高中物理奥林匹克竞赛模拟题及答案
- 格式:doc
- 大小:242.50 KB
- 文档页数:6
图2图3高中物理奥赛模拟试题一1. (10分)1961年有人从高度H=22.5m 的大楼上向地面发射频率为υ0的光子,并在地面上测量接收到的频率为υ,测得υ与υ0不同,与理论预计一致,试从理论上求出0υυυ-的值。
2. (15分)底边为a ,高度为b 的匀质长方体物块置于斜面上,斜面和物块之间的静摩擦因数为μ,斜面的倾角为θ,当θ较小时,物块静止于斜面上(图1),如果逐渐增大θ,当θ达到某个临界值θ0时,物块将开始滑动或翻倒。
试分别求出发生滑动和翻倒时的θ,并说明在什么条件下出现的是滑动情况,在什么条件下出现的是翻倒情况。
3. (15分)一个灯泡的电阻R 0=2Ω,正常工作电压U 0=4.5V ,由电动势U =6V 、内阻可忽略的电池供电。
利用一滑线变阻器将灯泡与电池相连,使系统的效率不低于η=0.6。
试计算滑线变阻器的阻值及它应承受的最大电流。
求出效率最大的条件并计算最大效率。
4. (20分)如图2,用手握着一绳端在水平桌面上做半径为r 的匀速圆周运动,圆心为O ,角速度为ω。
绳长为l ,方向与圆相切,质量可以忽略。
绳的另一端系着一个质量为m 的小球,恰好也沿着一个以O 点为圆心的大圆在桌面上运动,小球和桌面之间有摩擦,试求: ⑴ 手对细绳做功的功率P ;⑵ 小球与桌面之间的动摩擦因数μ。
5. (20分)如图3所示,长为L 的光滑平台固定在地面上,平台中间放有小物体A 和B ,两者彼此接触。
A 的上表面是半径为R 的半圆形轨道,轨道顶端距台面的高度为h 处,有一个小物体C ,A 、B 、C 的质量均为m 。
在系统静止时释放C ,已知在运动过程中,A 、C 始终接触,试求:⑴ 物体A 和B 刚分离时,B 的速度; ⑵ 物体A 和B 分离后,C 所能达到的距台面的最大高度;⑶ 试判断A 从平台的哪边落地,并估算A 从与B 分离到落地所经历的时间。
6. (20分)如图4所示,PR 是一块长L 的绝缘平板,整个空间有一平行于PR 的匀强电场E ,图1在板的右半部分有一个垂直于纸面向外的匀强磁场B 。
物理奧林匹亞競賽 試題與解答文/林明瑞本刊徵得物理奧林匹亞國家代表隊選訓小組的同意,每期精選若干試題和解答,以饗讀者。
本期刊登二道試題。
【本期試題評註】:一般人認為物理的思維很複雜,但是實際上它的基礎很簡單,只是少數幾條基本的定律而已!表面上看似複雜的實際問題,若選對適當的思考切入點,應用數學和邏輯推演,則問題的內貌層層展開,一覽無遺,物理學的美妙就是如此!一、古典二維都卜勒效應(a) 如圖一所示,有一訊號源S 以等速度v 向+x 方向運動,訊號在空中的傳播速率為u,訊號源本身所發出的頻率為f ,在地面上的靜止觀察者P 所接收到的訊號頻率為f 。
在訊號源的飛行軌跡上,O 點為最靠近P 點的位置,取為x 軸的原點,兩者之間的距離為h。
設訊號源S 的時空坐標為),(t x ,訊號源離觀察者的距離r >>x,試證uv ff cos 10。
(b) 1957年10月4日俄國人首先成功發射史波尼克號人造衛星(Sputnik I ),進入環繞地球的軌道,並對地面傳送無線電頻率的訊號。
當年10月7日,美國麻省理工學院的林肯實驗室接收到該人造衛星所傳送的訊號,如圖二所示。
圖中x 軸上的數字代表格林威治標準時間,例如「334」代表3時34分,「335」代表3時35分。
利用上題所得的古典二維都卜勒公式,計算史波尼克號人造衛星飛經該地的速率和距該實驗室的最近距離。
v),(t x PuS rh xO vt圖一解:(a) 參看圖三,訊號源S 以等速度v 向+x 方向運動,訊號的傳播速率為u,訊號源本身所發出的訊號週期為0,觀察者P 所測得的訊號週期為。
設S 1的時空坐標為),(11t x ,經一個週期後,其時空坐標變為),(22t x ,由圖上的幾何關係可得2121()x x v t t v2121r r t t u u21211()()t t r r u由於r x ,故1221()cos r r x x ,以之代入上式,得211()cosx x u00cos v u 0cos 1v u0cos 1ff v u(b) 人造衛星的軌道雖然是橢圓形,但從地面上觀察,所見者僅為其軌跡的一小段,近乎為一直線,因此衛星訊號的都卜勒效應符合上題所描述的情況。
积盾市安家阳光实验学校中物理奥林匹克竞赛预赛模拟测试卷51.在北半球某地有一只充满了水的圆形澡盆子。
现在拔去盆的塞子,让水流出来,则盆中的水将______ 流出。
(填“顺时针”、“逆时针”、“随机旋转”或“不旋转”)2.在一小车上安装一个半径为R 的竖直半圆弧,圆弧前放一小球,如图所示。
试问:小车至少以多大的加速度时,小球可沿圆弧上升到最高点?3.一匀质细导线圆环总电阻为R ,半径为a ,圆环内充满方向垂直于环面的匀强磁场,磁场以速率K 均匀地随时间增强,环上的A ,D 、C 三点位置对称。
电流计G 连接A ,C 两点,如图所示。
若电流计内阻为R G ,求通过电流计的电流大小。
4.一带电+q 的圆环,质量为m ,套在水平杆上,长杆粗糙不光滑,空间有磁场B ,方向如图所示。
若开始时圆环以v 0的速度向右滑动,求当小圆环达到平衡时,克服摩擦力做功的大小。
5.1964年,上制成了第一盏用海浪发电的航标灯。
它的气室示意图如图所示:利用海浪上下起伏的力量,空气能被吸进来,压缩后再推入工作室,推动涡轮机带动发电机发电:当海水下降时,阀门K 1关闭,K 2打开。
设每次吸入压强为l.0105Pa 、温度为7℃的空气0.233m 3(空气可视为理想气体),当海水上升时,K 2关闭,海水推动活塞绝热压缩空气,空气压强达到32 105Pa 时,阀门 K 1才打开,K 1打开后,活塞继续推动空气,直到气体推入工作室为止,同时工作室的空气推动涡轮机工作。
设打开K l 后,活塞附近的压强近似保持不变,活塞的质量及活塞与筒壁间的摩擦忽略不计,问海水每次上升时所作功是多少?[已知空气从压强为P 1、体积为V 1状态绝热地改变到压强为P 2、体积为V 2的状态过程中,近似遵循关系式P 1/P 2=(V 2/V 1)5/3,1摩尔理想气体温度升高1K 时,内能改变为3R/2,R=8.31J/(molK)]6.为了测量玻璃的折射率n ,采用如图所示的装置:棱镜放在会聚透镜的前面,AB 面垂直于透镜的光轴,在透镜的焦平面上放一个屏。
高中物理竞赛模拟试题(决赛)一、在一边长为a 的正n 边形的个顶点上,各有一个质点.从t=0时刻开始,各质点以相同的速率ν开始运动,运动过程中所有的质点都为逆时针方向,并且始终对准它的下一个质点运动,问经过多少时间后所有质点同时相遇?二、如图所示,物体A 质量为m,吊索拖着A 沿光滑竖直杆上升,吊索通过滑轮B 与卷扬机相连,收吊索的速度为ν0,滑轮B 到竖直杆的距离为0l ,B 滑轮在水平杆上向右以速度ν运动.求左边吊索恰好竖直,AB 绳与水平方向成θ角时,吊索中的张力是多少?三、一个空心半圆形圆管竖直在铅垂面内,管口连线在水平面内.管内装满重量为W 的一系列小球,左、右最高的一个小球恰好和管口平面相切,共有2n 个小球.求从左边起第k 个和第k+1个小球之间的相互压力(忽略所有摩擦)四、如图所示,O 、A 、B 三点在同一水平直线面上,O 点有一个固定的水平长钉,A 点为一固定点,OA 相距l .B 处有一小球,用一根长2l 的轻绳和A 点相连.现给B 球一个竖直向下的速度ν0,使它要能击中A 点.求ν0的最小值为多少?五、质量为M 的宇航站和和质量为m 的飞船对接在一起沿半径为nR 的圆形轨道绕地球运动,这里的n=1.25,R 为地球半径,然后飞传从宇航站沿运动方向发射出去,并沿某椭圆轨道飞行,其最远点到地心的距离为8nR,如果希望飞船绕地球运动一周后恰好与宇航站相遇,则质量比m/M 应该为多少?六、液体A 、B 互不相溶,它们的饱和气压p 与温度T 的关系是k0(i n ip a l i A B p T b ==+)(或) 式中p 0为标准大气压,a 、b 为液体本身性质所决定的常量.已测得两个温度点的p i/p 0值如下:(1)在外部压强为p 0时,确定A 、B 的沸点.(2)现将液体A 和B 各100g 注入容器中,并在A 表层覆盖有薄层无挥发性的液体C,C 与A 、B 互不相溶,C 的作用防止A 自由挥发,各液层不厚,液内因重力而形成的附加压均可忽略,A 、B 的摩尔质量比γ=M A /M B =8今对容器缓慢持续加热,液体温度t ℃随时间τ的变化如图所示.请确定图中温度t 1、t 2(精确到1℃)以及在1τ时刻液体A 和液体B 的质量(精确到0.1克)假设A 、B 蒸汽均能作理想气体处理,因此也也服从道尔顿分压定律.七、平行板电容器两极板都是正方形,其面积均为S=1.0×10-2m 2,相距为d=1.0×10-3m,将这个电容器与电源相连接,电源的电动势ε=100,再把厚度为d,长度等于电容器极板长度的电解质板(相对介电常数εr =2)以匀速ν=2.3×10m/S 引入两极板间,问:(1)电路中的电流强度为多少?(2)介质板插入过程中电源的输出能量为多少?(3)电容器中电解质板引入前后所储存的能量有何变化?比较电源输出的能量与电容器中能量的变化是否相同?说明原因.八、图是有24个等值电阻连接而成的网络,图中电源的电动势为ε=3.00V,内阻r 为2.00Ω的电阻与一阻值为28.0Ω的电阻R ′及二极管D 串联后引出两线;二极管的正向伏安曲线如图所示.P 0C BAt 2 t 1τ100400.284,0.0727890 1.476,0.6918A B A B p p C p pC ====0000:p p :p p(1)若将P、Q两端与图中电阻网络E、G两点相接,测得二极管两端的电压为0.86V,求电阻网络两点E与G的电压.(2)若将P、Q两端与图中电阻网络B、D两点相接,求同二极管D的电流I D和网格中E、G间的电压U EG.九、考虑不用发射到绕太阳运动的轨道上的方法,要在太阳系建立一个质量为m静止的太空站.这个太空站有一个面向太阳的大反射面(反射系数为1),来自太阳的辐射功率L产生的辐射压力使太空站受到一个背离太阳的力,此力与质量为M S的太阳对太空站的万有引力方向相反,大小相等,因而太空站处于平衡状态.忽略行星对太空站的作用,求:(1)此太空站的反射面面积A;(2)平衡条件和太阳与太空站之间的距离是否有关?