《圆》基础练习题
- 格式:doc
- 大小:498.50 KB
- 文档页数:6
圆基础训练题1一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角 ;圆周 角 ; (2)如图,已知∠AOB=50度,则∠ACB= 度; (3)在下图中,若AB 是圆O 的直径,则∠AOB= 度;题2、圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条 的直线;圆是中心对称图形,对称中心为 .(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如上图,∵CD 是圆O 的直径,CD ⊥AB 于E∴ = , =3、点和圆的位置关系有三种:点在圆 ,点在圆 ,点在圆 ; 例:已知圆的半径r 等于5厘米,点到圆心的距离为d ,(1)当d =2厘米时,有d r ,点在圆 (2)当d =7厘米时,有d r ,点在圆 (3)当d =5厘米时,有d r ,点在圆4、直线和圆的位置关系有三种:相 、相 、相 .例:已知圆的半径r 等于12厘米,圆心到直线l 的距离为d , (1)当d =10厘米时,有d r ,直线l 与圆 (2)当d =12厘米时,有d r ,直线l 与圆 (3)当d =15厘米时,有d r ,直线l 与圆5、圆与圆的位置关系:例3:已知⊙O 1的半径为6厘米,⊙O 2的半径为8厘米,圆心距为 d , 则:R+r= , R -r= ;(1)当d =14厘米时,因为d R+r ,则⊙O 1和⊙O 2位置关系是:OACB EOAB D(2)当d =2厘米时, 因为d R -r ,则⊙O 1和⊙O 2位置关系是: (3)当d =15厘米时,因为 ,则⊙O 1和⊙O 2位置关系是: (4)当d =7厘米时, 因为 ,则⊙O 1和⊙O 2位置关系是: (5)当d =1厘米时, 因为 ,则⊙O 1和⊙O 2位置关系是: 6、切线性质:例:(1)如图,PA 是⊙O 的切线,点A 是切点,则∠PAO= 度(2)如图,PA 、PB 是⊙O 的切线,点A 、B 是切点, 则 = ,∠ =∠ ;6题7、三角形的外接圆的圆心——三角形的外心——三角形的 交点;三角形的内切圆的圆心——三角形的内心——三角形的 交点; 例:画出下列三角形的外心或内心(1)画三角形ABC 的内切圆, (2)画出三角形DEF 的外接圆, 并标出它的内心; 并标出它的外心二、练习: (一)填空题1、如图,弦AB 分圆为1:3两段,则»AB 的度数= 度, ¼ACB 的度数等于 度;∠AOB= 度,∠AC B = 度,第1小题2、如图,已知A 、B 、C 为⊙O 上三点,若»AB 、»CA 、»BC 的 度数之比为1∶2∶3,则∠AOB= ,∠AOC= , ∠AC B = ,3、如图1-3-2,在⊙O 中,弦AB=1.8cm ,圆周角∠ACB=30○ ,则 ⊙O 的半径等于=_________cm .4、⊙O 的半径为5,圆心O 到弦AB 的距离OD=3,则AD= ,AB 的长为 ;5、如图,已知⊙O 的半径OA=13㎝,弦AB =24㎝,则OD= ㎝。
圆一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R 的弧长.圆心角为n°,半径为R,弧长为l 的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l 的圆柱的体积为,侧面积为2πRl ,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角;圆周角;(2)如图,已知∠AOB=50度,则∠ACB= 度;(3)在上图中,若AB是圆O的直径,则∠AOB= 度;OA B3、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、直线和圆的位置关系有三种:相、相、相.例:已知圆的半径r等于12厘米,圆心到直线l的距离为d,(1)当d=10厘米时,有d r,直线l与圆(2)当d=12厘米时,有d r,直线l与圆(3)当d=15厘米时,有d r,直线l与圆5、圆与圆的位置关系:例:已知⊙O1的半径为6厘米,⊙O2的半径为8厘米,圆心距为 d,则:R+r= , R-r= ;(1)当d=14厘米时,因为d R+r,则⊙O1和⊙O2位置关系是:(2)当d=2厘米时,因为d R-r,则⊙O1和⊙O2位置关系是:(3)当d=15厘米时,因为,则⊙O1和⊙O2位置关系是:(4)当d=7厘米时,因为,则⊙O1和⊙O2位置关系是:(5)当d=1厘米时,因为,则⊙O1和⊙O2位置关系是:6、切线性质:例:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO= 度(2)如图,PA、PB是⊙O的切线,点A、B是切点,则 = ,∠ =∠;7、圆中的有关计算(1)弧长的计算公式:例:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少? 解:因为扇形的弧长=()180所以l =()180= (答案保留π)(2)扇形的面积:例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少? (3)圆锥:例:圆锥的母线长为5cm ,半径为4cm ,则圆锥的侧面积是多少?解:∵圆锥的侧面展开图是 形,展开图的弧长等于 ∴圆锥的侧面积=8、三角形的外接圆的圆心——三角形的外心——三角形的 交点;三角形的内切圆的圆心——三角形的内心——三角形的 交点;基础练习一。
