大学物理物理习题库(DOC)
- 格式:doc
- 大小:1.80 MB
- 文档页数:69
第1章 质点运动学一、选择题 1. 一物体在位置1的矢径是 r 1, 速度是1v . 如图1-1-1所示.经∆t 时间后到达位置2,其矢径是 r 2, 速度是2v .则在∆t 时间内的平均速度是 [ ] (A) )(2112v v - (B) )(2112v v + (C) t r r ∆-12 (D) t r r ∆+12 2. 关于加速度的物理意义, 下列说法正确的是 [ ] (A) 加速度是描述物体运动快慢的物理量(B) 加速度是描述物体位移变化率的物理量(C) 加速度是描述物体速度变化的物理量(D) 加速度是描述物体速度变化率的物理量 3. 一质点作曲线运动, 任一时刻的矢径为 r , 速度为v , 则在∆t 时间内[ ] (A) v v ∆=∆ (B) 平均速度为∆∆r t (C) r r ∆=∆ (D) 平均速度为t r ∆∆ 4. 一质点作抛体运动, 忽略空气阻力, 在运动过程中, 该质点的t d d v 和td d v 的变化情况为 [ ] (A) t d d v 的大小和t d d v 的大小都不变 (B) t d d v 的大小改变, t d d v 的大小不变 (C) t d d v 的大小和t d d v 的大小均改变 (D) t d d v 的大小不变, td d v 的大小改变 5. 下面各种判断中, 错误的是[ ] (A) 质点作直线运动时, 加速度的方向和运动方向总是一致的(B) 质点作匀速率圆周运动时, 加速度的方向总是指向圆心(C) 质点作斜抛运动时, 加速度的方向恒定(D) 质点作曲线运动时, 加速度的方向总是指向曲线凹的一边6 下列表述中正确的是[ ] (A) 质点作圆周运动时, 加速度一定与速度垂直(B) 物体作直线运动时, 法向加速度必为零(C) 轨道最弯处法向加速度最大(D) 某时刻的速率为零, 切向加速度必为零7 一物体作匀变速直线运动, 则[ ] (A) 位移与路程总是相等(B) 平均速率与平均速度总是相等(C) 平均速度与瞬时速度总是相等(D) 平均加速度与瞬时加速度总是相等图1-1-18. 在地面上以初速v 0、抛射角θ 斜向上抛出一物体, 不计空气阻力.问经过多长时间后速度的水平分量与竖直分量大小相等, 且竖直分速度方向向下?[ ] (A) )cos (sin 0θθ+gv (B) )cos 2(sin 0θθ-g v (C) )sin (cos 0θθ-g v (D) g0v 9. 从离地面高为h 处抛出一物体,在下列各种方式中,从抛出到落地时间内位移数值最大的一种是 [ ] (A) 自由下落 (B) 以初速v 竖直下抛 (C) 以初速v 平抛 (D) 以初速v 竖直上抛10. 作圆周运动的物体[ ] (A) 加速度的方向必指向圆心 (B) 切向加速度必定等于零(C) 法向加速度必定等于零 (D) 总加速度必定不总等于零11. 质点作变速直线运动时, 速度及加速度的关系为[ ] (A) 速度为0, 加速度一定也为0(B) 速度不为0, 加速度也一定不为0(C) 加速度很大, 速度也一定很大(D) 加速度减小, 速度的变化率也一定减小12. 下列几种情况中, 哪种情况是不可能的?[ ] (A) 物体具有向东的速度和向东的加速度(B) 物体具有向东的速度和向西的加速度(C) 物体具有向东的速度和向南的加速度(D) 物体具有变化的加速度和恒定的速度 13. 一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r 22+=(其中a 、b为常量) , 则该质点作[ ] (A) 匀速直线运动 (B) 变速直线运动(C) 抛物曲线运动 (D) 一般曲线运动14 . 一质点在xOy 平面内运动, 其运动方程为Rt t R x ωω+=sin ,R t R y +=ωcos , 式中R 、ω均为常数.当y 达到最大值时该质点的速度为[ ] (A) 0,0==y x v v (B) 0,2==y x R v v ω(C) ωR y x -==v v ,0 (D) ωωR R y x -==v v ,215. 物体不能出现下述哪种情况?[ ] (A) 运动中, 瞬时速率和平均速率恒相等(B) 运动中, 加速度不变, 速度时刻变化(C) 曲线运动中, 加速度越来越大, 曲率半径总不变(D) 曲线运动中, 加速度不变, 速率也不变16. 某物体的运动规律为t k t2d d v v -=, 式中k 为常数.当t = 0时,初速度为0v .则速度v 与时间t 的函数关系是[ ] (A) 0221v v +=t k (B) 0221v v +-=t k(C) 02121v v +=t k (D) 02121v v +-=t k17. 如图1-1-33所示,站在电梯内的人, 看到用细绳连接的质量不同的两物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态, 由此他断定电梯作加速运动, 其加速度的[ ] (A) 大小为g , 方向向上(B) 大小为g , 方向向下(C) 大小为g /2, 方向向上(D) 大小为g /2, 方向向下二、填空题 1. 一辆汽车以10 m.s -1的速率沿水平路面直前进, 司机发现前方有一孩子开始刹车,以加速度-0.2m.s -2作匀减速运动,则刹后1 min 内车的位移大小是 .2. 一质点沿半径为R 的圆周运动一周回到原地, 质点在此运动过程中,其位移大小为 ,路程是 .3. 如图1-2-3所示,甲、乙两卡车在一狭窄的公路上同向行驶,甲车以10 m.s -1速度匀速行驶, 乙车在后. 当乙车发现甲车时, 车速度为15 m.s -1,相距1000m .为避免相撞,乙车立即作匀减速行驶,其加速度大小至少应为 .4. 一质点沿x 轴作直线运动,其t v -曲线如图1-2-5所示.若t =0时质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 .5. 一质点沿x 轴作直线运动, 在t = 0时, 质点位于x 0 =2 m处. 该质点的速度随时间变化的规律为2312t -=v ( t 以s 计). 当质点瞬时静止时,其所在位置为 ,加速度为 .6. 已知一个在xOy 平面内运动的物体的速度为j t i 82-=v .已知t = 0时它通过(3, -7)位置.则该物体任意时刻的位置矢量为 .7 距河岸(看成直线)300 m 处有一艘静止的船,船上的探照灯以转速为1m inr 1-⋅=n 转动,当光束与岸边成30°角时,光束沿岸边移动的速率=v .8 一物体作如图1-2-15所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度的大小τa = ,轨道的曲率半径=ρ .