(3)设反射面是边长为d的正方形,空间站的质量为106kg,确定d之值.已知太阳的辐射功率是3.77×1026W.太阳质量为1.99×1030kg.7142122 23 24参考答案一、□解Ⅰ 对一个正n 边形,内角的度数是(2)n nπ-,设每边的长度是a (以五边形为例)A 顶点对着B 质点运动到点F 处,B 质点对着C 顶点运动到了G 处(如图),在△BGF 中用余弦定理FG 2=(a-ν∆t )2+(ν∆t )2-2(ν∆t )(a-ν∆t )cos (2)n nπ- 舍去高阶小量12212222cos()2211cos()n FG a v ta v ta n vt n a a n ππ-⎡⎤=-∆-∆⎢⎥⎣⎦⎧-⎫⎡⎤=-+⎨⎬⎢⎥⎣⎦⎩⎭因为22[1cos()]1v t n a nπ-+<< 所以2{1[1cos()]}2[1cos()]v t n FG a a nn a FG v t n ππ-=-+--=+每边边长的减短率为2[1cos()]n v nπ-+ 相遇时间22[1cos()](1cos )a at n v v n nππ==-+- □解Ⅱ 在整个运动过程中所有质点总是在一个正n 形的顶点上(只是正n 形不断变小),因此α和θ不会变,即α=nπ,θ=2n ππ-.质点向着正n 边形中点O 运动的速度为cos sin /sin 2v v v na l nπθπ⊥===到达中点的时间222sin ()(1cos )l a at v v v n nππ⊥===- 二、□解Ⅰ 这是一个比较复杂的运动,将此运动看成两个运动的合成:一个是B 滑轮不动,卷扬机以速度ν0收吊索;另一个是AB 段吊索长度不变,B 滑块以ν向右运动.第一个运动使A 滑EG ADFCBν块得到了一个速度ν1=sin v θ第二个运动使A 滑块得到另一个速度 ν2=-cot θ·ν A 的真实速度 νA =ν1+ν2=0cos sin v v θθ-将A 的速度分解成沿吊索方向的分量νA Ⅱ和垂直吊索方向的分量A v ⊥'0cos cos sin A v v v θθθ⊥-'=B 速度的垂直于吊索的分量sin B v v θ⊥=所以A 相对于B 垂直于吊索方向的速度0cos sin A B A v v v v v θθ⊥⊥⊥-'=-=A 物体的向心加速度2200cos /cos A A v v a l l θθ⊥⊥==分析A 的受力情况可知sin cos cos T mg N maT Nθθθ--==联立,即可求得T□解Ⅱ 以滑轮B 为参照物,A 物体速度可看成水平方向的速度ν和竖直方向的速度ν′的合成,卷扬机虽然也有向左的速度ν,但不影响吊索的速度,所以物体A 沿吊索方向的速度亦为ν0.即0cos sin v v v θθ'=+得0cos sin v v v θθ-'=A 速度垂直吊索的分量0sin cos cos sin A v v v v v θθθθ⊥'=--=以下同解Ⅰ 三、如图,对第k(k ≥2)个滚珠进行受力分析,它受到左右两侧的压力分别记为N k-1和N K ,还受到管壁的经向弹力P 和重力W.建立如图直角坐标系,只讨论在x 方向上的合力为零的条件则有1cos cos cos 0K K N W N αβα-+-=有图中几何关系可知ν/2/2nαθθπ==所以有α=4nπ同时有(1)24(21)4k n nk nππβπ-=+-=将α,β值代入式可得1(21)cos4[]cos4k k k n N N W n ππ---=即有213213cos4[]cos45cos4[]cos4(21)cos4[]cos4k k n N N W n n N N W nk n N N W nππππππ--=-=--=两边相加后可得13521coscos cos 444{}cos4k k n nn N N W nππππ-+++-=()对第一个钢珠受力分析不难得到1cos 4[]cos4n N W nππ=因此xN k111121[cos ]4cos4[2cos sin ]2144cos 42sin41{[sinsin ]}22sin4sin 22sin4ki k kki i ki i n N Wni i n nn ni i n nk nnππππππππππππ====-=--=--==∑∑∑∑()()()2n ()2n所以sin2()sin2k k n N W nππ=四、如图,小球沿半圆轨道运动到B ′位置时,有机械能受恒定理可知,它应具有向上速度ν0.若ν0足够大,则小球可沿较小半圆轨道击中A 点.若ν0较小,则可能在较小半圆轨道的某C 点脱离半圆轨道改取斜抛轨道,也有可能击中A 点,这种方式对应的ν0即为所求的最小值.为C 点引入方位角.小球在C 点脱离圆轨道故此时绳中张力恰为零.小球速度ν应满足以下关系式2sin /mg F mv l θ==心式中m 为小球质量.l 为半圆轨道半径,又由机械能受恒可得22011sin 22mv mv mgl θ=+ 上述两式可解得20sin 2v glθ=建立如图坐标O-xy 系,小球在点C 时刻定为t=0,则C 点后斜抛运动的x 、y 分运动为2cos (sin )1sin (cos )2x l v t y l v t gt θθθθ=-+⎧⎪⎨=+-⎪⎩ 消去t,可得22222cos (cos )1(cos )sin []sin 2sin 1(cos )cos 2sin (cos )sin sin v x l x l y l g v v x gl x l l l l v θθθθθθθθθθθθ++=+-+=++- 由前面所述,可得2sin v gl θ=代入上式可得23(cos )cos (cos )sin sin 2sin x xyl ll θθθθθθ++=+- 要求小球与A 点相遇,即抛物线轨道需过x=l ,因此23(1cos )cos (1cos )0sin sin 2sin θθθθθθ++=+-可展开并逐渐化简为42222222222322322sin sin cos 2sin cos 12cos cos 02sin (sin cos )2cos (1sin )1cos 02sin 2cos 1cos 022cos 2cos 1cos 0θθθθθθθθθθθθθθθθθθθ++---=+----=---=----=最后得cos θ的三次方程式2313cos 2cos 0θθ--=其解为1cos 2θ=因此3sin θ=与前面的20sin /3v gl θ=联立,即算得最小ν0值为033/2v gl =.五、如图所示,斜线覆盖的内圆是地球,其外为飞船离开后的椭圆轨道,再外面是飞船与宇航站开始的圆轨道,最外面是飞船的新轨道.地球质量记为M e ,飞船被发射前,它与宇航站一起运动的速度为u,则有22()()()eG M m M M m u nR nR ++=得BB′A yCν0xθ O2llu =飞船发射后的瞬间,飞船的速度记为u,宇航站的速度记为V,根据动量受恒有:()M m u MV mv +=+即得所需要的比值为()()V u m M u v -=- 于是问题转化为求v 和V分离后飞船近地点与地心相距nR,速度大小为ν,远地点与地心相距8nR,飞船速度大小记为ν′,则由开普勒第二定律和动能受恒得22811228e e vnR v nR GM m GM m mv mv nR nR '=⎧⎪⎨'-=-⎪⎩ 由此解得43v u ==分离后宇航站远地点与地心间距离设为nR,速度大小记为V.近地点与地心间距r,速度大小为V ℃.同样可列方程组:221122e e V nR V rGMM MV GMM r MV nR ''=⎧⎪'=-⎨-⎪⎩ 可解得V =由可以看出,若求得r 便可算出m/M 值为求r,可利用开普勒第三定律,设飞船新轨道的周期为t,而它的半轴长则为(8)2nR nR +;宇航站新轨道周期设为T,而它的半长轴则为()2nR r +,有 3322(8)()nR nR nR r t T ++=即329()()nR t nR r T ⎡⎤=⎢⎥+⎣⎦飞船运行一周后恰好与宇航站相遇,因此t=Kt k=1、2、3、…… 代入上式后便可得2323(9)k nRr k-=宇航站不能与地球相碰,否则它不可能再与飞船相遇,故要求 r>R代入上式,并考虑到n=1.25,可得 k ≤11现由上式计算m/M 值()()33m V u M u v -==-=-=要求 m/M>0 因此 k 2/3>9/2 即 k ≥10可见k 取值只可为 k=10或k=11 因此0.048mM=或0.153 六、(1)沸点即01i p p =时的温度,由于0()0i n p l p =,可得沸点i i iaT b -=.对于A 0.284[](273.1540)1.476[](273.1590)An AAn Aa lb a l b =++=++解之得3748.49,10.711A A a K b =-=同理得5121.64,13.735B B a K b =-=据此可得液体A 、B 沸点00349.4577372.89100A B T K C T K C===≈(2)系统有两次沸腾现象,t 1、t 2是沸点.第一次应发生在A 、B 交界面处,界面上气泡内压强等于A 、B 的饱和气压之和,其值先达到p 0,此时沸腾温度t 1低于A 、B 各自的沸点.有110()()A B p t p t p +=由于(/)0i ai T b ip e p += 令11001,273.15,T t t t t =+=满足即代入0,,,,A A B B a b a b t 值,采用二分逼近方法取值,可得t 1=67℃ A 、B 交界面一消失,第一次沸腾结束.容器内仅剩一种液体,要加热到t 2该液体的沸点才出现第二次沸腾.T 2必为100℃或者77℃.