扎或填塞,人为造成冷却屏障,使之缓慢冷却淬火,避免应力集中,防止淬火时弧状裂纹形成;(3)淬火钢应及时回火,消除部分淬火内应力,防止淬火应力扩展;(4)较长时间回火,提高模具抗断裂韧性值;(5)充分回火,得到稳定组织性能;(6)多次回火使残余奥氏体转变充分和消除新的应力;(7)合理回火,提高钢件疲劳抗力和综合机械力学性能;(8)对于有第二类回火脆性模具钢高温回火后应快冷(水冷或油冷),可消除二类回火脆性,防止和避免淬火时弧状裂纹形成。

模具服役时在应力作用下,淬火硬化层一块块从钢基体中剥离。因模具表层组织和心部组织比容不同,淬火时表层形成轴向、切向淬火应力,径向产生拉应力,并向内部突变,在应力急剧变化范围较窄处产生剥离裂纹,常发生于经表层化学热处理模具冷却过程中,因表层化学改性与钢基体相变不同时性引起内外层淬火马氏体膨胀不同时进行,产生大的相变应力,导致化学处理渗层从基体组织中剥离。如火焰表面淬硬层、高频表面淬硬层、渗碳层、碳氮共渗层、渗氮层、渗硼层、渗金属层等。化学渗层淬火后不宜快速回火,尤其是300~C以下低温回火快速加热,会促使表层形成拉应力,而钢基体心部及过渡层形成压缩应力,当拉应力大于压缩应力时,导致化学渗层被拉裂剥离。

预防措施:(1)应使模具钢化学渗层浓度与硬度由表至内平缓降低,增强渗层与基体结合力,渗后进行扩散处理能使化学渗层与基体过渡均匀;(2)模具钢化学处理之前进行扩散退火、球化退火、调质处理,充分细化原始组织,能有效防止和避免剥离裂纹产生,确保产品质量。

5网状裂纹

裂纹深度较浅,一般深约0.01-1.5mm,呈辐射状,别名龟裂。原因主要有:(1)原材料有较深脱碳层,冷切削加工未去除,或成品模具在氧化气氛炉中加热造成氧化脱碳;(2)模具脱碳表层金属组织与钢基体马氏体含碳量不同,比容不同,钢脱碳表层淬火时产生大的拉应力,因此,表层金属往往沿晶界被拉裂成网状;

(3)原材料是粗晶粒钢,原始组织粗大,存在大块状铁素体,常规淬火无法消除,保留在淬火组织中,或控温不准,仪表失灵,发生组织过热,甚至过烧,晶粒粗化,失去晶界结合力,模具淬火冷却时钢的碳化物沿奥氏体晶界析出,晶界强度大大降低,韧性差,脆性大,在拉应力作用下沿晶界呈网状裂开。

预防措施:(1)严格原材料化学成分.金相组织和探伤检查,不合格原材料和粗晶粒钢不宜作模具材料;(2)选用细晶粒钢、真空电炉钢,投产前复查原材料脱碳层深度,冷切削加工余量必须大于脱碳层深度;(3)制订先进合理热处理工艺,选用微机控温仪表,控制精度达到±1.5℃,定时现场校验仪表;(4)模具产品最终处理选用真空电炉、保护气氛炉和经充分脱氧盐浴炉加热模具产品等措施,有效防止和避免网状裂纹形成。

模具钢多为中,高碳合金钢,淬火后还有部分过冷奥氏体未转变成马氏体,保留在使用状态中成为残余奥氏体,影响使用性能。若置于零度以下继续冷却,能促使残余奥氏体发生马氏体转变,因此,冷处理的实质是淬火继续。室温下淬火应力和零度下淬火应力叠加,当叠回应力超过该材料强度极限时便形成冷处理裂纹。

预防措施:(1)淬火后冷处理之前将模具置于沸水中煮30—60min,可消除15%-25%淬火内应力并使残余奥氏体稳定化,再进行-60℃常规冷处理,或进行-120℃深冷处理,温度愈低,残余奥氏体转变成马氏体量愈多,但不可能全部转变完,实验表明,约有2%-5%残余奥氏体保留下来,按需要保留少量残余奥氏体可松驰应力,起缓冲作用,因残余奥氏体又软又韧,能部分吸收马氏体化急剧膨胀能量,缓和相变应力;(2)冷处理完毕后取出模具投入热水中升温,可消除40%-60%冷处理应力,升温至室温后应及时回火,冷处理应力进一步消除,避免冷处理裂纹形成,获得稳定组织性能,确保模具产品存放和使用中不发生畸变。

7磨削裂纹

常发生在模具成品淬火、回火后磨削冷加工过程中,多数形成的微细裂纹与磨削方向垂直,深约0.05—1.0mm。(1)原材料预处理不当,未能充分消除原材料块状、网状、带状碳化物和发生严重脱碳;(2)最终淬火加热温度过高,发生过热,晶粒粗大,生成较多残余奥氏体;(3)在磨削时发生应力诱发相变,使残余奥氏体转变为马氏体,组织应力大,加上因回火不充分,留有较多残余拉应力,与磨削组织应力叠加,或因磨削速度、进刀量大及冷却不当,导致金属表层磨削热急剧升温至淬火加热温度,随之磨削液冷却,造成磨削表层二次淬火,多种应力综合,超过该材料强度极限,便引起表层金属磨削裂纹。

预防措施:(1)对原材料进行改锻,多次双十字形变向镦拔锻造,经四镦四拔,使锻造纤维组织围绕型腔或轴线呈波浪形对称分布,并利用最后一火高温余热进行淬火,接着高温回火,能充分消除块状、网状、带状和链状碳化物,使碳化物细化至2-3级;(2)制订先进的热处理工艺,控制最终淬火残余奥氏体含量不超标;(3)淬火后及时进行回火、消除淬火应力;(4)适当降低磨削速度、磨削量,

磨削冷却速度,能有效防止和避免磨削裂纹形成。

8线切割裂纹

该裂纹出现在经过淬火、回火的模块在线切割加工过程中,此过程改变了金属表层、中间层和心部应力场分布状态,淬火残余内应力失去平衡变形,某一区域出现大的拉应力,此拉应力大干该模具材料强度极限时导致炸裂,裂纹是弧尾状刚劲变质层裂纹。实验表明,线切割过程是局部高温放电和迅速冷却过程,使金属表层形成树枝状铸态组织凝固层,产生600-900MPa拉应力和厚约0.03mm 的高应力二次淬火白亮层。裂纹产生原因:(1)原材料存在严重的碳化物偏析;

(2)仪表失灵,淬火加热温度过高,晶粒粗大,降低材料强韧性,增加脆性;(3)淬火工件未及时回火和回火不充分,存在过大的残余内应力和线切割过程中形成的新内应力叠加导致线切割裂纹。

预防措施:(1)严格原材料入库前检查,确保原材料组织成分合格,对不合格原材料必须进行改锻,击碎碳化物,使化学成分、金相组织等达到技术条件后方可投产。模块热处理前加工成品需留足一定磨量后淬火.回火、线切割;(2)入炉前校验仪表,选用微机控温,控温精度±1.5℃,真空炉、保护气氛炉加热,严防过热和氧化脱碳;(3)采用分级淬火、等温淬火和淬火后及时回火,多次回火,充分消除内应力,为线切割创造条件;(4)制订科学合理线切割工艺。

