导数与微分练习题答案
- 格式:doc
- 大小:981.50 KB
- 文档页数:12
高数第二章导数与微分知识点总结第一节 导数1.基本概念 (1)定义0000000000()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x yf x dx dx x x x x ==∆→∆→→+∆--∆====∆∆-或注:可导必连续,连续不一定可导.注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数0'000000()()()()()lim lim x x x f x x f x f x f x f x x x x ---∆→→+∆--==∆-. 0'00000()()()()()lim lim x x x f x x f x f x f x f x x x x +++∆→→+∆--==∆-. 0'()f x 存在''00()()f x f x -+⇔=.(3)导数的几何应用曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-.法线方程:0001()()'()y f x x x f x -=--. 2.基本公式(1)'0C = (2)'1()a a x ax -=(3)()'ln xxa a a =(特例()'xxe e =)(4)1(log )'(0,1)ln a x a a x a=>≠ (5)(sin )'cos x x = (6)(cos )'sin x x =-(7)2(tan )'sec x x = (8)2(cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =-(11)2(arcsin )'1x x=- (12)2(arccos )'1x x=-(13)21(arctan )'1x x =+ (14)21(arccot )'1x x =-+ (152222[ln()]'x x a x a++=+3.函数的求导法则 (1)四则运算的求导法则()'''u v u v ±=± ()'''uv u v uv =+ 2''()'u u v uv v v-= (2)复合函数求导法则--链式法则设(),()y f u u x ϕ==,则(())y f x ϕ=的导数为:[(())]''(())'()f x f x x ϕϕϕ=.例5 求函数21sin xy e=的导数.(3)反函数的求导法则设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则11'()'()'(())g y f x f g y ==. (4)隐函数求导设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法'''x yF y F =-.(5)对数求导法:适用于若干因子连乘及幂指函数 4.高阶导数二阶以上的导数为高阶导数.常用的高阶求导公式: (1)()()ln (0)x n x n a a a a => 特别地,(n)()x x e e =(2) ()(sin )sin()2n n kx k kx n π=+(3)()(cos )cos()2n n kx k kx n π=+(4)()1(1)![ln(1)](1)(1)n n nn x x --+=-+ (5)()()(1)(2)(1)k n k n x k k k k n x -=---+(6)莱布尼茨公式:()()()()nn k n k k n k uv C u v -==∑,其中(0)(0),u u v v == 第二节 微分1.定义背景:函数的增量()()y f x x f x ∆=+∆-.定义:如果函数的增量y ∆可表示为()y A x o x ∆=∆+∆,其中A 是与x ∆无关的常数,则称函数()y f x =在点0x 可微,并且称A x ∆为x ∆的微分,记作dy ,则dy A x =∆.注:,y dy x dx ∆≠∆= 2.可导与可微的关系一元函数()f x 在点0x 可微,微分为dy A x =∆⇔函数()f x 在0x 可导,且0'()A f x =. 3.微分的几何意义 4.微分的计算(1)基本微分公式'()dy f x dx =. (2)微分运算法则 ②四则运算法则()d u v du dv ±=± duv vdu udv =+ 2()u vdu udvd v v-= ②一阶微分形式不变若u 为自变量,(),'()'()y f u dy f u u f u du ==∆=;若u 为中间变量,()y f u =,()u x ϕ=,'()'()'()dy f u x dx f u du ϕ==.练习题1、求下列函数的导数。
微积分练习题带答案微积分是数学的分支之一,它研究的是函数的变化规律。
在微积分中,经常会出现各种各样的练习题,这些练习题有助于我们加深对微积分概念和原理的理解。
在这篇文章中,我们将分享一些微积分练习题,并附带答案,希望对你的学习有所帮助。
1. 求函数f(x) = 2x^3 - x^2 + 3x - 5的导数。
答案:f'(x) = 6x^2 - 2x + 32. 求函数g(x) = e^x * sin(x)的导数。
答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2)的导数。
答案:h'(x) = 2/x4. 求函数i(x) = ∫(0到x) t^2 dt的导数。
答案:i'(x) = x^25. 求函数j(x) = ∫(x到1) t^2 dt的导数。
答案:j'(x) = -x^26. 求函数k(x) = ∫(0到x) e^t * sin(t) dt的导数。
答案:k'(x) = e^x * sin(x)7. 求函数l(x) = e^(-x)的不定积分。
答案:∫ e^(-x) dx = -e^(-x) + C (C为常数)8. 求函数m(x) = 1/(x^2+1)的不定积分。
答案:∫ 1/(x^2+1) dx = arctan(x) + C (C为常数)9. 求函数n(x) = 2x * cos(x^2)的不定积分。
答案:∫ 2x * cos(x^2) dx = sin(x^2) + C (C为常数)10. 求函数o(x) = ∫(1到x) e^(t^2) dt的原函数。
答案:o(x) = ∫(1到x) e^(t^2) dt + C (C为常数)以上是一些微积分练习题及其答案。
通过解答这些题目,我们可以巩固对微积分概念和原理的理解,并提升解题能力。
微积分是应用广泛的数学工具,在物理、工程、经济等领域都有重要的应用,掌握微积分对于进一步深入学习这些领域十分必要。
第三章 导数与微分同步练习 一、填空 1、若[]1cos 1)0()(lim=--→xf x f x x ,则)0(f '= 。
2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。
3、若)(x e f y -=,且x x x f ln )(=',则1=x dxdy = 。
4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。
5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。
6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。