在温度t 1的沸腾过程中,从交界面出升离的气泡中,A 、B 的饱和气质量比1122()()8()()A A A A AB B B B B m M p t p t m M p t p t ρρ=== 由(2)式可得t 1时,A 、B 的饱和气压:100()0.734,0.267A B p t p p p ==因此22.0ABm m = 这表明A 蒸发质量是B 的22倍,液体A 的100克全部蒸发掉,液体B 仅剩4.5克,可见在t 1时刻容器中,液体A 的质量为0,液体B 的质量为95.5克,因此t 2=100℃ 七、(1)在电介质匀速插入过程中,电容不断增加经过t 之后,电容为00(4r r SvC C Kd Kdt C Kdεεπ=+-=+电容增量之值0(4r tC C C Kdεπ-=-=因Q=C ε,故电容器上电量相应增加之值为(4r tQ C Kdεεεπ-==所以充电电流29(4(21)10210()r Q I t KdA εεπ---==-⨯==⨯(2)电源输出的电能972210100910()2.310W I t J ε---==⨯⨯⨯=⨯⨯ (3)介质未插入时,电容所贮电能为2210229371122411010024 3.14910104.4310()S W C Kd J εεπ---==⨯=⨯⨯⨯⨯⨯⨯=⨯ 插入介质后,电容所贮电能增加22700011() 4.4310()22r W C C C J εεε-=-==⨯所以电源输出能量W>∆W,由题设电源内阻,线路电阻均不计,那么电源多输出的电能W-∆W 到什么地方去了.把介质插入电容器之间时,在介质板上产生极化电荷,极板上自由电贺对极化电荷产生吸引力,在忽略介质板和电容器极板之间的摩擦力时,要使介质板匀速地插入电容器中去,必须在加一个外力与此吸引力相平衡.因此,在介质板匀速插入电容器时,外力做负功,使电源输出的一部分能量W-∆W 变成了其它形式的能量. 八、(1)当引线两端P 、Q 与电阻网格E 、G 两点连接时,二极管两端的电压U D1=0.86V,此时对应的电流从图中查得为25.0mA,则E 、G 两点间的电压为11130.025(28.02)0.861.39()EG D U I R U rI V ε'=---=-⨯+-=考虑到对称性,网格EG 两端的等效电阻R EG 可由图表示,其值 R EG =13R/3而1011118151201055.6()729.9()133()()()()(16/7)2722130.695()14EGEG EG EA U R I R R I II U R R R R I R V ==Ω==Ω=++=+==从图可看出EA EG U U =的一半,即0.695V(2)当引线两端P 、Q 与电阻网格B 、D 两点相接时,由图求得等效电阻R BD 与R 0关系,并代入R 0的阻值05529.97721.4()BD R R ==⨯=Ω 通过二极管D 的电流i D 与二极管两端的电压关系22()D D BD U I R R r ε'=-++代入数据得22351.4D D U I =-这是一条联系U D 与的I D 直线方程,而U D 、I D 同时又满足二极管伏安特性曲线中一直线22351.4D D U I =-与二极管伏安特性曲线的纵坐标即为二极管的电流,由图读出240.5D I mA =R 1 F根据对称性,图中,M 、P 两点等势, N 、Q 两点等势,流过R 18、R 22及R 3、R 7流过电阻的电流均为零,因此E 、G 间的电势差与M 、N 两点之间的电势差相等241112418120()2[]722352()72D EG MN D I R R U U R R R R R R I R V +==+++++==九、(1)设空间站与太阳距离为r,则太阳辐射在空间站反射面单位面积内的功率即为光强Ф=4L rπ,太阳对反射面产生的压强是光子的动量传递给反射面的结果,这一光压为于是反射面受到的辐射压力22LF PA A r cπ==辐射 太阳对太空站的万有引力为2S M mGF r =引力.式中G 为万有引力常数.在太空站处于平衡状态时,F F =辐射引力即222S M mG L A r c rπ= 这就得到,反射面面积2S GM mcA Lπ=(2)有上面的讨论可知,由于辐射压力和太阳引力都与r 2成反比,因而平衡条件与太阳和空间站的距离r 无关.(3)若A=d 2,并以题给数据代入前式得到HR 142.5810d m===⨯。
物理奥林匹克竞赛题一、选择题(每题5分,共20分)1. 关于力的作用,下列说法正确的是:A. 力只能改变物体的形状,不能改变物体的运动状态B. 力只能改变物体的运动状态,不能改变物体的形状C. 力既能改变物体的形状,也能改变物体的运动状态D. 力既不能改变物体的形状,也不能改变物体的运动状态答案:C2. 在光滑的水平地面上,有一个质量为m的小球以速度v做匀速直线运动。
现给小球施加一个恒力F,使其在时间t内速度变为2v。
则该恒力F 的大小为:A. m(3v)/tB. m(2v)/tC. m(4v)/tD. m(5v)/t答案:C3. 关于电磁感应现象,下列说法正确的是:A. 只要闭合电路中的部分导体在磁场中运动,就一定会产生感应电流B. 只有当闭合电路中的部分导体在磁场中切割磁感线运动时,才会产生感应电流C. 只要穿过闭合电路的磁通量发生变化,就一定会产生感应电流D. 只有当闭合电路中的部分导体在磁场中做变速运动时,才会产生感应电流答案:C4. 关于光的折射现象,下列说法正确的是:A. 光从一种介质进入另一种介质时,传播方向一定会发生改变B. 光从空气进入水中时,传播速度会变大C. 光从水中射入空气时,折射角小于入射角D. 光在不同介质中传播时,其速度不变答案:A二、填空题(每题5分,共20分)5. 在自由落体运动中,若忽略空气阻力,物体下落的高度h与时间t的关系式为:h = _________。
答案:gt^2 / 26. 质量为m的物体以速度v在半径为R的圆周上做匀速圆周运动,则其所受向心力的大小为:F = _________。
答案:mv^2 / R7. 在一个闭合电路中,电源的电动势为ε,内阻为r,外电阻为R。
当外电阻R增大时,电路中的电流I将_________(填“增大”或“减小”)。
答案:减小8. 一束单色光从空气斜射到水面上,入射角为θ,折射角为γ。
若逐渐增大入射角θ,则折射角γ将_________(填“增大”或“减小”)。
高中物理竞赛模拟试卷(一)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间120 分钟.第Ⅰ卷(选择题共40 分)一、本题共10 小题,每小题4 分,共40 分,在每小题给出的4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得4 分,选不全的得2 分,有错选或不答的得0 分.1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说法正确的有A.若甲的初速度比乙大,则甲的速度后减到0B.若甲的初动量比乙大,则甲的速度后减到0图Ⅰ-2C.若甲的初动能比乙大,则甲的速度后减到0D.若甲的质量比乙大,则甲的速度后减到03.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法A.让脚尖先着地,且着地瞬间同时下蹲B.让整个脚板着地,且着地瞬间同时下蹲C.让整个脚板着地,且着地瞬间不下蹲D.让脚跟先着地,且着地瞬间同时下蹲4.动物园的水平地面上放着一只质量为M的笼子,笼内有一只质量为m的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为F2(如图Ⅰ-3),关于F1和F2的大小,下列判断中正确的是A.F1 = F2>(M + m)g图Ⅰ-3B.F1>(M + m)g,F2<(M + m)gC.F1>F2>(M + m)gD.F1<(M + m)g,F2>(M + m)g5.下列说法中正确的是A.布朗运动与分子的运动无关B.分子力做正功时,分子间距离一定减小C.在环绕地球运行的空间实验室里不能观察热传递的对流现象D.通过热传递可以使热转变为功6.如图Ⅰ-4所示,虚线a、b、c代表电场中的三个等势面,相邻等势面图Ⅰ-4之间的电势差相等,即U ab = U bc ,实线为一带正电的质点仅在电场力作用下通过该区域时的运动轨迹,P 、Q 是这条轨迹上的两点,据此可知A.三个等势面中,a 的电势最高B.带电质点通过 P 点时电势能较大C.带电质点通过 P 点时的动能较大D.带电质点通过 P 点时的加速度较大7.如图Ⅰ-5所示,L 为电阻很小的线圈,G 1 和G 2为内阻不计、零点在表盘中央的电流计.当开关 K 处于闭合状态时,两表的指针皆偏向右方,那么,当K 断开时,将出现A.G 1 和G 2 的指针都立即回到零点B.G 1 的指针立即回到零点,而G 2 的指针缓慢地回到零点C.G 1 的指针缓慢地回到零点,而G 2 的指针先立即偏向左方,然后缓慢地回到零点D.G 1 的指针先立即偏向左方,然后缓慢地回到零点,而G 2的指针缓慢地回到零点8.普通磁带录音机是用一个磁头来录音和放音的,磁头结构示意如图Ⅰ-6(a )所示,在一个环形铁芯上绕一个线圈,铁芯有一个缝隙,工作时磁带就贴着这个缝隙移动,录音时磁头线圈跟话筒、放大电路(亦称微音器)相连(如图Ⅰ-6(b )所示);放音时,磁头线圈改为跟扬声器相连(如图Ⅰ-6(c )所示).磁带上涂有一层磁粉,磁粉能被磁化且留下剩磁.微音器的作用是把声音的变化转化为电流的变化;扬声器的作用是把电流的变化转化为声音的变化.由此可知①录音时线圈中的感应电流在磁带上产生变化的磁场,②放音时线圈中的感应电流在磁带上产生变化的磁场,③录音时磁带上变化的磁场在线圈中产生感应电流,④放音时磁带上变化的磁场在线圈中产生感应电流.以上说法正确的是A.②③B.①④C.③④D.①②9.下列说法中正确的是A.水中的气泡有时看上去显得格外明亮,这是由于光从空气射向水时发生了全反射的缘故B.凸透镜成虚像时,物的移动方向与像的移动方向相反C.当物体从两倍焦距以外沿主光轴向凹透镜靠近时,物体与像之间的距离不断变小,而像则不断变大D.红光和紫光在同一种玻璃中传播时,红光的传播速度比紫光的大10.经典波动理论认为光的能量是由光的强度决定的,而光的强度又是由波的振幅决定图Ⅰ-5图Ⅰ-6的,跟频率无关,因此,面对光电效应,这种理论无法解释以下哪种说法 A.入射光频率v <v 0(极限频率)时,不论入射光多强,被照射的金属不会逸出电子B.光电子的最大初动能只与入射光频率有关,而与入射光强度无关C.从光照射金属到金属逸出电子的时间一般不超过 10-9 sD.当入射光频率 v >v 0 时,光电流强度与入射光强度成正比第Ⅱ卷 (非选择题 共 110 分)二、本题共 3 小题,每小题 5 分,共 15 分.11.起重机以恒定功率从地面竖直提升一重物,经 t 时间物体开始以速度 v 匀速运动,此时物体离地面高度 h = ______.12.