圆一、认认真真,书写快乐1.圆内接五边形各边相等,各边所对的圆心角的度数是 .2.如图1,在⊙O 中,AB AC =,∠B =70°,则∠C = .3.在半径为2的⊙O 中,弦AB 的长为则弦AB 所对的圆心角∠AOB 的度数是 .4.若⊙O 是△ABC 的外接圆,OD ⊥BC 于D ,且∠BOD =48°,则∠BAC = .5.如图2所示,弦AB 过圆心O ,∠A =30°,⊙O 的半径长为CD ⊥AB 于E ,则CD 的长为 .二、仔仔细细,记录自信6.下列图形中对称轴最多的是( )A .圆B .正方形C .等腰三角形D .线段7.在同圆或等圆中,如果圆心角∠BOA 等于另一圆心角∠COD 的2倍,则下列式子中能成立的是( )A .AB =2CD B .2AB CD =C .2AB CD < D .AB CD =8.下列语句中,正确的有( )①相等的圆心角所对的弦相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A .1个B .2个C .3个D .4个9.如图3,已知圆心角∠AOB =100°,则圆周角∠ACB 的度数为( )A .100°B .80°C .50°D .40°10.已知:如图4,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD等于()A.30°B.40°C.50°D.60°三、平心静气,展示智慧11.如图5,AB是⊙O的直径,AC、CD、DE、EF、FB都是⊙O的弦,且AC=CD=DE=EF=FB,求∠AOC与∠COF的度数.12.如图6,一座圆弧形的拱桥,它所在圆的半径为10米,某天通过拱桥的水面宽度AB为16米,现有一小帆船高出水面的高度是3.5米,问小船能否从拱桥下通过?13.如图7,在⊙O中,弦AB与CD相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.参考答案:一、1.722.70 3.90 4.48 5.6 二、6.A 7.B 8.A 9.C 10.D三、11.解:因为AC DC DE EF FB ====,所以180536AOC COD DOE EOF FOB =====÷=∠∠∠∠∠, 所以336108COF AOC ==⨯=∠∠.12.先算出拱桥高出水面的高度为4米,4 3.5>,因此可以通过.13.解:因为AB CD =,所以AB CD =.所以AB AD CD AD -=-,即BD CA =,所以BD CA =.在AEC △与DEB △中,BD CA =,ACE DBE =∠∠,AEC DEB =∠∠, 所以AEC DEB △≌△.(2)点B 与点C 关于直线OE 对称.理由略.。
圆的练习题六年级免费圆是我们学习数学的重要内容之一,六年级的学生们需要通过练习题来巩固和提高对圆的理解和运用能力。
本篇文章将为大家带来一些免费的圆的练习题,希望能够帮助六年级的学生们更好地掌握圆的知识。
练习题一:求圆的面积1. 已知一个圆的半径为5cm,求其面积。
2. 已知一个圆的直径为12cm,求其面积。
解答:1. 圆的面积公式为:面积= π × 半径的平方。
代入半径的值计算,得到面积 = 3.14 × 5 × 5 = 78.5 平方厘米。
2. 根据题意可知,直径 = 2 ×半径,所以半径为 12 ÷ 2 = 6cm。
代入半径的值计算,得到面积 =3.14 × 6 × 6 = 113.04 平方厘米。
练习题二:求圆的周长1. 已知一个圆的半径为8cm,求其周长。
2. 已知一个圆的直径为14cm,求其周长。
解答:1. 圆的周长公式为:周长= 2 × π × 半径。
代入半径的值计算,得到周长 = 2 × 3.14 × 8 = 50.24 厘米。
2. 根据题意可知,直径 = 2 ×半径,所以半径为 14 ÷ 2 = 7cm。
代入半径的值计算,得到周长 = 2 ×3.14 × 7 = 43.96 厘米。
练习题三:判断几何图形与圆的关系根据给出的几何图形,判断它们与圆的关系,是内切、外切、相交还是相离。
解答:1. 一个正方形内切于一个圆,它们的四条边与圆的切点在一个相同的平面上,且正方形的四个顶点位于圆上,所以此时圆与正方形是内切关系。
2. 一个长方形外切于一个圆,它们的四个角点位于圆上,且长方形的四个顶点联成一个矩形,此时圆与长方形是外切关系。
3. 一个三角形的外接圆,即通过三角形的三个顶点构造一个圆,使得圆与三角形的三条边相切,此时圆与三角形是外切关系。
初三数学圆基础练习题及答案练习题一:直径和半径的关系1. 若一个圆的半径为5cm,求其直径的长度是多少?答案:直径的长度是2倍的半径长度,因此直径的长度为10cm。
2. 若一个圆的直径为12cm,求其半径的长度是多少?答案:半径的长度是直径长度的一半,因此半径的长度为6cm。
练习题二:圆的周长和面积计算3. 已知一个圆的半径为3cm,求其周长和面积。
答案:圆的周长公式为C = 2πr,其中r为半径。
将半径代入公式,可得C = 2π × 3 = 6π ≈ 18.85cm。
圆的面积公式为A = πr²,将半径代入公式,可得A = π × 3² = 9π ≈ 28.27cm²。
4. 已知一个圆的周长为10π cm,求其半径和面积。
答案:圆的周长公式为C = 2πr,已知周长为10π,因此10π = 2πr,可得r = 5。
圆的面积公式为A = πr²,将半径代入公式,可得A = π × 5² = 25π ≈ 78.54cm²。
练习题三:相交圆的交点个数5. 如果两个圆相交于两个点,这两个圆的关系是什么?答案:两个相交的圆是相交圆。
6. 如果两个圆相交于一个点,这两个圆的关系是什么?答案:两个相交于一个点的圆是切圆。
7. 如果两个圆不相交,也不包含对方,这两个圆的关系是什么?答案:两个不相交也不包含对方的圆是相离圆。
练习题四:判断圆心在坐标系中的位置8. 圆心坐标为(2, 3),半径为4的圆在坐标系中处于哪个位置?答案:根据圆心坐标和半径,我们可以在坐标系中画出这个圆。
圆心(2, 3)代表圆心在横坐标2,纵坐标3处,半径为4表示从圆心向外延伸4个单位的长度。
因此该圆处于横坐标为2,纵坐标为3的位置,并以该点为中心向外扩展4个单位的长度。
练习题五:圆的切线和切点9. 若一条直线与圆相切,这条直线与圆的关系是什么?答案:一条与圆相切的直线称为圆的切线。
六年级上册圆基础练习题在六年级上册的数学学习中,圆的基础知识是非常重要的。
为了帮助同学们更好地掌握圆的概念和运算方法,下面我将为大家准备一些圆的基础练习题,希望能够帮助大家巩固所学知识。
一、单项选择题。