9疲劳断裂

模具服役时在交变应力反复作用下形成的显微疲劳裂纹缓慢扩展,导致突然疲劳断裂。(1)原材料存在发纹、自点、孔隙、疏松、非金属夹杂、碳化物严重偏析、带状组织、块状游离铁素体冶金组织缺陷,破坏了基体组织连续性,形成不均匀应力集中。钢锭中112未排除,导致轧制时形成白点。钢中存在Sb、Bi、Pb、Sn、As和S、P等有害杂质,钢中的P易引起冷脆,而s易引起热脆,S,P 有害杂质超标均易形成疲劳源;(2)化学渗层过厚、浓度过大、渗层过度、硬化层过浅、过渡区硬度低等都可导致材料疲劳强度急剧降低;(3)当模面加工粗糙、精度低、光洁度差,以及刀纹,刻字、划痕、碰伤、腐蚀麻面等也易引起应力集中导致疲劳断裂。

预防措施:(1)严格选材,确保材质,控制Pb、As、Sn等低熔点杂质与S、P 非金属杂质含量不超标;(2)投产前进行材质检查,不合格原材料不投产;(3)

选用具有纯洁度高、杂质少、化学成分均匀、晶粒细.碳化物小、等向性能好,疲劳强度高等特点的电渣重熔精炼钢,对模具型面表面喷丸强化和表面化学渗层改性强化处理,使金属表层为预压应力,抵消模具服役时产生的拉应力,提高模具型面疲劳强度;(4)提高模具型面加工精度和光洁度;(5)改善化学渗层和硬化层组织性能;(6)采用微机控制化学渗层厚度、浓度和硬化层厚度。

10应力腐蚀裂纹

该裂纹常发生在使用过程中。金属模具因化学反应或电化学反应过程,引起从表至内组织结构损坏腐蚀作用而产生开裂,这就是应力腐蚀裂纹。模具钢因热处理后组织不同,抗蚀性能也不同。最耐蚀组织为奥氏体(A),最易腐蚀组织为屈氏体(T),依次为铁素体(F)一马氏体(M)一珠光体(P)一索氏体(S)。因此,模具钢热处理不宜得到T组织。淬火钢虽经回火,但因回火不充分,淬火内应力或多或少依然存在,模具服役时在外力作用下也会产生新的应力,凡有应力存在于金属模具中就会有应力腐蚀裂纹发生。

预防措施:(1)模具钢淬火后应及时回火,充分回火,多次回火,以消除淬火内应力;(2)模具钢淬火后一般不宜在350-400~C回火,因T组织常在此温度出现,发生有T组织模具应重新处理,模具应进行防锈处理,提高抗蚀性能;(3)热作模具服役前进行低温预热,冷作模具服役一个阶段后进行一次低温回火消除应力,不仅能防止和避免应力腐蚀裂纹发生,还可大幅度提高模具使用寿命,一举两得,有显著技术经济效益。

淬火裂纹

淬火裂纹 淬火裂纹是指在淬火过程中或在淬火后的室温放置过程中产生的裂纹。后者又叫时效裂纹。造成淬火开裂的原因很多,在分析淬火裂纹时,应根据裂纹特征加以区分。 淬火裂纹的特征 在淬火过程中,当淬火产生的巨大应力大于材料本身的强度并超过塑性变形极限时,便会导致裂纹产生。淬火裂纹往往是在马氏体转变开始进行后不久产生的,裂纹的分布则没有一定的规律,但一般容易在工件的尖角、截面突变处形成。 在显微镜下观察到的淬火开裂,可能是沿晶开裂,也可能是穿晶开裂;有的呈放射状,也有的呈单独线条状或呈网状。因在马氏体转变区的冷却过快而引起的淬火裂纹,往往是穿晶分布,而且裂纹较直,周围没有分枝的小裂纹。因淬火加热温度过高而引起的淬火裂纹,都是沿晶分布,裂纹尾端尖细,并呈现过热特征:结构钢中可观察到粗针状马氏体;工具钢中可观察到共晶或角状碳化物。表面脱碳的高碳钢工件,淬火后容易形成网状裂纹。这是因为,表面脱碳层在淬火冷却时的体积胀比未脱碳的心部小,表面材料受心部膨胀的作用而被拉裂呈网状。 非淬火裂纹的特征 淬火后发生的裂纹,不一定都是淬火所造成的,可根据下面特征来区分: 淬火后发现的裂纹,如果裂纹两侧有氧化脱碳现象,则可以肯定裂纹在淬火之前就已经存在。淬火冷却过程中,只有当马氏体转变量达到一定数量时,裂纹才有可能形成。与此相对应的温度,大约在250℃以下。在这样的低温下,即使产生了裂纹,裂纹两侧也不会发生脱碳和出现明显氧化。所以,有氧化脱碳现象的裂纹是非淬火裂纹。 如果裂纹在淬火前已经存在,又不与表面相通,这样的内部裂纹虽不会产生氧化脱碳,但裂纹的线条显得柔软,尾端圆秃,也容易与淬火裂纹的线条刚健有力,尾端尖细的特征区别开来。 实例探讨 1、轴,40Cr,经锻造、淬火后发现裂纹。裂纹两侧有氧化迹象,金相检验,裂纹两侧存在脱碳层,而且裂纹两侧的铁素体呈较大的柱状晶粒,其晶界与裂纹大致垂直。结论:裂纹是在锻造时形成的非淬火裂纹。 当工件在锻造过程中形成裂纹时,淬火加热即引起裂纹两侧氧化脱碳。随着脱碳过程的进行,裂纹两侧的碳含量降低,铁索体晶粒开始生核。当沿裂纹两侧生核的铁素体晶粒长大到彼此接触后,便向离裂纹两侧较远的基体方向生长。由于裂纹两侧在脱碳过程中碳浓度的下降,也是由裂纹的开口部位向内部发展,因而为铁素体晶粒的不断长大提供了条件,故最终长大为晶界与裂纹相垂直的柱状晶体。 2、半轴套座,40Cr,淬火后出现开裂。金相检验,裂纹两侧有全脱碳层,其中的铁素体呈粗大柱状晶粒,并与裂纹垂直。全脱碳层内侧的组织为板条马氏体加少量托氏体,这种组织是正常淬火组织。结论:在加工过程中未经锻造,因此属原材料带来的非淬火裂纹。

墙体裂缝成因分析及防治措施知识讲解

墙体裂缝成因分析及 防治措施

1 绪论 建筑施工的过程中经常会存在一些质量问题,建筑裂缝种类繁多、形态各异,墙体裂缝是混凝土结构中比较常见的一种,这些裂缝的存在不仅会降低建筑物的抗渗能力,影响建筑物的使用功能的实现,甚至造成混凝土结构破坏和建筑物倒塌,墙体裂缝问题应该得到解决。建筑工程的质量直接关系到人民生命财产安全、人身健康和公众利益等诸多方面,在关于商品房的质量投诉案件中,由于墙体裂缝、渗漏等涉及的纠纷或官司越来越多,墙体裂缝不仅影响建筑物的美观和使用功能要求(如引起建筑物透风、渗漏):还可能破坏墙体的整体性,影响结构安全;甚至会降低结构的耐久性。因此已成为住户评判建筑物安全的一个非常直观、敏感和首要的质量标准。墙体裂缝作为一种质量通病,对业主在观感和使用上造成不良影响,一直困扰着业主和开发商。因此分析墙体裂缝产生的原因,并制定相应的防治措施,已成为国家行政主管部门、房屋开发商及业主共同关注的课题。根据近几年对市民投诉的统计资料来看,与建筑物裂缝有关的占90%以上。因此,无论是从经济角度、观感角度及正常使用角度来说,建筑物的裂缝问题均是一个需要迫切解决的问题。