图1-2-3图1-1-33 1s m -⋅/v 1221345.25.4()t 1-第2章 动力学基本定律一、选择题1. 下列说法中正确的是[ ] (A) 运动的物体有惯性, 静止的物体没有惯性(B) 物体不受外力作用时, 必定静止(C) 物体作圆周运动时, 合外力不可能是恒量(D) 牛顿运动定律只适用于低速、微观物体2. 下列诸说法中, 正确的是[ ] (A) 物体的运动速度等于零时, 合外力一定等于零(B) 物体的速度愈大, 则所受合外力也愈大(C) 物体所受合外力的方向必定与物体运动速度方向一致(D) 以上三种说法都不对3. A 、B 两质点m A >m B , 受到相等的冲量作用, 则[ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等(C) A 比B 的动量增量大 (D) A 与B 的动量增量相等4. 如图2-1-4所示,物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的[ ] (A) 速度逐渐减小, 加速度逐渐减小(B) 速度逐渐减小, 加速度逐渐增大(C) 速度继续增大, 加速度逐渐减小(D) 速度继续增大, 加速度逐渐增大5. 对一运动质点施加以恒力, 质点的运动会发生什么变化?[ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性(C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化6. 一物体作匀速率曲线运动, 则[ ] (A) 其所受合外力一定总为零 (B) 其加速度一定总为零(C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零 7. 牛顿第二定律的动量表示式为t m F d )d(v =, 即有tm t m F d d d d v v +=.物体作怎样的运动才能使上式中右边的两项都不等于零, 而且方向不在一直线上?[ ] (A) 定质量的加速直线运动 (B) 定质量的加速曲线运动(C) 变质量的直线运动 (D) 变质量的曲线运动8. 如图2-1-8所,质量相同的两物块A 、B 用轻质弹簧连接后, 再用细绳悬吊着, 当系统平衡后, 突然将细绳剪断, 则剪断后瞬间[ ] (A) A 、B 的加速度大小均为g(B) A 、B 的加速度均为零(C) A 的加速度为零, B 的加速度大小为2gF 图2-1-4 图2-1-8 1m 2m(D) A 的加速度大小为2g , B 的加速度为零9. 假设质量为70 kg 的飞机驾驶员由于动力俯冲得到7g 的净加速度, 问作用于驾驶员上的力最接近于下列的哪一个值?[ ] (A) 10 N (B) 70 N (C) 490 N (D) 4800 N10. 如图2-1-10所示,升降机内地板上放有物体A, 其上再放另一物体B, 二者的质量分别为A m 、B m .当升降机以加速度a 向下加速运动时(a <g ), 物体A 对升降机地板的压力为 [ ] (A) g m A (B) g m m )(B A + (C) ))((B A a g m m ++ (D) ))((B A a g m m -+ 11. 一质量为60 kg 的人静止在一个质量为600 kg 且正以-1s m 2⋅的速率向河岸驶近的木船上, 河水是静止的, 其阻力不计.现人相对于船以一水平速度v 沿船的前进方向向河岸跳去, 该人起跳后, 船速减为原来的一半, 这说明v 值为[ ] (A) -1s m 2⋅ (B) -1s m 12⋅ (C) -1s m 20⋅ (D) -1s m 11⋅ 12. 牛顿定律和动量守恒定律的适用范围为[ ] (A) 仅适用于宏观物体(B) 仅适用于宏观, 低速物体(C) 牛顿定律适用于宏观低速物体, 动量守恒定律普遍适用(D) 牛顿定律适用于宏观低速物体, 动量守恒定律适用于宏观物体13. 一炮弹由于特殊原因在飞行中突然炸成两块, 其中一块作自由下落, 则另一块着地点[ ] (A) 比原来更远 (B) 比原来更近(C) 仍和原来一样 (D) 条件不足不能判定14. 如图2-1-14所示,停在空中的气球的质量和人的质量相等.如果人沿着竖直悬挂在气球上的绳梯向上爬高m 1,不计绳梯的质量, 则气球将[ ] (A) 向上移动m 1 (B) 向下移动m 1(C) 向上移动m 5.0 (D) 向下移动m 5.015. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块,这是因为[ ] (A) 前者遇到的阻力大, 后者遇到的阻力小(B) 前者动量守恒, 后者动量不守恒(C) 后者锤的动量变化大, 给钉的作用力就大(D) 后者锤的动量变化率大, 给钉的作用力就大16. 有两个同样的木块, 从同一高度自由下落, 在下落途中, 一木块被水平飞来的子弹击中, 并陷入其中.子弹的质量不能忽略, 若不计空气阻力, 则 [ ] (A) 两木块同时到达地面 (B) 被击木块先到达地面 (C) 被击木块后到达地面 (D) 不能确定哪块木块先到达地面图2-1-10 a A B图2-1-16图2-1-1417 将一物体提高10 m, 下列哪种情形下提升力所做的功最小?[ ] (A) 以-1s m 5⋅的速度匀速上升(B) 以-1s m 10⋅的速度匀速提升(C) 将物体由静止开始匀加速提升10 m, 速度达到-1s m 5⋅(D) 使物体从-1s m 10⋅的初速度匀减速上升10 m, 速度减为-1s m 5⋅18. 质点系的内力可以改变[ ] (A) 系统的总质量 (B) 系统的总动量(C) 系统的总动能 (D) 系统的总角动量19. 作用在质点组的外力的功与质点组内力做功之和量度了[ ] (A) 质点组动能的变化(B) 质点组内能的变化(C) 质点组内部机械能与其它形式能量的转化(D) 质点组动能与势能的转化20. 在一般的抛体运动中, 下列说法中正确的是[ ] (A) 最高点动能恒为零(B) 在升高的过程中, 物体动能的减少等于物体的势能增加和克服重力 所作功之和(C) 抛射物体机械能守恒, 因而同一高度具有相同的速度矢量(D) 在抛体和地球组成的系统中, 物体克服重力做的功等于势能的增加21. 有A 、B 两个相同的物体, 处于同一位置, 其中物体A 水平抛出, 物体B 沿斜面无摩擦地自由滑下, 则[ ] (A) A 先到达地面, 两物体到达地面时的速率不相等(B) A 先到达地面, 两物体到达地面时的速率相等(C) B 先到达地面, 两物体到达地面时的速率不相等(D) B 先到达地面, 两物体到达地面时的速率相等22. 