数学教育学概论模拟试题
- 格式:docx
- 大小:220.88 KB
- 文档页数:71
数学教育教学概论试题(二)答案一选择题(每小题2分,共16分)1. D2. B3. D4. B5. B6. C7. B8. D二判断题(每小题1分,共8分)1. ×2. √3. ×4.√5. √6.√7.× 8.√三填空题(每空2分,共18分)1.复合判断。
2.知识技能目标、过程和方法目标3 识记、保持4. 同一律、矛盾律5.组织学生开展数学实践活动、对学生学习成绩进行考核。
四名词解释(每小题4分,共12分)1.概念是反映客观事物本质的思维形式,数学概念则是反映数学对象本质属性的思维形式。
2.数学教育评价是指对照教育目标,运用系统科学和统计方法收集信息,对数学教育过程即教学效果得出价值判断,并把判断的结果反馈于数学教育实践,为数学教育决策提供依据的过程。
3.微格教学是一个有控制的实践系统,它使师范生和在职教师有可能集中解决某一特定的教学行为五简答(每小题5分,共20分)1.目标性原则、科学性与教育性原则、整体性原则、客观性与实践性原则、标准化与可行性原则、民主性原则。
2.数学教育教学是一门综合性很强的又相对独立的边缘学科。
(2)数学教育教学受到社会、学校、家庭、学生、教材等各种因素的影响,要研究学生学习数学的心里原则和学习方法,以及学生数学思维的培养和发展规律(3)数学教育教学是一门实践性很强的理论学科,它同数学教学的实践过程紧密联系。
3.(1)数学课程应突出体现基础性、普及性和发展性,是数学教育面向于全体学生(2)体现数学的价值(3)数学学习的内容要具有现实的内容,是学生生活的体验,要富有挑战性(4)数学教学活动应该建立在学生的认知发展水平和已有的知识经验基础之上(5)学会数学学习的自我评价(6)充分认识到现代信息技术对数学教育的价值目标、内容以及学与教的方式所产生的重大影响。
4.贯彻具体性和抽象性相结合的原则途径是什么?第一,抽象的数学知识要以具体内容为基础;第二,制作直观模型,恰当演示直观教具,有利于学生学习和理解抽象的数学理论和方法;第三.有意识发展学生的抽象思维能力;第四,运用数形结合的方法训练。
《数学教育学概论》模拟试题03(答题时间120分钟)一、判断题(判断正确与错误,每小题 1 分,共 10分。
请将正确答案填在下面的表格内)题号 1 2 3 4 5 6 7 8 9 10 答案1、严士健是北京师范大学教授,数学家和数学教育家,他撰写的面向21世纪的数学教育改革,就20世纪我国数学教育的发展状况与现代化社会对数学的要求之间形成的尖锐矛盾进行了分析,从战略的高度和社会发展的角度来研究我国数学教育的目标、课程体系和数学基本方法等问题.2、郑毓信教授是南京师范大学数学哲学、数学教育哲学的专家,在我国最早研究了“建构主义与数学教育”的关系,其代表著作有《数学教育哲学》.3、贵州师范大学于2000年提出了“贯彻数学方法论的教育方式,全面提高学生素质”的数学教育实验.4、维果茨基(Vygotsky)的最近发展区的理论指在教学要求与学生无人帮助的情况下能够独自达到的水平之间有多少差距.5、乔治.波利亚(George Polya美)在《怎样解题》中所表述的怎样解题表中的解题过程分为:弄清问题---拟订计划---实现计划----回顾.6、西南师范大学教授、代数学家、博士生导师陈重穆先生于1993年提出了“淡化形式,注重实质”的重要观点.7、曹才翰(1933--1999)是我国著名的数学教育家,1999年10月在《数学通报》发表了《论数学教育及其研究》,文章对20 世纪末我国的数学教育研究课题进行全方位的论述,揭示当时需要解决的14个方面的重大问题,提出了一系列有指导意义的、建设性的见解和主张.8、著名的数学教育权威弗赖登塔尔(Hans Freudenthal 荷兰)认为数学教学方法的核心是学生的“再创造”.9、当代著名的数学家和数学教育家乔治.波利亚(George Polya美)认为数学教育的目的就是“教年轻人会思考”,就是有目的的思考、产生式的思考,也包括形式的和非形式的思维.10、我国双基数学教学的教学策略是问题引入环节、师生互动环节、巩固联系.二、填空题(每题2分,共14分)1、有意义的学习的内涵是以符号为代表的新知识与学习者认知结构中已有的适当知识建立: .2、在加涅(R.M.Gagne)的数学理论中的数学学习的阶段为:.3、普通高中《数学课程标准》提出的数学课程的教学目标包括:三个方面.4、皮亚杰(J.Piaget)关于智力发展的四个阶段为: .5、数学学习的认知过程为: .6、著名学者克鲁捷茨基(р.а.крутецкий)根据语言逻辑成分和视觉形象成分之间的相关,把数学能力的结构分成了: 等数学气质类型.7、数学学习一般分为:数学概念、的学习.三、解释概念(每题4分,共16分)1、数学化2、数学教育实验3、数学能力4、数学认知结构四、简答题(每题5分,共 40分)1、尝试指导、效果回授教学法的步骤是什么?2、5、6、8、1数学课堂教学评价的基本要求是什么?3、建构主义观点下数学学习的特征是什么?4、普通高中数学课程标准提出的课程教学建议是什么?20世纪50年代克鲁捷茨基(р.а.крутецкий)提出的数学能力结构的组成部分是什么?普通高中《数学课程标准》提出的数学课程的基本理念是什么?7、确定数学教学目的的主要依据是什么?弗赖登塔尔(Hans Freudenthal 荷兰)所认识的数学教育的主要特征是什么?五、概述题(每题10分,共20分)、如何认识和贯彻数学教学的严谨性与量力性相结合的教学原则?2、在新数学课程标准观点下,关于常规数学思维能力的界定有哪些方面?《数学教育学概论》模拟试题03参考答案 一、判断题(每小题 1分,共 10分)答案如下,每小题1分。
写在前面:本文档整合了《数学教育概论》的四张模拟卷,从网上摘抄的答案,仅作学员参考之用。
若涉及到版权问题,请原作者及时联系。
一、(1)填空:20世纪的数学教育风起云涌。
首先在世纪之初,由著名数学家【贝利】和【克莱茵】发起了一场课程改革运动;到了50年代,由于前苏联的人造地球卫星上天等原因,引发了一场影响全球的【新数】运动;由于这场运动的许多过于激进的做法,导致了80年代初期的所谓的【回到基础】运动,使得许多国家的数学课程跌到了低谷。
为了改变这种局面,美国数学教师学会提出了“要把【问题解决】作为80年代美国数学课堂教学的核心”的口号,得到了许多国家的响应。
(2)请在下表中列举五位著名的数学教育家及他们的一本著作或一个观点:(3)数学课程改革的许多争论都可以归结为“为什么要学数学?”的问题。
作为一个数学专业的学生,你认为,你从多年的数学学习中,得到了哪些益处?由此谈谈你对数学教育目标的看法。
【1)数学一直是形成人类文化的主要力量,通过数学这面镜子可以了解一个时代的特征。
古希腊数学家强调严密的推理,中国古代数学崇尚实用,一个时代的特征与这个时代的数学活动密切相关。
数学能像音乐一样,给人以巨大的心灵震撼。
从斐波那契数列和圆周率的小数位数字,到四面体和麦比乌斯带,都可以作为艺术家创作的灵感。
