因式分解的四种方法(讲义)
- 格式:docx
- 大小:130.99 KB
- 文档页数:4
因式分解所有方法归纳总结在代数学中,因式分解是一个重要的概念和技巧。
它可以帮助我们简化复杂的数学表达式,找出其基本的构成部分。
在本文中,我们将对因式分解的各种方法进行归纳总结,并介绍它们的应用以及解题技巧。
一、公因式提取法公因式提取法是最基本的因式分解方法之一。
它的思路是将一个表达式中的公因式提取出来,从而简化表达式。
例如,对于表达式3x+9,我们可以提取出公因式3,得到3(x+3)。
在这个例子中,公因式提取法的应用使我们得到一个更简单的表达式。
二、配方法配方法是因式分解中常用的方法之一。
它的基本思路是通过适当的变换将一个表达式转化为可以直接进行因式分解的形式。
例如,对于二次三项式x^2+5x+6,我们可以通过配方法将其转化为(x+2)(x+3)的形式来进行因式分解。
具体的步骤是:1.找出二次三项式的首项系数、末项系数和常数项,记作a、b和c;2.计算出常数项的因子组合,找出满足a+c=b的两个数;3.将找到的两个数作为中间项的系数,拆分中间项,然后进行因式分解。
三、差的平方差的平方是一种特殊的因式分解形式,它的规则是(a-b)(a+b)=a^2-b^2。
通过利用这个规则,我们可以将一个二次差的平方表达式直接因式分解。
例如,对于表达式x^2-4,我们可以利用差的平方公式直接得到(x-2)(x+2)的形式。
四、完全平方差完全平方差是另一种特殊的因式分解形式,它的规则是(a-b)^2=a^2-2ab+b^2。
通过利用这个规则,我们可以将一个二次完全平方差表达式直接因式分解。
例如,对于表达式x^2-4x+4,我们可以利用完全平方差公式直接得到(x-2)^2的形式。
五、综合法综合法是一种综合利用以上各种方法的因式分解方法。
它的基本思路是通过适当地组合和变换,找到使得一个表达式能够因式分解的形式。
例如,对于二次三项式x^2-5x+6,我们可以应用配方法和差的平方形式来进行因式分解。
具体的步骤是:1.使用配方法将表达式转化为(x-2)(x-3)的形式;2.观察到x-2和x-3之间存在差的平方关系,即(x-2)(x-3)=(x-2)^2-1,从而进一步化简为((x-2)^2-1)。
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a -b) = a 2-b 2 -----------a 2-b 2=(a+b)(a -b);(2) (a ±b)2 = a 2±2ab+b 2 ---------a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3---------a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a -b)(a 2+ab+b 2) = a 3-b 3 --------a 3-b 3=(a -b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解讲解一、辅导内容提取公因式法、公式法、分组分解法、十字相乘法四种基本方法的掌握。
二、学习指导因式分解是代数的重要内容,它是整式乘法的逆变形,在通分、约分、解方程以及三角函数式恒等变形中有直接应用。
重点是掌握提取公因式法、公式法、分组分解法、十字相乘法四种基本方法。
难点是根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。
三、考点阐述考点1 提公因式法和公式法 常用公式:(1)))((22b a b a b a +-=- (2)222)(2b a b ab a ±=+± (3)))((2233b ab a b a b a +-+=+ (4)))((2233b ab a b a b a ++-=- 补充公式:(1)2222)(222c b a ca bc ab c b a ++=+++++(2)))((3222333ca bc ab c b a c b a abc c b a ---++++=-++例1 (1)33xy y x -; (2)x x x 2718323+-(3)()112---x x (4)()()3224x y y x ---分析:①因式分解时,无论有几项,首先考虑提取公因式。
提公因式时,不仅注意数,也要注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为“1”③注意()()n na b b a 22-=-,()()1212++--=-n n a b b a④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4)分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
答案:(1)()()y x y x xy -+; (2)()233-x x ;(3)()()21--x x ; (4)()()y x y x -+-222考点2 十字相乘法例2 (1) 893+-x x (2)32231222xy y x y x -+;(3)()222164x x -+ (4)22103y xy x --分析:对于二次三项齐次式,将其中一个字母看作“末知数”,另一个字母视为“常数”。
因式分解方法总结图因式分解是代数学中的一种重要概念,通过将一个多项式分解为不可再分解的因子的乘积形式,可以简化复杂的多项式的计算和求解,是解决多项式相关问题的关键步骤之一。
本文将总结常用的因式分解方法,并用图表的形式进行展示。
一、因式分解方法总结1.提公因式法(抽取公因式法)–步骤:•将多项式中的各项提取一个公因式。
–适用条件:•各项中存在相同的因子。
2.配方法–步骤:•将多项式的各项平方,然后通过合并或分解得到一个完全平方的二次多项式。
–适用条件:•多项式为二次多项式。
•多项式的第一项为完全平方。
3.分组分解法–步骤:•将多项式的各项适当分组,通过合并或分解得到一个有规律的多项式,再通过提公因式法分解。
–适用条件:•多项式的各项之间存在相关性或相似性。
4.差平方公式–步骤:•将二次多项式按照差平方公式进行分解。
–适用条件:•多项式符合差平方公式的形式。
二、因式分解方法示例下表总结了四种常用因式分解方法的步骤和适用条件。
因式分解方法步骤适用条件提公因将多项式中的各项提取一个公因式各项中存在相同的因子式法配方法将多项式的各项平方,然后通过合并或分解得到一个完全平方的二次多项式多项式为二次多项式。