如图图Ⅰ-7所示,足够大的方格纸 P Q 水平放置,每个方格边长为 l ,在其正下方水平放置一宽度为 L 的平面镜 MN ,在方格纸上有两小孔 A 和 B ,AB 宽度为 d ,d 恰为某人两眼间的距离,此人通过 A 、B 孔从平面镜里观察方格纸,两孔的中点 O 和平面镜中的点 O ′在同一竖直线上,则人眼能看到方格纸的最大宽度是________,人眼最多能看到同一直线上的方格数是________.13.如图Ⅰ-8所示,固定于光滑绝缘水平面上的小球 A 带正电,质量为 2 m ,另一个质量为 m ,带负电的小球 B 以速度 v 0 远离 A 运动时,同时释放小球 A ,则小球 A 和B 组成的系统在此后的运动过程中,其系统的电势能的最大增量为________.三、本题共 3 小题,共 20 分,把答案填在题中的横线上或按题目要求作图.14.(6分)在"测定玻璃砖折射率"的实验中,已画好玻璃砖界面的两条直线 aa ′和bb ′,无意中将玻璃砖平移到图Ⅰ-9中的虚线所示位置.若其他操作正确,则测得的折射率将_______(填“偏大”“偏小”或“不变”). 15.(6分)在“研究电磁感应现象”实验中:(1)首先要确定电流表指针偏转方向和电流方向间的关系.实验中所用电流表量程为 100μA ,电源电动势为 1.5 V ,待选的保护电阻有:R 1 = 100 k Ω,R 2 = 1 k Ω,R 3 = 10 Ω,应选用_______作为保护电阻.(2)实验中已得出电流表指针向右偏转时,电流是"+"接线柱流入的,那么在如图Ⅰ-10所示的装置中,若将条形磁铁 S 极朝下插入线圈中,则电流表的指针应向______偏转.16.(8分)一种供仪器使用的小型电池标称电压为 9 V ,允许电池输出的最大电流为50 mA ,为了测定这个电池的电动势和内电阻,可用如下器材:电压表○V 内阻很大,R 为电阻箱,阻值范围为 0~9999Ω;R 0 为保护电阻,有四个规格,即:A.10 Ω,5 WB.190 Ω,21W 图Ⅰ-7 图Ⅰ- 8 图Ⅰ-9图Ⅰ-10C.200 Ω,41WD.1.2 k Ω,1W(1)实验时,R 0应选用_______(填字母代号)较好;(2)在虚线框内画出电路图.四、本题共 6 小题,共75 分,解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.17.(10分)激光器是一个特殊的光源,它发出的光便是激光,红宝石激光器发射的激光是不连续的一道一道的闪光,每道闪光称为一个光脉冲.现有红宝石激光器,发射功率为 P= 1.0×106 W ,所发射的每个脉冲持续的时间为Δt = 1.0×10-11 s 波长为 6693.4 nm(1 nm = 1×10-9 m)问:每列光脉冲含有的光子数是多少?(保留两位有效数字)18.(10分)两个定值电阻,把它们串联起来,等效电阻为 4Ω,把它们并联起来,等效电阻是 1Ω,求:(1)这两个电阻的阻值各为多大?(2)如果把这两个电阻串联后接入一个电动势为E ,内电阻为 r 的电源两极间,两电阻消耗的总功率等于 P 1;如果把这两个电阻并联后接入同一个电源的两极间,两电阻消耗的总功率等于 P 2,若要求 P 1 = 9 W ,且P 2≥P 1,求满足这一要求的 E 和 r 的所有值.19.(12分)地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = -G rMm .国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能?20.(13分)如图Ⅰ-11所示,绝缘木板 B 放在光滑水平面上,另一质量为 m 、电量为 q 的小物块 A 沿木板上表面以某一初速度从左端沿水平方向滑上木板,木板周围空间存在着范围足够大的、方向竖直向下的匀强电场.当物块 A 滑到木板最右端时,物块与木板恰好相对静止.若将电场方向改为竖直向上,场强大小不变,物块仍以原初速度从左端滑上木板,结果物块运动到木板中点时两者相对静止,假设物块的带电量不变.试问:(1)物块所带电荷的电性如何?(2)电场强度的大小为多少?21.(15分)如图Ⅰ-12所示,质量为 M = 3.0 kg 的小车静止在光滑的水平面上,AD 部分是表面粗糙的水平导轨,DC 部分是光滑的 41圆弧导轨,整个导轨由绝缘材料做成并处于 B = 1.0 T 的垂直纸面向里的匀强磁场中,今有一质量为 m = 1.0 kg 的金属块(可视为质点)带电量 q = 2.0×10-3 C 的负电,它以v 0 = 8 m/s 的图Ⅰ-11 图Ⅰ-12速度冲上小车,当它将要过 D 点时,它对水平导轨的压力为 9.81 N(g 取 9.8 m/s 2)求:(1)m 从 A 到 D 过程中,系统损失了多少机械能? (2)若 m 通过D 点时立即撤去磁场,在这以后小车获得的最大速度是多少?22.(15分)“加速度计”作为测定运动物体加速度的仪器,已被广泛地应用于飞机、潜艇、航天器等装置的制导系统中,如图Ⅰ-13所示是“应变式加速度计”的原理图,支架 A 、B 固定在待测系统上,滑块穿在 A 、B 间的水平光滑杆上,并用轻弹簧固定于支架 A 上,随着系统沿水平做变速运动,滑块相对于支架发生位移,滑块下端的滑动臂可在滑动变阻器上相应地自由滑动,并通过电路转换为电信号从 1、2 两接线柱输出. 已知:滑块质量为 m ,弹簧劲度系数为 k ,电源电动势为 E ,内阻为 r ,滑动变阻器的电阻随长度均匀变化,其总电阻 R = 4 r ,有效总长度 L ,当待测系统静止时,1、2 两接线柱输出的电压 U 0 = 0.4 E ,取 A 到 B 的方向为正方向.(1)确定“加速度计”的测量范围.(2)设在1、2 两接线柱间接入内阻很大的电压表,其读数为 U ,导出加速度的计算式.(3)试在1、2 两接线柱间接入内阻不计的电流表,其读数为 I ,导出加速度的计算式.答案一、(40分)1.D 2.B 3.A 4.C 5.C 6.B 、D 7.D 8.B 9.CD 10.ABC二、(15分)11.vt -gv 2212.d +2l ;l l d 2+ 13.31 mv 02 三、(20分)14.(6分)不变; 15.(6分)(1)R 1;(2)右;16.(8分)(1)B ;(2)如图Ⅰ′-1所示四、17.(10分)设每个光脉冲的能量为E ,则 E = P Δt ,(3分)又光子的频率 ν=λc ,(2分)所以每个激光光子的能量为 E 0 = h λc (2分),则每列光脉冲含有的光子数 n =0E E =hc t P λ∆(2分) 即n =83491161031063.6104.693100.1101⨯⨯⨯⨯⨯⨯⨯⨯---=3.5×1013(1分) 18.(10分)(1)串联电阻:R 1 + R 2 = 4(Ω)串联电阻:2121R R R R += 1 Ω⇒ (2)由题意有 P 1=)()(221212R R R R R E +++= 9 W ……(2分) 将前式代入解得:E = 6+1.5r ……(2分)由题中的条件 P 2≥P 1得 )1(22r E +≥22)4(4r E +……(2分) 图Ⅰ-13图Ⅰ′-1 R 1 = 2 Ω R 2 = 2 Ω……(2分)19.(12分)由G 2rMm =r mv 2(1分)得,卫星在空间站上的动能为 E k =21 mv 2 = G )(2h R Mm +(2分)卫星在空间站上的引力势能在 E p = -G hR Mm +(1分) 机械能为 E 1 = E k + E p =-G )(2h R Mm +(2分) 同步卫星在轨道上正常运行时有 G 2rMm =m ω2r (1分)故其轨道半径 r =32ωMG (1分) 由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G 2Mm 32GM ω=-21m (3ωGM )2(2分) 卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为 E 2,设离开航天飞机时卫星的动能为 E k x ,则E k x = E 2 - E p -21 32ωGM +G hR Mm +(2分) 20.(13分)(1)带负电(2分)s(2)当 E 向下时,设物块与木板的最终速度为v 1,则有mv 0 = (M + m )v 1(2分) μ(mg - qE )L =21mv 02 -21 (M + m )v 12(2分) 当 E 向上时,设物块与木板的最终速度为 v 2,则有mv 0 = (M +m )v 2(2分)μ(mg + qE )2L =21 mv 02 -21 (M + m )v 22(2分) 解得 E =qmg 2(3分) 21.(15分)(1)设 m 抵达D 点的速度为v 1 ,则:Bqv 1 +mg =N (2分)∴v 1 =Bq mg N -=0.1100.280.99813⨯⨯--= 5.0 m/s (1分) 设此小车速度为v 2,金属块由 A-D 过程中系统动量守恒则:mv 0 = mv 1 +Mv 2(1分)∴v 2 = 1.0 m/s (1分)∴损失的机械能ΔE =21mv 02 -21mv 12-21Mv 22 = 18 J (2分) (2)在 m 冲上41圆弧和返回到 D 点的过程中,小车速度一直在增大,所以当金属块回到D 点时小车的速度达到最大(2分),且在上述过程中系统水平方向动量守恒,则:mv 1 + Mv 2 = mv 1 ′+Mv 2′(2分)系统机械能守恒,则:21mv 12 + 21Mv 22 = 21mv 1′2+21Mv 02(2分)v 2′=1 m/s 和v 2′=3 m/s (1分) v 2′=1 m/s 舍去,∴小车能获得的最大速度为 3 m/s (1分)22.(15分)(1)当待测系统静止时,1、2 接线柱输出的电压 U 0 =r R +ε·R 12(1分)由已知条件 U 0 = 0.4ε可推知:R 12 = 2r ,此时滑片 P 位于变阻器中点(1分)待测系统沿水平方向做变速运动分加速运动和减速运动两种情况,弹簧最大压缩与最大伸长时刻,P 点只能滑至变阻器的最左端和最右端,故有:a 1 =m L k 2⋅(1分) a 2 =-mL k 2⋅(1分) 所以"加速度计"的测量范围为[-m L k 2⋅·m L k 2⋅](2分) (2)当1、2两接线柱接电压表时,设P 由中点向左偏移 x ,则与电压表并联部分的电阻 R 1 =(2L - x )·L r ⋅4(1分) 由闭合电路欧姆定律得:I =r R +1ε(1分)故电压表的读数为:U = IR 1(1分)根据牛顿第二定律得:k ·x = m ·a (1分)建立以上四式得:a =m L k 2⋅ -mU L k ⋅⋅⋅ε45(2分) (3)当1、2 两接线柱接电流表时,滑线变阻器接在 1、2 间的电阻被短路.设P 由中点向左偏移 x ,变阻器接入电路的电阻为:R 2 =(2L + x )·L r ⋅4 由闭合电路欧姆定律得:ε=I (R 2 +r )根据牛顿第二定律得:k ·x = m · a联立上述三式得:a =r m I r I L k ⋅⋅⋅-⋅4)3(ε(2分)。