法国数学家傅立叶证明了:所有的声音,无论是噪音还是仪器发出的声音,复杂的还是简单的声音,都可以用数学方式进行全面的描述。
2)数学教育必须超越抽象的世界、符号的世界、逻辑的世界、知识的世界、绝对真理的世界以及升学工具的世界,迈向意义的世界。
可以说,回归数学意义是每一个数学教育工作者神圣的使命。
走向意义的数学教育理所当然应该成为新的教育方向,新的教育追求。
】(4)一些国际比较研究表明,东亚学生的数学解题水平很高,但对数学学习的自信心和兴趣却不高。
你认为其中的主要原因有哪些?请给出例证。
【现如今的数学教育已经陷入了一个怪圈,很多人都是为了考试而学习数学,学生在数学上的自信和兴趣并没有来自于是否真正掌握了数学知识和方法,更多的是来自于自身在群体中取得的成绩,这也是造成优秀群体学生陷入“数学知识在攀比中越来越艰深,数学兴趣在艰深中越来越丧失”这个怪圈的一个原因。
《数学教育学概论》模拟试题01(答题时间120分钟)一、判断题(判断正确与错误,每小题 1分,共 8分。
请将答案填在下面的表格内)1.普通高中《数学课程标准》于2003.5颁布,山东省于2004.9实施。
2.普通高中《数学课程标准》规定的课程框架为:必修系列1,2,3,4,5;选修系列1,2,3,4;必修课程是每个学生都必须学习的数学内容,其中包括算法初步。
3.数学教育的目的主要为数学教育的思想性目的;知识性目的;能力性目的。
4.普通高中《数学课程标准》在课程中设置了数学探究、数学建模、数学文化内容。
5.普通高中《数学课程标准》提出的课程目标包括发展数学应用意识和创新意识,力求对客观显示世界中蕴涵的一些数学模式进行思考和作出判断。
6.当代美国著名数学家哈尔莫斯(P.R.Halmos)指出:“问题是数学的心脏”。
7.普通高中《数学课程标准》规定数学选修系列4不属于普通高考范围。
8.著名的数学教育权威弗赖登塔尔(Hans Freudenthal 荷兰)认为数学教学方法的核心是学生的“再创造”。
二、填空题(每题 2 分,共 12分)1.乔治.波利亚(George Polya美)在《怎样解题》中所表述的怎样解题表的解题过程分为____________________。
2.在加涅(R.M.Gagne)的数学理论中的数学学习的阶段为 _______________________。
3.我国传统的数学教学方法有_________________________。
4.皮亚杰(J.Piaget)关于智力发展的四个阶段是 _______________________。
5.美国数学教育家(Dubinsky)发展了一种数学概念学习APOS理论其具体内容是 _______________________。
6.数学思维的基本成分是______________________________________。
三、解释概念(每题 5分,共 20 分)1.数学能力2.数学认知结构3.启发式教学思想4.数学教育实验四、简答题(每题 5分,共 30分)1.说明数学思维发展的年龄特征?2.现在数学课堂教学的教学环节是什么?3.普通高中《数学课程标准》中关于数学课程的基本理念是什么?4.数学课堂教学评价的标准是什么?5.如何利用奥苏伯尔(D.P.Ausubel)的同化学习理论,指导数学概念的教学?6.如何理解教学过程的优化,教学过程优化的措施是什么?五、概述题(每题 10分,共 30 分)1.简要概述我国数学教学目的的发展变化特点,回答关于常规数学思维能力的界定。
数学教育教学概论试题(二)一、选择题(每小题2分,共16分)1. D 2. B 3. D 4. B5. B6. C7. B8. D1. 一种学习对另一种学习起干扰作用的迁移是()A.顺向迁移 B.逆向迁移 C.正迁移 D.负迁移2. 在数学教学过程中,教师的作用表现为()A.主体作用B.主导作用 C.平等作用 D.评价作用3. 一种学习对另一种学习起干扰作用的迁移是()A.顺向迁移 B.逆向迁移 C.正迁移 D.负迁移4. 一位学生在做一道四则混合式题时确定先算什么,后算什么这种思维方法是()A.综合 B.分析 C.实验 D.观察5. 在一定教育阶段中,学生学习某一门课程在德、智、体等方面应该达到的程度,称为( )。
A.教育目标B.教学目标C.课程目标D.发展目标6. 以下不属于数学的三大特点的是()A.精确性 B.抽象性 C.确定性 D.应用的广泛性7. 数学思维能力的核心是()A 独立思考能力 B逻辑思维能力 C 运算能力 D演绎能力8. 下列哪个不属于现代数学基础教育学派()A 逻辑主义B 形式主义C 抽象主义D 直觉主义二、判断题(每小题1分,共8分)1. 数学命题就是数学定理。
() 1. ×2. √3. ×4.√5. √6.√7.× 8.√2. 课程包括“教学计划”、“课程标准”和“教材”。
()3. 构成中学数学教学过程的四个基本因素是教师、学生、课程、教学方法。
()4. 数学观是人们对数学的本质、方法、思想的认识。
()5. 按结构主义的纯演绎形式讲授数学教材的观点是当下最流行的数学教学观。
()6.数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种素质。
()7.准备律是布鲁纳提出的三大学习规律之一。
()8.讲解是用语言传授知识的教学方式。
()三填空题(每空2分,共18分)1. 判断按其结构分为简单判断和复合判断。
2. 新课标理念下的三维教学目标分别是知识技能目标、过程和方法目标和情感态度和价值观目标。
华中师范大学网络教育学院《小学数学教育概论》课程练习题库(六套)及答案(1)一、名词解释问答类(每题3分,6题,共18分)1、数学双基教学2、数学开放题3、探究学习4、演示法5、小学数学教学评价6、教学组织者二、填空题填空类(每题2分,10题,共20分)1、数学教育的目标的和是目前国际小学数学课程设计的一个重要动向。
2、宋元时期,在数学教育方面,作出较大贡献的是南宋的数学家、数学教育家杨辉,他在《乘除通变本末》的上卷《算法通变本末》给出了作为该书的指导性纲领,堪称世界上现在已知的,最早的数学教学大纲和教学法指导书。
3、儿童按照→→的顺序发展相关数的概念。
4、是进行教学设计与实施的基础之一。
5、数学问题有两个特别显著的特点:一是,即学生不能直接看出问题的解决办法和答案,必须经过深入地研究与思考才能得出答案;二是,即它能激起学生的学习兴趣,学生愿意运用已掌握的知识和方法去解决。
6、小学数学教师与学生应该建立一种基于新课程理念的新型师生关系,其本质是和。
7、最常用的教学手段有和,它们能够使儿童借助直观形象的途径更好地理解数学知识,也有助于激发儿童学习数学的兴趣和欲望。
8、有经验的教师一般将备课的内容概括为“三备与三写”,即备教材、备、备与写学期计划、写、写。
9、一般认为,从知识来源及其功能出发,教师的知识可以归结为、和、三个方面。
10、拟订论文的,是动笔写作论文时首先应做好的工作,也是居首位的工作。
