第2章 matlab数值计算功能
- 格式:ppt
- 大小:1.57 MB
- 文档页数:129
MATLAB数值计算功能下面将详细介绍MATLAB数值计算功能的一些主要方面:1. 矩阵运算和线性代数:MATLAB具有强大的矩阵操作功能,可以直接对矩阵进行加减乘除、求逆矩阵、求特征值等运算。
MATLAB中的线性方程组求解函数(如`linsolve`和`inv`)可以更轻松地解决各种线性代数问题。
2. 数值积分和微分:MATLAB提供了多种数值积分和微分函数,用于求解一元和多元函数的定积分、不定积分、数值微分和数值求导。
例如,可以使用`integral`函数计算函数的定积分,并使用`diff`函数计算函数的导数或`gradient`函数计算梯度。
3. 方程求解:MATLAB提供了一系列函数,用于解决非线性方程和代数方程组。
这些函数包括`fsolve`(用于求解非线性方程),`roots`(用于求解多项式方程的根)和`solve`(用于求解代数方程组)等。
4. 曲线拟合和数据拟合:MATLAB提供了多个函数用于曲线拟合和数据拟合,包括`polyfit`(多项式拟合),`lsqcurvefit`(非线性最小二乘曲线拟合),`interp1`(一维插值)和`griddata`(多维数据插值)等。
这些函数可以帮助用户找到数据之间的模式和关系。
5. 常微分方程(ODE)求解:MATLAB提供了用于求解常微分方程组(ODE)的函数,既可以用传统的数值方法求解,也可以用符号计算求解。
用户可以使用`ode45`、`ode23`或`ode15s`等函数来求解初值问题或边界值问题。
6. 线性最小二乘拟合:MATLAB中的`lsqnonlin`函数可以用于线性最小二乘问题的求解,包括曲线拟合、数据拟合、参数估计等。
用户可以使用该函数来找到使得拟合曲线和观测数据之间残差最小的参数。
7. 数值优化:MATLAB包含一系列优化函数,可以求解常规优化问题、无约束优化问题、约束优化问题等。
用户可以使用函数`fminsearch`、`fminunc`和`fmincon`等来找到函数的最小值或最大值。
MATLAB数值计算功能
MATLAB是一种非常强大的数值计算软件,被广泛应用于科学计算、
工程计算和数据分析等领域。
它提供了丰富的数值计算功能,包括基本的
数学运算、线性代数、数值积分、微分方程求解、优化算法等。
下面将详
细介绍一些常见的数值计算功能。
1.数学运算:
MATLAB提供了丰富的数学函数,可以进行各种基本的算术运算,如
加减乘除、幂运算、取模运算等。
同时,它还提供了一些高级的数学函数,如三角函数、指数函数、对数函数等。
通过这些函数,用户可以进行各种
复杂的数学运算。
2.线性代数:
3.数值积分:
4.微分方程求解:
5.优化算法:
MATLAB提供了各种优化算法,如线性规划、非线性规划、整数规划、二次规划等。
用户可以通过设定目标函数和约束条件,利用MATLAB的优
化函数寻找最佳的解。
这对于优化问题的求解非常有用,如工程设计、生
产调度等。
6.统计分析:
7.数据可视化:
总之,MATLAB的数值计算功能非常丰富,可以满足各种数学计算和数据分析的需求。
它不仅提供了各种基本的数学运算功能,还提供了高级的线性代数、数值积分、微分方程求解、优化算法和统计分析等功能。
同时,其强大的数据可视化功能也是很多用户选择MATLAB作为数值计算工具的重要原因之一。
第二章非线性方程求根习题2-11. 试寻找f(x)= x 3+6.6 x2-29.05 x +22.64=0的实根上下界,及正根所在的区间,区间长度取1。
解:由笛卡儿符号规则知,f(x)=0可能有二个正根或无正根f(-x)= -x 3+6.6 x2+29.05 x +22.64=0即x 3 -6.6 x2-29.05 x -22.64=0f(-x)=0有一个正根,因此,f(x)=0有一个负根。
由定理2-3,f(x)=0的正根上界f(x)=0的负根下界x0123456 6.39f(x)++-+++++正根所在区间为(1, 2),(2, 3)。
2.你能不利用多项式的求导公式,而借鉴于余数定理的思想,构造出P n(x)=a0x n+a1x n-1+...+a n-1x+a n在x0这点上的导数值的算法吗?习题2-21.用二分法求方程x2-x-1=0的正根,要求准确到小数点后第一位a F(a)b F(b)x F(x)0-1211-11-121 1.5-0.251.5-0.2521 1.750.31251.5-0.25 1.750.3125 1.6250.3015625 1.5-0.25 1.6250.015625 1.5625-0.12109375 1.5625-0.12104375 1.6250.015625 1.59375-0.053710937 1.59375-0.053710937 1.6250.015625 1.609375-0.019287109 1.609375-0.019287109 1.6250.015625 1.6171875-0.001892089 1.6171875-0.001892089 1.6250.015625 1.621093750.006851196 1.6171875-0.001892089 1.621093750.006851196 1.6191406250.002175738 1.6171875-0.001892089 1.619140620.002475738 1.6181640630.000290904X*=1.618K=5X*=1.593752.试证明用试位法(比例求根法),求在区间[0, 1]内的一个根必然收敛。