多项式的第一项为完全平方。
分组分解法将多项式的各项适当分组,通过合并或分解得到一个有规律的多项式,再通过提公因式法分解多项式的各项之间存在相关性或相似性。
差平方公式将二次多项式按照差平方公式进行分解多项式符合差平方公式的形式。
三、示例图表以下是对以上四种因式分解方法的示例图表。
1. 提公因式法示例多项式:2x^2 + 6x**步骤:**1. 提取公因式:2x**分解结果:**2x(x + 3)2. 配方法示例多项式:x^2 + 6x + 9**步骤:**1. 合并平方项:(x + 3)^2**分解结果:**(x + 3)(x + 3)3. 分组分解法示例多项式:2x^3 - 4x^2 + x - 2**步骤:**1. 分组:(2x^3 - 4x^2) + (x - 2)2. 提取公因式:2x^2(x - 2) + 1(x - 2)**分解结果:**(x - 2)(2x^2 + 1)4. 差平方公式示例多项式:x^2 - 4y^2**步骤:**1. 差平方公式:(x - 2y)(x + 2y)**分解结果:**(x - 2y)(x + 2y)四、总结本文介绍了常用的因式分解方法,并通过示例图表展示了每种方法的具体步骤和适用条件。
文本解读新课程NEW CURRICULUM“四法”搞定因式分解曹德文(甘肃省泾川县合道初级中学)一、提公因式法多项式中每一项都有的因式叫做这个多项式的公因式。
通过观察我们可以发现:一个多项式的公因式实质上是取各项系数的最大公约数和相同字母的最低次幂的积的形式。
【典型例题】把下列多项式分解因式:(1)8a3b2-12ab3c;(2)-2m3+4m2+2m;(3)6(x-2)+x(2-x);(4)18b(a-b)2-12(a-b)3。
【解析】(1)8a3b2-12ab3c=4ab2(2a2-3bc);(2)-2m3+4m2+2m=-2m(m2-2m-1);(3)6(x-2)+x(2-x)=6(x-2)-x(x-2)=(x-2)(6-x);(4)18b(a-b)2-12(a-b)3=6(a-b)2[3b-2(a-b)]=6(a-b)2(5b-2a)。
二、运用公式法初中阶段主要涉及两类三个公式,平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2;1.平方差公式:a2-b2=(a+b)(a-b)。
【典型例题】把下列各式分解因式:(1)1-25b2;(2)(x+p)2-(x+q)2;(3)16(a-b)2-9(a+b)2;(4)x4-y4。
【解析】(1)1-25b2=12-(5b)2=(1+5b)(1-5b);(2)(x+p)2-(x+q)2=[(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q);(3)16(a-b)2-9(a+b)2=[4(a-b)]2-[3(a+b)]2=[4(a-b)+3(a+b)][4(a-b)-3(a+b)]=(7a-b)(a-7b);(4)x4-y4=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y)。
2.完全平方公式:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2。
人教版讲义九年级第二十一章一元二次方程解一元二次方程因式分解法探求点1 用因式分解法解一元二次方程情形激疑直接开平方法解方程比拟复杂,配方法、公式法十分费事,运算量较大,有没有复杂的解一元二次方程的方法呢?知识解说(1)因式分解法解一元二次方程的意义因式分解法就是应用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法。
因式分解法就是先把方程的左边化为0,再把左边经过因式分解化为两个一次因式的积的方式,那么这两个因式的值就都有能够为0,这就能失掉两个一元一次方程,这两个一元一次程的解,都是原一元二次方程的解,这样也就把原方程停止了次,把解一元二次方程转化为解一元一次方程的效果了(数学转化思想)。
(2)因式分解法解一元二次方程的普通步骤:①移项,使方程的左边为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式区分为零,失掉两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解。
留意 运用因式分解法解一元二次方程时,方程的左边化为两个一次因式的乘积的方式,左边一定要化为0,否那么求得的解是错误的。
如:把方程化为(x+3)(x-2)=5,那么x+3=0,或x-2=0得原方程的解为2,321=-=x x 是错误的。
典例剖析例1 用因式分解法解方程:(1)4x2=11x;(2)(x-2)2=2x-4.解析(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4,提取因式-2,即—2(x-2),再提取公因式x-2,便可到达分解因式的目的,一边为两个一次式的乘积,另一边为0的方式。
答案 (1)移项,得4x2-11x=0.因式分解,得x(4x-11)=0于是,得x=0,或4x-11=0,(2)移项,得(x-2)2-2x+4=0,(x-2)2-2(x-2)=0因式分解,得(x-2)(x-2-2)=0.整理,得(x-2)(x-4)=0于是,得x-2=0,或x-4=0,规律总结用因式分解法解一元二次方程的普通步骤:一移(方程的左边为0);二分(将方程左边停止因式分解);三化(将一元二次方程转化为两个一元一次方程);四写(写出原方程的解)。
因式分解法的四种方法初中如下:
因式分解法的四种方法是:提公因式法、分组分解法、待定系数法、十字分解法。
1、一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。
3、待定系数法是初中数学的一个重要方法。
用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的。
由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。
4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
其实就是运用乘法公式