三、简答题问答类(每题6分,6题,共36分)1、国外的小学数学教育改革主要有哪些特点?2、小学生建构数学认知结构的过程通常哪几个阶段组成?3、简述小学数学课堂教学设计的基本原则。
4、小学数学教育中数学文化的内容体现在哪些方面?5、简述小学数学测验的设计方法。
6、一个成熟的教育研究方案,应该包括哪些内容?四、论述题问答类(每题13分,2题,共26分)1、请举例说明小学生解决数学问题的一般过程。
2、在数学双基教学中如何体现小学数学的基础性和发展性,谈谈你的体会或想法。
《数学教育学概论》模拟试题一、判断题1.普通高中《数学课程标准》于2003.5颁布,山东省于2004.9实施。
√2.普通高中《数学课程标准》规定的课程框架为:必修系列1,2,3,4,5;选修系列1,2,3,4;必修课程是每个学生都必须学习的数学内容,其中包括算法初步。
√3.数学教育的目的主要为数学教育的思想性目的;知识性目的;能力性目的。
√4.普通高中《数学课程标准》提出的课程目标包括发展数学应用意识和创新意识,力求对客观显示世界中蕴涵的一些数学模式进行思考和作出判断。
√5.当代美国著名数学家哈尔莫斯(P.R.Halmos)指出:“问题是数学的心脏”。
√6.普通高中《数学课程标准》规定数学选修系列4不属于普通高考范围。
×7.著名的数学教育权威弗赖登塔尔(Hans Freudenthal 荷兰)认为数学教学方法的核心是学生的“再创造”。
√8.维果茨基(Vygotsky)的最近发展区的理论指在教学要求与学生无人帮助的情况下能够独自达到的水平之间有多少差距。
√9.普通高中《数学课程标准》规定数学选修系列4不属于普通高考范围。
×10.普通高中《数学课程标准》于2004.9颁布。
×11.根据语言逻辑成分和视觉形象成分之间的相关,数学能力的结构形成了分析的、几何的、抽象的调和型和形象的调和型等数学气质类型√。
12.当代著名的数学家和数学教育家乔治。
波利亚(George Polya美)的著作《怎样解题》一书译成16(17)种文字,仅平装本的销售量100万册。
√13.美国数学教育家Dubinsky发展了一种数学概念学习的APOS理论为:Action—活动阶段;Process—过程阶段;Object—对象阶段;Scheme—模型阶段√14.严士健是北京师范大学教授,数学家和数学教育家,他撰写的面向21世纪的数学教育改革,就20世纪我国数学教育的发展状况与现代化社会对数学的要求之间形成的尖锐矛盾进行了分析,从战略的高度和社会发展的角度来研究我国数学教育的目标、课程体系和数学基本方法等问题. √15.郑毓信教授是南京师范大学数学哲学、数学教育哲学的专家,在我国最早研究了“建构主义与数学教育”的关系,其代表著作有《数学教育哲学》. ×16.贵州师范大学于2000年提出了“贯彻数学方法论的教育方式,全面提高学生素质”的数学教育实验. ×17.乔治.波利亚(George Polya美)在《怎样解题》中所表述的怎样解题表中的解题过程分为:弄清问题---拟订计划---实现计划----回顾. √18.曹才翰(1933--1999)是我国著名的数学教育家,1999年10月在《数学通报》发表了《论数学教育及其研究》,文章对20 世纪末我国的数学教育研究课题进行全方位的论述,揭示当时需要解决的14个方面的重大问题,提出了一系列有指导意义的、建设性的见解和主张. √19.当代著名的数学家和数学教育家乔治.波利亚(George Polya美)认为数学教育的目的就是“教年轻人会思考”,就是有目的的思考、产生式的思考,也包括形式的和非形式的思维. √20.我国双基数学教学的教学策略是问题引入环节、师生互动环节、巩固联系. √21.2000年,在第九届国际数学教育大会上Mogens Niss做了题为《数学教育研究的主要问题与趋势》的大会报告. √22.普通高中《数学课程标准》提出的数学课程目标包括:提高数学地提出分析和解决问题地能力,数学表达和交流的能力,发展独立获取数学知识的能力. √23.1963年全日制《中学数学教学大纲》提出中学数学教学目的是“使学生牢固地掌握中学数学的基础知识”,……“培养学生正确而迅速的计算能力、逻辑推理能力和空间想像能力”,在当时,这是我国数学教育工作者对国际数学教育的一项重要贡献. √24.现在数学的学科特点可以解释为:①数学对象的特征,指思想材料的形式化抽象;②数学思维的特征,指策略创造与逻辑演绎的的结合;③数学知识的特征,指通用简约的科学语言;④数学应用的特征,指数学模型的技术. √25.《学校数学课程与评价标准》(NCTM标准)提出了美国数学教育的目的,将其明确地分为社会目标和学生应当达到的目标,其中学生应达到的目标包括学会数学交流.√26.弗赖登塔尔(Hans Freudenthal 荷兰)提倡的“再创造”,是数学过程再现,是通过教师精心设计,创造问题情景,通过学生自己动手实验研究、合作商讨,探索问题的结果并进行组织的学习方式. √27.现行普通高中数学课程选修系列3包括三等分角与数域扩充,属于高考范围. ×28.江苏省无锡市教育科学研究所于2000年提出了数学教学的“情境—问题”教学模式. ×29.克莱因(F.Klein)倡导近代数学教育改革运动贝利----克莱因运动, 1908年成立了国际数学教育委员会(ICMI),克莱因当选为第一任主席.√30.义务教育和普通高中《数学课程标准》先后于2001.7和2003.5颁布. √31.浙江教育学院戴再平教授提出了“数学开放题”的教学模式,其代表性著作《中小学数学开放题丛书》(戴再平主编). √32.当代著名的数学家和数学教育家乔治.波利亚(George Polya美)认为数学教育的目的就是“教年轻人会思考”,就是有目的的思考、产生式的思考,也包括形式的和非形式的思维. √33.张孝达先生是人民教育出版社的资深编辑,他撰写的《数学教育50年》是他亲身经历的我国数学教育重要事件的历史回顾. √34.对于数学课程的基础性、普及性和发展性,义务教育《数学课程标准》提出了“人人学有价值的数学;人人都能获得必须的数学;不同的人在数学上得到不同的发展”的理念. √35.义务教育和普通高中《数学课程标准》提出了数学教学的许多新的理念,包括注重培养学生数学地提出问题、分析问题和解决问题地能力,发展学生的创新意识和应用意识,提高学生的数学探究能力,数学建模能力和数学交流能力,进一步发展学生的数学实践能力.√36.1992年以来,西南师范大学在陈重穆教授(代数学家、博士生导师)和宋乃庆教授的倡导下,开展了“提高课堂效益的初中数学教改实验”、陈重穆先生提出了“淡化形式,注重实质”的重要观点(《数学教育学报》1993(4)). √37.20世纪数学观出现了以下的变化:公理化方法、形式演绎仍然是数学的特征之一,但是数学不等于形式;在计算机技术的支持下,数学注重应用;数学不等于逻辑,要做“好”的数学. √38.发现式教学模式是指学生在教师的指导下,通过阅读、观察、实验、思考、讨论等方式,像数学家那样去发现问题、研究问题,进而解决问题、总结规律,成为知识的发现者. √39.