第2章 MATLAB数值计算MATLAB的数学计算=数值计算+符号计算其中符号计算是指使用未定义的符号变量进行运算,而数值计算不允许使用未定义的变量。
2.1 变量和数据2.1.1数据类型数据类型包括:数值型、字符串型、元胞型、结构型等数值型=双精度型、单精度型和整数类整数类=无符号类(uint8、uint16、uint32、uint64)和符号类整数(int8、int16、int32、int64)。
2.1.2数据1. 数据的表达方式▪可以用带小数点的形式直接表示▪用科学计数法▪数值的表示范围是10-309~10309。
以下都是合法的数据表示:-2、5.67、2.56e-56(表示2.56×10-56)、4.68e204(表示4.68×10204)2. 矩阵和数组的概念在MATLAB的运算中,经常要使用标量、向量、矩阵和数组,这几个名称的定义如下:▪标量:是指1×1的矩阵,即为只含一个数的矩阵。
▪向量:是指1×n或n×1的矩阵,即只有一行或者一列的矩阵。
▪矩阵:是一个矩形的数组,即二维数组,其中向量和标量都是矩阵的特例,0×0矩阵为空矩阵([])。
▪数组:是指n维的数组,为矩阵的延伸,其中矩阵和向量都是数组的特例。
3. 复数复数由实部和虚部组成,MATLAB用特殊变量“i”和“j”表示虚数的单位。
复数运算不需要特殊处理,可以直接进行。
复数可以有几种表示:z=a+b*i或z=a+b*jz=a+bi 或z=a+bj(当b 为标量时) z=r*exp(i*theta)● 得出一个复数的实部、虚部、幅值和相角。
a=real(z) %计算实部 b=imag(z) %计算虚部 r=abs(z) %计算幅值 theta=angle(z) %计算相角 说明:复数z 的实部a=r*cos(θ); 复数z 的虚部b=r*sin(θ); 复数z 的幅值22b a r +=;复数z 的相角theta=arctg(b/a),以弧度为单位。
MATLAB2009从入门到精通课程主要内容•第1章MATLAB简介•第2章数值运算•第3章单元数组和结构•第4章字符串•第5章符号运算•第6章MATLAB绘图基础•第7章程序设计•第8章计算方法的MATLAB实现•第9章优化设计•第10章SIMULINK仿真初探第2章数值运算•本章将介绍MATLAB2009的数值计算功能,首先讲述MATLAB中的运算符,然后讲述包括MATLAB的向量、矩阵和数组,并介绍他们之间的运算。
此外,还介绍了一些特殊的矩阵数据结构。
另外,还对MATLAB中的多项式的运算以及多项式拟合作了详细介绍。
2.1 MATLAB中的变量•MATLAB中的变量必须以字母打头,之后可以是任意字母、数字或下划线,变量名区分字母大小写,变量名不超过19个字符,默认变量名为ans。
除此之外还包含一些特殊的变量。
•who命令能够显示变量的信息;•whos命令能够显示变量的详细信息。
•matlab中同样支持复数变量,表示方法为a=m+ni(j)。
当n是表达式时,n与i(j)之间必须要加乘号。
另外也可以用complex(x,y)来产生复数。
•在循环程序段中一般不把i和j作为变量名称,以免生成数据时发生误解。
•>> a=1+2i• a =• 1.0000 + 2.0000i •>> b=1+3*i• b =• 1.0000 + 3.0000i•>> a=sin(2)+cos(2)*i• a =•0.9093 -0.4161i•>> b=sin(2)+cos(3)i•??? b=sin(2)+cos(3)i•|•Error: Unexpected MATLAB expression.•>> x=sin(2);•>> y=cos(3);•>> a=complex(x,y)• a =•0.9093 -0.9900i•>> b=complex(x)• b =•0.9093•>> a=i+2i• a =•0 + 3.0000i •>> b=i+2*i • b =•0 + 3.0000i•>> i=5;•>> a=i+2i• a =• 5.0000 + 2.0000i •>> b=i+2*i• b =•15•>> i=5;•>> a=5+i • a =•10•>> b=5+1*i • b =•10•>> i=5;•>> a=5+2i• a =• 5.0000 + 2.0000i •>> a=5+2*i• a =•152.2 MATLAB的数值运算基础2.3 数组及向量运算•由数学知识可知,数组和矩阵有着不同的概念。