2 墙体裂缝的概述 2.1墙体裂缝的危害 墙体裂缝,特别是砖混结构住宅楼的现浇板裂缝、墙体裂缝、多层现浇框架填充墙裂缝,属于当前建筑物多发性、普遍性的质量顽症。许多混凝土结构、砌体结构等建筑物在建设和使用的过程中出现了不同程度、不同形式的裂缝。对于钢筋混凝土结构,裂缝使大气中的二氧化碳很快渗透到混凝土中去,加快了裂缝处混凝土的碳化速度,从而缩短了结构从制作到钢筋开始锈蚀(即碳化历程)所经历的时间。而化学介质、气体、氧分子及水分子等也同时侵入裂缝。破坏钢筋钝化膜,在钢筋表面发生电化学反应,引起钢筋锈蚀,影响结构的使用寿命。如:钢筋混凝土梁、柱构件出现胀锈裂缝时(纵向裂缝)表明混凝土保护层内钢筋己严重锈蚀,结构的安全度随之迅速降低,结构的使用寿命大大缩短。砌体结构的墙体裂缝则会引起建筑物的渗漏,降低建筑物的刚度、耐久性和抗震性能,若墙体裂缝进一步扩展,还可能会威胁到人的生命和财产安全。 2.2裂缝控制的要求 裂缝有宏观、微观之分,更有有害、无害之别,建筑物裂缝宽度小于O.05mm的属于微观裂缝,反之属于宏观裂缝。所谓裂缝的有害、无害之别,主要取决于建筑物的用途、性质、所处环境条件、裂缝所处部位、裂缝大小等。一般认为,凡引起下列后果的裂缝为有害裂缝,如:损害建筑物的功能;引起其它因素的破坏;降低结构刚度或影响建筑物的整体性;损害结构表面功能等。

热裂纹防止措施

热裂纹防止措施: (1)尽量使焊缝金属呈双相组织,铁素体的含量控制在3—5%以下。因为铁素体能大量溶解有害的S、P杂质。 (2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。 根据贫铬理论,焊缝和热影响区在加热到450—850%敏化温度区时在晶界上析出碳化铬,造成贫铬的晶界,不足以抵抗腐蚀的程度。 防止措施: (1)采用低碳或超低碳的焊材,如A002等;采用含钛、铌等稳定化元素的焊条,如A137、A132等。 (2)南焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制在4—12%)。 (3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度。 (4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。 科技名词定义 中文名称:晶间腐蚀 英文名称:intergranular corrosion 其他名称:晶界腐蚀 定义1:沿着或紧挨着晶粒边界发生的腐蚀。 所属学科:船舶工程(一级学科);船舶腐蚀与防护(二级学科) 定义2:因金属中晶界组分在介质中的溶解速率远高于晶粒本体的溶解速率而产生的局部腐蚀。是使金属强度、塑性和韧性大大降低的危害性很大的腐蚀类型。 所属学科:电力(一级学科);核电(二级学科) 定义3:沿着或紧挨着金属晶粒边界发生的腐蚀。 所属学科:机械工程(一级学科);腐蚀与保护(二级学科);腐蚀类型(三级学科) 本内容由全国科学技术名词审定委员会审定公布 晶间腐蚀,局部腐蚀的一种。沿着金属晶粒间的分界面向内部扩展的腐蚀。 目录 基本概念 不锈钢的晶间腐蚀 不锈钢的敏化 预防措施 发生晶间腐蚀的电化学条件 相关标准

建筑工程各种裂缝防治措施

各种裂缝的防治措施 1、裂缝的调查概况: 通过对大量砖混结构的民用住宅、框架结构的办公楼等多种建筑的调查发现,多数建筑都存在着不同形式的裂缝,这些裂缝一旦出现便很难弥补,但许多裂缝是有规律可循的。我对这些裂缝进行了总结,其调查结果如下: (1)不管是什么结构的建筑,几乎都存在抹灰开裂的现象,大部分是因为温度变化引起的,仅仅是轻重程度的不同而已。 (2)抹灰表面龟裂,裂缝多而无规律,裂缝较细但面积较大,严重的引起墙面空鼓,若要返工成本较大。 (3)在框架结构中,填充墙体与梁柱接触面间容易出现水平和垂直裂缝,这些裂缝几乎是不可避免的,如果不加以预防,裂缝一旦出现就很难补救。 (4)墙体使用新型材料尤其是大块板型材料,例如GRC墙板、钢丝网架聚苯乙烯夹心板(俗称得乐板、舒乐板等),不同板块之间经常出现规则的竖向裂缝。 (5)在门、窗洞口出现形状为“八”字形的裂缝,裂缝沿约45°方向开裂,框架结构和砖混结构均有发生,而砖混结构多发生于顶层两端的房间,而且裂缝一般较宽,这种裂缝不仅仅是抹灰的开裂,而是砌体的开裂,出现后有时伴有渗漏现象,危害较大,一般是由于温度变化引起的,是较为典型的温度裂缝,较难处理和避免。 2、裂缝对建筑的影响及社会影响分析 2.1对建筑物的影响分析: 通常情况下,这些裂缝不会危及到结构的安全,危害性较小,但对建筑物将产生下列影响: (1)贯穿墙体的裂缝影响建筑物的使用寿命及抗震性能,尤其以砖混结构的建筑为甚。 (2)发生于外墙的裂缝,当开裂较为严重时,往往造成墙面的渗漏并且给内装饰带来污染和损伤,影响表观和使用。 (3)当裂缝尤其是温度裂缝到达一定程度时,会造成窗口变形,影响正常的使用。 (4)外抹灰开裂后,不仅影响外观和使用寿命,一旦外抹灰进水,冬季冻胀致使外抹灰层脱落,将影响到周围行人的安全。 2.2社会影响分析 随着国家对工程质量的越来越重视和人们质量意识的提高,特别是住房体制的改革,住宅建设资金将由个人出资,因此人们对工程的质量问题的关心程度将会越来越高。这也对工程的建设者们提出了越来越高的要求,这就要求我们必须认真对待并力求克服建筑通病的发生。由于人们对建筑结构还不太了解,所以用户对于裂缝引起了较为强烈的反响,主要反映在以下几个方面: (1)影响观感:墙体的裂缝对人的观感影响很大,给人的感觉造成较大冲击,使人感到极不舒服,影响情绪,同时给工程的交工带来极大麻烦。 (2)不安全感:尽管这些裂缝一般不会危及到结构安全,但是由于多数人对结构情况不了解,而担心是否安全,造成心理上的不安全感,同时外墙抹灰层的开裂脱落也的确存在着不安全因素,因此对用户的解释工作甚难做好。 (3)影响使用:裂缝严重时将会造成渗漏、门窗变形等,不仅影响到使用,而且也会造成一定的经济损失。 3、原因分析及技术措施 3.1墙面抹灰龟裂