高中物理奥林匹克竞赛试题
一、单项选择题:
1. 下列运动中,满足符合力学第二定律“力等于质量乘以加速度”的是()
A. 抛体运动
B. 弹簧的压缩
C. 自由落体
D. 水平下抛体
2. 以下哪一种要素是正确的:()
A. T型锁里的L型插杆的长度
B. 计算机的处理速度
C. 钢棒的弹性模量
D. 小车的最大速度
3. 绝热过程中,容积V,温度T关系为()
A. V不变,T不变
B. V不变,T升高
C. V增大,T不变
D. V增大,T升高
4. 下列物理学术语中,错误的是()
A. 功率:功/时
B. 电流:电位变化/时
C. 劲度:力/时
D. 速度:距离/时
二、多项选择题:
1. 关于光电效应,以下说法哪些正确()
A. 光电效应可以产生电流
B. 光电效应是物体受到光照射后发生电磁波变化
C. 光电效应可用于探测物体的运动
D. 光电效应是原子核发射粒子时产生的现象
2. 有关烧结温度的制定,以下说法哪些正确()
A. 烧结温度是晶体结构稳定的最低温度
B. 烧结温度较高,则晶粒较大
C. 烧结温度较高,则相的凝固程度较高
D. 烧结温度较低,则晶粒较大
3. 关于电磁波的性质,以下哪些说法正确()
A. 电磁波的双稳态传播速度与光的传播速度相同
B. 电磁波可以反射和折射
C. 电磁波可以向物体传输能量
D. 电磁波不能靠固体传播。
全国高中物理奥林匹克竞赛试卷及答案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#高中物理竞赛试卷.一、选择题.本题共5小题,每小题6分.在每小题给出的4 个项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.(6分)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A.α B.α1/3 C.α3 D.3α2.(6分)按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为1 cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如图所示.当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是A.密度秤的零点刻度在Q点B.秤杆上密度读数较大的刻度在较小的刻度的左边C.密度秤的刻度都在Q点的右侧D.密度秤的刻度都在Q点的左侧3.(6分)一列简谐横波在均匀的介质中沿x轴正向传播,两质点P1和p2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24m/s,则该波的频率可能为A.50HzB.60HzC.400Hz4.(6分)电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式.电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用铜、铝和硅制成的形状、大小和横截面积均相同的三种环,当电流突然接通时,它们所受到的推力分别为F1、F2和F3。
若环的重力可忽略,下列说法正确的是A. F1> F2> F3B. F2> F3> F1C. F3> F2> F1D. F1 = F2 = F35.(6分)质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰,假设B球的质量m B可选取为不同的值,则A.当m B=m A时,碰后B球的速度最大B.当m B=m A时,碰后B球的动能最大C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大D.在保持m B<m A的条件下,m B越大,碰后B球的动量越大二、填空题.把答案填在题中的横线上.只要给出结果,不需写出求得结果的过程.6.(10分)用国家标准一级螺旋测微器(直标度尺最小分度为0. 5mm,丝杆螺距为,套管上分为50格刻度)测量小球直径.测微器的初读数如图(a)历示,其值为______mm,测量时如图(b)所示,其值为_______mm,测得小球直径d=____________________mm.7.(10分)为了缓解城市交通拥堵问题,杭州交通部门在禁止行人步行的十字路口增设“直行待行区”(行人可从天桥或地下过道过马路),如图所示,当其他车道的车辆右拐时,直行道上的车辆可以提前进入“直行待行区”;当直行绿灯亮起时,可从“直行待行区”直行通过十字路口.假设某十字路口限速50km/h,“直行待行区”的长度为12m,从提示进入“直行待行区”到直行绿灯亮起的时间为4s.如果某汽车司机看到上述提示时立即从停车线由静止开始匀加速直线运动,运动到“直行待行区”的前端虚线处正好直行绿灯亮起,汽车总质量为1. 5t,汽车运动中受到的阻力恒为车重的倍,则该汽车的行驶加速度为________;在这4s内汽车发动机所做的功为___________。
高中物理奥林匹克竞赛模拟试卷一、选择题(共 8 小题,每题 6 分,共 48 分。
在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得 6 分,选对但不全的得 3 分,有选错的得 0 分)1、一质点做匀变速直线运动,其速度 v 与时间 t 的关系为 v = 4 + 2t(m/s)。
则该质点在 t = 2s 时的加速度大小为()A 2m/s²B 4m/s²C 6m/s²D 8m/s²2、如图所示,一个质量为 m 的物块放在粗糙的水平面上,用一个与水平方向成θ角的力 F 拉物块,物块恰好做匀速直线运动。
已知物块与水平面间的动摩擦因数为μ,则拉力 F 的大小为()A μmg /(cosθ μsinθ)B μmg /(cosθ +μsinθ)C mg /(cosθ μsinθ)D mg /(cosθ +μsinθ)3、一物体从某一高度自由下落,经 3s 着地,g 取 10m/s²,则物体下落的高度为()A 45mB 30mC 90mD 15m4、如图所示,两根等长的轻绳将一重物悬挂在水平天花板上,轻绳与天花板的夹角均为 45°,重物保持静止。
若其中一根绳子断裂,则另一根绳子中的张力将()A 增大B 减小C 不变D 无法确定5、一个带正电的粒子在匀强磁场中运动,其运动轨迹如图所示。
已知磁场方向垂直纸面向里,则该粒子所受洛伦兹力的方向为()A 向上B 向下C 向左D 向右6、如图所示,理想变压器原、副线圈的匝数比为 2:1,原线圈接在u =220√2sin100πt(V)的交流电源上,电阻 R =10Ω,则副线圈两端的电压为()A 110√2VB 110VC 55√2VD 55V7、一简谐横波沿 x 轴正方向传播,t = 0 时刻的波形如图所示。
已知在 t = 01s 时,质点 P 第一次到达波峰,则该波的波速为()A 10m/sB 20m/sC 30m/sD 40m/s8、如图所示,在光滑的水平面上,有一质量为 M 的长木板,在其左端有一质量为 m 的物块,物块与长木板间的动摩擦因数为μ。
高中物理奥赛试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项描述的是电场强度的方向?A. 沿着电场线的方向B. 垂直于电场线的方向C. 与电场线的方向无关D. 与电场线的方向相反答案:A2. 根据牛顿第三定律,作用力和反作用力的大小和方向关系是:A. 大小相等,方向相反B. 大小不等,方向相反C. 大小相等,方向相同D. 大小不等,方向相同答案:A3. 光的双缝干涉实验中,相邻亮条纹之间的距离与下列哪个因素无关?A. 光的波长B. 双缝之间的距离C. 屏幕与双缝之间的距离D. 观察者的眼睛答案:D4. 一个物体在水平面上做匀加速直线运动,下列哪个物理量不会发生变化?A. 速度B. 加速度C. 位移D. 动能答案:B二、填空题(每题5分,共20分)5. 根据热力学第一定律,一个封闭系统的内能变化等于______和______的代数和。
答案:热量;做功6. 欧姆定律的数学表达式为V=______,其中V表示电压,I表示电流,R表示电阻。
答案:IR7. 根据相对论,当一个物体的速度接近光速时,其相对论质量会______。
答案:增加8. 光的折射定律可以表示为n1sinθ1 = n2sinθ2,其中n1和n2分别表示光从介质1到介质2时的折射率,θ1和θ2分别表示入射角和折射角。
当光从空气进入水中时,如果入射角为30°,则折射角θ2为______。
答案:19.47°(保留两位小数)三、计算题(每题10分,共20分)9. 一个质量为2kg的物体从静止开始在水平面上做匀加速直线运动,加速度为4m/s²。
求物体在第3秒末的速度。
答案:物体在第3秒末的速度为12m/s。
10. 一个电阻为10Ω的电阻器通过电流I=2A,求该电阻器消耗的电功率。
答案:该电阻器消耗的电功率为40W。
四、实验题(每题10分,共20分)11. 在验证牛顿第二定律的实验中,如何确定小车的质量远大于滑块的质量?答案:通过测量小车和滑块的总质量以及小车的质量,如果小车的质量远大于滑块的质量,则可以认为小车的质量远大于滑块的质量。