(每题2分,共20分)1. 下图中哪个是圆?(A)(B)(C)(D)2. 下列哪个是直径?(A) AB(B) CD(C) EF(D) GH3. 半径为5cm的圆的周长是多少?(A) 10cm(B) 20cm(C) 25cm(D) 30cm4. 下图中,直径等于半径的是:(A) AB(B) CD(C) EF(D) GH5. 下列哪种图形不是圆?(A) 正方形(B) 长方形(C) 三角形(D) 圆形二、填空题。
(每题3分,共30分)1. 半径为8cm的圆的直径是______cm。
2. 圆的周长等于直径的______倍。
3. 半径为10cm的圆的面积是______平方厘米。
4. 半径为6cm的圆的周长是______cm。
5. 圆的周长与直径的比是______。
三、计算题。
(每题10分,共30分)1. 若圆的半径为4cm,求圆的周长和面积。
2. 若圆的周长为16πcm,求半径和面积。
3. 若圆的直径为12cm,求圆的周长和面积。
四、简答题。
(每题20分,共40分)1. 请解释什么是圆的直径、半径和周长。
2. 圆的面积公式是什么?请列出计算圆面积的步骤。
3. 圆和正方形的面积哪个大?为什么?五、应用题。
(每题30分,共60分)1. 小明想用铁丝围成一个半径为6cm的圆。
如果铁丝每米需要8元,那么围成这个圆需要多少元?2. 现在有一个圆形花坛,其直径为10m。
为了美化花坛,需要铺一圈砖围绕花坛的边缘,每块砖的尺寸为30cm×20cm。
假设不考虑砖与砖之间的间隙,需要多少块砖才能够完全围绕花坛?3. 请根据下图计算圆的面积和周长。
(图片省略)以上就是六年级上册圆的基础练习题,希望通过这些题目的练习,可以帮助大家更加熟练地掌握圆的概念和运算方法。
《圆》知识点及练习题一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
高中圆的练习题及答案高中圆的练习题及答案在高中数学中,圆是一个重要的几何概念。
它具有独特的性质和特点,是许多数学问题和应用的基础。
在本文中,我们将探讨高中圆的练习题及其答案,帮助学生更好地理解和掌握这一概念。
1. 题目:已知圆的半径为5cm,求其周长和面积。
解答:圆的周长公式为C=2πr,面积公式为A=πr²。
代入半径r=5cm,即可得到周长C=2π×5=10π cm,面积A=π×5²=25π cm²。
2. 题目:已知圆的直径为8cm,求其周长和面积。
解答:圆的直径等于半径的两倍,所以半径r=8/2=4cm。
根据前面的公式,周长C=2πr=2π×4=8π cm,面积A=πr²=π×4²=16π cm²。
3. 题目:已知圆的周长为12π cm,求其半径和面积。
解答:根据周长公式C=2πr,可以得到r=C/2π=12π/2π=6cm。
然后,根据面积公式A=πr²,可以得到面积A=π×6²=36π cm²。
4. 题目:已知圆的周长为30cm,求其半径和面积。
解答:同样利用周长公式C=2πr,可以得到r=C/2π=30/2π=15/π cm。
然后,利用面积公式A=πr²,可以得到面积A=π×(15/π)²=225/π cm²。
5. 题目:已知圆的面积为16π cm²,求其半径和周长。
解答:根据面积公式A=πr²,可以得到r=√(A/π)=√(16π/π)=√16=4cm。
然后,利用周长公式C=2πr,可以得到周长C=2π×4=8π cm。
通过以上练习题,我们可以看到圆的周长和面积与其半径之间的关系。
当我们已知半径时,可以利用周长和面积的公式求解;反之,当我们已知周长或面积时,可以反推出半径的值。
这种关系在解决实际问题和进行几何推理时非常有用。
圆的练习题及答案圆是几何学中的重要概念,它在我们的生活中随处可见。
无论是在建筑设计中的圆形窗户,还是在日常生活中的圆形饼干,圆形都扮演着重要的角色。
为了更好地理解和应用圆,我们需要进行一些练习题。
在本文中,我将为大家提供一些圆的练习题及其答案,希望能够帮助大家更好地掌握这一知识点。
练习题一:计算圆的面积和周长1. 已知圆的半径为5cm,求其面积和周长。
答案:圆的面积公式为πr²,其中π取3.14,半径r为5cm。
所以面积为3.14 * 5² = 78.5cm²。
圆的周长公式为2πr,所以周长为2 * 3.14 * 5 = 31.4cm。
2. 已知圆的直径为12cm,求其面积和周长。
答案:圆的直径是半径的两倍,所以半径r为12cm的一半,即6cm。
根据上述公式,可以计算出面积为3.14 * 6² = 113.04cm²,周长为2 * 3.14 * 6 =37.68cm。
练习题二:判断圆的位置关系1. 判断以下两个圆的位置关系:圆A的半径为10cm,圆心坐标为(0, 0);圆B 的半径为5cm,圆心坐标为(8, 0)。
答案:首先,我们可以通过计算两个圆心之间的距离来判断它们的位置关系。
两个圆心的坐标分别为(0, 0)和(8, 0),所以它们的横坐标之差为8-0=8,纵坐标之差为0-0=0。
根据勾股定理,两个圆心之间的距离为√(8²+0²)=8。
由于两个圆的半径之和为10+5=15,大于圆心之间的距离8,所以这两个圆相交。
2. 判断以下两个圆的位置关系:圆A的半径为6cm,圆心坐标为(0, 0);圆B的半径为3cm,圆心坐标为(10, 0)。
答案:同样地,我们计算两个圆心之间的距离。
两个圆心的坐标分别为(0, 0)和(10, 0),横坐标之差为10-0=10,纵坐标之差为0-0=0。
根据勾股定理,两个圆心之间的距离为√(10²+0²)=10。