常见淬火裂纹有以下10种类型

常见淬火裂纹有以下10种类型 模具钢热处理中,淬火是常见工序。然而,因种种原因,有时难免会产生淬火裂纹,致使前功尽弃。分析裂纹产生原因,进而采取相应预防措施,具有显著的技术经济效益。常见淬火裂纹有以下10种类型。 1纵向裂纹裂纹呈轴向,形状细而长。当模具完全淬透即无心淬火时,心部转变为比容最大的淬火马氏体,产生切向拉应力,模具钢的含碳量愈高,产生的切向拉应力愈大,当拉应力大于该钢强度极限时导致纵向裂纹形成。以下因素又加剧了纵向裂纹的产生:(1)钢中含有较多S、P、Sb、Bi、Pb、Sn、As等低熔点有害杂质,钢锭轧制时沿轧制方向呈纵向严重偏析分布,易产生应力集中形成纵向淬火裂纹或原材料轧制后快冷形成的纵向裂纹未加工掉保留在产品中导致最终淬火裂纹扩大形成纵向裂纹;(2)模具尺寸在钢的淬裂敏感尺寸范围内(碳工具钢淬裂危险尺寸为8-15mm,中低合金钢危险尺寸25-40mm)或选择的淬火冷却介质大大超过该钢的临界淬火冷却速度时均易形成纵向裂纹。预防措施:(1)严格原材料入库检查,对有害杂质含量超标钢材不投产;(2)尽量选用真空冶炼、炉外精炼或电渣重熔模具钢材;(3)改进热处理工艺,采用真空加工热、保护气氛加热和充分脱氧盐浴炉加热及分析淬火、等温淬火;(4)变无心淬火为有心淬火即不完全淬透,获得强韧性高的下贝氏体组织等措施,大幅度降低拉应力,能有效避免模具纵向开裂和淬火畸变。 2横向裂纹 裂纹特征是垂直于轴向。未淬透模具,在淬硬区与未淬硬区过渡部分存在大的拉应力峰值,大型模具快速冷却时易形成大的拉应力峰值,因形成的轴向应力大于切向应力,导致产生横向裂纹。锻造模块中S、P、Sb、Bi、Pb、Sn、As等低熔点有害杂质的横向偏析或模块存在横向显微裂纹,淬火后经扩展形成横向裂纹。 预防措施:(1)模块应合理锻造,原材料长度与直径之比即锻造比最好选在2-3之间,锻造之间双十字形变向锻造,经五镦五拔多火锻造,使钢中碳化物和杂质呈细、小、匀分布于钢基体,锻造纤维组织围绕型腔无定向分布,大幅度提高模块横向力学性能,减少和消除应力源;(2)选择理想的冷却速度和冷却介质:在钢的Ms点以上快冷,大于该钢临界淬火冷却速度,钢中过冷奥氏体产生的应力为热应力,表层为压应力,内层为张应力,相互抵消,有效防止热应力裂纹形成,在钢的Ms-Mf之间缓冷,大幅度降低形成淬火马氏体时的组织应力。当钢中热应力与相应应力总和为正(张应力)时,则易淬裂,为负时,则不易淬裂。充分利用热应力,降低相变应力,控制应力总和为负,能有效避免横向淬火裂纹发生。CL-1有机淬火介质是较理想淬火剂,同时可减少和避免淬火模具畸变,还可控制硬化层合理分布。调正CL-1淬火剂不同浓度配比,可得到不同冷却速度,获得所需硬化层分布,满足不同模具钢需求。 3弧状裂纹 常发生在模具棱角、凸台、刀纹、尖角、直角、缺口、孔穴、凹模接线飞边等形状突变处。这是因为,淬火时棱角处产生的应力是平滑表面平均应力的10倍。另外,(1)钢中含碳(C)

各种焊接裂纹成因特点及防止措施这条必须收藏了

各种焊接裂纹成因特点及防止措施,这条必须收藏了 焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。1.热裂纹是在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。(1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si骗高)和单相奥氏体钢、镍基合金以及某些铝合金焊逢中。这种裂纹是在焊逢结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。防治措施为:在冶金因素方面,适当调整焊逢金属成分,缩短脆性温度区的范围控制焊逢中硫、磷、碳等有害杂质的含量;细化焊逢金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。(2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成

物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。这一种裂纹的防治措施与结晶裂纹基本上是一致的。特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。(3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。2.再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。再热裂纹产生在焊接热影响区的过热粗晶部位,其走向是沿熔合线的奥氏体粗晶晶界扩展。防治再热裂纹从选材方面,可以选用细晶粒钢。在工艺方面,选用较小的线能量,选用较高的预热温度并配合以后热措施,选用低匹配的焊接材料,避免应力集中。3.冷裂纹主要发生在高、中碳钢、低、中合金钢的焊接热影响区,但有些金属,如某些超高强钢、钛及钛合金等有时冷裂纹也发生在焊缝中。一般情况下,钢种的淬硬倾向、焊接接头含氢量及分布,以及接头所承受的拘束应力状态是高强钢焊接时产生冷裂纹的三大主要因素。焊后形成的马氏体组织在氢元素的作用下,配合以拉应力,便形成了冷裂纹。他的形成一般是穿晶或沿晶的。冷裂纹一般分

浅谈填充墙裂缝产生的原因及预防措施

浅谈填充墙裂缝产生的原因及预防措施 目前在高层住宅设计中,普遍为框架剪力墙结构,并且一般以各种不同材质的轻质砌块或空心砖作为内外填充墙。该部分墙体粉刷前虽然采用了墙拉结钢筋、钢板网片等连接措施,但由于设计、施工工艺、环境等多方面原因,墙体粉刷后经常会产生墙体裂缝,尤其是墙体的斜裂缝,施工中最不易控制,已经成为高层住宅结构施工中常见的质量通病。虽然裂缝很小,但影响了墙面装饰的美观,不能得到消费者的认同。因此,如何做好填充墙这一看似简单的工作,是施工单位亟待解决的问题。借此,在填充墙体开裂的维修中,我们发现,三方面问题较为突出:一是大面墙开裂现象;二是门窗洞口、线槽、线盒等角部的开裂现象;三是填充墙体与砼结构结合处的开裂现象。 一、主要就填充墙体裂缝产生的机理和影响进行分析: 1,龟裂的发生 (1)基层表面平整度达不到要求,尤其是垂直度超标,造成抹灰层厚薄不均或抹灰层过厚,从而造成表面龟裂的发生。 (2)中高级抹灰应该分层施工,有时施工时为了赶进度或为了省工图方便,从而抹灰基层、中层、面层分层不当,分层厚度不当,压不密实,从而引发龟裂。 (3)与施工环境有关,抹灰环境通风良好而且干燥,通常又疏于养护致使砂浆失水较快从而导致严重龟裂。 (4)为了使抹灰尽快成活或使表面当时美观便于交活,有时操作人员在表层抹光后或压光同时外罩一层纯水泥膏,这层水泥膏风干后薄而脆,不仅引发表面的龟裂而且最易受益匪浅,是应该坚决予以杜绝的。 2,裂缝产生的影响因素 (1)、材料温度变形系数差异:由于钢筋混凝土材料温度变形系数较小,砌体材料温度变形系数相对较大,故而在温度变化时,温度变形系数的差异导致两者温度变形的不同步性,从而产生了压应力和拉应力,特别是温度降低导致拉应力出现,到达一定数值后,即大于砌体的抗拉强度时,裂缝便会产生。 (2)、温度变化:由于裂缝是材料温度变形造成,所以温度变化是导致裂缝产生的另一原因。当墙体粉刷完成达到初步凝固,钢板网、拉结筋与粉刷形成共同受力系统时,此时的温度为墙体的临界温度。当外界气温升高,填充墙与钢筋混凝土墙体之间产生压应力,因为砌体的抗压强度远大于其抗拉强度,一般不会有裂缝等破坏情况出现。当外界温度降低,低于临界温度时,拉应力出现,最终导致出现裂缝。 (3)、填充墙体的形状、尺寸:材料温度变形的幅度与其长度成正比,若填充墙尺寸增大,其温度变化时,相应的变形幅度也会相应增大,在受到束缚的前提下产生的应力相应也会增大,在轻质填充墙砌体抗拉强度一定的情况下,产生裂缝的几率也就越高。 (4)、墙体的砌筑质量:填充墙砌体是砌块、砂浆、拉结筋、钢板网的统一受力整体,轻质填充墙砌体的抗拉强度、材质的均匀性、砌筑砂浆的质量及工艺的合理性,都会影响到砌体的整体抗拉强度,进而直接影响到整个墙体的抗裂能力。