物理奥林匹克竞赛预赛模拟测试卷 1姓名____________ 学号 ___________ 1.一个带电的水珠,如果带电量超过某一量值后,会自动分裂成两个同样大小带电量相同 的小水珠,则该半径为 10-5m 的水珠带电量至少为多少?(设水珠所带电量在其表面均匀分布, 水的表面张力系数为 =7.3 10-2N/m,k=8.99 109N m2 C-2,取一位有效数字)2.在 xOy 平面上有一片稀疏的电子处在-H<y<H 的范围内,从 x 负半轴的远处以相同的速 率 v 沿着 x 轴正方向平行地向 y 轴射来.试设计一个最小区域的磁场,使得所有电子均通过原 点,然后扩展到在-2H<y<2H 范围,即在如图所示的虚线范围内继续沿着 x 正方向飞行.y2H Hx O-H -2H3.如图所示,质量为 M 的物体放置在两个完全相同的质量均为 m 的薄壁中空圆筒上.物体 两侧系着两个完全相同的劲度系数均为 k 的弹簧,两弹簧的另一端固定,开始时两弹簧均为原长,设物体在两薄圆筒上作纯滚动,试求振动周期.kkMmm4.如图,一菱形均匀线圈在均匀恒定磁场 B 中以角速度 绕其对角线匀速转动,转轴与磁场垂直,已知∠ACD= , DC =XC,当线圈绕至与 B 平行时,求:B(1)UAC;(2)设 e 为 AC 中点,求 UeC;A bD C-1-(3)AC 间电势最低点的位置.5.如图所示,一根粗细均匀两端封闭的玻璃管竖直放置,管内有一段水银柱,水银柱下方为空气,上方为一种可分解的双原子分子气体.该气体的性质是:当温度 T>T0 时,它的双原子分子开始分解为单原子分子.若用 n0 表示 T0 时的双原子分子数,用 n 表示(T0+ T)时分解了的双原子分子数,则当 T 很小时,分解遵循的规律为nT n0 = T0已知初始温度为 T0,此时下方空气柱的长度为 2L0,上方空气柱的 L0 长度为 L0,水银柱产生的压强为下方空气柱压强的 倍(0<a<1). 设玻璃管和水银柱体积随温度的变化可以忽略,问温度由 T0 稍稍增气体 水银柱加时,水银柱的移动方向.2L0空气6.在如图所示电路中,R1、R2、…、Rg 均为阻值有限的电阻,电流计 G 连同其串联电阻 Rg接在 B 和 F 之间,若定义 和 为=RR16 ,=RR24++RR35(1)试证明,当 R5=0 时,无电流通过电流计的必要条件是 a= ;(2) 再 定 义=R4 R4+R5,=R5 R7,试证明,在一般情况下,即当R50 时,如果( ( + )+1)= ,则电流计不会有电流流过;(3)在无电流流过电流计时,将流过 R2、R5、R7 的电流分BR2 CR1GR7ARg R6R3-2-DR4F R5 E别记为 i2、i5、i7,试用 、 、 、 表达比值ii52 和ii727.如图所示,薄壁球形玻璃鱼缸的半径为 R,所盛水的折射 率 n=4/3,鱼缸左侧与轴线垂直的平面反射镜离球心的距离为 3R,一条位于左球面顶点处的小鱼沿缸壁以速度 v 游动.试求 从鱼缸右侧观察鱼的直接像与反射像(先经平面镜反射,再经 鱼缸所成的像)时,两像之间的相对速度.(提示:鱼贴着缸壁 运动,因此可以不考虑它通过该壁的折射成像)n R 3R8.如图,两块足够大的接地导体平面 A 和 B 平行竖直放置,相 A 距 2d,d=10cm.在两极之间的中央位置,用长 L=1m 的绝缘细线悬 挂一个质量 m=0.1g、电量 q=5 10-9C 的小摆球,让小摆球稍微偏 离平衡位置后释放,使之小角度摆动,忽略各种电磁阻尼和空气阻 尼,试求小球的摆动周期.B mg-3-预赛模拟试卷(1)参考答案 1、1×10-12Cmv 2、在第一象限:B1=2eH ,方向垂直纸面向里,面积为S=2(-2)H2mv 在第二象限:B2=eH ,方向垂直纸面向外,面积为S=-2 2H2mv 在第三象限:B3=eH ,方向垂直纸面向外,面积为S=-2 2H2mv 在第四象限:B4=2eH ,方向垂直纸面向里,面积为S=2(-2)H23、2M+m 2k1 4、(1)因为Ua-Uc=-Eac+IR,式中R为线圈ac边的电阻,由对称性可知:Eac=4 E总,故有:Ua-Uc=-14 E总+E4总RR =01 (2)因为Ub-Uc=-Ebc+IR/2,Ebc=Eac-Eab(注意Ebc Eac/2),Eab=B v 2 ac sin (且 ac cos =xc,v= 3Ebc= 8Bx, x xc=1 41 ), 故 Eab= 8Bxc2tanxc2tan3 .Ub-Uc=-Ebc-IR/2=- 8Bxc2tan1 . 同 理 Eac= 2Bxc2tan,所以+ E4总RR1 2 E,E 总 =4Eac=2Bxc2tan,即3 Ub-Uc=-8Bxc2tan+182 Bxc2tan =-18B xc2tan(3)设a、c之间的电势最低点离a点的距离为L,则有Ua-UL=-EL+IRL,式中EL为a点到电势最低点 之 间 的 电 势 差 ,EL=B v Lsin , v =x , x = 12L cos , 所 以1 EL= 4BL2sin21 .UL=Ua+EL-IRL=Ua+ 4BL2sin2- E4总RR1 L=Ua+ 4BL2sin2-2B 4xc2tna-4-RL R,又因为RRL=L ac1 ,UL=Ua+4BL2sin2-12B L2sin1 达最小,即电势最低的点为ac之中点时,Uc=Ua-8Bxc2tanL ac,当L=-2b=2coxsc5、当 ≤1/2,水银柱下降;当 1/2< <1 时,水银柱上升6、ii52=1-,ii72=1-7、v'=(M1-M2)v=8v/3 8、2.3s1 =2 ac 时,UL-5-。
高中物理竞赛试卷.一、选择题.本题共5小题,每小题6分.在每小题给出的4 个项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.(6分)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A.α B.α1/3 C.α3 D.3α2.(6分)按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为1 cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如图所示.当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是A.密度秤的零点刻度在Q点B.秤杆上密度读数较大的刻度在较小的刻度的左边C.密度秤的刻度都在Q点的右侧D.密度秤的刻度都在Q点的左侧3.(6分)一列简谐横波在均匀的介质中沿x轴正向传播,两质点P1和p2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24m/s,则该波的频率可能为A.50HzB.60HzC.400HzD.410Hz4.(6分)电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式.电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用铜、铝和硅制成的形状、大小和横截面积均相同的三种环,当电流突然接通时,它们所受到的推力分别为F1、F2和F3。
若环的重力可忽略,下列说法正确的是A. F1> F2> F3B. F2> F3> F1C. F3> F2> F1D. F1 = F2 = F35.(6分)质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰,假设B 球的质量m B可选取为不同的值,则A.当m B=m A时,碰后B球的速度最大B.当m B=m A时,碰后B球的动能最大C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大D.在保持m B<m A的条件下,m B越大,碰后B球的动量越大二、填空题.把答案填在题中的横线上.只要给出结果,不需写出求得结果的过程.6.(10分)用国家标准一级螺旋测微器(直标度尺最小分度为0. 5mm,丝杆螺距为0.5mm,套管上分为50格刻度)测量小球直径.测微器的初读数如图(a)历示,其值为______mm,测量时如图(b)所示,其值为_______mm,测得小球直径d=____________________mm.7.(10分)为了缓解城市交通拥堵问题,杭州交通部门在禁止行人步行的十字路口增设“直行待行区”(行人可从天桥或地下过道过马路),如图所示,当其他车道的车辆右拐时,直行道上的车辆可以提前进入“直行待行区”;当直行绿灯亮起时,可从“直行待行区”直行通过十字路口.假设某十字路口限速50km/h,“直行待行区”的长度为12m,从提示进入“直行待行区”到直行绿灯亮起的时间为4s.如果某汽车司机看到上述提示时立即从停车线由静止开始匀加速直线运动,运动到“直行待行区”的前端虚线处正好直行绿灯亮起,汽车总质量为1. 5t,汽车运动中受到的阻力恒为车重的0.1倍,则该汽车的行驶加速度为________;在这4s内汽车发动机所做的功为___________。
1.在一个密闭容器中,有一定量的理想气体。
当容器体积减小时,气体的压强会如何变化?A.减小B.不变C.增大(答案)D.无法确定2.一个物体在地球表面受到的重力加速度是9.8米/秒²。
如果将该物体移到月球表面,它受到的重力加速度会:A.保持不变B.增大C.减小(答案)D.变为零3.光的色散现象是由于:A.光的波长不同(答案)B.光的速度不同C.光的强度不同D.光的方向不同4.一个物体做简谐振动,当它的位移达到最大时,它的:A.速度最大B.加速度最大(答案)C.动能最大D.势能最小5.在电路中,电阻、电感和电容对电流的作用分别是:A.阻碍、储存电能、产生磁场B.阻碍、产生磁场、储存电能(答案)C.储存电能、阻碍、产生磁场D.产生磁场、储存电能、阻碍6.一个物体在真空中自由下落,它下落的高度h与时间t的关系是:A.h = gt²(答案)(其中g为重力加速度)B.h = gtC.h = g/t²D.h = g/t7.光的干涉现象是:A.两束光相遇时互相抵消的现象B.两束光相遇时加强的现象C.两束相干光波叠加产生明暗相间的条纹的现象(答案)D.光在介质中传播速度改变的现象8.在量子力学中,描述微观粒子运动状态的函数是:A.波动函数(答案)B.概率函数C.密度函数D.分布函数9.一个物体在水平面上做匀速圆周运动,它的线速度与角速度的关系是:A.v = rω(答案)(其中v为线速度,r为半径,ω为角速度)B.v = r/ωC.v = ω/rD.v = r +ω。