当代著名的数学家和数学教育家乔治.波利亚(George Polya美)的著作《怎样解题》一书译成17种文字,仅平装本的销售量100万册;波利亚在《怎样解题》中指出:数学有两个侧面,它是欧几里德式的严谨科学,但它也是别的什么东西.用欧几里德方式提出来的数学看来像一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学. √40.现代建构主义主要是吸收了杜威的经验主义和皮亚杰的结构主义与发生认识论等思想,并在总结20世纪60年代以来的各种教育改革方案的经验基础上演变和发展起来的. √41.著名学者顾泠沅先生领导组织实施了“尝试指导、效果回授”教学实验,并取得了著名的“青浦教改经验”. √42.现行普通高中数学课程数学必修系列3包括算法初步、统计、概率,其中算法初步不属于高考范围. ×43.2004年,在第十届国际数学教育(ICMI)大会在丹麦举行,张奠宙、戴再平、刘意竹应邀在大会作45分钟演讲. √44.当代著名的数学家和数学教育家乔治.波利亚(George Polya美)的著作《怎样解题》一书译成17种文字,仅平装本的销售量100万册. √45.学生的思维水平要与数学学习的内容相吻合,学生的智力发展到形式运算阶段才可以进行几何的形式证明. √46.现在数学的学科特点可以解释为:①数学对象的特征,思想材料的形式化抽象;②数学思维的特征,策略创造与逻辑演绎的的结合;③数学知识的特征,通用简约的科学语言;④数学应用的特征,数学模型的技术. √47.3---7岁儿童的计数能力发展顺序是:口头数数,按物点数,说出总数,按物取数. √48.弗赖登塔尔提倡的“再创造”,是数学过程再现,是通过教师精心设计,创造问题情景,通过学生自己动手实验研究、合作商讨,探索问题的结果并进行组织的学习方式. √49.美国数学教育家Dubinsky发展的数学概念学习的APOS理论为Action:活动阶段;Process:过程阶段;Object:对象阶段;Scheme:模型阶段, APOS理论中是由活动、过程到抽象、图式的学习过程,体现了数学知识形成的规律性,为教师提供了一种实用的教学策略. √50.1985年诺贝尔医学奖授予美国的柯马克和英国的洪斯费尔德,褒奖他们运用拉东变换原理设计了CT层析仪. ×51.在我国传统的数学概念学习中一般为“属+种差”的概念同化方式. √52.数学学习分类一般为①数学概念的学习;②数学原理的学习;③数学思维过程的学习;④数学技能的学习;⑤数学态度的学习. √53.克鲁捷茨基根据语言逻辑成分和视觉形象成分之间的相关,数学能力的结构形成了分析的、几何的、抽象的调和型、形象的调和型等数学气质类型. √54.有意义的学习就是以符号为代表的新知识与学习者认知结构中已有的适当知识建立非人为的实质性的联系. √55.建构主义(constructivism)是行为主义发展到认知主义以后的进一步发展,它是在吸取了众多学习理论,尤其是在杜威(J.Deway)的经验主义,皮亚杰(J.Piaget)的结构主义,维果茨基(Vygotsky)的最近发展区的理论的基础上,总结了20 世纪60 年代以来的各种教育改革方案的经验基础上发展和形成的. √56.著名学者顾泠沅先生领导组织实施、并取得了著名的“青浦教改经验”;泰山学院杜玉祥、马晓燕、魏立平、赵继超教授开展了数学差生转化研究,代表性著作为《数学差生问题研究》(华东师范大学出版社,2003). √57.2004年9月开始了普通高中课程改革,普通高中《数学课程标准》要求高中课程实行模块化、学分制,数学必修课程有5个模块,10个学分,选修有4个系列,都属于普通高考范围. ×58.学习的生成过程就是学习者将已有认知结构(已经存储在长时记忆中的事件和信息加工策略)与从环境中接受的信息(新知识)相结合,主动地选择注意信息并主动地构建信息意义的过程.学习过程不是从感觉开始的,而是从对感觉经验的选择性注意开始的. √59.浙江教育学院戴再平教授提出了“数学开放题”的教学模式,其代表性著作《中小学数学开放题丛书》(戴再平主编);泰山学院杜玉祥、马晓燕、魏立平、赵继超教授开展了数学差生转化研究,代表性著作为《数学差生问题研究》(华东师范大学出版社,2003). √60.顾泠沅是东北师范大学数学教育的博士生导师,他以数学教育中的“青浦经验”闻名全国. ×61.全日制九年《义务教育数学课程标准》就数学课程的基础性、普及性和发展性,提出了“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学有不同的发展”. √62.1911年,哥廷根大学的Rudolf Schimmack成为第一个数学教育博士,其导师是著名数学家克莱因(Felix Klein),1982年,克莱因发表了著名的几何学“爱尔兰纲领”,用运动群下的不变量对几何学进行分类,成为划时代的数学里程碑. √63.我国从20世纪90年代以来,重视数学思想方法的教学已经成为中国数学教育的一大特色;2004年9月开始了普通高中课程改革,普通高中《数学课程标准》将“数学建模”、“数学探究”、“数学文化”的学习活动作为教学板块正式列入课程.√64.普通高中《数学课程标准》于2003.5颁布,山东省于2006.9实施. ×65.普通高中《数学课程标准》规定的课程框架为:必修系列1.2.3.4.5;选修系列1.2.3.4;必修课程是每个学生都必须学习的数学内容,其中包括算法初步. √66.数学教育研究课题一般分为理论性课题、应用性课题和发展性课题. √67.数学概念的引入、命题的提出、新知识的归纳总结,教学时一般采用讲解法. √68.数学教学的基本要素为教师、学生、教学内容、教学环境;学生学习发展的过程: 预习----听讲----作业----复习----总结. √69.普通高中《数学课程标准》规定数学选修系列4不属于普通高考范围. ×70.1901年培利(John Perry),德国数学家F.克莱因(F.Klein )发起了培利---克莱因运动,主张数学教育应该面向大众,数学教育必须重视应用. √71.《学校数学课程与评价标准》(NCTM)指出了美国数学教育的目的,明确社会目标为①具有良好数学素养的工作者;②终身学习的能力;③机会人人均等④明智的选民. √72.尝试指导·效果回授法是由顾泠元经过了调查研究(3年),筛选经验(1年),实验研究(3年),推广运用(3年)提出的. √73.当代美国著名学者奥苏伯尔(D.P.Ausubel)指出:“问题是数学的心脏”. ×74.“情境--问题”数学学习模式是由贵州师范大学于2000年提出的. √75.国际数学教育委员会于1908年成立,简称ICMI;著名的数学教育权威弗赖登塔尔(Hans Freudenthal 荷兰)于1967---1970担任国际数学教育委员会的主席,他认为数学教学方法的核心是学生的“再创造”. √76.数学概念的引入,命题的提出,新知识的归纳总结,教学时一般采用谈话法. ×77..