淬火裂纹及预防措施

模具钢热处理中,淬火是常见工序。然而,因种种原因,有时难免会产生淬火裂纹,致使前功尽弃。分析裂纹产生原因,进而采取相应预防措施,具有显著的技术经济效益。常见淬火裂纹有以下10类型。 1、纵向裂纹 裂纹呈轴向,形状细而长。当模具完全淬透即无心淬火时,心部转变为比容最大的淬火马氏体,产生切向拉应力,模具钢的含碳量愈高,产生的切向拉应力愈大,当拉应力大于该钢强度极限时导致纵向裂纹形成。以下因素又加剧了纵向裂纹的产生:(1)钢中含有较多S、P、Sb、Bi、Pb、Sn、As等低熔点有害杂质,钢锭轧制时沿轧制方向呈纵向严重偏析分布,易产生应力集中形成纵向淬火裂纹,或原材料轧制后快冷形成的纵向裂纹未加工掉保留在产品中导致最终淬火裂纹扩大形成纵向裂纹;(2)模具尺寸在钢的淬裂敏感尺寸范围内(碳工具钢淬裂危险尺寸为8-15mm,中低合金钢危险尺寸为25-40mm)或选择的淬火冷却介质大大超过该钢的临界淬火冷却速度时均易形成纵向裂纹。 预防措施:(1)严格原材料入库检查,对有害杂质含量超标钢材不投产;(2)尽量选用真空冶炼,炉外精炼或电渣重熔模具钢材;(3)改进热处理工艺,采用真空加热、保护气氛加热和充分脱氧盐浴炉加热及分级淬火、等温淬火;(4)变无心淬火为有心淬火即不完全淬透,获得强韧性高的下贝氏体组织等措施,大幅度降低拉应力,能有效避免模具纵向开裂和淬火畸变。 2横向裂纹 裂纹特征是垂直于轴向。未淬透模具,在淬硬区与未淬硬区过渡部分存在大的拉应力峰值,大型模具快速冷却时易形成大的拉应力峰值,因形成的轴向应力大于切向应力,导致产生横向裂纹。锻造模块中S、P.Sb,Bi,Pb,Sn,As等低熔点有害杂质的横向偏析或模块存在横向显微裂纹,淬火后经扩展形成横向裂纹。 预防措施:(1)模块应合理锻造,原材料长度与直径之比即锻造比最好选在2—3之间,锻造采用双十字形变向锻造,经五镦五拔多火锻造,使钢中碳化物和杂质呈细、小,匀分布于钢基体,锻造纤维组织围绕型腔无定向分布,大幅度提高模块横向力学性能,减少和消除应力源;(2)选择理想的冷却速度和冷却介质:在钢的Ms点以上快冷,大于该钢临界淬火冷却速度,钢中过冷奥氏体产生的应力

房屋砖砌墙体裂缝原因及预防措施

房屋砖砌墙体裂缝原因及预防措施 摘要:本文分析了形成墙体裂缝的主要原因,并就一般砖墙体裂缝的现象特征、成因、防治和补强措施作一初步的探讨、分析和研究,供大家参考。 关键词:砖砌墙:裂缝;成因;防治 1 前言 砖混结构住宅由于材料单一、工程造价低、施工操作简单,结构整体性能好,保湿效果好等特点,较为适用,目前我国的住宅工程百分之六十以上均以砖混结构为主。由于住宅建筑涉及的量大面广,并且关系到人民群众的切身利益,所以注重住宅工程质量仍为工程质量监督站工作的首要任务之一。近年来砖混结构住宅的施工工艺和操作方法不断发展,但与其它工业化建筑体系相比,仍存在着作业量大手工操作多、劳动强度大、生产效率低,施工工期长等不利素,加上操作人员大多为外来民工,流动性大,不懂技术,质量意识差,给住宅工程管理和工程质量管理带来诸多影响。针对住宅工程出现的主要矛盾,为有效地控制工程质量,应注意从质量意识上、技术管理上和组织管理上采取一系列措施,以促进砖混结构工程质量进一步提高。 砖混结构就是竖直在承重构件用砖砌体,而水平承重构件用砼,由这两种材料混合建造的结构由于其造价低,取材方便,性能良好而广泛用于中小城市七层以下的住宅和公共建筑中。但由于温度变化、地基不均匀沉降、设计、施工等因素的影响,常使墙体产生一些形状不规则、宽度不等的裂缝。这些裂缝不令影响建筑外观造型和使用功能,而且会影响到结构的承载力和稳定性,严重者甚至引起房屋的倒塌,造成生命财产的损失。因此,研究这些裂缝产生的原因以便采取必要的措施加以预防是十分重要的。 2 地基不均匀沉降引起墙体裂缝 2.1 工程裂缝现象和部位 斜裂缝,常发生在内外墙、窗间墙和窗台墙上,大部分裂缝是通过窗口的两对角,在紧靠窗口处缝宽较大,向两边和上下逐渐缩小。 水平裂缝,一般在窗间墙的上下对角处成对出现,沉降大的一边裂缝在下,沉降小的一边裂缝在上。竖向裂缝,一般产生在纵墙中央的顶部和底层窗台处,裂缝上宽下窄。 2.2 产生原因 斜裂缝主要因地基不均匀沉陷,墙身受较大的剪力,砌体受拉应力而破坏产生裂缝。水平裂缝主要因地基有不均匀沉降,而沉降缝处理不当,使沉降单元被