一、选择题1.如图,四个水平放置正方形的边长都为4,顶点A、B、C是圆上的点,则此圆的面积为()A.72πB.85πC.100πD.104π2.下列说法:(1)三点确定一个圆;(2)直径所对的圆周角是直角;(3)平分弦的直径垂直于弦,并且平分弦所对的弧;(4)相等的圆心角所对的弧相等;(5)圆内接四边形的对角互补.其中正确的个数为()A.1个B.2个C.3个D.4个3.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.30°C.36°D.60°4.如图在ABC中,∠B=90°,AC=10,作ABC的内切圆圆O,分别与AB、BC、AC相切于点D、E、F,设AD=x,ABC的面积为S,则S关于x的函数图像大致为()A.B.C .D .5.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切B .在圆外C .在圆上D .在圆内 6.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25 B .43 C .25或45 D .23或43 7.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .π8.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .149.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A.5B.10C.52D.10210.在下列命题中,正确的是( )A.弦是直径B.半圆是弧C.经过三点确定一个圆D.三角形的外心一定在三角形的外部11.如图,⊙O的半径为2,四边形ADBC为⊙O的内接四边形,AB=AC,∠D=112.5°,则弦BC的长为()A.2B.2 C.22D.2312.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为()A.2B.1 C.2 D.2213.如图,AB是⊙的直径,DB、DE分别切⊙O于点B、C,若∠ACE=35°,则∠D的度数是()A.65°B.55°C.60°D.70°14.如图,大半圆中有n个小半圆,若大半圆弧长为1L,n个小半圆弧长的和为2L,大半圆的弦AB,BC,CD的长度和为3L.则()A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>15.如图,四边形ABCD 内接于O ,若108B ∠=︒,则D ∠的大小为( )A .36°B .54°C .62°D .72°二、填空题16.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.17.如图,AB 、AC 、BD 是O 的切线,P 、C 、D 为切点,如果8AB =,5AC =,则BD 的长为_______.18.已知扇形的圆心角为120︒,面积为π,则扇形的半径是___________.19.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行∠=________︒.四边形,则AOC20.如图,已知点C是半圆О上一点,将弧BC沿弦BC折叠后恰好经过点,O若半圆O 的半径是2,则图中阴影部分的面积是________________________.21.如图,O的半径为6,AB、CD是互相垂直的两条直径,点P是O上任意一⊥于N,点Q是MN的中点,当点P沿着圆周点,过点P作PM AB⊥于M,PN CD从点D逆时针方向运动到点C的过程中,当∠QCN度数取最大值时,线段CQ的长为______.22.在直径为10cm的⊙O中,弦AB=5cm,则∠AOB的度数为_______.、分别为O的内接正方形、内接正三角形的边,BC是圆内接正n边23.如图,AB AC形的一边,则n的值为_______________________.24.已知圆心O到直线l的距离为5,⊙O半径为r,若直线l与⊙O有两个交点,则r的值可以是________.(写出一个即可)25.如图,ABC10的半圆,AB为直径,点M是弧AC的中点,连结BM交AC于点E,AD平分∠CAB交BM于点D,∠ADB=_____°,当点D恰好为BM的中点时,BM的长为____.26.小红在手工制作课上,用面积为215cm π,半径为15cm 的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为_______cm .三、解答题27.如图,AB 是⊙O 的直径,点C 在⊙O 上,BD 平分ABC ∠交⊙O 于点D ,过点D 作DE BC ⊥,垂足为E .(1)求证:DE 与⊙O 相切;(2)若10AB =,6AD =,求DE 的长.28.如图,AB 是⊙O 的弦,点C 在AB 上,点D 是AB 的中点.将AC 沿AC 折叠后恰好经过点D ,若⊙O 的半径为25,AB =8.则AC 的长是_______.29.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点.求证:AP=BP .30.如图,⊙O 是△ABC 的外接圆,AB 为直径,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC ,分别交AC 、AB 的延长线于点E ,F .(1)求证:EF是⊙O的切线;(2)若AC=6,CE=2,求CB的长.。
圆基础知识练习一、基本定义及概念1.下列语句中正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴8,求∠DAC的度数。
2、AB是⊙O的直径,AC、AD是⊙O的两弦,已知AB=16,AC=8,AD=23、下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧。
4、已知⊙O的半径是5cm,弦AB∥CD,AB=6cm,CD=8cm,则AB与CD的距离是5、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定() A.与x轴相离、与y 轴相切 B.与x轴、y轴都相离 C.与x轴相切、与y轴相离 D.与x轴、y轴都相切6、三角形内切圆的圆心是() A.三内角平分线的交点, B.三边中垂线的交点,C.三中线的交点, D.三高线的交点,7、下列直线中一定是圆的切线的是()A.与圆有公共点的直线; B.到圆心的距离等于半径的直线; C.垂直于圆的半径的直线; D.过圆的直径端点的直线。
8、一点到圆的最大距离是14cm,到圆的最小距离是6cm,则圆的半径是9、在平面直角坐标系内,以原点O为圆心,5为半径作⊙O,已知A、B、C三点的坐标分别为A(3,4),)。
试判断A、B、C三点与⊙O的位置关系。