(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
因式分解的方法因式分解是代数学中的重要概念,它在解决多项式的因式问题时起着至关重要的作用。
因式分解的方法有多种,本文将为大家介绍一些常见的因式分解方法,希望能够帮助大家更好地理解和掌握这一概念。
首先,我们来看一下因式分解的基本原理。
当我们要对一个多项式进行因式分解时,其实就是要把这个多项式表示成几个因式的乘积的形式。
而要实现这个目标,我们就需要运用一些特定的方法和技巧来进行因式分解。
一、公因式提取法。
公因式提取法是因式分解中最基本的一种方法。
它适用于多项式中含有公因式的情况。
具体来说,就是先找到多项式中的公因式,然后将其提取出来,再将剩下的部分进行因式分解。
例如,对于多项式2x+4xy,我们可以提取出公因式2x,得到2x(1+2y),这样就完成了因式分解。
二、配方法。
配方法是另一种常用的因式分解方法。
它适用于多项式中含有平方项的情况。
具体来说,就是通过加减平方项的方法,将多项式转化为一个完全平方的形式,然后再进行因式分解。
例如,对于多项式x^2+2xy+y^2,我们可以将其转化为(x+y)^2,然后再进行因式分解。
三、分组分解法。
分组分解法是针对四项式的因式分解方法。
具体来说,就是将四项式中的四个项进行分组,然后再对每组进行公因式提取或者配方法,最终将四项式进行因式分解。
例如,对于四项式x^2+2xy+2x+4y,我们可以将其分组为(x^2+2xy)+(2x+4y),然后再进行因式分解。
四、换元法。
换元法是一种比较灵活的因式分解方法。
它适用于多项式中含有复杂因式的情况。
具体来说,就是通过变量替换的方法,将多项式转化为一个更容易进行因式分解的形式,然后再进行因式分解。
例如,对于多项式x^3+3x^2+3x+1,我们可以通过令y=x+1,将其转化为y^3,然后再进行因式分解。
以上就是一些常见的因式分解方法,当然,实际问题中可能还会涉及到更多的情况和方法。
希望大家通过学习和练习,能够更好地掌握因式分解的方法,从而更好地解决代数学中的问题。
初中数学因式分解常用七大解题方法,分类讲解+例题解析,收藏初中数学|因式分解常用七大解题方法,分类讲解+例题解析,收藏 -一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2 ———a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);三、分组分解法(一)分组后能直接提公因式比如,从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
(二)分组后能直接运用公式分组后能直接运用公式,主要是通过对题目当中各因式的观察,进行分组后,能够进行提公因式分解,直到分解的最后能够变成几个多项式或单项式与多项式的乘积为止。
综合练习:四、十字相乘法.十字相乘法是因式分解当中比较难的一种分解方式。
在运用过程当中,对同学们的思维提出了更高的要求,等大家都熟练了这种方法以后,其实对于因式分解是非常简单的,而且比较方便。
对于十字相乘法,我们分为四种类型。
给大家做详细的讲解。
针对每一种方法都有经典的例题解析,通过例题解析的方式让大家明白因式分解时该如何操作,遵循怎样的分解步骤,才能比较顺利的解决和掌握十字相乘法。
因式分解法的四种方法初中数学哟,小伙子小姑娘们,今天我给你们讲一讲初中数学里的因式分
解法,嗨,不要怕,听我给你们慢慢道来。
我们先来说说公因式提取法,哎呀,这个方法可是很简单啦。
就
是将多项式中的公因式提取出来,然后用括号括起来,嘿,这样就完
成因式分解咯。
哟,接下来是提公因式分解法,这个一看就会了嘛。
就是当一个
多项式中所有的项都含有相同的因式时,可以将这个公因式提取出来,然后分解成乘积的形式,唉呦,这样就大功告成啦。
哎,再来说说换元法吧,这个方法有点像代入法,就是将多项式
中某一项看做一个新的变量,然后将原来的多项式转化成新的多项式,然后再进行因式分解,哟,是不是很有意思呀。
唉,最后说说配方法,这个可能有点复杂啦。
就是当一个多项式
能够表示成两个或多个较简单的多项式的和或差时,就可以利用先进、然后、后进、分组的方法进行因式分解,然后再配方,嗨,这样就完
成因式分解啦。
嘿,这四种方法,嘿,一种比一种简单,不要怕不会,多加练习
就会啦。
学习数学嘛,就是要勇敢地面对挑战,不断地突破自己嘛。
嘿,大家加油哦,数学不难,咦,只要我们用心去学,一定能够掌握啦。
加油加油!。
数学因式分解的方法数学因式分解的方法要想能在综合性较强的几何题目中能灵活应用,就必须要熟记啦。
因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法和十字相乘法。
店铺为大家整理了数学公式:因式分解的方法,希望能够对大家有所帮助!一、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。
注意:换元后勿忘还元.【例】在分解(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则原式=(y+1)(y+2)-12=y^2+3y+2-12=y^2+3y-10=(y+5)(y-2)=(x^2+x+5)(x^2+x-2)=(x^2+x+5)(x+2)(x-1).二、运用公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。
① 平方差公式:a-b=(a+b)(a-b);② 完全平方公式:a±2ab+b=(a±b) ;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
③ 立方和公式:a^3+b^3=(a+b)(a-ab+b);④ 立方差公式:a^3-b^3=(a-b)(a+ab+b);⑤ 完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.【例】a+4ab+4b =(a+2b)三、分组分解法把一个多项式适当分组后,再进行分解因式的方法叫做分组分解法。
用分组分解法时,一定要想想分组后能否继续完成因式分解,由此选择合理选择分组的方法,即分组后,可以直接提公因式或运用公式。
【例】m+5n-mn-5m=m-5m-mn+5n = (m-5m)+(-mn+5n) =m(m-5)-n(m-5)=(m-5)(m-n).四、拆项、补项法这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。