混凝土裂缝预防措施

混凝土裂缝预防措施 混凝土裂缝预防措施 混凝土裂缝产生的原因: 1、干缩裂缝成因及处理措施 干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右,水泥浆中水分的蒸发会产生干缩。干缩裂缝产 生通常会影响混凝土的抗渗性,引起钢筋的锈蚀影响混凝土的耐久性,在水压力的作用下会产生水力劈裂影响混凝土的承载力等。 主要预防措施:一是选用收缩量较小的水泥,一般采用中低热水泥和粉煤灰水泥,降低水泥的用量;二是混凝土的干缩受水灰比的影 响较大,在混凝土配合比设计中应尽量控制好水灰比的选用,同时 掺加合适的减水剂;三是严格控制混凝土搅拌和施工中的配合比,混 凝土的用水量绝对不能大于配合比设计所给定的用水量;四是加强混 凝土的早期养护,并适当延长混凝土的养护时间。冬季施工时要适 当延长混凝土保温覆盖时间,并涂刷养护剂养护;五是在混凝土结构 中设置合适的收缩缝。 2、塑性收缩裂缝及预防 塑性收缩是指混凝土在凝结之前,表面因失水较快而产生的收缩。塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽,两侧 细且长短不一,互不连贯状态。较短的裂缝一般长20~30厘米,较 长的裂缝可达2~3米,宽l~5毫米。其产生的.主要原因为:混凝 土在终凝前几乎没有强度或强度很小,或者混凝土刚终凝而强度很 小时,受高温或较大风力的影响,混凝土表面失水过快,造成毛细 管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强 度又无法抵抗其本身收缩,因此产生龟裂。影响混凝土塑性收缩开 裂的主要因素有水灰比、混凝土的凝结时间、环境温度、风速、相 对湿度等。

主要预防措施:一是选用干缩值较小早期强度较高的硅酸盐或普通硅酸盐水泥。二是严格控制水灰比,掺加高效减水剂来增加混凝 土的坍落度和和易性,减少水泥及水的用量。三是浇筑混凝土之前,将基层和模板浇水均匀湿透。四是及时覆盖塑料薄膜或者潮湿的草垫、麻片等,保持混凝土终凝前表面湿润,或者在混凝土表面喷洒 养护剂等进行养护。五是在高温和大风天气要设置遮阳和挡风设施,及时养护。 3、沉陷裂缝及预防 沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填不实或浸水而造成不均匀沉降所致;或者因为模板刚度不足。模板支撑问距 过大或支撑底部松动等导致,特别是在冬季,模板支撑在冻土上, 冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。 主要预防措施:一是对松软土、填土地基在上部结构施工前应进行必要的夯实和加固;二是保证模板有足够的强度和刚度,且支撑牢固,并使地基受力均匀;三是防止混凝土浇灌过程中地基被水浸泡; 四是模板拆除的时间不能太早,且要注意拆模的先后次序;五是在冻 土上搭设模扳时要注意采取一定的预防措施。 4、温度裂缝及预防 温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。较大的温差造成内部与外部热胀冷缩的程度不同,使混 凝土表面产生一定的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。混凝土施工中当温差变化较大,或者是混凝土受到寒潮袭击, 会导致混凝土表面温度急剧下降而产生收缩,表面收缩的混凝土受 内部混凝土的约束,产生很大的拉应力而产生裂缝,这种裂缝通常 只在混凝土表面较浅的范围内产生。温度裂缝的走向通常无一定规律,大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝 多平行于短边;深入和贯穿性的温度裂缝一般与短边方向平行或接近 平行,裂缝沿着长边分段出现,中间较密。裂缝宽度大小不一,受 温度变化影响较为明显,冬季较宽,夏季较窄。此种裂缝的出现会

裂缝防治措施

裂缝防治措施

1. 工程概况2、钢筋混凝土楼板裂缝产生的原因 3、现浇混凝土裂缝防治的具体措施 (8)

1 ?工程概况 基础为人工挖孔灌注桩基础,C2区审批大厅在二层顶设转换层 为框支 剪力墙结构,其余部分为框架剪力墙结构。本工程建筑抗震设 防类别为丙类,建筑结构安全等级为一级,人工挖孔桩桩身碇强度等 级为C40,承台(梁)、基础拉梁、防水底板为C30、S8的混凝土, 地下室混凝土墙柱采用C40的混凝土,C2区三层转换层梁板碇强度 等级为C40, Cl 、C2区14层框支梁殓强度等级为C40,其余楼板 碇强度等级为C30,卫生间、厨房操作间、地下室顶板室外楼板、屋 面现浇板采用抗渗栓,抗渗等级为S6。板厚为10CM 左右。 2、钢筋混凝土楼板裂缝产生的原因 混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成 的非 均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题, 硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于 这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通 常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产 生危害。但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断 的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工 程中常说的裂缝。 混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发 展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载 济南市行政事业资产运营有限公司综合服务楼 施 现浇混凝土楼板裂缝防治措

能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人们的生命和财产安全。很多工程的失事都是由于裂缝的不稳定发展所致。近代科学研究和大量的混凝土工程实践证明,在混凝土工程中裂缝问题是不可避免的,在一定的范围内也是可以接受的, 只是要采取有效的措施将其危害程度控制在一定的范围之内。钢筋混凝土规范也明确规定[1]:有些结构在所处的不同条件下,允许存在一定宽度的裂缝。但在施工中应尽量采取有效措施控制裂缝产生,使结构尽可能不出现裂缝或尽量减少裂缝的数量和宽度,尤其要尽量避免有害裂缝的出现,从而确保工程质量。 混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝; 有养护环境不当和化学作用引起的裂缝等等。在实际工程中要区别对待,根据实际情况解决问题。 2.1温度应力产生的裂缝 温度裂缝多发生在混凝土表面或温差变化较大地区的混凝土结构中。混凝土浇筑后,在硬化过程中,水泥水化产生大量的水化热,(当水泥用量在350?550 kg/m3,每立方米混凝土将释放出17500?27500kJ的热量,从而使混凝土内部温度升达70°C左右甚至更高)。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升,而混凝土表面散热较快,这样就形成内外的较大温差,较大的温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力(实践证明当混凝土本身温差达到25°C~26°C时,混凝土内便会产生大致在lOMPa左右的拉应力)。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。在混凝土的施工中当温差变化较大,或者是混凝土受到寒潮的袭击等,会导致混凝土表面温度急剧下降,而产生收缩,表面收缩的混凝土受内部混凝土的约束,将产生很大的拉应力而产生