B(-3,-3),C(4,1010、△ABC中,内切圆I和边BC、CA、AB分别相切于点D、E、F,则点I是△DEF()A.三条高的交点 B.三个内角平分线的交点 C. 三条角平分线的交点 D.三边垂直平分线的交点11、下列说法正确的是( )A.垂直于半径的直线是圆的切线B.经过三点一定可以作圆C.圆的切线垂直于圆的半径D.每个三角形都有一个内切圆12、四边形中,有内切圆的是()A 平行四边形 B 菱形 C 矩形 D 以上都不对13、下面命题中是真命题的有()A 1个 B 2个 C 3个 D 4个①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。
初三圆基础练习题在初三数学教材中,圆是一个重要的知识点,掌握圆的基础概念和常见性质对于解题和应用数学都至关重要。
为了帮助同学们巩固和加深对圆的理解,下面将为大家提供一些初三圆的基础练习题,希望能给大家的学习带来帮助。
1. 以下哪一个图形是圆?A. 正方形B. 长方形C. 三角形D. 椭圆2. 圆的直径和半径之间的关系是什么?3. 已知圆的半径为5cm,求其直径和周长。
4. 圆的周长和面积之间的关系是什么?5. 已知圆的半径为8cm,求其面积。
6. 判断以下说法是否正确:如果两个圆的半径相等,那它们的面积也相等。
7. 两个圆,一个圆的直径是另一个圆的半径的2倍,它们的面积之比是多少?8. 已知圆的半径为10cm,求其直径、周长和面积。
9. 判断以下说法是否正确:如果两个圆的面积相等,那它们的半径也相等。
10. 判断以下说法是否正确:如果两个圆的半径相等,那它们的周长也相等。
11. 圆的弦和弓长之间的关系是什么?12. 判断以下说法是否正确:如果两个圆的半径相等,那它们的弦和弓长也相等。
13. 圆的切线和半径之间的关系是什么?14. 圆的内切四边形的特点是什么?15. 判断以下说法是否正确:如果两个圆的半径相等,那它们都能内切同一个正方形。
16. 在一个圆内找到一点P和一条弦AB,如何判断点P到弦AB的垂直距离?17. 已知圆内的一条弦AB和一条割线,如何判断弦上的一点C和割线上的两点D、E的位置关系?18. 已知两个圆的圆心分别是O1和O2,半径分别是r1和r2,且O1O2=r1+r2,那么这两个圆之间的关系是什么?19. 圆与直线的位置关系有哪些?20. 如何判断一个点在圆的内部、外部还是圆上?这些题目覆盖了初三圆的基础知识点,大家可以根据自己的实际情况进行练习,系统地复习和掌握圆的相关概念和性质。
希望这些练习题能够帮助同学们在数学学习上取得好成绩!。
六年级圆基础练习题三、扩展和深化理解在前面几章中,我们学习了圆的基础概念和性质,并进行了相应的练习题。
在这一章中,我们将进一步扩展和深化对圆的理解。
圆是几何中非常重要的一个概念,它在很多实际问题中都有应用。
掌握圆的基础知识和解题技巧,能够帮助我们更好地理解和解决与圆相关的各种问题。
四、练习题解析1. 一辆汽车沿着直线道路行驶了1000米,然后转个弯行驶了2000米,最后又转个弯行驶了3000米,最后回到了起点。
这个起点到达终点形成的路径是一个什么样的图形?解析:根据题意可知,汽车行驶的路径是一个封闭的曲线,而这个曲线恰好是一个圆。
这是因为从起点到终点的距离是一样的,而且汽车每转一个弯都会改变方向,因此它形成的路径就是一个圆。
2. 如图所示,点A、B、C、D、E、F、G依次是一个圆上的七个点,且点C和点G分别是点A和点E的直径的中点。
若AB的长度为4cm,CG的长度为5cm,求AD的长度。
解析:根据题意可知,点C和点G分别是点A和点E的直径的中点,也就是说直径AC和直径EG的长度都是2cm。
由于AC和EG都是圆的直径,所以它们的长度相等。
所以AC的长度也是2cm。
又由于圆是一个封闭的曲线,所以AC与GD也是相等的。
所以我们可以得出GC的长度为2cm。
3. 如图所示,有一个圆,圆心为O,直径为AB。
若点C和点D分别是线段AB上的两个不同的点,并且OC的长度是5cm,OD的长度是7cm,求CD的长度。
解析:根据题意可知,OC的长度是5cm,OD的长度是7cm,我们需要求CD的长度。
首先,我们可以求出OA的长度,因为OA是直径,所以它的长度就是OC和OD的长度之和,即12cm。
由于圆是一个封闭的曲线,所以OD与OC也是相等的,即CD的长度也是7cm。
4. 已知圆的半径为3cm,求它的周长和面积。
解析:根据题意可知,圆的半径为3cm,我们需要求它的周长和面积。
圆的周长可以通过公式C=2πr计算,其中π≈3.14,r是半径。
小学数学圆的基础练习题圆是我们日常生活中最常见的几何形状之一,它具有很多有趣的性质和应用。
本文将为小学生提供一些关于圆的基础练习题,帮助他们巩固和提高对圆的理解。
这些题目将涵盖圆的相关术语、性质以及计算圆的面积和周长等知识点。
练习题 1:术语应用1. 请写出下列术语的含义:a) 圆心b) 半径c) 直径d) 弧e) 弦练习题 2:计算圆的周长和面积1. 若一个圆的半径为5cm,计算其周长和面积,结果保留到小数点后两位。
练习题 3:圆的直径与半径关系1. 若一个圆的直径为12cm,求其半径的长度。
2. 若一个圆的半径为8cm,求其直径的长度。
练习题 4:弧和弦的关系1. 若一个圆的半径为6cm,一条弧长为4cm,求该弧所对应的圆心角的度数。
2. 若一个圆的半径为10cm,一条弦的长度为8cm,求该弦所对应的圆心角的度数。
练习题 5:计算扇形的面积1. 若一个扇形的半径为7cm,对应的圆心角为60度,计算该扇形的面积,结果保留到小数点后两位。
练习题 6:计算圆环的面积1. 若一个圆环的外圆半径为10cm,内圆半径为6cm,计算该圆环的面积,结果保留到小数点后两位。
练习题 7:解决实际问题1. 小明正在制作一个圆形蛋糕,蛋糕的半径为8cm。
他想在蛋糕上放一圈草莓作为装饰,每个草莓直径为2cm。
小明需要多少个草莓才能将整个蛋糕的边缘覆盖全?练习题 8:图形判断判断下列说法的正确性,正确的在括号内写“√”,错误的在括号内写“×”。
1. ()半径相等的两个圆,面积一定相等。
2. ()半径相等的两个圆,周长一定相等。
练习题 9:填空题1. 半径为4cm的圆的直径长度是__________cm。