因式分解法的四种方法的公式因式分解法是一种用于解决数学问题的一种方法,用于分解某个复杂的因式,将其分解成较易于求解的若干简单的相乘的因式的乘积的方法。
从根本上讲,因式分解法是将复杂的表达式分解成若干较简单的新表达式,这些新表达式均是数学意义上有意义的因式。
显然,每种因式分解法都有其特定的步骤或公式,由此可以快速有效地完成因式分解的过程。
在因式分解法中,有四种主要的方法,它们分别是:提取公因数法、互斥因子分解法、分子式分解法和综合法。
以下详细解释了每种方法的公式。
首先是提取公因数法。
提取公因数法的公式为:将因式的项数<(变量)中的公共因子提出来,即两个因子相乘的结果,叫做公因数,如下图,它的公式为:A(X-a)×B(X -b)= A×B(X-a)(X -b)其次是互斥因子分解法。
互斥因子分解法的公式为:当因式分解时,可以将一个因式通过本质因子分解成两个因子,这两个因子相互抵消,叫做互斥因子,如下图所示,它的公式为:A(X-a)=(X -b)B第三种方法是分子式分解法。
分子式分解法的公式为:当因式分解时,如果两个因子的系数中存在一些关系,将该因式拆分为一组分子式,可以通过它们的乘积来得到原式,如下图,它的公式为:A(X-a)×B(X -b)=(A)(X-a)×(B)(X -b)最后一种方法是综合法。
综合法的公式为:因式分解时,可以将一个因式综合分解成多个因子,如下图,它的公式为:A(X-a)×B(X -b)=(A1)(X-a)×(B1)(X -b)×(A2)(X-a)×(B2)(X -b)……以上就是因式分解法的四种方法的公式。
如果用因式分解法来解决数学问题,就必须根据具体的问题选择合适的方法,用正确的公式来处理。
因式分解法是解决复杂数学问题的有效方法,它可以有效地减少复杂性,分解问题,帮助解决数学问题。
总之,因式分解法是一种数学方法,它可以将复杂的表达式分解成若干较简单的新表达式,有助于解决复杂数学问题。
因式分解最全方法归纳因式分解是代数学习中的重要内容,它可以帮助我们简化复杂的代数表达式,解决方程和不等式等问题。
下面就为大家归纳一下因式分解的各种方法。
一、提公因式法如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
例如,对于多项式 6x + 9,6 和 9 都有公因数 3,所以可以提出 3 得到:3(2x + 3)。
提公因式法的关键在于准确找出多项式各项的公因式。
公因式的系数应取各项系数的最大公约数,字母应取各项都含有的相同字母,字母的指数取次数最低的。
二、运用公式法(1)平方差公式:a² b²=(a + b)(a b)例如,分解 9x² 25,可写成(3x)² 5²,然后利用平方差公式得到:(3x + 5)(3x 5)(2)完全平方公式:a² ± 2ab + b²=(a ± b)²比如,对于 x²+ 6x + 9,可以将其写成 x²+ 2×3×x + 3²,符合完全平方公式,分解为(x + 3)²三、分组分解法将多项式分组后,组与组之间能提公因式或运用公式进行分解。
例如,对于多项式 am + an + bm + bn,可以将其分组为(am +an) +(bm + bn),然后分别提公因式得到:a(m + n) + b(m + n),再提公因式(m + n) 得到:(m + n)(a + b)四、十字相乘法对于二次三项式 ax²+ bx + c,如果存在两个数 p、q,使得 a =p×q,c = m×n,且 b = p×n + q×m,那么 ax²+ bx + c =(px + m)(qx + n)比如,分解 6x²+ 5x 6,将 6 分解为 2×3,-6 分解为-2×3,交叉相乘 2×3 + 3×(-2) = 0,所以可以分解为(2x 1)(3x + 6)五、拆项、添项法把多项式的某一项拆开或加上互为相反数的两项,使原式适合于提公因式法、运用公式法或分组分解法进行分解。
因式分解得四种方法(讲义)➢课前预习1.平方差公式:___________________________;完全平方公式:_________________________;_________________________.2.对下列各数分解因数:210=_________; 315=__________;91=__________; 102=__________.3.探索新知:(1)能被100整除吗?小明就是这样做得:所以能被100整除.(2)能被90整除吗?您就是怎样想得?(3)能被哪些整式整除?➢知识点睛1.__________________________________________叫做把这个多项式因式分解.2.因式分解得四种方法(1)提公因式法需要注意三点:①___________________________;②___________________________;③___________________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.运用公式法得时候需要注意两点:①___________________________;②___________________________.(3)分组分解法多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.(4)十字相乘法十字相乘法常用于二次三项式得结构,其原理就是:3.因式分解就是有顺序得,记住口诀:“___________________”;因式分解就是有范围得,目前我们就是在______范围内因式分解.➢精讲精练1.下列由左到右得变形,就是因式分解得就是________________.①; ②;③; ④;⑤; ⑥;⑦.2.因式分解(提公因式法):(1); (2);解:原式= 解:原式=(3);解:原式=(4); (5).解:原式= 解:原式=3.因式分解(公式法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6);解:原式=(7); (8);解:原式= 解:原式=(9); (10).解:原式= 解:原式=4.因式分解(分组分解法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6).解:原式= 解:原式=5.