钢件的淬火开裂及防止方法---教学大纲

《钢件的淬火开裂及防止方法》课程教学大纲 课程代码: 课程英文名称: Quenching crack of steel parts and preventive methods 课程总学时:24 讲课:24 实验:0 上机:0 适用专业:材料类各专业 大纲编写(修订)时间:2017.12 一、大纲使用说明 (一)课程的地位及教学目标 (1)课程地位 《钢件的淬火开裂及防止方法》是金属材料工程、材料成形及控制工程专业的选修课,考查课。 (2)教学目标 《钢件的淬火开裂及防止方法》从材料的应用出发,根据材料科学的基础理论,掌握钢件的淬火过程中相变规律和内应力的成因和变化规律,了解导致钢件裂纹的内部因素和外部条件,并熟悉生产中影响钢件淬裂的因素及其防止措施和工艺方法。 (二)知识、能力及技能方面的基本要求 (1)知识方面的基本要求 了解淬火开裂相关马氏体的晶体结构特点和切变特征,要求掌握导致钢件裂纹的内部因素和外部条件,淬火宏观内应力的成因及变化规律,熟悉影响钢件淬裂的因素及其防止措施和工艺方法等 (2)能力方面的基本要求 通过学习,使学生了解和初步掌握钢件的淬火开裂及防止方法,掌握基本理论及应用,培养学生对材料基础理论知识的应用能力。通过课堂讲授和试验观察,培养学生分析问题和解决问题的能力。 (三)教学大纲实施说明 1. 教学方法:钢件的淬火开裂及防止方法应用性和实践性强,所以教学以教材为基础,配合实验教学,通过讲授、作业、讨论、答疑来达到要求。 2.教学手段:本课程属于专业课,在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,并配合现场实验和课后分析,以确保课程在有限的学时内,全面、高质量地完成教学任务。 (四)对选修课的要求 学习本课程前,学生应学完材料科学基础、金属力学性能、金属工艺学、金属材料热处理原理及工艺等相关课程,对金属材料的理论和性能及应用有熟练的掌握,其中熟练掌握晶体结构基础知识是必须的。 (五)对习题、实验环节的要求 对习题的要求: 针对本课程知识和能力的基本要求,选择和设计思考题和论述题,作为学生的课后作业,训练和培养学生对所要求的钢件的淬火开裂及防止方法的掌握。 有实验室热处理淬火实验和金相分析。

墙体抹面砂浆裂缝的原因及预防措施

墙体抹面砂浆裂缝的原因及预防措施 抹面砂浆是指涂抹在建筑物或建筑构件表面的砂浆。根据抹面砂浆功能的不同,可将抹面砂浆分为普通抹面砂浆、装饰砂和具有某些特殊功能的抹面砂浆(如防水砂浆、绝热砂浆、吸音砂浆和耐酸砂浆等)。对抹面砂浆要求具有良好的和易性,容易抹成均匀平整的薄层,便于施工。还应有较高的黏结力,砂浆层应能与底面黏结牢固,长期不致开裂或脱落。处于潮湿环境或易受外力作用部位(如地面和墙裙等),还应具有较高的耐水性和强度。 一、内墙抹灰施工要点 1、抹灰层的层次 为了保证抹灰层质量,抹灰必须分层操作,通常分为不同构造的三个层次。 ①底层,主要起与基层粘结作用,并对基层进行初步找平,要求应有良好的保水性。底层灰的用料应根据基层材料种类的不同(如砖、混凝土或加气混凝土等)而选用不同的砂浆。一般底层灰砂浆较常用的是水泥砂浆、石灰砂浆、水泥石灰砂浆。底层灰厚度约为6.8mm。 ②中层,主要起找平作用,使物面平整,并弥补因底层收缩出现的裂纹。中层灰浆的种类一般参照底层灰的选择处理,即与底层灰选择同种砂浆,配比也大致相同。厚度略厚于底层灰,约为10mm。 ③面层(罩面),主要为了获得平整、光洁地表面效果,起装饰作用。面层灰浆多为麻刀灰、纸筋灰、玻璃丝灰(纤维材料起良好的止裂作用)以及石灰砂浆,高级墙面用石膏灰浆。若用砂浆,配比中砂的用量要略为减少,细度要更细,以保证面层平整细腻。厚度约为2.5mm。 抹灰要分层进行的原因:①抹灰层分作用和用料不同的底层、中层和面层,

当然不能一次完成。②即使各层材料相同,若要一次完成,也有不易压实的操作困难。③厚厚的一层抹灰层自重大,当它超过砂浆与基层的粘结力时,抹灰层会掉落下来。采用分层抹灰,每层薄一些,并且后一层是在前一层6~7成干后抹上,此时前一层与前物面的粘结力已相当大,而后一层与前一层的粘结力只要承受薄薄的后一层自重。④使用含石灰膏的抹灰砂浆时,由于石灰膏的硬化是其主要成分Ca(OH)2吸收空气中的CO2。生成CaCO3和H2O(水分要蒸发)。而空气中CO2含量很少,所以石灰膏硬化很缓慢。若不分层抹灰,在厚厚的抹灰层深处,石灰膏长时间不能结硬。采用分层抹灰,每层薄一些,各层之间有一定的施工间歇,就能使各层的石灰膏有充分硬化的环境条件。 2、抹灰层厚度控制 内墙抹灰层平均总厚度应不大于下列规定:普通抹灰(l8mm);中级抹灰(20mm);高级抹灰(25mm)。抹灰层平均总厚度大于质量标准规定,不仅要增加造价,而且会影响质量。当抹灰层过厚时:①灰浆层自重大,易产生下垂现象,拉松灰浆与基层的粘结,导致出现空鼓。②抹灰层自重超过灰浆与基层的粘结力时,抹灰层脱落。③灰浆干燥收缩量大,所产生的收缩应力超过灰浆强度时,抹灰层开裂。另外,高级抹灰控制厚度要比普通抹灰大些,这是由于高级抹灰的表面平整度要求比普通抹灰要高些,即表面平整允许偏差要小些,抹灰层的表面平整是靠砂浆层厚度来调整的,表面平整度越高用以调整的砂浆层厚度应越宽裕些。 3、施工操作 一般抹灰按质量等级的不同,施工工序也不相同,但大致可分为:基层处理、贴灰饼冲筋、抹底层、中层、面层灰等。

焊接热裂纹产生机理影响因素及防治措施

焊接热裂纹产生机理影响因素及防治措施 一、结晶裂纹 1、产生机理 1)、产生部位:结晶裂纹大部分都沿焊缝树枝状结晶的交界处发生和发展的,常见沿焊缝中心长度方向开裂即纵向裂纹,有时焊缝内部颁在两树枝状晶体之间。 对于低碳钢、奥氏体不锈钢、铝合金、结晶裂纹主要发生在焊缝上。 某些高强钢,含杂质较多的钢种,除发生在焊缝之处,还出现在近缝区上。 2)、分析熔池各阶段产生结晶裂纹的倾向 焊缝金属结晶过程中,晶界是个薄弱地带,由金属结晶理论可知,先结晶的金属比较纯,后结晶的金属杂质多,并集富在晶界,并且熔点较低,这些低熔点共晶物被排挤在晶界,形成一种所谓《液态薄膜》,在焊接拉应力作用下,就可能在这薄弱地带开裂,产生结晶裂纹。 产生结晶裂纹原因:①液态薄膜②拉伸应力 液态薄膜—根本原因。拉伸应力—必要条件以碳钢焊接为例,分析研究一下,在熔池结晶过程中什么阶段产生结晶裂纹的倾向最大。 如图3-77 ①液固阶段:熔池开始结晶时,液相多,固相少,液态金