2. 半径为6cm的圆的周长长度是__________cm。
练习题 10:解答题1. 图中是一个半径为6cm的圆,弧段AC的长度为4cm,求圆心角∠ACB的度数。
以上就是小学数学圆的基础练习题,通过这些题目的练习,相信小学生对于圆的相关知识和计算方法会有更深入的理解和掌握。
一、选择题1.对于下列命题:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中,正确的有( ).A.1个 B.2个 C.3个D.4个2.下列命题正确的是( ).A.相等的圆周角对的弧相等 B.等弧所对的弦相等C.三点确定一个圆 D.平分弦的直径垂直于弦3.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图所示,则该秋千所荡过的圆弧长为( ).A.米B.米C.米D.米4.已知两圆的半径分别为2、5,且圆心距等于2,则两圆位置关系是( ).A.外离B.外切C.相切D.内含5.如图所示,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于E、F,OE=8,OF =6,则圆的直径长为( ).A.12 B.10 C.4 D.15第3题图第5题图第6题图第7题图6.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ).A.(2,-1) B.(2,2) C.(2,1) D.(3,1)7.如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB 等于( ).A.55°B.90°C.110°D.120°8.一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ).A.60°B.90°C.120°D.180°二、填空题9.如图所示,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________(只填一个即可).10.已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.11.如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.第9题图第11题图第12题图第15题图12.如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________.13.点M到⊙O上的最小距离为2cm,最大距离为10 cm,那么⊙O的半径为________________.14.已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且,则AC的长为_______.15.如图所示,⊙O是△ABC的外接圆,D是弧AB上一点,连接BD,并延长至E,连接AD,若AB=AC,∠ADE=65°,则∠BOC=________________.16.已知⊙O的直径为4cm,点P是⊙O外一点,PO=4cm,则过P点的⊙O的切线长为________________cm,这两条切线的夹角是________________.三、解答题17.如图,是半圆的直径,过点作弦的垂线交半圆于点,交于点使.试判断直线与圆的位置关系,并证明你的结论;18.在直径为20cm的圆中,有一弦长为16cm,求它所对的弓形的高。
初中数学总复习:《圆》基础练习题(一)选择题(每题2分,共20分)1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有………………( )(A )4个 (B )3个 (C )2个 (D )1个【提示】若三点在一条直线上,则不能作出过这三点的圆,故②不对.【答案】B .【点评】本题考查直径、过不在同一条直线上的三点的圆、外心、等圆与等弧等概念,其中第②个命题不对的原因在于忽视了过三点作图的条件.2.下列判断中正确的是………………………………………………………………( )(A )平分弦的直线垂直于弦(B )平分弦的直线也必平分弦所对的两条弧(C )弦的垂直平分线必平分弦所对的两条弧(D )平分一条弧的直线必平分这条弧所对的弦【提示】弦的垂直平分线平分弦、垂直于弦,因此平分弦所对的两条弧.【答案】C .3.如图,在两半径不同的同心圆中,∠AOB =∠A ′OB ′=60°,则………………( )(A )=(B )> (C )的度数=的度数 (D )的长度=的长度【提示】因为在圆中,圆心角的度数与它所对的弧的度数相等,而∠AOB =∠A ′OB ′,所以的度数=的度数.【答案】C .4.如图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°,的度数为100°,则∠AEC 等于………………………………………………………………………( )(A )60° (B )100° (C )80° (D )130°【提示】连结BC ,则∠AEC =∠B +∠C =21×60°+21×100°=80°.【答案】C .5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是( )(A )67.5° (B )135° (C )112.5° (D )110°【提示】因为圆内接四边形的对角之和为180°,则∠A +∠C =∠B +∠D =180°.又因为∠A ︰∠B ︰∠C=2︰3︰6,所以∠B ︰∠D =3︰5,所以∠D 的度数为85×180°=112.5°.【答案】C . 6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那么圆P 与OB 的位置关系是………………………………………………( )(A )相离 (B )相切 (C )相交 (D )不确定【提示】因为以点P 为圆心的圆与OC 相离,则P 到OC 的距离大于圆的半径.又因为角平分线上的一点到角的两边的距离相等,则点P 到OB 的距离也大于圆的半径,故圆P 与OB 也相离.