我国学者关于数学问题解决的一般模式为:问题识别与定义;问题表征;策略选择与应用;资源分配;监控与评估. √78.普通高中《数学课程标准》于2003.5颁布,山东、广东、宁夏、海南等省于2004.9实施,2007年广东、宁夏、海南等省高考数学卷(理)13,14,15题是“三选二”的题目,这符合普通高中《数学课程标准》的要求. √79.普通高中《数学课程标准》规定数学选修系列2:由两个模块组成.×80.普通高中《数学课程标准》规定数学选修系列3:由六个专题组成. √81.普通高中《数学课程标准》规定数学选修选修4中包含信息安全与密码. ×82.普通高中《数学课程标准》规定数学选修系列3属于普通高考范围. ×83.普通高中《数学课程标准》规定数学选修系列4包括矩阵与变换;初等数论初步;优选法与试验设计初步. 属于普通高考范围. √84.数学知识不可能以实体的形式存在与个体之外,真正的理解只能是由学习者自身基于自己的经验背景而建构起来的,取决于特定情况下的学习活动过程. √85.尝试教学法的教学理论由邱学华老师(特级教师)提出的;张奠宙先生是我国著名的数学教育专家. √86.当代美国著名数学家哈尔莫斯(P.R.Halmos)指出:“问题是数学的心脏”. √87.张孝达先生是人民教育出版社的资深编辑,他撰写的数学教育50年是他亲身经历的我国数学教育重要事件的历史回顾. √88.普通高中《数学课程标准》提出的数学课程目标包括:提高数学地提出分析和解决问题地能力,数学表达和交流的能力,发展独立获取数学知识的能力. √89.江苏省无锡市教育科学研究所于2000年提出了数学教学的“情境—问题”教学模式×.90.普通高中《数学课程标准》于2003.5颁布,山东、广东、海南、宁夏等省(区)于2004年秋季实施新课程标准.二、填空题1.乔治.波利亚(George Polya美)在《怎样解题》中所表述的怎样解题表的解题过程分为2.:弄清问题---拟订计划---实现计划----回顾。
数学教学论试题及答案数学教学论是教育学的一个分支,它研究数学教学的理论和实践问题。
以下是一份数学教学论的模拟试题及答案,供参考。
# 数学教学论试题一、选择题(每题2分,共20分)1. 数学教学论主要研究的是以下哪方面?A. 数学理论的深入研究B. 数学教学的策略和方法C. 数学题目的解题技巧D. 数学知识的系统整理2. 以下哪个是数学教学中常用的教学方法?A. 讲授法B. 讨论法C. 案例分析法D. 所有选项3. 数学教学中,培养学生的哪些能力是重要的?A. 计算能力B. 逻辑思维能力C. 解题技巧D. 所有选项4. 以下哪个不是数学教学的目标?A. 培养学生的数学兴趣B. 教授数学知识C. 训练学生的记忆力D. 提高学生的数学素养5. 数学教学中,教师应该如何对待学生的错误?A. 立即纠正B. 忽视错误C. 鼓励学生自我发现错误D. 惩罚犯错的学生二、简答题(每题10分,共30分)6. 简述数学教学中启发式教学法的基本特点。
7. 描述数学教学中如何培养学生的批判性思维。
8. 阐述数学教学中如何实现个性化教学。
三、论述题(每题25分,共50分)9. 论述数学教学中如何有效利用现代信息技术。
10. 论述数学教学中如何平衡知识传授与能力培养的关系。
# 数学教学论试题答案一、选择题1. 答案:B2. 答案:D3. 答案:D4. 答案:C5. 答案:C二、简答题6. 启发式教学法的基本特点包括:- 强调学生的主动参与和自主学习。
- 教师的角色转变为引导者和协助者。
- 通过问题引导学生思考,激发学生的好奇心和求知欲。
- 鼓励学生通过探索和实践来获得知识。
7. 培养学生的批判性思维可以通过以下方式:- 鼓励学生对数学概念和方法提出疑问。
- 引导学生从不同角度分析数学问题。
- 教授学生如何评估和比较不同的解题策略。
- 鼓励学生对数学知识进行批判性分析和反思。
8. 实现个性化教学的方法包括:- 了解每个学生的兴趣、能力和学习风格。
一、选择题(每题2分,共20分)1. 《小学数学教育概论》一书的作者是:A. 宋乃庆、张奠宙B. 刘强、李明C. 张奠宙、宋乃庆D. 李明、刘强2. 义务教育阶段的数学课程应突出体现以下哪个特点?A. 独立性B. 基础性C. 普及性D. 发展性3. 数学史与数学教育(HPM)的简称是:A. HPMB. HMEC. HMMD. HMF4. 以下哪个不是数学史在小学数学教学中的应用范式?A. 附加式B. 复制式C. 顺应式D. 修改式5. 小学数学教育概论的主要内容包括:A. 小学数学教育的沿革与发展B. 小学数学教育的有关理论C. 小学数学教学的设计与实施D. 以上都是6. 以下哪个不是新课程标准下数与代数学习领域的目标?A. 使学生经历运用数学符号和图形描述现实世界的过程B. 建立数感和符号感C. 发展抽象思维D. 强化记忆和计算7. 以下哪个不是小学数学教育专业学生的读者对象?A. 高等师范院校的小学数学教育专业学生B. 有志于从事小学数学教育的同仁C. 小学数学教师D. 中学数学教师8. 小学数学教育概论的语言特点是什么?A. 难懂B. 易懂C. 沉闷D. 繁琐9. 数学史融入教学的意义在于:A. 增强学生对数学知识的兴趣B. 让学生感受到数学是经历演进过程的学科C. 培养学生的数学素养D. 以上都是10. 小学数学教育概论的目的是什么?A. 帮助学生掌握数学知识B. 帮助教师提高教学水平C. 促进新课程改革下的小学数学教师专业发展D. 以上都是二、简答题(每题5分,共20分)1. 简述小学数学教育的沿革与发展。
2. 简述小学数学教育的有关理论。
3. 简述小学数学教学的设计与实施。
4. 简述数学史在小学数学教学中的应用范式。
三、论述题(10分)结合小学数学教育概论的学习,谈谈你对新课程标准下小学数学教育的认识。
1.确定中学数学教学目的的依据是什么?(填空)答:中学数学教学目的是依据党和国家对现阶段培养人才提出的总目标,中学教育的性质、任务、数学自身的特点及其在培养人才中所起的作用,以及中学生的学习基础,年龄特征来确定的.14.数学思维的品质主要包括哪些?深刻性、广阔性、灵活性、独创性、目的性、批判性、敏捷性。