属在晶粒间处于自由流动状态,有拉应力存在时,拉开后有液体随之补充,不易产生裂纹。(1区) ②固液阶段:固相多,晶粒之间相互接触,液相少,(低熔点共晶)在拉应力作用时产生微少缝隙,液态填充少,产生裂纹,这一区也称为“脆性温度区”即图3-77上a、b 之间的温度范围? ③固相阶段:完全结晶完毕,成为整体固态金属,拉应力作用时,因无液态薄膜受力均匀,不易产生裂纹。 T b—称为脆性温度区,在比区间易产生结晶裂纹,杂质较少的金属, T b小产生裂纹的可能性也小,杂质多的金属T b 大,产生裂纹的倾向也大。 3)产生结晶裂纹的条件?图3-78 如图3-78纵座标表示温度,横坐标表示由拉伸应力所产生的变形(e)和金属的塑性(P),脆性温度区的范围用T b表示上限是固液温度开始下限固相线附近,或低于固相线一段温度。 在脆性温度区内焊缝的塑性用P表示,是温度的函数,=,当在某一瞬时温度时有一个最小的塑性值(P min)PΦ ) (T (出现液态薄膜时) 受拉伸应力所产生的变形用e表示,也是温度的函数? ①如果拉伸应力所产生的变形随温度T按曲线(1)变化,

混凝土裂缝的预防措施和处理方案

混凝土裂缝的预防和处理 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,针对兰渝正线浩口双线大桥11#承台出现的一些裂缝问题,项目技术负责人带领领工及班组施工在现场进行了探讨分析,同时通过查询资料,针对混凝土的各种具体裂缝情况提出了系统的探讨,并提出了相关的预防和处理措施,作为书面交底,希望大家遵照执行,避免出现裂缝,影响工期、质量及加大项目成本。 一、混凝土裂缝产生的原理及危害 混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人身安全。 二、凝土工程中常见裂缝起因及预防 混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。在实际工程中要区别对待,根据实际情况解决问题。 1.干缩裂缝及预防 干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产生。干缩裂缝多为表面性的平行线状或网状浅细裂缝,宽度多在0.05~0.2mm之间,大体积混凝土中平面部位多见,较薄的梁板中多沿其短向分布。干缩裂缝通常会影响混凝土的抗渗性,引起钢筋的锈蚀影响混凝土的耐久性,在水压力的作用下会产生水力劈裂影响混凝土的承载力等等。混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。 主要预防措施: 一、是选用收缩量较小的水泥,一般采用中低热水泥和粉煤灰水泥,降低水泥的用量。 二、是混凝土的干缩受水灰比的影响较大,水灰比越大,干缩越大,因此在混凝土配合比设计中应尽量控制好水灰比的选用,同时掺加合适的减水剂。 三、是严格控制混凝土搅拌和施工中的配合比,混凝土的用水量绝对不能大于配合比设计所给定的用水量。 四、是加强混凝土的早期养护,并适当延长混凝土的养护时间。冬季施工时要适当延长混凝土保温覆盖时间,并涂刷养护剂养护。 五、是在混凝土结构中设置合适的收缩缝。 2.塑性收缩裂缝及预防 塑性收缩是指混凝土在凝结之前,表面因失水较快而产生的收缩。塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细且长短不一,互不连

热处理淬火裂纹产生的原因及防止措施分析

热处理淬火裂纹产生的原因 及防止措施分析 摘要:在热处理生产实践时,常常会遇到一些零件和工具,特别是形状复杂时,淬火过程因处理不当以及一些其他因素,造成工件内部存在有强大的淬火应力,以致引起淬火裂纹。淬火裂纹直接导致零件的报废,产生的原因和条件及防止方法具有很摘要的现实意义。 关键词:淬火裂纹的实质产生原因和条件防止方法 一、淬火裂纹的实质 钢件在进行淬火是,在冷却的过程中同时产生了热应力和组织应力。由于温度的降低使零件内部产生了热应力,由于奥氏体向马氏体的转变使内部产生了组织应力,组织应力是钢件表面淬火时拉应力,钢件表面在拉应力的作用下,有开裂的危险。根据淬火裂纹断口形式和外观状态分析,淬火裂纹是在内应力作用下的脆性断裂。 二、淬火裂纹产生的原因和条件 1、钢的化学成分对淬火裂纹敏感性的影响 在一定的淬火介质中冷却时,钢的化学成分对热处理裂纹形成的影响,是由于它使钢件的内应力分布于应力集中的敏感性和钢的机械性能发生了改变的缘故。合金元素对内应力的影响,则主要是由于合金元素对钢的组织结构影响的结果。 在钢中含有的所有元素中,碳对钢机械性能的影响最大,随着含碳量的增加,钢件淬火后组织应力也有所增大,由于组织应力作

用的结果,使钢的表面具有危险的拉应力。因此,淬裂倾向将随着含碳量的增多而增大。 钢中其他常存因素,如硫、磷等夹杂物较多,呈条状、网状分布时,往往在正常淬火条件下形成裂纹。 合金元素能够在不同程度上使奥氏体的等温曲线的位置右移,即增大其淬透性,这样可以用缓慢的冷却介质进行淬火。从而残余应力较小,是钢的马氏体转变温度降低,则残余奥氏体数量增多,组织应力减小,有利于降低钢件的淬裂倾向。 2、原材料缺陷对淬火时形成裂纹的影响 钢件内部的发纹、皮下气泡、较严重的碳化物偏析以及非金属夹杂等在淬火过程中,有可能在这些缺陷处产生裂纹。 各种锻件加工时,不论是温度过高或过低都容易在锻轧过程出现细小裂纹。由于毛坯在锻轧后,表面上存在一些氧化皮,因此这些细小裂纹便不容易被发现。但钢件机械加工后一些淬火处理,将会使原来存留的的裂纹扩展开来,从而使其暴露于钢件的表面。 3、钢件的结构特点对形成裂纹的影响 钢件的淬火裂纹的形成倾向与钢件的尺寸和形状等设计结构特点有关。生产实践表明,具有截面急剧变化的工件或者有尖锐槽口的工件,在淬火冷却时这些部位会淬火时大的应力集中,都易于产生淬火裂纹。 4、淬火前的原始组织和应力状态对形成裂纹的影响 根据加热时的相变理论可以知道,钢的原始组织对加热时奥氏

预防和减少建筑中几种裂缝的技术措施(word版)

预防和减少建筑中几种裂缝的 技术措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:___________________ 日期:___________________

预防和减少建筑中几种裂缝的技术措施 温馨提示:该文件为本公司员工进行生产和各项管理工作共同的技术依据,通过对具体的工作环节进行规范、约束,以确保生产、管理活动的正常、有序、优质进行。 本文档可根据实际情况进行修改和使用。 1、裂缝的调查概况: 通过对大量砖混结构的民用住宅、框架结构的办公楼等多种建筑的调查发现, 多数建筑都存在着不同形式的裂缝, 这些裂缝一旦出现便很难弥补, 但许多裂缝是有规律可循的。我对这些裂缝进行了总结, 其调查结果如下: (1)不管是什么结构的建筑, 几乎都存在抹灰开裂的现象, 大部分是因为温度变化引起的, 仅仅是轻重程度的不同而已。 (2)抹灰表面龟裂, 裂缝多而无规律, 裂缝较细但面积较大, 严重的引起墙面空鼓, 若要返工成本较大。 (3)在框架结构中, 填充墙体与梁柱接触面间容易出现水平和垂直裂缝, 这些裂缝几乎是不可避免的, 如果不加以预防, 裂缝一旦出现就很难补救。 (4)墙体使用新型材料尤其是大块板型材料, 例如GRC墙板、钢丝网架聚苯乙烯夹心板(俗称得乐板、舒乐板等), 不同板块之间经常出现规则的竖

相关主题
文本预览
相关文档 最新文档