【答案】A .7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( )(A )21(a +b +c )r (B )2(a +b +c )(C )31(a +b +c )r (D )(a +b +c )r 【提示】连结内心与三个顶点,则△ABC 的面积等于三个三角形的面积之和,所以△ABC 的面积为21a ·r +21b ·r +21c ·r =21(a +b +c )r .【答案】A . 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM =23,则tan ∠BCG 的值为……( )(A )33 (B )23 (C )1 (D )3【提示】连结BD ,则∠ABM =∠ADB .因为AD 为直径,所以∠A +∠ADB =90°,所以cos ∠ABM =23=cos ∠ADB =sin A ,所以∠A =60°.又因四边形ABCD 内接于⊙O ,所以∠BCG =∠A =60°.则tan ∠BCG =3. 【答案】D .9.在⊙O 中,弦AB 和CD 相交于点P ,若P A =3,PB =4,CD =9,则以PC 、PD的长为根的一元二次方程为…………………………………………………………( )(A )x 2+9 x +12=0 (B )x 2-9 x +12=0(C )x 2+7 x +9=0 (D )x 2-7 x +9=0【提示】设PC 的长为a ,则PD 的长为(9-a ),由相交弦定理得3×4=a ·(9-a ).所以a 2-9 a +12=0,故PC 、PD 的长是方程x 2-9 x +12=0的两根.【答案】B .10.已知半径分别为r 和2 r 的两圆相交,则这两圆的圆心距d 的取值范围是………( )(A )0<d <3 r (B )r <d <3 r (C )r ≤d <3 r (D )r ≤d ≤3 r【提示】当两圆相交时,圆心距d 与两圆半径的关系为2 r -r <d <2 r +r ,即r <d <3 r .【答案】B .(三)填空题(每题2分,共20分)11.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为_____.【提示】如图,AB 为弦,CD 为拱高,则CD ⊥AB ,AD =BD ,且O 在CD 的延长线上.连结OD 、OA ,则OD =22AD OA -=221213-=5(米).所以CD =13-5=8(米). 【答案】8米.12.如图,已知AB 为⊙O 的直径,∠E =20°,∠DBC =50°,则∠CBE =______.【提示】连结AC .设∠DCA =x °,则∠DBA =x °,所以∠CAB=x °+20°.因为AB 为直径,所以∠BCA =90°,则∠CBA +∠CAB =90°.又 ∠DBC =50°,∴ 50+x +(x +20)=90.∴ x =10.∴ ∠CBE =60°.【答案】60°.13.圆内接梯形是_____梯形,圆内接平行四边形是_______.【提示】因平行弦所夹的弧相等,等弧所对的弦相等,所以圆内接梯形是等腰梯形.同理可证圆内接平行四边形是矩形.【答案】等腰,矩形.14.如图,AB 、AC 是⊙O 的切线,将OB 延长一倍至D ,若∠DAC =60°,则∠D =_____.【提示】连结OA .∵ AB 、AC 是⊙O 的切线,∴ AO 平分∠BAC ,且OB ⊥AB .又 OB =BD ,∴ OA =DA .∴ ∠OAB =∠DAB .∴ 3∠DAB =60°.∴ ∠DAB =20°.∴ ∠D =70°.15.如图,BA 与⊙O 相切于B ,OA 与⊙O 相交于E ,若AB =5,EA =1,则⊙O 的半径为______.【提示】延长AO ,交⊙O 于点F .设⊙O 的半径为r .由切割线定理,得AB 2=AE ·AF .∴ (5)2=1·(1+2 r ). ∴ r =2.【答案】2.16.已知两圆的圆心距为3,半径分别为2和1,则这两圆有______条公切线.【提示】因为圆心距等于两圆半径之和,所以这两圆外切,故有两条外公切线,一条内公切线.【答案】3.17.正八边形有_____条对称轴,它不仅是______对称图形,还是_____对称图形.【提示】正n 边形有n 条对称轴.正2n 边形既是轴对称图形,又是中心对称图形.【答案】8,轴,中心.18.边长为2 a 的正六边形的面积为______. 【提示】把正六边形的中心与六个顶点连结起来,所得六个等边三角形全等.每个等边三角形的面积为43·(2 a )2=3a 2,所以正六边形的面积为63a 2. 19.扇形的半径为6 cm ,面积为9 cm 2,那么扇形的弧长为______,扇形的圆心角度数为_____.【提示】已知扇形面积为9 cm 2,半径为6 cm ,则弧长l =692⨯=3;设圆心角的度数为n ,则1806π⋅n =3 cm ,所以n =π90.【答案】3;π90︒. 20.用一张面积为900 cm 2的正方形硬纸片围成一个圆柱的侧面,则这个圆柱的底面直径为_____.【提示】面积为900 cm 2的正方形的边长为30 cm ,则底面圆的周长30 cm .设直径为d ,则πd =30,故d =π30(cm ).【答案】π30 cm . (三)判断题(每题2分,共10分)21.相交两圆的公共弦垂直平分连结这两圆圆心的线段……………………………( )【答案】×.【点评】相交两圆的连心线垂直平分公共弦,反过来公共弦不一定平分连结两圆圆心的线段.22.各角都相等的圆内接多边形是正多边形…………………………………………( )【答案】×.【点评】矩形内接于以对角线为直径的圆,但它不是正多边形.23.正五边形既是轴对称图形,又是中心对称图形…………………………………( )【答案】×.【点评】正五边形是轴对称图形,但不是中心对称图形.24.三角形一定有内切圆………………………………………………………………( )【答案】√.【点评】作三角形的两条角平分线,设交点为I ,过I 作一边的垂线段,则以点I 为圆心,垂线段长为半径的圆即三角形的内切圆.25.平分弦的直径垂直于弦……………………………………………………………( )【答案】×.