14*数学思维的基本成分有哪些?形象思维、抽象逻辑思维、直觉思维2.现行中学数学教学大纲规定的教学目的是什么?包括哪几个方面?如何理解?答:现行九年义务教育全日制初级中学数学教学大纲(试用修订版)中提出的数学教学目的是:“使学生学好当代社会中每一个公民适应日常生活、参加生产和进一步学习所必需的代数、几何的基础知识与基本技能,进一步培养运算能力和空间观念,使他们能够运用所学知识解决简单的实际问题,并逐步形成数学创新意识.培养学生良好的个性品质和初步的辩证唯物主义的观点.”现行全日制普通高级中学数学教学大纲(试验修订版)中提出的中学数学教学目的是:“使学生学好从事社会主义现代化建设和进一步学习所必需的代数、几何的基础知识和概率统计、微积分的初步知识,并形成基本技能;进一步培养良好的个性品质和辩证唯物主义观点.”总的说来,中学数学教学目的主要有三方面的内容:一是掌握基础知识和基本技能;二是培养数学能力;三是形成正确的思想观点和良好的个性品质.(1)关于数学基础知识和基本技能(如何理解“双基”?)中学数学基础知识和基本技能,一般是指学习后继课程与就业所需的那些数学知识和技能.在教学工作中,要具体、恰当地确定基础知识和基本技能的广度和深度,才能使学生切实学好基础知识和基本技能.对于中学数学的基础知识和基本技能的范围,一般是通过制订中学数学教学大纲、数学课程标准或国家统一的考试大纲的形式说明的.至于哪些数学概念、公式、定理、法则、方法、思想,哪些类型的数学问题以及其他知识属于基础知识和基本技能,就要看中学数学教材列入的具体内容.因此,在教学实践中,应以中学数学教学大纲、数学课程标准为指导,以中学数学教材为依据来具体确定基础知识和基本技能的深、广度.数学知识的基本表现形式为概念、性质、法则、公式、定理等,采用演绎的方式叙述,具有逻辑的严密性.数学思想(如函数的思想,数形结合的思想,集合的思想,结构的思想等)和数学方法(如消元法、降次法、换元法、配方法、待定系数法、综合除法等)以及逻辑方法(如分析法、综合法、同一法、反证法等)也应当属于数学基础知识.基本技能是指:按照一定的程序与步骤进行运算、处理数据(包括使用计算器)、简单的推理、画图以及绘制图表等技能。
1. 小学数学教育系列教材中,关于小学数学教育基本理论与实践的概述是______。
2. 数学新课程标准强调,义务教育阶段的数学课程应突出体现______、______和______。
3. 数学史与数学教育的简称是______。
4. 数学试卷分析的基本格式是______。
5. 小学数学教学成功与否在很大程度上表现在是否培养了学生的______。
二、选择题(每题2分,共10分)1. 下列哪项不属于《小学数学教育概论》的主要内容?()A. 小学数学教育的沿革与发展B. 小学数学教育的有关理论C. 小学数学教学的设计与实施D. 小学数学教材教法2. 下列哪个范式不属于数学史融入教学的四种范式?()A. 附加式B. 复制式C. 顺应式D. 教学目标3. 以下哪项不是《小学数学教育概论》的读者对象?()A. 高等师范院校的小学数学教育专业学生B. 有志于从事小学数学教育的同仁C. 小学数学教师D. 小学数学学生4. 数学试卷分析的主要目的是什么?()A. 评估学生的学习效果B. 优化教学方法和手段C. 提高学生的数学能力D. 以上都是5. 小学数学教学过程中,以下哪个方面不是教师应重视的问题?()A. 学生对数学知识的理解B. 学生对数学的兴趣C. 学生解决实际问题的能力D. 学生的人际交往能力三、简答题(每题5分,共15分)1. 简述《小学数学教育概论》的主要内容包括哪些方面。
2. 请简述数学史融入教学的四种范式及其特点。
3. 请简述数学试卷分析的基本格式。
四、论述题(10分)结合《小学数学教育概论》的内容,谈谈你对小学数学教育发展的看法,以及如何提高小学数学教育质量。
数学教育学模拟试题(1)1. 数学教育学的主要对象是数学教学论、数学课程论、数学学习论。
2. 中国学习理论的主要论点是:立志、乐学、持恒、博学、慎思、自得、笃行。
3. 数学技能在形式上可分为外部操作技能和内部心智技能。
4. “若A、B是对顶角,则A、B相等”的否定命题是 A、B是对顶角,但A、B不相等。
1.简述现代数学课程目标改革的特点?共同的特点:(1)数学课程目标更加关注人的发展,关注学生数学素养的提高。
(2)数学课程目标面向全体的学生,从精英转向大众。
(3)数学课程目标关注学生的个别差异。
而不是统一的模式。
(4)数学课程目标更加注意联系现实生活与社会。
具体目标有:注重问题解决,注重数学应用,注重数学交流,注重数学思想方法,注重培养学生的态度情感与自信心等。
2. 如何理解数学的抽象性,如何应用抽象与具体相结合原则进行教学?数学的抽象性表现在将事物的空间形式及数量关系作为研究对象数学抽象有着丰富的层次,是逐级抽象并且伴随着高度的概括性。
数学抽象还表现在广泛且有系统地使用符号,。
数学抽象必须以具体素材为基础,还以广泛的具体性为归宿。
数学的抽象与具体是相对的。
互相区别又是相互联系。
在数学教学中贯彻具体与抽象相结合的原则,应以学生的感知出发。
以客观事实为基础。
从具体到抽象,逐步形成抽象的数学概念上升为理论,再由抽象到具体,应用理论指导实践:(1)数学概念的阐述注意从实例引入;。
(2)对一般性的数学规则,注意从特例引入。
(3)注意运用有关理论解析具体现象,解决具体问题。
(4)具体直现仅是手段,而培养抽象思维能力是目的。
3. 分析数学学习过程。
数学学习过程是新的学习内容与学生原有的数学认知结构相互作用形成新的数学认知结构的过程。
可分为:输入阶段、相互作用阶段、操作阶段和输出阶段。
并用图示表示。
1. 输入阶段所谓输入,实质上就是创设学习情境,给学生提供新的学习内容。
在这一学习情境中,学生原有的数学认知结构与新学习的内容之间发生认知冲突,使学习者在心理上产生学习新知的需要(即“心向”)。
一、填空题(参考答案)1. 数学教育学的主要对象是数学教学论、数学课程论、数学学习论。
2. 中国学习理论的主要论点是:立志、乐学、持恒、博学、慎思、自得、笃行。
3. 数学技能在形式上可分为外部操作技能和内部心智技能。
4. “若A、B是对顶角,则A、B相等”的否定命题是A、B是对顶角,但A、B不相等。
5. 数学课程目标的四个具体目标领域是知识与技能、数学思考、解决问题、情感与态度。
6. 按思维活动中抽象概括水平,可将思维划分为:直观行动思维、具体形象思维、抽象逻辑思维。
7. 数学教学的基本方式有讲解、阅读、讨论、问答、探索、演示与实验、练习。
8. “等腰三角形顶角平分线是底边的中线。
”的逆否命题是若三角形一角的平分线不平分对边,则该三角形的另两边不相等。
9 现代数学学习评价的特点是评价主体的多元性,评价内容的多元性和开放性,评价方式多样性。
10数学能力,包括:数学观察力、数学记忆力、空间想象力、数学思维力、数学化能力。
11概念间的关系有:同一关系,交叉关系,从属关系及全异关系。
全异关系有两特例:对立关系和矛盾关系。
12“等腰三角形顶角平分线是底边的中线。
”的逆命题是若三角形一角平分线是对边的中线,则该三角形另两边相等。
二、简答题(参考答案)1.简述现代数学课程目标改革的特点?解答要点:共同的特点:(1)数学课程目标更加关注人的发展,关注学生数学素养的提高。
(2)数学课程目标面向全体的学生,从精英转向大众。
(3)数学课程目标关注学生的个别差异。
而不是统一的模式。
(4)数学课程目标更加注意联系现实生活与社会。
具体目标有:注重问题解决,注重数学应用,注重数学交流,注重数学思想方法,注重培养学生的态度情感与自信心等。
2. 如何理解数学的抽象性,如何应用抽象与具体相结合原则进行教学?解答要点:数学的抽象性表现在将事物的空间形式及数量关系作为研究对象数学抽象有着丰富的层次,是逐级抽象并且伴随着高度的概括性。