将一小球系在一端固定的细线(质量不计)上, 使小球在竖直平面内作圆周运动,作用在小球上的力有重力和细线的拉力.将细线、小球和地球一起看作一个系统, 不考虑空气阻力及一切摩擦, 则[ ] (A) 重力和拉力都不做功, 系统的机械能守恒(B) 因为重力和拉力都是系统的内力, 故系统的机械能守恒(C) 因为系统不受外力作用,这样的系统机械能守恒(D) 以上说法都不对23. 关于保守力, 下面说法正确的是[ ] (A) 只有保守力作用的系统动能和势能之和保持不变(B) 只有合外力为零的保守内力作用系统机械能守恒(C) 保守力总是内力(D) 物体沿任一闭合路径运动一周, 作用于它的某种力所做之功为零, 则该力称为保守力24. 在下列叙述中,错误的是[ ] (A) 保守力做正功时相应的势能将减少(B) 势能是属于物体体系的(C) 势能是个相对量,与参考零点的选择有关(D) 势能的大小与初、末态有关, 与路径无关25. 如图2-1-25所示,劲度系数-1m N 1000⋅=k 的轻质弹簧一端固定在天花板上, 另一端悬挂一质量为m = 2 kg 的物体, 并用手托着物体使弹簧无伸长.现突然撒手, 取-2s m 10⋅=g , 则弹簧的最大伸长量为[ ] (A) 0.01 m (B) 0.02 m (C) 0.04 m (D) 0.08 m26. 在弹性范围内, 如果将弹簧的伸长量增加到原来的3倍, 则弹性势能将增加到原来的[ ] (A) 6倍 (B) 8倍 (C) 9倍 (D) 12倍27. 从地面发射人造地球卫星的速度称为发射速度v 0, 卫星绕地球运转的速度称为环绕速度v , 已知rgR 2=v (R 为地球半径, r 为卫星离地心距离), 忽略卫星在运动过程中的阻力, 对于发射速度v 0[ ] (A) v 越小相应的v 0越大 (B) 01v v ∝(C) v 越大相应的v 0越大 (D) 0v v ∝ 28. 设一子弹穿过厚度为l 的木块其初速度大小至少为v .如果木块的材料不变, 而厚度增为2l , 则要穿过这木块, 子弹的初速度大小至少要增为[ ] (A) 2v (B) v 2 (C) v 21 (D) 2v 29. 如图2-1-29所示,用铁锤将一铁钉击入木板, 设铁钉受到的阻力与其进入木块的深度成正比, 铁锤两次击钉的速度相同, 第一次将钉击入木板内1cm, 则第二次能将钉继续击入的深度为[ ] (A) 0.4cm (B) 0.5cm (C) 1cm (D) 1.4cm30. 如图2-1-30所示,一被压缩的弹簧, 两端分别连接A 、B两个不同的物体, 放置在光滑水平桌面上, 设m A = 2m B , 由静止释放. 则物体A 的动能与物体B 的动能之比为 [ ] (A) 1 : 1 (B) 2 : 1 (C) 1 : 2 (D) 1 : 431. 关于功的概念有以下几种说法:(1) 保守力做正功时,系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点做的功为零.(3) 作用力和反作用力大小相等、方向相反,所以两者所做的功的代数和必然为零. 在上述说法中[ ] (A) (1)、(2)是正确的 (B) (2)、(3)是正确的(C) 只有(2)是正确的 (D) 只有(3)是正确的32 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是[ ] (A) 不受力作用的系统,其动量和机械能必然守恒(B) 所受合外力为零、内力都是保守力的系统,其机械能必然守恒(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒(D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒图2-1-3033. 一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力的矢量和为零,则此系统[ ] (A) 动量、机械能以及对一轴的角动量守恒(B) 动量、机械能守恒,但角动量是否守恒不能断定(C) 动量守恒,但机械能和角动量守恒与否不能断定(D) 动量和角动量守恒,但机械能是否守恒不能断定34. 一质量为0m 的弹簧振子,水平放置静止在平衡位置,如图2-1-34所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为 [ ] (A) 221v m (B) )(2022m m m +v (C) 220202)(v m m m m + (D) 2022v m m 35. 物体在恒力F 作用下作直线运动, 在∆t 1时间内速度由0增加到v , 在∆t 2时间内速度由v 增加到v 2, 设F 在∆t 1时间内做的功是A 1, 冲量是1I , 在∆t 2时间内做的功是A 2, 冲量是2I 。
狭义相对论基本假设、洛伦兹变换、狭义相对论时空观 17. 2两火箭A 、B 沿同一直线相向运动,测得两者相对地球的速度大小分别是 =0.9c, v B = 0.8c.则两者互测的相对运动速度大小为:(A) 1.7c ; (B) 0.988c ; (C) 0.95c ;(D) 0.975c.答:B .分析:以 A 为 S ,系,则 w=0.9c, V v =-0.8c,由相对论速度变换关系可知:SAS'爪VB-0.8c-0.9c•0&・・。
.9疽一第十七章相对论17. 1在狭义相对论中,下列说法哪些正确?(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速,(2) 质量、长度、时间的测量结果都是随物体与观察者的运动状态而改变的, (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其它一切惯性系中 也是同时发生的,(4) 惯性系中观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比 与他相对静止的相同时钟走得慢些.(A) (1) (3) (4) ; (B) (1) (2) (4); (C)(2) (3) (4) ;(D) (1)(2)(3).[]答:B. 分析:(1) 根据洛仑兹变换和速度变换关系,光速是速度的极限,所以(1)正确; (2) 由长度收缩和时间碰撞(钟慢尺缩)公式,长度、时间的测量结果都是随 物体与观察者的运动状态而改变的;同时在相对论情况下,质量不再是守恒量,也 会随速度大小而变化,所以(2)是正确的;(3) 由同时的相对性,在S'系中同时但不同地发生的两个事件,在S 系中观察不是同时的。