【点评】当被平分的弦为直径时,两直径不一定垂直.(四)解答题:(共50分)26.(8分)如图,⊙O 的直径AB 和弦CD 相交于点E ,且AE =1 cm ,EB =5 cm ,∠DEB =60°,求CD 的长.【分析】因为AE =1 cm ,EB =5 cm ,所以OE =21(1+5)-1=2(cm ).在Rt △OEF 中可求EF 的长,则EC 、ED 都可用DF 表示,再用相交弦定理建立关于DF 的方程,解方程求DF 的长.【略解】∵ AE =1 cm ,BE =5 cm ,∴ ⊙O 的半径为3 cm .∴ OE =3-1=2(cm ).在Rt △OEF 中,∠OEF =60°,∴ EF =cos 60°·OE =21·2=1(cm ).∵ OF ⊥CD ,∴ FC =FD .∴ EC =FC -FE =FD -FE ,ED =EF +FD .即 EC =FD -1,ED =FD +1.由相交弦定理,得 AE ·EB =EC ·ED .∴ 1×5=(FD -1)(FD +1).解此方程,得 FD =6(负值舍去).∴ CD =2FD =26(cm ).27.(8分)如图,AB 为⊙O 的直径,P 为BA 的延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D ,且P A =4,PC =8,求tan ∠ACD 和sin ∠P 的值.【提示】连结CB ,易证△PCA ∽△PBC ,所以BC AC =PB PC .由切割线定理可求PB 的长,所以 tan ∠ACD =tan ∠CBA =BC AC =PBPC .连结OC ,则在Rt △OCP 中可求 sin ∠P 的值.【略解】连结OC 、BC .∵ PC 为⊙O 的公切线,∴ PC 2=P A ·PB .∴ 82=4·PB .∴ PB =16.∴ AB =16-4=12.易证△PCA ∽△PBC .∴BC AC =PBPC .∵ AB 为⊙O 的直径,∴ ∠ACB =90°.又 CD ⊥AB ,∴ ∠ACD =∠B .∴ tan ∠ACD =tan B =BC AC =PB PC =168=21. ∵ PC 为⊙O 的切线,∴ ∠PCO =90°.∴ sin P =PO OC =106=53. 28.(8分)如图,已知ABCD 是圆内接四边形,EB 是⊙O 的直径,且EB ⊥AD ,AD 与BC 的延长线交于F ,求证FD AB =DC BC .【提示】连结AC ,证△ABC ∽△FDC .显然∠FDC =∠ABC .因为AD ⊥直径EB ,由垂径定理得=,故∠DAB =∠ACB .又因为∠FCD =∠DAB ,所以∠FCD =∠ACB ,故△ABC ∽△FDC ,则可得出待证的比例式.【略证】连结AC .∵ AD ⊥EB ,且EB 为直径,∴ =. ∴ ∠ACB =∠DAB .∵ ABCD 为圆内接四边形,∴ ∠FCD =∠DAB ,∠FDC=∠ABC .∴ ∠ACB =∠FCD .∴ △ABC ∽△FDC .∴ FD AB =DC BC .29.(12分)已知:如图,⊙O 1与⊙O 2内切于点P ,过点P 的直线交⊙O 1于点D ,交⊙O 2于点E ;DA与⊙O 2相切,切点为C .*(1)求证PC 平分∠APD ;(2)若PE =3,P A =6,求PC 的长.【提示】(1)过点P 作两圆的公切线PT ,利用弦切角进行角的转换;在(2)题中,可通过证△PCA ∽△PEC ,得到比例式PE PC =PCPA ,则可求PC . *(1)【略证】过点P 作两圆的公切线PT ,连结CE .∵ ∠TPC =∠4,∠3=∠D .∴ ∠4=∠D +∠5,∴ ∠2+∠3=∠D +∠5.∴ ∠2=∠5.∵ DA 与⊙O 相切于点C ,∴ ∠5=∠1.∴ ∠1=∠2.即PC 平分∠APD .(2)【解】∵ DA 与⊙O 2相切于点C ,∴ ∠PCA =∠4.由(1),可知∠2=∠1.∴ △PCA ∽△PEC .∴ PE PC =PCPA .即 PC 2=P A ·PE .∵ PE =3,P A =6,∴ PC 2=18.∴ PC =32.5.(14分)如图,⊙O 是以AB 为直径的△ABC 的外接圆,点D 是劣弧的中点,连结AD 并延长,与过C 点的切线交于P ,OD 与BC 相交于点E .(1)求证OE =21AC ; *(2)求证:AP DP =22AC BD ;(3)当AC =6,AB =10时,求切线PC 的长. 【提示】(1)因为AO =BO ,可证OE 为△ABC 的中位线,可通过证OE ∥AC 得到OE 为中位线;(2)连结CD ,则CD =BD ,可转化为证明AP DP =22AC CD .先证△PCD ∽△P AC ,得比例式AC CD =PC PD ,两边平方得22AC CD =22PC PD ,再结合切割线定理可证得22AC CD =PA PD PD ⋅2=PAPD ;(3)利用(2)可求DP 、AP ,再利用勾股定理、切割线定理可求出PC 的长.(1)【略证】∵ AB 为直径,∴ ∠ACB =90°,即 AC ⊥BC .∵ D 为的中点,由垂径定理,得OD ⊥BC .∴ OD ∥AC .又∵ 点O 为AB 的中点,∴ 点E 为BC 的中点.∴ OE =21AC . *(2)【略证】连结CD .∵ ∠PCD =∠CAP ,∠P 是公共角,∴ △PCD ∽△P AC .∴ PC PD =ACCD . ∴ 22PC PD =22AC CD .又 PC 是⊙O 的切线,∴ PC 2=PD ·DA .∴ PA PD PD ⋅2=22AC CD , ∴ PA PD =22AC CD .∵ BD =CD ,∴ PA PD =22AC BD .(3)【略解】在Rt △ABC 中,AC =6,AB =10,∴ BC =22610-=8.∴ BE =4. ∵ OE =AC 21=3,∴ ED =2.则在Rt △BED 中,BD =22BE ED +=25, 在Rt △ADB 中,AD =22BD AB -=45.∵ AC PD =22AC BD ,∴ 54+PD PD =3620. 解此方程,得 PD =55,AP =95.又 PC 2=DP ·AP ,∴ PC =5955⋅=15.。