数学抽象还表现在广泛且有系统地使用符号,。
数学教育教学概论试题(三)一、选择题(每小题2分,共16分)1. B 2. D 3. B 4. B5. B6. B7. C8. A3. 把已有的关于研究对象的各个部分、方面或要素联合成整体,从而进行整体认识的思维方法属于()A.归纳 B.综合 C.推理 D.分析4.能按运算顺序做加法和乘法,并求出正确结果,这反映了学生的( )。
A.数学表象B.数学技能C.数学能力D.数学想象6. 因为不能被2整除的整数叫奇数。
(大前提)35不能被2整除。
(小前提)所以35是奇数。
(结论)。
这种推理属于()。
A.归纳推理B.演绎推理 C.类比推理 D.判断推理7. 从外延上看,两个数学概念的外延互相排斥,而它们外延相加之和等于邻近的种概念。
这两个概念是()。
A.对立关系B. 交叉关系C. 矛盾关系D.并列关系二、判断题(每小题1分,共8分)1. × 2. √ 3.√ 4.√5.×6. ×7.√8.×1.布尔巴基学派认为“数学是研究现实世界的空间形式和数量关系的科学。
()3.所谓变式教学是指变换数学对象的呈现形式,而保持其本质属性的教学。
()4.证明是根据已经确定其真实性的命题来确定某一命题的真实性的思维过程。
()5. 布尔巴基学派认为“数学是研究现实世界的空间形式和数量关系的科学。
()6. 数学命题就是数学定理。
()7.求异思维也称发散思维,具有流畅、变通、独立等特征。
()8.讲解法、谈话法、读书指导法是现代的数学教学方法。
()三填空题(每空2分,共18分)1. 数学概念的形成分成两个阶段:感性阶段和理性阶段2.中学数学教学过程四要素包括、教学教材、学生和。
3. 数学教育评价的作用是诊断作用、调节作用和导向作用。
4. 中学数学教学目的可概括为传授知识、培养能力、提高思想5. 数学传统课堂教学模式的五大环节是组织教学复习检查、讲授新课、巩固新课、布置作业。
四名词解释(每小题4分,共12分)1、判断2、微格教学3、教学方法教学方法是指教师的工作方式和教师规定的学生学习活动方式,这些活动方式是为了使学生掌握知识、技能、和技巧,树立辩证唯物主义世界观,并发展他们的能力和创造素质。
四、简答题(每题 5 分,共 30 分)答案要点1尝试指导、效果回授教学法的步骤是什么?答、①启发诱导,创设问题情境; ②探求知识的尝试; ③归纳结论,归入知识系统; ④变式练习的尝试;⑤回授尝试效果;⑥单元教学效果的回授调节.2数学课堂教学评价的基本要求是什么?答、①教学目的明确;②教学环节设计合理;③教学方法设计灵活;④教学基本功扎实;⑤教学效果良好。
3新课程标准观点下提出的关于常规数学思维能力包括哪些方面?答、①数学感觉与判断能力; ②数据收集与分析; ③几何直观和空间想象;④数学表示与数学建模; ⑤数形运算和数形变换;⑥归纳猜想与合情推理;⑦逻辑思考与演绎证明;⑧数学联结与数学洞察;⑨数学计算和算法设计;⑩理性思维与建构体系.4探究教学模式的主要操作步骤是什么?答、①教师精心设置问题链;②学生基于对问题的分析,提出假设;③在教师的引导下,学生对问题进行论证,形成确切的概念; ④学生通过实例来证明或辨认所获得的概念;⑤教师引导学生分析思维过程,形成新的认知结构.5 2000年美国数学教师协会发布《数学课程标准》,提出的数学能力的内涵是什么?答、①数的运算能力;②问题解决的能力;③逻辑推理能力;④数学联结能力;⑤数学交流能力;⑥数学表示能力.6 《数学课程标准》提出的课程的基本理念上什么?答、①构建共同基础,提供发展平台;②提供多样化课程,适应个性选择;③倡导积极主动,勇于探索的学习方式;④注重提高学生的思维能力;⑤发展学生的应用意识;⑥与时俱进地认识基础知识和基本能力;⑦强调本质,注意适度形式化;⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立科学的评价体系.五、概述题(每题 10 分,共 30 分)1如何认识和贯彻数学教学的严谨与量力相结合的教学原则?答、(1)中学数学理论和逻辑的严谨性(3 分)①数学学科理论的严谨性:每个数学分支所包含的概念都分为原始概念和被定义概念,原始概念是本学科中作为定义其它概念的出发点,其本质属性无法用科学的定义方式表述,只能用公理的方式揭示,被定义概念必须确切,符合逻辑要求.真命题分为公理和定理,公理是证明其他真命题的正确性的原始依据,它们本身的正确性不加逻辑证明而被承认,但作为一个体系,必须满足相容性,独立性和完备性,定理必须经过严格的证明.每个数学分支的概念和真命题按一定的顺序构成一个体系.概念和命题的陈述和命题的论证日益符号化、形式化.②严谨性有助于学生的思维能力发展.数学教学活动的核心是学生的数学思维.③严谨性的要求必须恰当准确,数学科学的严谨性是相对的,逐步提高的.(2)中学生的可接受性(量力性)(3 分)数学教学内容、教学模式、教学方法必须反映学生的接受能力和理解水平.对数学严谨性的要求,根据中学生的年龄特征和认知发展水平,只能逐步适应; 对数学严谨性的认识具有相对性;智力发展的可塑性很大,应该积极诱导和促进学生的思维发展,充分发挥学生的潜能.(3).严谨性与量力性相结合(4 分)既要体现数学科学的特征,又要符合学生的实际.对数学教学的各个阶段要提出恰当而又明确的目的任务,同时要循序渐进地培养学生的逻辑思维能力.教学要求应当明确恰当,教学内容应是科学的,思维要符合逻辑要求;要遵循一般的逻辑要求(概念清楚、准确,推理有据,思考缜密,思路清晰),教学中要逻辑严谨,思路清晰,语言准确;严谨性的程度应是学生能够接受的教学安排,要有一定的梯度.中学数学教学的严谨性是相对的,量力性是发展的,要选择最便于学生接受的方式处理教学内容,教学安排上要有适当的梯度,注意由浅入深,由易到难,由已知到未知,由具体到抽象,由特殊到一般,以利于有计划有步骤地发展学生的逻辑思维能力,教学要从学生地实际出发,严谨性的要求既要落在实处,又要留有余地.同时,要研究学生的心理发展水平,数学知识基础,思维习惯,非智力因素和个性心理特征,恰当地运用分层教学和个别教学激发学生内在的动机,促进学生的全面发展.2概述建构主义理论关于数学教育的基本认识,建构主义观点下数学学习的特征是什么?答、(1)数学知识不是对现实的纯粹客观的反映,任何一种传载知识的符号系统也不是绝对真实的表征.它只不过是人们对客观世界的一种解释、假设或假说,它不是问题的最终答案,它必将随着人们认识程度的深入而不断地变革、升华和改写,出现新的解释和假设.(2 分)数学知识不可能以实体的形式存在于个体之外,真正的理解只能是有学习者自身基于自己的经验背景而构建起来的,取决于特定情况下的学习活动过程.否则,就不能称为理解,而是叫死记硬背或生吞活剥,是被动的复制式的学习.(1 分)按照建够主义的观点,数学课本上的知识,只是一种关于某种现象的较为可靠的解释或假设,并不是解释现实世界的真理.学生对知识的接收,只能由他自己来建构完成,以他们自己的经验为背景,来分析知识的合理性.