因式分解(十字相乘法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6);解:原式= 解:原式=(7); (8).解:原式= 解:原式=6.用适当得方法因式分解:(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6).解:原式=【参考答案】➢课前预习1.2.210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23.(2)∴能被90整除∴能被1,m,m+1,m-1,m(m+1),m(m-1),(m+1)(m-1),m (m+1)(m-1)整除➢知识点睛1.把一个多项式化成几个整式得积得形式2.(1)①公因式要提尽②首项就是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式得先提公因式②找准公式里得a与b(3)公因式,完全平方公式,平方差公式3.一提二套三分四查,有理数➢精讲精练1.④⑥⑦2.(1)(2)(3)(4)(5)3.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10) 4.(1)(2)(3)(4)(5)(6) 5.(1)(2)(3)(4)(5)(6)(7)(8) 6.(1)(2)(3)(4)(5)(6)。
因式分解之四大基本解法知识锦囊经典例题【必会考点1】提取公因式1.因式分解:2281012x y xy --【解答】解:原式222(456)x y xy =--2(43)(2)xy xy =+-.2.因式分解:324824m m m -+-.【解答】解:32248244(26)m m m m m m -+-=--+.3.因式分解:325()10()x y y x -+-.【解答】解:325()10()x y y x -+-325()10()x y x y =-+-25()[()2]x y x y =--+25()(2)x y x y =--+.4.因式分解:3()3()a x y b y x ---.【解答】解:3()3()a x y b y x ---3()3()a x y b x y =-+-3()()x y a b =-+.【必会考点2】公式法1.因式分解:(1)22169x y - (2)22222()4x y x y +-. 【解答】解:(1)原式22(4)(3)(43)(43)x y x y x y =-=+-;(2)原式222222(2)(2)()()x y xy x y xy x y x y =+++-=+-.2.分解因式:22(23)m m -+.【解答】解:原式(23)(23)m m m m =++--(33)(3)m m =+--3(1)(3)m m =-++.3.因式分解:2()6()9x y y x -+-+【解答】解:2()6()9x y y x -+-+2()6()9x y x y =---+2(3)x y =--.【必会考点3】提取公因式与公式法综合1.因式分解:(1)2x xy -; (2)329189x x x -+; 【解答】解:(1)22(1)(1)(1)x xy x y x y y -=-=+-;(2)322291899(21)9(1)x x x x x x x x -+=-+=-;2.因式分解:(1)244am am a -+; (2)22()()a x y b y x -+-. 【解答】解:(1)22242(44)(2)am am a a m m a m -+=-+=-;(2)2222()()()()()()()a x y b y x x y a b x y a b a b -+-=--=-+-.【必会考点3】分组分解法1.因式分解:2m my mx yx -+- 【解答】解:(3)2m my mx yx -+-2()()m my mx yx =-+-()()m m y x m y =-+-()()m y m x =-+.2.因式分解:2221b bc c -+-【解答】解:2221b bc c -+-2()1b c =--(1)(1)b c b c =-+--.【必会考点4】十字相乘法1.因式分解:(1)256x x +- (2)2234a ab b -- 【解答】解:(1)256(1)(6)x x x x +-=-+(2)2234a ab b --(4)()a b a b =-+.2.分解因式:2231x x -+【解答】解:2231(1)(21)x x x x -+=--.巩固练习1.因式分解:(1)2()3()m a b n b a ---; (2)2282()x x y --.2.分解因式:(1)()()x x a y a x -+- (2)321025x y x y xy -+3.因式分解:53242357a b c a b c a bc +-4.分解因式:222(4)16m m +-.5.分解因式(1)222(1)4a a +- (2)229()25()a b a b +--.6.因式分解:22436x xy x y -+-7.因式分解:22144a ab b -+-8.分解因式(1)2249x y - (2)2221x y y -+-9.分解因式:22221x y x y -+-.10.分解因式①226x x -- ②332x x -+11.分解因式:2228x xy y --.12.十字相乘法因式分解:(1)256x x ++ (2)256x x --(3)2231x x -+ (4)2656x x +-.13.因式分解:(1)23a b b -; (2)1n m mn -+-;(3)2221x x y -+-; (4)2()()()x y x y x y -++-14.把下列各式分解因式:(1)225x -; (2)2816a a -+;(3)2()9()x x y x y +-+; (4)3222a a b ab -+-.15.因式分解:(1)236x xy x -+; (2)3241628m m m -+-;(3)2318()12()a b b a ---.巩固练习解析1.因式分解:(1)2()3()m a b n b a ---; (2)2282()x x y --.【解答】解:(1)2()3()m a b n b a --- 2()3()m a b n a b =-+- ()(23)a b m n =-+;(2)2282()x x y --222[4()]x x y =-- 2(3)()x y x y =-+.2.