只有同时、同地发生的事件,在另一惯性系中才会是同时发生的,故排 除⑶;(4) 由于相对论效应使得动钟变慢,故(4)也是正确的。
所以该题答案选(B)所以选(B)17. 3 —宇航员要到离地球5光年的星球去旅行,如果宇航员希望把这路程缩短为3光年,则他乘的火箭相对于地球的速度为:(A)c/2;(B) 3c/5;(C)4c/5;(D) 9c/10. [ ] 答:C.分析:从地球上看,地球与星球的距离为固有长度L。
物理习题1、选择题1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6,则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ D ]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0.(D) -2 m .(E) -5 m. [ B ]3、对于沿曲线运动的物体,以下几种说法中哪一种是正确的: (A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零.(E) 若物体的加速度a为恒矢量,它一定作匀变速率运动. [ B ]4、如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为(A) g sin θ. (B) g cos θ. (C) g ctg θ. (D) g tg θ. [ C ]5、 在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足 (A) Rg s μω≤. (B) R gs 23μω≤.(C) R gs μω3≤. (D) Rg s μω2≤. [ A ]6、 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒. (B) 子弹、木块组成的系统水平方向的动量守恒. (C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ B ]7、一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零.-12O(C) 处处不为零. (D) 无法判定 . [ C ]8、 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A)r0212ελλπ+.(B) ()()20210122R r R r -π+-πελελ.(C) ()20212R r -π+ελλ. (D) 20210122R R ελελπ+π. [ A ]9、在空间有一非均匀电场,其电场线分布如图所示.在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元∆S 的电场强度通量为∆Φe ,则通过该球面其余部分的电场强度通量为(A) - ∆Φe . (B)e SR Φ∆∆π24. (C) e SSR Φ∆∆∆-π24. (D) 0.[ A ]10、关于静电场中某点电势值的正负,下列说法中正确的是: (A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取.(D) 电势值的正负取决于产生电场的电荷的正负. [ C ]11、一半径为R 的均匀带电球面,带有电荷Q .若规定该球面上的电势值为零,则无限远处的电势将等于 (A)R Q0π4ε. (B) 0.(C) RQ0π4ε-. (D) ∞. [ C ]12、 真空中有一点电荷Q ,在与它相距为r 的a 点处有一试验电荷q .现使试验电荷q 从a 点沿半圆弧轨道运动到b 点,如图所示.则电场力对q 作功为(A)24220r r Qq π⋅πε. (B) r r Qq 2420επ. (C)r r Qqππ204ε. (D) 0. [ D ]13、充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系是:(A) F ∝U . (B) F ∝1/U .(C) F ∝1/U 2. (D) F ∝U 2. [ D ]14、均匀磁场的磁感强度B垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2πr 2B . (B) πr 2B .(C) 0. (D) 无法确定的量. [ B ]15、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则(A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1. (C) R A ∶R B =1,T A ∶T B 21=. (D) R A ∶R B =2,T A ∶T B =1. [ D ]16、磁介质有三种,用相对磁导率μr 表征它们各自的特性时, (A) 顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1. (B) 顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1. (C) 顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D) 顺磁质μr <0,抗磁质μr <1,铁磁质μr >0. [ C ]17、如图,长度为l 的直导线ab 在均匀磁场B 中以速度v移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ D ]18、用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈. (C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ D ]19、对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ A ]2、填空题1、一个力F 作用在质量为1.0kg 的质点上,使之沿X 轴运动。