高中物理奥赛试题及答案一、选择题(每题3分,共30分)1. 根据牛顿第二定律,若物体的质量为m,加速度为a,作用在物体上的力为F,则下列关系正确的是:A. F = maB. F = m/aC. F = a/mD. F = 1/ma2. 一个物体从静止开始自由下落,其下落的高度h与时间t的关系为:A. h = 1/2gtB. h = gtC. h = 1/2gt^2D. h = gt^23. 以下哪个选项不是描述电磁波的性质?A. 电磁波是横波B. 电磁波在真空中传播速度为光速C. 电磁波具有能量D. 电磁波是物质波4. 一个理想气体在等压过程中,温度T和体积V的关系是:A. V ∝ TB. V ∝ 1/TC. V ∝ T^2D. V ∝ 1/T^25. 根据麦克斯韦方程组,以下哪个选项描述了电场与电荷的关系?A. ∇ × E = 0B. ∇ × E = ∂B/∂tC. ∇ · E = ρ/ε₀D. ∇ · B = 06. 一个物体在水平面上以恒定的加速度a运动,其位移s与时间t的关系为:A. s = 1/2at^2B. s = atC. s = 1/2atD. s = at^27. 光的折射定律是什么?A. sinθ₁/sinθ₂ = n₂/n₁B. sinθ₁/sinθ₂ = n₁/n₂C. sinθ₁/sinθ₂ = n₁D. sinθ₁/sinθ₂ = n₂8. 一个完全弹性碰撞中,两个物体的动量守恒,但动能不守恒,这种说法:A. 正确B. 错误9. 根据热力学第一定律,以下哪个说法是正确的?A. 能量可以被创造或消灭B. 能量守恒定律C. 能量可以被转化为其他形式D. 能量只能从高温物体传递到低温物体10. 以下哪个选项是描述光电效应的条件?A. 光的频率必须大于金属的极限频率B. 光的强度必须大于金属的极限强度C. 光的波长必须小于金属的极限波长D. 光的频率必须小于金属的极限频率答案:1. A2. C3. D4. D5. C6. A7. B8. B9. B10. A二、简答题(每题10分,共20分)11. 简述牛顿第三定律的内容及其在日常生活中的应用。
题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60⨯10-15 m 。
求它们之间的斥力。
题7.1解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。
题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。
证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。
题7.2分析:根据题意将电子作为经典粒子处理。
电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。
点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε= 由此出发命题可证。
证:由上述分析可得电子的动能为re mv E 202k 8121πε==电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324meE επων== 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。
题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。
为方便计算可以利用晶格的对称性求氯离子所受的合力。
解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F (2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。
高三物理竞赛模拟试题答案一、选择题1. 物体A和B的质量分别为m1和m2,它们通过一根无质量的弹簧连接。
当系统静止时,弹簧的弹性势能为零。
当物体A和B在水平面上受到相反的外力F1和F2作用时,弹簧的伸长x。
根据胡克定律,弹簧的弹性势能可以表示为(1/2)kx^2,其中k为弹簧常数。
假设m1 > m2,下列哪项描述了外力作用下系统的运动状态?A. 如果F1 > F2,则A、B一起加速,弹簧伸长。
B. 如果F1 < F2,则A、B一起减速,弹簧缩短。
C. 如果F1 = F2,则A、B保持静止,弹簧伸长x。
D. 如果F1 = 2F2,则A、B一起以恒定速度运动,弹簧伸长。
答案:C2. 一个电子以速度v进入垂直于其速度方向的磁场中。
如果电子做匀速圆周运动,下列哪个公式正确描述了电子运动的周期T?A. T = 2πm/qBB. T = 2π/(qvB)C. T = 2πmv/qBD. T = 2πm/(qv)答案:B3. 一个质量为m的物体从高度h自由落下,不考虑空气阻力。
经过时间t后,物体的速度v和下落距离d分别是多少?A. v = gt, d = (1/2)gt^2B. v = (2h/g)^(1/2), d = (1/2)htC. v = (2gh)^(1/2), d = (1/2)ht^2D. v = (2gh)^(1/2), d = ht^2/2答案:C4. 一个电路由一个电阻R和一个电感L串联组成,通过该电路的电流I随时间t的变化关系为I = (E/R)(1 - e^(-t/(R*L))),其中E是电源的电动势。
如果R和L的值固定,那么该电路的阻尼系数ζ和自然频率ω_n分别是多少?A. ζ = R/(2L), ω_n = √(E/(R*L))B. ζ = √(R/L), ω_n = √(R/L)C. ζ = √(R/L), ω_n = √(E/(R*L))D. ζ = R/(2L), ω_n = √(R*L/E)答案:C5. 一个光波的波长为λ,频率为f,速度为c。
高中物理竞赛初赛试题及标准答案+物理奥林匹克竞赛模拟题及答案第二届全国高中应用物理知识竞赛(同方创新杯)北京赛区决赛试卷注意事项:1.请在密封线内填写所在区县、学校、姓名和考号。
2.用蓝色或黑色钢笔、圆珠笔书写。
3.答卷过程中可以使用普通型计算器。
4.本试卷共有十个题,总分为150分。
5.答卷时间:2007年4月22日(星期日)上午9:30~11:30。
题号 1 2 3 4 5 6 7 8 9 10 总分分数复核人1.(9分)普通的量角器测量角度一般只能读出1°,专用的角度尺得分评卷人则可借助游标实现精密测量。
从图1(a)可以看出:这种角度尺上,与游标尺的一个分度所对应的主尺上的角度值为,因此借助游标能够读出的最小角度值为。
测量某个角度时游标的位置如图1(b),则所测的角度值为。
图 1得分评卷人2.(15分)交流电的测量中,常使用电流互感器来扩大交流电流表的量程,使用电压互感器来扩大交流电压表的量程,并且可以将被测量的高压电路隔离,以保证操作人员的安全,如图2所示。
在这种特定的情况下,互感器都可以看作理想的变压器。
为了制造的标准化,规定电流互感器的副线圈一律连接量程为0 ~ 5A 的电流表,电压互感器副线圈一律连接量程为0 ~ 100V 的电压表。
请回答下面的问题:(1)图中互感器T 1 、T 2的工作原理都遵守同一个基本的电学规律,即定律。
(2)图中电表M 1应为[ ];M 2应为[ ]。
(在下面4个答案中选择正确的,将对应的字母填入方括号内)A .直流电流表,B .交流电流表, C .直流电压表, D .交流电压表。
(3)设图中互感器T 1的两个线圈的匝数比n 1 : n 2 = 40 : 1,当它所连接的电表读数恰好为1/2量程时,则被测电路中的被测物理量的数值是 。
(4)设图中互感器T 2的两个线圈的匝数比n 1: n 2 = 1: 50 ,当它所连接的电表读数恰好为1/2量程时,则被测电路中的被测物理量的数值是 。
高中物理竞赛试卷.一、选择题.本题共5小题,每小题6分.在每小题给出的4 个项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.(6分)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A.αB.α1/3C.α3D.3α2.(6分)按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为1 cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如图所示.当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是A.密度秤的零点刻度在Q点B.秤杆上密度读数较大的刻度在较小的刻度的左边C.密度秤的刻度都在Q点的右侧D.密度秤的刻度都在Q点的左侧3.(6分)一列简谐横波在均匀的介质中沿x轴正向传播,两质点P1和p2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24m/s,则该波的频率可能为A.50HzB.60HzC.400HzD。
410Hz4.(6分)电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式.电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用铜、铝和硅制成的形状、大小和横截面积均相同的三种环,当电流突然接通时,它们所受到的推力分别为F1、F2和F3.若环的重力可忽略,下列说法正确的是A。
F1〉F2> F3 B. F2〉F3〉F1C. F3> F2> F1D。
F1 = F2 = F35.(6分)质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰,假设B 球的质量m B可选取为不同的值,则A.当m B=m A时,碰后B球的速度最大B.当m B=m A时,碰后B球的动能最大C.在保持m B〉m A的条件下,m B越小,碰后B球的速度越大D.在保持m B<m A的条件下,m B越大,碰后B球的动量越大二、填空题.把答案填在题中的横线上.只要给出结果,不需写出求得结果的过程.6.(10分)用国家标准一级螺旋测微器(直标度尺最小分度为0. 5mm,丝杆螺距为0。