(1)分解因式()()x x a y a x -+- (2)分解因式321025x y x y xy -+ 【解答】(1)解:()()x x a y a x -+- (x =x a -)(y -x a -) (=x a -)(x y -);(2)解:321025x y x y xy -+ (xy =21025)x x -+ (xy =25)x -.3.因式分解:53242357a b c a b c a bc +- 【解答】解:原式322(57)a bc a b c ab =+-; 4.分解因式:222(4)16m m +-. 【解答】解:222(4)16m m +-22(44)(44)m m m m =+++- 22(2)(2)m m =+-.5.分解因式 (1)222(1)4a a +- (2)229()25()a b a b +--. 【解答】解:(1)222(1)4a a +-22(12)(12)a a a a =+++- 2(1)a =+2(1)a -; (2)229()25()a b a b +--[3()5()][3()5()]a b a b a b a b +=+--+- .4(4)(4)a b b a =--.6.因式分解:22436x xy x y -+- 【解答】解:原式2(2)3(2)x x y x y =-+- (2)(23)x y x =-+.7.22144a ab b -+-【解答】解:22144a ab b -+-221(44)a ab b =--+ 21(2)a b =--(12)(12)a b a b =+--+.8.分解因式 (1)2249x y - (2)2221x y y -+-【解答】解:(1)原式(23)(23)x y x y =-+; (2)原式22(21)x y y =--+22(1)x y =--(1)(1)x y x y =+--+.9.分解因式:22221x y x y -+-.【解答】解:原式222222(1)1(1)(1)(1)(1)(1)x y y y x y y x =-+-=-+=+-+. 10.分解因式 ①226x x -- ②332x x -+【解答】解:①226(23)(2)x x x x --=+-; ②332x x -+ 342x x x =-++ (2)(2)(2)x x x x =+-++2(2)(21)x x x =+-+ 2(2)(1)x x =+-.11.分解因式:2228x xy y --. 【解答】解:2228x xy y -- (4)(2)x y x y =-+.12.十字相乘法因式分解: (1)256x x ++ (2)256x x -- (3)2231x x -+ (4)2656x x +-.【解答】解:(1)原式(2)(3)x x =++; (2)原式(6)(1)x x =-+; (3)原式(21)(1)x x =--; (4)原式(23)(32)x x =+-. 13.因式分解: (1)23a b b -; (2)1n m mn -+-; (3)2221x x y -+-;(4)2()()()x y x y x y -++-【解答】解:(1)原式22()()()b a b b a b a b =-=-+;(2)原式(1)()(1)(1)(1)(1)n m mn n m n m n =-+-=-+-=+-;(3)原式2222(21)(1)(1)(1)x x y x y x y x y =-+-=--=---+;(4)原式()()2()x y x y x y x x y =--++=-.14.把下列各式分解因式:(1)225x -;(2)2816a a -+;(3)2()9()x x y x y +-+;(4)3222a a b ab -+-.【解答】解:(1)原式(5)(5)x x =+-;(2)原式2(4)a =-;(3)原式2()(9)x y x =+-()(3)(3)x y x x =++-;(4)原式22(2)a a ab b =--+2()a a b =--.15.因式分解:(1)236x xy x -+;(2)3241628m m m -+-;(3)2318()12()a b b a ---.【解答】解:(1)236(361)x xy x x x y -+=-+;(2)322416284(47)m m m m m m -+-=--+;(3)23218()12()6()(322)a b b a a b a b ---=-+-.。
45因式分解的四种方法(讲义)➢ 课前预习1. 平方差公式:___________________________;完全平方公式:_________________________;_________________________.2. 对下列各数分解因数:210=_________; 315=__________;91=__________; 102=__________.3. 探索新知:(1)39999-能被100整除吗?小明是这样做的:3229999999999199(991)99(991)(991)9998009998100-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯所以39999-能被100整除.(2)38989-能被90整除吗?你是怎样想的?(3)3m m -能被哪些整式整除?1.__________________________________________叫做把这个多项式因式分解.2.因式分解的四种方法(1)提公因式法需要注意三点:①___________________________;②___________________________;③___________________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.运用公式法的时候需要注意两点:①___________________________;②___________________________.(3)分组分解法多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.(4)十字相乘法十字相乘法常用于二次三项式的结构,其原理是:2()()()+++=++x p q x pq x p x q3.因式分解是有顺序的,记住口诀:“___________________”;因式分解是有范围的,目前我们是在______范围内因式分解.1. 