7、已知x x y ln =,则)10(y = 。
8、已知2arcsin )(),2323(x x f x x f y ='+-=,则:0=x dxdy = 。
9、设1111ln22++-+=x x y ,则y '= 。
10、设方程y y x =确定y 是x 的函数,则dy = 。
11、已知()xke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dyxd 。
二、选择1、设f 可微,则=---→1)1()2(lim1x f x f x ( )A 、)1(-'-x fB 、)1(-'fC 、)1(f '-D 、)2(f ' 2、若2)(0-='x f ,则=--→)()2(lim000x f x x f xx ( )A 、41 B 、41- C 、1 D 、-1 3、设⎪⎩⎪⎨⎧=≠=0001arctan )(x x xx x f ,则)(x f 在0=x 处( )A 、不连续B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 32+= B、x x y sin =C、21x x y +=D、x x y cos += 5、设)(x f 为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=( ) A、在0=x 处极限不存在 B、有跳跃间断点0=x C、在0=x 处右极限不存在 D、有可去间断点0=x6、设函数)(),(21x y x y 的弹性分别为)0(,≠b b a ,则函数)()(21x y x y y =的弹性为( ) A、b a - B、b aC、2112y by ay - D、以上都不对 7、已知)(x f e y =,则y ''=( )A、)(x f e B、)]()([)(x f x f e x f ''+' C、)()(x f e x f '' D、)}()]({[2)(x f x f e x f ''+'8、设函数⎩⎨⎧≤+>+=11)ln()(2x bx x x a x f 在1=x 处可导。
第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆02.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f '3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数()u f y =是可导的,且2x u =,则=dxdy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6.()2-=x x f 在点2=x 处的导数是( )A .1B .0C .-1D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( )A .8B .12C .-6D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f eB .()()x f e x f ''C .()()()[]x f x f e x f '''D .()()[](){}x f x f e x f ''+'2 9.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数12.已知()()[]x g f x F =,在0x x =处可导,则( )A .()x f ,()x g 都必须可导B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( ) A .211x +- B .211x + C .221x x +- D . 221x x + 14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( ) A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim 。
掌握函数的导数与微分练习题函数的导数与微分是微积分的重要内容,对于学习者而言,掌握这一部分知识对于提高解题能力和理解数学概念非常重要。
本文将通过练习题的方式,帮助读者巩固对函数的导数与微分的理解,并培养解题的思维能力。
1. 求解下列函数的导数:(1) f(x) = 3x² - 2x + 1解答:f'(x) = 6x - 2(2) g(x) = 5sin(x) + 2cos(x)解答:g'(x) = 5cos(x) - 2sin(x)2. 对下列函数进行微分:(1) h(x) = x³ - 4x² + 2x解答:dh(x) = 3x² - 8x + 2(2) k(x) = 2e^x + 3ln(x)解答:dk(x) = 2e^x + 3/x3. 求解给定函数在指定点的导数:(1) y = 2x³,求导数在x=2处的值。
解答:y' = 6x²y'(2) = 6(2)² = 24(2) y = x^4 - 2x²,求导数在x=-1处的值。
解答:y' = 4x³ - 4xy'(-1) = 4(-1)³ - 4(-1) = -44. 求解给定函数的极值点:(1) y = x³ - 12x² + 36x解答:为求取极值点,先求导数:y' = 3x² - 24x + 36令y' = 0,求解方程得:x = 2 或 x = 6将以上两个x值代入原函数求y值得到极值点:当x=2时,y = 2³ - 12(2)² + 36(2) = 16 - 48 + 72 = 40当x=6时,y = 6³ - 12(6)² + 36(6) = 216 - 432 + 216 = 0因此,函数y = x³ - 12x² + 36x在x = 2处有极小值,极小值为40,在x = 6处有极大值,极大值为0。
微积分变态题及答案导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
以下是导数练习题及答案,欢迎阅读。
一、选择题a.在该点的函数值的增量与自变量的增量的比b.一个函数c.一个常数,不是变数d.函数在这一点到它附近一点之间的平均变化率[答案] c[解析] 由定义,f′(x0)是当δx无限趋近于0时,δyδx无限趋近的常数,故应选c.[答案] b[解析] ∵s(t)=3t2,t0=3,∴δs=s(t0+δt)-s(t0)=3(3+δt)2-=18δt+3(δt)2∴δsδt=18+3δt.当δt→0时,δsδt→18,故高文瑞b.[答案] b[解析] ∵f(x)=x2,x=1,∴δy=f(1+δx)2-f(1)=(1+δx)2-1=2δx+(δx)2∴δyδx=2+δx当δx→0时,δyδx→2∴f′(1)=2,故高文瑞b.[答案] d[解析] ∵δsδt=4(5+δt)2-3-4×52+3δt=40+4δt,∴s′(5)=limδt→0 δsδt=limδt→0 (40+4δt)=40.故应选d.a.δy=f(x0+δx)-f(x0)叫作函数值的增量b.δyδx=f(x0+δx)-f(x0)δx叫做函数在x0到x0+δx之间的平均变化率 c.f(x)在x0处的导数记作y′d.f(x)在x0处的导数记为f′(x0)[答案] c[解析] 由导数的定义可知c错误.故应选c.a.f′(x0)=f(x0+δx)-f(x0)b.f′(x0)=limδx→0[f(x0+δx)-f(x0)]c.f′(x0)=f(x0+δx)-f(x0)δxd.f′(x0)=limδx→0 f(x0+δx)-f(x0)δx[答案] d[解析] 由导数的定义知d正确.