在学习过程中学生不仅理解新知识,而且对新知识进行分析、检验和批判. (1 分)(2)①学习不是由教师把知识简单地传递给学生,而是由学生自己建构知识的过程.学生不是简单被动地接受信息,而是主动地建构知识的意义,这种建构是无法由他人来代替的.(2 分) ②学习不是被动接受信息刺激,而是主动地建构意义,是根据自己的经验背景,对外部信息进行主动地选择,加工和处理,从而获得自己的意义,外部信息本身没有什么意义,意义是学习者通过新旧知识经验间的反复的,双向的相互作用过程而建构成的.因此,学习,不是像行为主义所描述的“刺激---反应”那样. (2 分)③学习意义的获得,是每个学习者以原有的知识经验为基础,对新信息重新认识和编码,建构自己的理解.在这一过程中, 学习是一个积极主动的建构进程,学习者原有的知识经验因为新知识经验的进入而发生调整和改变. (1 分)④学习者的建构是多元化的. (1 分)3以《函数的单调性》为例,编写教案一份.以单调函数的概念为例,编写教案一份.课题:----;课型:----;教学目的:理解-----;培养数学能力,数学思想方法-----;关注情感,态度-------.教学重点:------;教学方法:-------;教学媒体:-------;教学过程:-------;板书设计:------;(3)教学过程清楚,合理. (5 分)教学过程: 复习思考;创设情景;探究新课;巩固反思;小结练习.。
《数学教育学概论》模拟试题05(答题时间120分钟)一、判断题(每小题 1 分,共 10分。
正确划“√”,错误划“×”,请将正确答案填在下面的表格内)题号 1 2 3 4 5 6 7 8 9 10答案1、义务教育和普通高中《数学课程标准》先后于2001.7和2003.5颁布.2、乔治.波利亚(George Polya美)在《数学与猜想》中所表述的怎样解题表中的解题过程分为:弄清问题---拟订计划---实现计划----回顾.3、贵州师范大学于2000年提出了“贯彻数学方法论的教育方式,全面提高学生素质”的数学教育实验.4、维果茨基(Vygotsky)的最近发展区的理论指在教学要求与学生无人帮助的情况下能够独自达到的水平之间有多少差距.5、浙江教育学院戴再平教授提出了“数学开放题”的教学模式,其代表性著作《中小学数学开放题丛书》(戴再平 主编).6、《学校数学课程与评价标准》(NCTM标准)指出了美国数学教育的目的,将其明确地分为社会目标和学生应当达到的目标,其中学生应达到的目标包括学会数学交流.7、曹才翰(1933--1999)是我国著名的数学教育家,1999年10月在《数学通报》发表了《论数学教育及其研究》,文章对20 世纪末我国的数学教育研究课题进行全方位的论述,揭示当时需要解决的14个方面的重大问题,提出了一系列有指导意义的、建设性的见解和主张. 8、著名的数学教育权威弗赖登塔尔(Hans Freudenthal 荷兰)认为数学教学方法的核心是学生的“再创造”.9、当代著名的数学家和数学教育家乔治.波利亚(George Polya美)认为数学教育的目的就是“教年轻人会思考”,就是有目的的思考、产生式的思考,也包括形式的和非形式的思维.10、我国双基数学教学的教学策略是问题引入环节、师生互动环节、巩固练习.二、填空题(每题2分,共14分)1、有意义的学习的内涵是以符号为代表的新知识与学习者认知结构中已有的适当知识建立: .2、在加涅(R.M.Gagne)的数学理论中的数学学习的阶段为:.3、普通高中《数学课程标准》提出的数学课程的教学目标包括:三个方面.4、皮亚杰(J.Piaget)关于智力发展的四个阶段为:.5、数学学习的认知过程为: .6、著名学者克鲁捷茨基(р.а.крутецкий)根据语言逻辑成分和视觉形象成分之间的相关,把数学能力的结构分成了: 等数学气质类型.7、数学思维的智力品质一般包括为:.三、解释概念(每题4分,共16分)1、数学化2、数学教育实验3、数学能力4、数学认知结构四、简答题(每题5分,共 40分)1、尝试指导、效果回授教学法的步骤是什么?2、数学课堂教学评价的基本要求是什么?3、建构主义观点下数学学习的特征是什么?4、普通高中数学课程标准提出的课程教学建议是什么?5、20世纪50年代克鲁捷茨基(р.а.крутецкий)提出的数学能力结构是什么?6、普通高中《数学课程标准》提出的数学课程的基本理念是什么?7、确定数学教学目的的主要依据是什么?8、弗赖登塔尔(Hans Freudenthal 荷兰)所认识的数学教育的主要特征是什么?五、概述题(每题10分,共20分)1、如何认识和贯彻数学教学的严谨性与量力性相结合的教学原则?2、在新数学课程标准观点下,关于常规数学思维能力的界定有哪些方面?《数学教育学概论》模拟试题05参考答案一、判断题(每小题 1分,共 10分)答案如下,每小题1分。
数学教育学试卷(一)一、填空题(共10题,每小题3分,共30分)1、数学是研究现实世界的空间形式和_______________的科学,是关于______________和秩序的科学。
2、中学数学教学的三维目标是指_ ____ 、________ 、____________________________ .3、弗赖登塔尔所认识的数学教育的特征可以用三个词加以概括: 、、.4、波利亚把解题过程划分为四个阶段,它们依次是:①了解问题;②_________________; ③_______________________ ;④________________________.5、数学教育作为一门科学,应该走克莱因(F.klein)所指出的道路,那就是他在演讲和著作中一再强调的:①数学教师应具备较高的数学观点;②___________________ __ ;③ ___________________ ___;④_____________________________________________.6、实行问题解决的教学模式,需要提供“好问题”。
通常认为“好问题”有以下五个特征:①______________________ ;②________________________ ;③_______________________;④可推广,具有探索性;⑤多解法,具有开放性。
.7、数学概念的教学过程设计一般分为概念的引入、__________、___________、_____________等阶段.8、数学教学设计的三要素是:①_________________;②____ ;③ ____ .9、《普通高中数学课程标准》中规定的高中数学课程结构是:必修模块,选修 4个系列,其中系列1有____模块,系列2有_____模块,系列3有_6_个专题,系列4有_10个_专题.10、建构主义学习观下的数学教育APOS理论提出,每个数学概念的建立都要经过以下四个阶段:Action 数学活动 ,Process_____________,Object____________,Scheme _______ .二、辨析题(每小题4分,共12分)判断下述说法是否正确,并简要说明理由。