下列由左到右的变形,是因式分解的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2()x xy x x x y -+=-;⑥24(2)(2)m m m -=+-; ⑦2244(2)y y y -+=-.2. 因式分解(提公因式法):(1)2212246a b ab ab -+;(2)32a a a --+; 解:原式=解:原式=(3)()(1)()(1)a b m b a n -+---;解:原式=(4)22()()x x y y y x ---;(5)1m m x x -+. 解:原式=解:原式=3. 因式分解(公式法):(1)249x -;(2)216249x x ++; 解:原式=解:原式=(3)2244x xy y -+-;(4)229()()m n m n +--; 解:原式=解:原式=(5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-;解:原式=(6)2(25)4(52)x x x -+-;解:原式=(7)228168ax axy ay -+-;(8)44x y -; 解:原式=解:原式=(9)4221a a -+;(10)22222()4a b a b +-. 解:原式=解:原式=4. 因式分解(分组分解法):(1)2105ax ay by bx -+-;(2)255m m mn n --+; 解:原式=解:原式=(3)22a a b++-;699---;(4)22144a ab b解:原式= 解:原式=(5)22a ab b-+-.244+--;(6)22 99ax bx a b解:原式= 解:原式=5.因式分解(十字相乘法):(1)243x x+-;++;(2)26x x解:原式= 解:原式=(3)223+-;x xx x21-++;(4)2解:原式= 解:原式=222解:原式=解:原式=(7)2221315x xy y ++;(8)3228x x x --. 解:原式=解:原式=6. 用适当的方法因式分解:(1)222816a ab b c -+-;(2)22344xy x y y --; 解:原式=解:原式=(3)22(1)12(1)16a a ---+;(4)(1)(2)12x x ++-; 解:原式=解:原式=(5)2(2)8a b ab -+;(6)222221x xy y x y -+-++. 解:原式=解:原式=因式分解的四种方法(随堂测试)1. 下列因式分解正确的是( )A .32(1)a a a a -+=-+B .2422(2)a b a b -+=-C .224(2)a a -=-D .2221(1)a a a -+=-2. 用适当的方法因式分解.(1)2242x x -+; (2)232x x ++; 解:原式=解:原式=(3)2x y y -;(4)22224a ab b c -+-; 解:原式=解:原式=(5)32318x x x -++;(6)3222m m n mn m ++-. 解:原式=解:原式=因式分解的四种方法(习题)➢ 巩固练习1. 下列从左到右的变形,是因式分解的是( )A .232393x y z x z y =⋅B .25(2)(3)1x x x x +-=-++C .22()a b ab ab a b +=+D .211x x x x ⎛⎫+=+ ⎪⎝⎭ 2. 把代数式322363x x y xy -+因式分解,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .(3)x x y -D .23()x x y - 3. 因式分解:(1)22363a b ab ab +-;(2)()()y x y y x ---; 解:原式=解:原式=(3)2441a a -+;(4)256x x -+; 解:原式=解:原式=(5)2168()()x y x y --+-;(6)41x -; 解:原式=解:原式=(7)222(1)4a a +-;(8)25210ab bc a ac --+; 解:原式=解:原式=(9)223(2)3m x y mn --; (10)2ab ac bc b -+-;解:原式= 解:原式=(11)2222a b a b -++;(12)2(2)(4)4x x x +++-; 解:原式=解:原式=(13)321a a a +--;(14)2244a a b -+-; 解:原式=解:原式=(15)222221a ab b a b ++--+;解:原式=(16)228x x --;(17)226a ab b --; 解:原式=解:原式=(18)2231x x -+;(19)32412x x x --; 解:原式=解:原式=(20)2x y x y+++-;(21)(1)(2)6()()2---.x x解:原式= 解:原式=➢思考小结在进行因式分解时,要观察式子特征,根据特征选择合适的方法:①若多项式各项都含有相同的因数或相同的字母,首先考虑__________________.②若多项式只含有符号相反的两项,且两项都能写成一个单项式的平方,则考虑利用____________________进行因式分解.③若多项式为二次三项式的结构,则通常要考虑____________或_______________.④若多项式项数较多,则考虑_______________.每日一练(一)1. 用适当的方法因式分解.(1)2412ax ax a --; (2)221448x y xy --+;(3)22926a b a b -+-; (4)3244x y x y xy -+;(5)2242x x y y ---; (6)32x xy x y --+;(7)2221x y y ---; (8)42224ab ab a +-;(9)222(3)3(3)2x x x x -+-+;(10)4276x x -+;(11)222x x x x+-+-;(2)7(2)8(12)22-+-+-+;()3()()10()a b a b a b a b(13)22-+-+-;a ab b a b446127(14)321a a a+--;(15)(1)(2)6---.x x。
因式分解的四种方法(讲义)
课前预习
1.平方差公式:___________________;完全平方公式:_______________________; _______________________.