大学物理习题(下)(共14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习 题 课(一)1-1 在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为 (A )aQ 034πε (B )a Q 032πε (C )a Q 06πε (D )a Q 012πε1-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A )302rU R (B )R U 0 (C )20r RU (D )r U 01-3 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是(A )内表面均匀,外表面也均匀。
(B )内表面不均匀,外表面均匀。
(C )内表面均匀,外表面不均匀。
(D )内表面不均匀,外表面也不均匀。
1-4 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电量Q 、电场强度的大小E 和电场能量W 将发生如下变化 (A )Q 增大,E 增大,W 增大。
(B )Q 减小,E 减小,W 减小。
(C )Q 增大,E 减小,W 增大。
(D )Q 增大,E 增大,W 减小。
1-5 一半径为R 的均匀带电圆盘,电荷面密度为σ ,设无穷远处为电势零点,则圆盘中心O 点的电势U 0 = 。
1-6 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为+q 的点电荷,O 点有一电量为-q 的点电荷,线段BA = R ,现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为 。
1-7 两个电容器1和2,串联后接上电源充电。
在电源保证连接的情况下,若把电介质充入电容器2中,则电容器1上的电势差 ,电容器极板上的电量 。
(填增大、减小、不变)1-8 如图所示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2,设无穷远处为电势零点,求空腔内任一点的电势。
大学物理试题题库及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。
A. 299792458 m/sB. 300000000 m/sC. 299792458 km/sD. 300000000 km/s2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
那么,当作用力增加一倍时,物体的加速度()。
A. 增加一倍B. 减少一半C. 保持不变D. 无法确定3. 一个物体从静止开始自由下落,其下落过程中,重力做功的功率与时间的关系是()。
A. 线性增加B. 指数增加C. 先增加后减少D. 保持不变4. 根据热力学第一定律,一个封闭系统的内能变化等于系统与外界交换的热量与系统对外做的功之和。
如果一个系统既没有热量交换也没有做功,那么它的内能()。
A. 增加B. 减少C. 保持不变5. 电磁波谱中,波长最短的是()。
A. 无线电波B. 微波C. 红外线D. 伽马射线6. 根据麦克斯韦方程组,变化的磁场会产生()。
A. 电场B. 磁场C. 重力场D. 温度场7. 一个理想的弹簧振子,其振动周期与振幅无关,与()有关。
A. 弹簧的劲度系数B. 振子的质量C. 弹簧的劲度系数和振子的质量D. 振子的质量与重力加速度8. 根据量子力学,一个粒子的波函数可以描述粒子的()。
A. 位置B. 动量C. 能量D. 位置和动量的概率分布9. 根据狭义相对论,当一个物体以接近光速的速度运动时,其质量会()。
A. 增加B. 减少C. 保持不变10. 在理想气体状态方程PV=nRT中,R代表的是()。
A. 气体常数B. 温度C. 压力D. 体积二、填空题(每题2分,共20分)1. 根据库仑定律,两个点电荷之间的力与它们的电荷量乘积成正比,与它们之间距离的平方成反比,其比例系数是______。
2. 欧姆定律表明,导体中的电流与两端电压成正比,与导体的电阻成反比,其数学表达式为______。
3. 一个物体在水平面上以恒定加速度运动,其位移与时间的关系可以表示为s = __________。
大学物理习题集上册物理教研室2004年元月目录部分物理常量练习一描述运动的物理量练习二刚体定轴转动的描述相对运动练习三牛顿运动定律非惯性系中的力学练习四动量角动量练习五功和能碰撞练习六刚体定轴转动的转动定律转动惯量练习七刚体定轴转动中的动能及角动量练习八力学习题课练习九状态方程压强公式练习十理想气体的内能分布律练习十一分布律(续) 自由程碰撞频率练习十二热力学第一定律等值过程练习十三循环过程练习十四热力学第二定律熵练习十五热学习题课练习十六谐振动练习十七谐振动能量谐振动合成练习十八阻尼受迫共振波动方程练习十九波的能量波的干涉练习二十驻波多普勒效应练习二十一振动和波习题课练习二十二光的相干性双缝干涉光程练习二十三薄膜干涉劈尖练习二十四牛顿环迈克耳逊干涉仪衍射现象练习二十五单缝圆孔光学仪器的分辨率练习二十六光栅X射线的衍射练习二十七光的偏振练习二十八光学习题课23h3456789101112131415图9.1 161718192021232425(A)图15.12627图17.24. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若(B)v (m/s)O1 x (m)ωA(A)·图18.3图18.54041距离 (从地上一点看两星的视线间夹角)是(A) 5.3×10-7 rad.(B) 1.8×10-4 rad .(C) 5.3×10-5 rad .(D) 3.2×10-3 rad二.填空题1. 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.2. 如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为30 的方位上,所用单色光波长λ =5×103 Å, 则单缝宽度为m .3. 平行单色光垂直入射于单缝上,观察夫琅和费衍射. 若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为个半波带,若将单缝宽度减小一半, P点将是级纹.三.计算题1. 用波长λ =6328Å 的平行光垂直照射单缝, 缝宽a= 0.15mm , 缝后用凸透镜把衍射光会聚在焦平面上, 测得第二级与第三级暗条纹之间的距离为1.7mm , 求此透镜的焦距.四.问答题1. 在单缝衍射实验中, 当缝的宽度a远大于单色光的波长时, 通常观察不到衍射条纹, 试由单缝衍射暗条纹条件的公式说明这是为什么.练习二十六光栅X射线的衍射一.选择题1. 一束平行单色光垂直入射到光栅上,当光栅常数(a+b) 为下列哪种情况时(a代表每条缝为宽度) ,k =3、6、9等级次的主极大均不出现?