图2图3高中物理奥赛模拟试题一1. (10分)1961年有人从高度H=22.5m 的大楼上向地面发射频率为υ0的光子,并在地面上测量接收到的频率为υ,测得υ与υ0不同,与理论预计一致,试从理论上求出0υυυ-的值。
2. (15分)底边为a ,高度为b 的匀质长方体物块置于斜面上,斜面和物块之间的静摩擦因数为μ,斜面的倾角为θ,当θ较小时,物块静止于斜面上(图1),如果逐渐增大θ,当θ达到某个临界值θ0时,物块将开始滑动或翻倒。
试分别求出发生滑动和翻倒时的θ,并说明在什么条件下出现的是滑动情况,在什么条件下出现的是翻倒情况。
3. (15分)一个灯泡的电阻R 0=2Ω,正常工作电压U 0=4.5V ,由电动势U =6V 、内阻可忽略的电池供电。
利用一滑线变阻器将灯泡与电池相连,使系统的效率不低于η=0.6。
试计算滑线变阻器的阻值及它应承受的最大电流。
求出效率最大的条件并计算最大效率。
4. (20分)如图2,用手握着一绳端在水平桌面上做半径为r 的匀速圆周运动,圆心为O ,角速度为ω。
绳长为l ,方向与圆相切,质量可以忽略。
绳的另一端系着一个质量为m 的小球,恰好也沿着一个以O 点为圆心的大圆在桌面上运动,小球和桌面之间有摩擦,试求: ⑴ 手对细绳做功的功率P ;⑵ 小球与桌面之间的动摩擦因数μ。
5. (20分)如图3所示,长为L 的光滑平台固定在地面上,平台中间放有小物体A 和B ,两者彼此接触。
A 的上表面是半径为R 的半圆形轨道,轨道顶端距台面的高度为h 处,有一个小物体C ,A 、B 、C 的质量均为m 。
在系统静止时释放C ,已知在运动过程中,A 、C 始终接触,试求:⑴ 物体A 和B 刚分离时,B 的速度; ⑵ 物体A 和B 分离后,C 所能达到的距台面的最大高度; ⑶ 试判断A 从平台的哪边落地,并估算A从与B 分离到落地所经历的时间。
6. (20分)如图4所示,PR 是一块长L 的绝缘平板,整个空间有一平行于PR 的匀强电场E ,图1在板的右半部分有一个垂直于纸面向外的匀强磁场B 。
一个质量为m 、带电量为q 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R 端挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =4L,物体与平板间的动摩擦因数为μ。
求:⑴ 物体与挡板碰撞前后的速度V 1和V 2; ⑵ 磁感强度B 的大小;⑶ 电场强度E 的大小和方向。
7. (20分)一只蚂蚁从蚂蚁洞沿直线爬出,已知爬出速度v 的大小与距蚂蚁洞中心的距离L 成反比,当蚂蚁到达距蚂蚁洞中心的距离L 1=1m 的A 点时,速度大小为v 1=20cm/s ,问当蚂蚁到达距蚂蚁洞中心的距离L 2=2m 的B 点时,其速度大小为v 2=? 蚂蚁从A 点到达B 点所用的时间t=?8. (20分)在倾角为30°的斜面上,固定两条足够长的光滑平行导轨,一个匀强磁场垂直于斜面向上,磁感强度B=0.4T ,导轨间距L=0.5m ,两根金属棒ab 、cd 水平地放在导轨上,金属棒质量m ab =0.1kg ,m cd =0.2kg ,两根金属棒总电阻r=0.2Ω,导轨电阻不计(如图5)。
现使金属棒ab 以v =2.5m/s 的速度沿斜面向上匀速运动。
求: ⑴金属棒cd 的最大速度;⑵ 在cd 有最大速度时,作用在ab 上的外力做功的功率。
图4答图2高中物理奥赛模拟试题一答案1. 解:光子的重力势能转化为光子的能量而使其频率变大,有mgH=h(υ-υ0)而根据爱因斯坦的光子说和质能方程,对光子有 h υ0=mc 2解以上两式得:1528200105.2)103(5.2210-⨯=⨯⨯==-c gH υυυ 2. 解:刚开始发生滑动时,mgsin θ0=μmgcos θ0tan θ0=μ,即θ0=arctan μ刚开始发生翻倒时,如答图1所示,有θ1=φ,tan φ=b a ,φ=arctan ba即θ1≥arctanba时,发生翻倒。
综上所述,可知:当μ>b a 时,θ增大至arctan b a开始翻倒;当μ<ba时,θ增大至arctan μ开始滑动。
3. 解:如答图2所示,流过灯泡的电流为I 0=U 0/R 0=2.25A ,其功率为P 0= U 0 I 0=U 02/R 0=10.125W 。
用R 1和R 2表示变阻器两个部分的电阻值。
系统的总电流为I 1,消耗的总功率为P 1= U I 1,效率为10210I UR U P P ==η………………………①因U 0、U 和R 0的数值已给定,所以不难看出,效率与电流I 1成反比。
若效率为0.6,则有A UR U I 81.2021==η………………②变阻器的上面部分应承受这一电流。
利用欧姆定律,有Ω=-=53.012I U U R ………………③ 变阻器下面部分的阻值为Ω=-=80101I I U R ………………④变阻器的总电阻为8.53Ω。
式①表明,本题中效率仅决定于电流I 1。
当I 1最小,即I 1=0时效率最大,此时R 1=∞(变阻器下面部分与电路断开连接),在此情形下,我们得到串联电阻为Ω=-=67.002IU U R , 答图1答图3效率为75.000200020====UUUU U I UR U η4. 解:⑴ 设大圆为R 。
由答图3分析可知R=22l r +设绳中张力为T ,则 Tcos φ=m R ω2,cos φ=Rl故T=lR m 22ω,P=T ·V=ll r r m r l R m )(22322+=⋅⋅ωωω ⑵ f =μmg=Tsin φT=ll r m l R m )(22222+=ωω sin φ=22lr r Rr +=所以,μ=gll r r 222+ω5. 解:⑴ 当C 运动到半圆形轨道的最低点时,A 、B 将开始分开。
在此以前的过程中,由A 、B 、C 三个物体组成的系统水平方向的动量守恒和机械能守恒,可得: mV A +mV B +mV C =0mgR=21mV A 2+21mV B 2+21mV C 2 而V A =V B 可解得:V B =gR 331⑵ A 、B 分开后,A 、C 两物体水平方向的动量和机械能都守恒。
C 到最高点时,A 、C 速度都是V ,C 能到达的最大高度为l ,则 m V B =2m V mg (l +R -h )+21(2m )V 2=21m V A 2+21m V C 2 可解得:l =h -4R ⑶ 很明显,A 、C 从平台左边落地。
因为L>>R ,所以可将A 、C 看成一个质点,速度为21V B ,落下平台的时间L gRt B V L 322==6. 解:物体碰挡板后在磁场中做匀速运动,可判断物体带的是正电荷,电场方向向右。
⑴ 物体进入磁场前,在水平方向上受到电场力和摩擦力的作用,由静止匀加速至V 1。
21212)(mV L mg qE =⨯-μ…………………① 物体进入磁场后,做匀速直线运动,电场力与摩擦力相等qE B qV mg =+)(1μ…………………②在碰撞的瞬间,电场撤去,此后物体仍做匀速直线运动,速度为V 2,不再受摩擦力,在竖直方向上磁场力与重力平衡。
mg B qV =2…………………③离开磁场后,物体在摩擦力的作用下做匀减速直线运动2221041mV L mg -=⨯-μ…………………④由④式可得:222gLV μ=代入③式可得:Lg m qB μ/2=…………………⑤解以上各方程可得:gL V μ21=⑵ 由③式得:Lq gLm qV mg B μμ22== ⑶ 由②式可得:qmgL q gL m gL qmgB V qmgE μμμμμμμμ3221=⨯⨯+=+=7. 解:由已知可得:蚂蚁在距离洞中心上处的速度v 为v =kL1,代入已知得:k=vL=0.2×1m 2/s=0.2 m 2/s ,所以当L 2=2m 时,其速度v 2=0.1m/s 由速度的定义得:蚂蚁从L 到L+ΔL 所需时间Δt 为L L kv L t ∆⋅⋅=∆=∆1……………………① 类比初速度为零的匀加速直线运动的两个基本公式⎩⎨⎧=∆⋅=∆atv t v s在t 到t+Δt 时刻所经位移Δs 为t t a s ∆⋅⋅=∆………………② 比较①、②两式可以看出两式的表述形式相同。
据此可得蚂蚁问题中的参量t 和L 分别类比为初速度为零的匀加速直线运动中的s 和t ,而k1相当于加速度a 。
于是,类比s=21a t 2可得:在此蚂蚁问题中2121L kt ⋅⋅=令t 1对应L 1,t 2对应L 2,则所求时间为⎪⎩⎪⎨⎧==2222112121L k t L k t代入已知可得从A 到B 所用时间为: Δt =t 2-t 1=s L L k )12(2.021)(21222122-⨯=- =7.5s 8. 解:开始时,cd 棒速度为零,ab 棒有感应电动势,此时可计算出回路中的电流,进而求出cd 棒所受到的安培力F(可判断出安培力方向沿斜面向上)。
如果F >m cd g sin30°,cd 将加速上升,产生一个跟电流方向相反的电动势,回路中的电流将减小,cd 棒所受到的安培力F 随之减小,直到F=m cd g sin30°。
如果F <m cd g sin30°,cd 将加速下滑,产生一个跟电流方向相同的电动势,回路中的电流将增大,cd 棒所受到的安培力F 随之增大,直到F=m cd g sin30°。
⑴ 开始时,cd 棒速度为零,回路中的电流A A r Blv I 5.22.05.25.04.0=⨯⨯==这时cd 棒受到平行斜面向上的安培力F =I lB =2.5×0.5×0.4N=0.5N而m cd g sin30°=0.2×10×0.5N=1N故cd 将加速下滑。
当cd 的下滑速度增大到v m 时,需要有安培力F =m cd g sin30° 此时回路中的电流rv v Bl r Blv Blv I m m m )(+=+=cd 受到的安培力F=I m lB =m cd g sin30° 所以s m s m v l B r g m v cd m /5.2/)5.25.04.02.01(30sin 2222=-⨯⨯=-⋅︒=即金属棒cd 的最大速度为2.5m/s 。
⑵ 当cd 棒速度达到最大值v m 时。
回路中的电流A A r v v Bl I m m 52.0)5.25.2(5.04.0)(=+⨯⨯=+=作用在ab 棒上的外力F=I m lB +m ab g sin30°=(5×0.5×0.4+0.1×10×0.5)N=1.5N 外力做功的功率P F =Fv=1.5×2.5W=3.75W。