2.对下列各数分解因数:
210=_________; 315=__________; 91=__________; 102=__________.
3.探索新知:
(1)39999-能被100整除吗?
小明是这样做的:
32299999999991
99(991)
99(991)(991)999800
9998100-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯ 所以39999-能被100整除.
(2)38989-能被90整除吗?你是怎样想的?
(3)3m m -能被哪些整式整除?
知识点睛
1.__________________________________________叫做把这个多项式因式分解.
2.因式分解的四种方法
(1)提公因式法
需要注意三点:
①公因式要提尽;②首项为负时要提出负号;③提公因式后项数不变.
(2)公式法
两项通常考虑_____________,三项通常考虑_____________.
运用公式法时需要注意两点:
①能提公因式先提公因式;②找准公式中的a 和b .
(3)分组分解法
多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.
(4)十字相乘法
十字相乘法常用于二次三项式的结构,其原理是:
2()()()x p q x pq x p x q +++=++
3. 因式分解是有顺序的,记住口诀:“___________________”;因式分解是有范围的,目前我们是在______范围内因式分解.
精讲精练
1.下列由左到右的变形,是因式分解的是________________.
①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;
③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2221x x x x x ⎛⎫
++=++ ⎪⎝⎭;
⑥24(2)(2)m m m -=+-;⑦2244(2)y y y -+=-.
2.因式分解(提公因式法):
(1)2212246a b ab ab -+;
(2)32a a a --+; (3)()(1)()(1)a b m b a n -+---;
(4)22()()x x y y y x ---;
(5)1m m x x -+.
3.因式分解(公式法):
(1)249x -;
(2)216249x x ++; (3)2244x xy y -+-;
(4)229()()m n m n +--;
(5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-;
(6)2(25)4(52)x x x -+-;
(7)228168ax axy ay -+-; (8)44x y -;
(9)4221a a -+;
(10)22222()4a b a b +-.
4.因式分解(分组分解法):
(1)2105ax ay by bx -+-;
(2)255m m mn n --+; (3)22144a ab b ---;
(4)22699a a b ++-; (5)2299ax bx a b +--;
(6)22244a a b b -+-.
5.因式分解(十字相乘法):
(1)243x x ++;
(2)26x x +-; (3)223x x -++;
(4)221x x +-; (5)22512x x +-;
(6)2232x xy y +-;
(7)2221315x xy y ++;
(8)3228x x x --.
6.用适当的方法因式分解:
(1)222816a ab b c -+-;
(2)22344xy x y y --; (3)22(1)12(1)16a a ---+;
(4)(1)(2)12x x ++-; (5)2(2)8a b ab -+; (6)222221x xy y x y -+-++.
【参考答案】
课前预习1.; 2. 210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×2
3.(2)
∴能被90整除
∴能被1,m ,m +1,m -1,m (m +1),m (m -1),(m +1)(m -1),m (m +1)(m -1)整除 知识点睛
1.把一个多项式化成几个整式的积的形式
2.(2)平方差公式;完全平方公式;(3)公因式;完全平方公式;平方差公式
3.一提二套三分四查;有理数
精讲精练
1.④⑥⑦
2.(1);(2);(3);(4);
(5). 3.(1);(2);(3);(4);
(5);(6);(7);(8);
(9);.
4.(1);(2);(3);
(4);(5);.
5.(1);(2);(3);(4);
(5);(6);(7);(8).
6.(1);(2);(3);
(4);(5);(6). 22()()a b a b a b +-=-222222
()2()2a b a ab b a b a ab b +=++-=-+;328989898989-=⨯-289(891)
89(891)(891)899088
=⨯-=⨯+⨯-=⨯⨯3223(1)(1)(1)m m m m m m m m m m -=⋅-=-=+-()38989-3m m -6(241)ab a b -+2(1)a a a -+-()()a b m n -+3()x y -1(1)m x x -+(23)(23)x x +-2(43)x +2(2)x y --4(2)(2)m n m n ++29(2)x y -(25)(2)(2)x x x -+-28()a x y --22()()()x y x y x y ++-22(1)(1)a a +-22()()a b a b +-(5)(2)x y a b --(5)()m m n --(12)(12)a b a b ++--(33)(33)a b a b +++-()(31)(31)a b x x ++-(2)(22)a b a b -+-(1)(3)x x ++(3)(2)x x +-(3)(1)x x --+(21)(1)x x -+(4)(23)x x +-()(32)x y x y +-(5)(23)x y x y ++(2)(4)x x x +-(4)(4)a b c a b c -+--2(2)y x y --2(5)(3)a a --(2)(5)x x -+2(2)a b +2(1)x y --。