(A) a+b=3a.(B) a+b=2a .(C) a+b=4a .(D) a+b=6a .2. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 1.0×10-1 mm .(B) 5.0×10-1 mm .(C) 1.0×10-2 mm .(D) 1.0×10-3 mm .3. 在双缝衍射实验中,若保持双缝s1和s2的中心之间的距离d不变,而把两条缝的宽度a 42略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少.(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多.(C) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(D) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.4. 某元素的特征光谱中含有波长分别为 1 = 450 n m 和 2 = 750 n m (1 n m = 10-9 m)的光谱线. 在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 2的谱线的级次数将是(A) 2、3、4、5 …….(B) 2、5、8、11 …….(C) 2、4、6、8 …….(D) 3、6、9、12 …….5. 设光栅平面、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k(A) 变小.(B) 变大.(C) 不变.(D) 的改变无法确定.二.填空题1. 用波长为5461 Å的平行单色光垂直照射到一透射光栅上,在分光计上测得第一级光谱线的衍射角 = 30 ,则该光栅每一毫米上有条刻痕.2. 可见光的波长范围是400 n m—760 n m,用平行的白光垂直入射到平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第级光谱.3. 一束平行单色光垂直入射到一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为.三.计算题1. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱, 钠黄光包含两条谱线,其波长分别为5896 Å和5890 Å, 求在第二级光谱中这两条谱线互相分离的角度.2. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a =2×10-3 c m ,在光栅后放一焦距f =1m 的凸透镜,现以 = 6000 Å的平行单色光垂直照射光栅,求: (1) 透光镜a的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内, 有几个光栅衍射主极大?练习二十七光的偏振一.选择题1. 一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45 角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强I为4344454647。
大学物理练习题一、力学部分1. 一物体从静止开始沿水平面加速运动,经过5秒后速度达到10m/s。
求物体的加速度。
2. 质量为2kg的物体,在水平面上受到一个6N的力作用,若摩擦系数为0.2,求物体的加速度。
3. 一物体在斜面上匀速下滑,斜面倾角为30°,物体与斜面间的摩擦系数为0.3,求物体的质量。
4. 一物体在水平面上做匀速圆周运动,半径为2m,速度为4m/s,求物体的向心加速度。
5. 一物体在竖直平面内做匀速圆周运动,半径为1m,速度为5m/s,求物体在最高点的向心力。
二、热学部分1. 某理想气体在标准大气压下,温度从27℃升高到127℃,求气体体积的膨胀倍数。
2. 一理想气体在等压过程中,温度从300K升高到600K,求气体体积的变化倍数。
3. 已知某气体的摩尔体积为22.4L/mol,求在标准大气压下,1mol该气体的体积。
4. 一密闭容器内装有理想气体,温度为T,压强为P,现将容器体积缩小到原来的一半,求气体新的温度和压强。
5. 某理想气体在等温过程中,压强从2atm变为1atm,求气体体积的变化倍数。
三、电磁学部分1. 一长直导线通有电流10A,距离导线5cm处一点的磁场强度为0.01T,求该点的磁感应强度。
2. 一矩形线圈,长为10cm,宽为5cm,通有电流5A,求线圈中心处的磁感应强度。
3. 一半径为0.5m的圆形线圈,通有电流2A,求线圈中心处的磁感应强度。
4. 一长直导线通有电流20A,求距离导线2cm处的磁场强度。
5. 一闭合线圈在均匀磁场中转动,磁通量从最大值减小到零,求线圈中感应电动势的变化。
四、光学部分1. 一束光从空气射入水中,入射角为30°,求折射角。
2. 一束光从水中射入空气,折射角为45°,求入射角。
3. 一平面镜反射一束光,入射角为60°,求反射角。
4. 一凸透镜焦距为10cm,物距为20cm,求像距。
5. 一凹透镜焦距为15cm,物距为30cm,求像距。
大学物理考试题库及答案一、选择题(每题2分,共20分)1. 在国际单位制中,下列哪个单位不是基本单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 瓦特(W)答案:D2. 一个物体在平直道路上做匀速运动,下列哪个因素不会影响物体的运动状态?A. 道路摩擦力B. 道路坡度C. 物体质量D. 物体速度答案:C3. 下列哪个现象表明地球是圆的?A. 星星在夜空中闪烁B. 船只在海平面上逐渐消失C. 地平线D. 月亮的形状变化答案:B4. 关于牛顿第三定律,下列说法正确的是:A. 作用力与反作用力大小相等,方向相反B. 作用力与反作用力大小不等,方向相反C. 作用力与反作用力大小相等,方向相同D. 作用力与反作用力大小不等,方向相同答案:A5. 下列哪个物理量是标量?A. 速度B. 力C. 加速度D. 路程答案:D6. 一个物体从静止开始沿着光滑斜面下滑,下列哪个因素会影响物体的加速度?A. 物体质量B. 斜面角度C. 重力加速度D. 物体与斜面之间的摩擦力答案:B7. 下列哪个现象与电磁感应无关?A. 发电机B. 变压器C. 电动机D. 麦克斯韦方程组答案:D8. 光在真空中的传播速度约为:A. 1×10^5 km/sB. 3×10^5 km/sC. 1×10^8 m/sD. 3×10^8 m/s答案:D9. 下列哪个物理现象可以用光的波动理论解释?A. 光的直线传播B. 光的反射C. 光的折射D. 光的衍射答案:D10. 下列哪个物理学家提出了万有引力定律?A. 伽利略B. 牛顿C. 开普勒D. 卡文迪许答案:B二、填空题(每题2分,共20分)1. 国际单位制中的基本单位有:米(m)、千克(kg)、秒(s)、安培(A)、开尔文(K)、摩尔(mol)和坎德拉(cd)。
2. 牛顿第二定律的数学表达式为:F = ma。
3. 在真空中,光的速度为:3×10^8 m/s。
【课后习题】 第12章 一、填空题1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。
2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。
3、真空环境中正电荷q 均匀地分布在半径为R 的细圆环上,在环环心O 处电场强度为____0________,环心的电势为__R q o πε4/_________。
4、高斯定理表明磁场是 无源 场,而静电场是有源场。
任意高斯面上的静电场强度通量积分结果仅仅取决于该高斯面内全部电荷的代数和。
现有图1-1所示的三个闭合曲面S 1、S 2、S 3,通过这些高斯面的电场强度通量计算结果分别为:⎰⎰⋅=Φ11S SE d ,⎰⎰⋅=Φ22S S E d ,⎰⎰⋅=Φ33S SE d ,则Φ1=___o q ε/_______;Φ2+Φ3=___o q ε/-_______。
5、静电场的场线只能相交于___电荷或无穷远________。
6、两个平行的无限大均匀带电平面,其电荷面密度分别如图所示,则A 、B 、C 三个区域的电场强度大小分别为:E A =_o εσ/4________;E B =_o εσ/________;E C =__o εσ/4_______。
7、由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =____0____________.8、初速度为零的正电荷在电场力的作用下,总是从__高____电势处向_低____电势处运动。
9、静电场中场强环流为零,这表明静电力是__保守力_________。
10、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,外力所作的功 W =___⎪⎪⎭⎫ ⎝⎛-12114r r Qq πε___________.11、真空中有一半径为R 的均匀带电半园环,带电量为Q ,设无穷远处为电势零点,则圆心O 处的电势为___R Q 04πε_________;若将一带电量为q 的点电荷从无穷远处移到O 点,电场力所作的功为__RqQ04πε__________。
第一章 质点运动学1.已知质点的运动方程为:2()2(22)(SI)r t ti t j=+-,求(1)1t =s, 2t =s 时质点的位矢;(2)第二秒内质点的位移;(3)第二秒内质点的平均速度;(4)2t =s 时的速度;(5)第二秒内质点的平均加速度;(6)2t =s 时的加速度。
[参考答案: (1)(1)2r i j =+(m),(2)42r i j =-(m);(2)23r i j ∆=-(m);(3)23v i j =-(m/s); (4)(2)24v i j =-(m/s);(5)2a j =-(m/s 2);(6)2a j =-(m/s 2) ]2. 有一质点沿着X 轴作直线运动,t 时刻的坐标为234.52X t t =-(SI ),求:(1)第二秒内的平均速度;(2)第二秒末的速度。
[参考答案: (1)-0.5 m/s ;(2)-6m/s ]3. 一质点沿X 轴运动,其运动方程为:2332X t t =-(SI ),试求:(1)当质点的加速度为零时,其位置和速度;(2)当质点的速度为零时,它的加速度。
[参考答案: (1)0.5 m ,1.5 m/s ;(2)6m/s 2,-6m/s 2]4. 一质点沿x 方向运动,其加速度随时间的变化关系为a = 3+2 t (SI) ,如果初始时质点的速度v 0为5m/s ,则当t为3s 时,质点的速率 v 为多大。
[参考答案: 23 m/s ]5. 一质点沿X 轴运动,其加速度与位置坐标x 的关系为226a x x =+,如果质点在原点处的速度为零,求该质点在任意位置时的速度。
[参考答案: ]6. 质点作半径为0.5 m R =的圆周运动,其角坐标与时间的关系为:3= + 3t t θ(SI),求在t =2 s 时,质点的角坐标、角速度和角加速度。
[参考答案: 14rad, 15rad/s , 12 rad/s 2 ]7. 一质点作半径为 1 m R =的圆周运动,其角位移θ 随时间t 的变化规律是 2= 5+ 3t θ。
求在t =2 s 时,它的法向加速度a n 和切向加速度a t 的大小为多少。
[参考答案:144 m/s 2,6 m/s 2]8. 质点作半径为0.02m 的圆周运动,它所走的路程与时间的关系为30.1S t =m, 当质点的线速度为0.3m/s v =时,它的法向加速度和切向加速度各为多少?[参考答案:4.5 m/s 2,0.6 m/s 2]9. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,求速度v 与时间t 的函数关系。
[参考答案: 02022v v kv t=+]10. 如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量)。
已知s t 2=时,质点P 的速度值为32 m/s ,试求1=t s 时,质点P 的线速度与切向加速度、法向加速度的大小。
[参考答案: 8 m ,16 m/s 2;32m/s 2]第四章刚体的转动1、如图所示,在边长为a的正方形的顶点上,分别有质量为m的四个质点,求此系统绕下列轴转动的转动惯量:(1)通过A平行于对角线BD的转轴;(2)通过A垂直于所在平面的转轴;2、求半径为R,质量为m的均匀半圆环对于图中所示轴线的转动惯量。
【参考答案:1/2mR2】3、如图所示,一轻绳跨过一轴承光滑的定滑轮,滑轮半径为R ,质量为M ,绳的两端分别与质量为m 的物体及固定弹簧相连,将物体由静止状态释放,开始释放时弹簧为原长,求物体下降距离为h 时的速度大小。
【参考答案:222M m kh mgh +-】4、如图所示,质量为m 1=5kg 的木块,可沿倾角30=θ的斜面滑动,滑动摩擦系数25.0=μ,现在木块有绕国定滑轮的轻绳拴着,绳子的另一端吊着质量为m 2=10kg 的重物,设滑轮为均匀圆盘,质量M 为20kg ,半径R=0.2m ,并设绳子与滑轮间无相对滑动,求重物的加速度和绳子的张力。
【参考答案:(1)2.56m/s 2,48.8N ,74.4N 】mm 25、如图所示,滑轮转动惯量为0.01kgm 2,半径为7cm ,物体的质量为5kg ,有绳与劲度系数k=200N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直时,弹簧无伸长,使物体由静止而下落的最大距离;(2)物体速度达到最大值的位置及最大速率。
【参考答案:(1)0.49m ;(2)0.245m ,1.3m/s 】6、如图所示,质量为M 长为L 的均匀细棒可绕垂直于棒的一端的水平轴O 无摩擦的转动,它原来静止在与竖直方向成30角的位置,在此位置由静止状态释放,试求:(1)释放瞬间棒的角速度;(2)棒摆到竖直位置时的角速度。
【参考答案:(1)Lg43;(2)()3223-L g 】m O7、将一质量m=0.1kg 的小球系于轻绳的一端,绳穿过一竖直的管子,一手握管子一手执绳子,先使小球以角速度30rad/s 在半径为r 1=0.4m 的水平面上转动,然后将绳子向下拉,使r 2=0.2m ,求(1)小球转动的角速度、及转动动能变化了多少? 【参考答案:120rad/s ,21.6J 】8、一水平圆盘,质量为M ,半径为R ,可绕其中心的铅直轴无摩擦的转动,开始时圆盘静止。
一质量为m 的人,在圆盘上由静止开始沿以盘心为圆心,半径为r 的圆周以相对于圆盘为v r 的速率的速度行走。
试求:(1)圆盘转动的角速率;(2)当此人在圆盘上走完一周回到盘上原位置时,圆盘相对地面转过的角度。
【参考答案:(1)2221MR mr mrv r +-;(2)222212MR mr mr +-π】9、质量为M 长为L 的均匀细棒可绕垂直于棒的一端的水平轴O 无摩擦的转动,她原来静止在竖直位置,现有一质量为m 的弹性小球沿水平方向飞来,正好在棒的下端与帮相撞,碰撞后棒与竖直位置摆到最大角30=θ处。
(1)假定碰撞是完全弹性碰撞,计算小球的速度v 0的大小;(2)碰撞时,小球受到的冲量有多大? 【参考答案:(1))32(6123-+gl m m M ;(2))32(66--gl M】10、一均匀细杆,长为2L ,质量为M ,以水平速度v 0在光滑的水平面内平动时,与前方一固定的质点O 发生完全非弹性碰撞。
求杆与O 点碰后绕O 点转动的角速度。
【参考答案:Lv 760】O mV011、两个物体A、B 质量分别为m 1,m 2,(m 2 >m 1)分别系于两条绳上,这两绳又分别绕在半径r 1,r 2(r 2 >r 1),并且装于同一轴的两个鼓轮上。
重物在重力的作用下运动。
设绳子的质量及轴与鼓轮的摩擦忽略不计。
试求下列两种情况下的角加速度。
(1)两轮盘的质量忽略不计;(2)小轮质量1m ',大轮质量2m '。
【参考答案:(1)()2112221122r m r m g r m r m +-;(2)())(212112222112221122r m r m r m r m gr m r m '+'++-】12、如图所示,一轴承光滑的定滑轮,质量为M=0.02kg ,半径R=0.1m ,一根固定在定滑轮上,另一端系有一质量为5kg 的物体,已知定滑轮的初速度s rad /100=ω,求:(1)定滑轮的角加速度;(2)定滑轮的角速度变化到s rad /0=ω时,物体上升的高度;(3)当物体回到原来位置上,定滑轮的角速度。
【参考答案:(1)81.7rad/s 2;(2)m 21012.6-⨯;(3)10rad/s 】RM13、长为l 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为231Ml ,开始时杆竖直下垂,如图所示.有一质量为m 的子弹以水平速度0v射入杆上A 点,并嵌在杆中,OA =2l / 3,则子弹射入后瞬间杆的角速度ω为多大。
14.长为l ,质量为m 0的细棒,可绕垂直于一端的水平轴自由转动。
棒原来处于平衡状态,现有一质量为m 的小球沿光滑水平面飞来,正好与棒下端相碰(设碰撞为完全非弹性碰撞)使棒向上摆到30=θ处,如图所示,求小球的初速度。
15.如图所示,均匀直杆质量为m ,长为l ,初始时棒水平静止。
轴光滑,4/l AO =。
求杆下摆到θ角时的角速度ω。
θ v 0θO OωAB l , m第五章 静电场1. 如图所示,两个小球质量都是m ,都用长为l 的细线挂在同一点,若将它们带上相同的电量,平衡时两线夹角为2θ,设小球的半径均可忽略不计,求每个小球所带的电量。
[参考答案:4sin l ±2. 如图所示,两个点电荷电量分别为q +和2q -,其间距为d ,求(1)在它们连线之间电势V=0的点在什么位置?(2)在它们连线上场强0E =的点在什么位置?[参考答案: (1)在距离电荷q +延长线左侧为d 处V=0;(2)在距离电荷q +延长线左侧为(1x d =处0E =]mm+q-2qd3. 两个带有等量异号电荷且内外半径分别为1R 和2R (12R R <)的均匀带电同心球面,带电量分别为Q +和Q -,求距离圆心为r 处的电场强度的大小. [参考答案: (1)1 r R <,0E =;(2)12R r R <<,204Q E r πε=;(3)2 > r R ,0E = ]4.两个带有等量异号电荷的无限长同轴圆柱面,半径分别为1R 和2R (12R R <),单位长度上的电荷为λ. 求离轴线为r 处的电场强度的大小. [参考答案: (1)1 r R <,0E =;(2)12R r R <<,02E rλπε=;(3)2 > r R ,0E = ]5. 半径为R 无限长直圆柱体内均匀带电,电荷体密度为常数ρ,求圆柱体内外的电场强度的大小。
[参考答案: (1) r R <,02r E ρε=;(2) >r R ,202R E rρε=]6. 如图所示,边长为a 的正三角形的三个顶点上,放置着三个正的点电荷,电量分别为q, 2q, 3q 。
试求:在将一个电量为Q 的正试验电荷从无限远处移动到此三角形中心O 点的过程中,外力所做的功。
[参考答案: 0]q2q3qa7. 如图所示,A 点有点电荷q ,B 点有点电荷-q, 2AB l =,OCD 是以B 为中心l 为半径的半圆。
(1)将点电荷q 0从O 沿OCD 移动到D 点,电场力做多少功?(2)将点电荷-q 0从D 沿AB 延长线移到无穷远处,电场力做功多少?[参考答案:(1)006q q l πε(2)006q qlπε]8. 如图所示,一半径为R 的半圆形细棒,其上均匀带有电荷q ,求半圆中心O 点的电场强度。