故应选d.[答案] d[解析] ∵δyδx=a(2+δx)2+b(2+δx)+c-4a-2b-cδx=4a+b+aδx,∴y′|x=2=limδx→0 δyδx=limδx→0 (4a+b+aδx)=4a+b.故应选d. [答案] d[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选d.[答案] b[解析] ∵δsδt=3(0+δt)-(0+δt)2δt=3-δt,∴s′(0)=limδt→0 δsδt=3.故高文瑞b.[答案] c[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limδx→0f(x0-δx)-f(x0)δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-[解析] limδx→0 f(x0-δx)-f(x0)δx=-limδx→0 f(x0-δx)-f(x0)-δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limδx→0 f(x0+δx)-f(x0)δx=-12f′(x0)=-.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵δy=1+δx+11+δx-1+11=δx-1+1δx+1=(δx)2δx+1,∴δyδx=δxδx+1.∴y′|x=1=limδx→0 δxδx+1=0.13.未知函数f(x)=ax+4,若f′(2)=2,则a等同于______.[答案] 2[解析] ∵δyδx=a(2+δx)+4-2a-4δx=a,∴f′(1)=limδx→0 δyδx=a.∴a=2.14.未知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值就是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可以化成limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、答疑题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义存有f′(x0)=limδx→0 f(x0+δx)-f(x0)δx=limδx→0 (x0+δx)2-x20δx=limδx→0 δx(2x0+δx)δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 加速度公式为s=12at2∵δs=12a(t0+δt)2-12at20=at0δt+12a(δt)2∴δsδt=at0+12aδt,∴limδt→0 δsδt=limδt→0 at0+12aδt=at0,未知a=5.0×m/s2,t0=1.6×10-3s,∴at0=m/s.所以枪弹箭出来枪口时的瞬时速度为m/s.17.在曲线y=f(x)=x2+3的图象上取一点p(1,4)及附近一点(1+δx,4+δy),求(1)δyδx (2)f′(1).[解析] (1)δyδx=f(1+δx)-f(1)δx=(1+δx)2+3-12-3δx=2+δx.(2)f′(1)=limδx→0 f(1+δx)-f(1)δx=limδx→0 (2+δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处为与否存有导数?若存有,谋出,若没,表明理由.δy=f(0+δx)-f(0)=f(δx)∴limx→0+δyδx=limδx→0+ (1+δx)=1,limδx→0-δyδx=limδx→0- (-1-δx)=-1,∵limδx→0-δyδx≠limδx→0+δyδx,∴δx→0时,δyδx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。
1.求导:(1)函数 2cos x x 的导数为(2)y =(x +2);(3)y =(1+ x )2(4)y =3x 2+ ;(5)y =x 2(2x -) . (6)已知y =3),则y ′=1=.2.设1ln )(2+=x x f ,则=)2('f ( ).(A).54(B).52 (C).51 (D).53 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ⋅的值为( ) (A).4 (B).5 (C).-6 (D).不确定34.()34([0,1])1()1()()0()12f x x x x A B C D =-∈-函数的最大值是( )5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ).(A).3V (B).32V (C).34V (D).32V6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18(B).338(C).316 (D).167.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为61,则=a 。
8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和)1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线)(x f y =的切线,求此切线方程.10、已知f (x )32,在x =1与x =-2时,都取得极值。
⑴求a ,b 的值;⑵若x ∈[-3,2]都有f (x )>112c -恒成立,求c 的取值范围。
第三章微分中值定理与导数的应用答案§3.1 微分中值定理1. 填空题(1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是ππ-4.(2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中.2. 选择题 (1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ).A . 必要条件B .充分条件C . 充要条件D . 既非充分也非必要条件 (2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ).A . xe xf =)( B. ||)(x x f = C. 21)(x x f -= D. ⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( B ).A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξB . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间C . 211221)()()()(x x f x x x f x f <<'-=-ξξD . 211212)()()()(x x f x x x f x f <<'-=-ξξ3.证明恒等式:)(2cot arctan ∞<<-∞=+x x arc x π.证明: 令x arc x x f cot arctan )(+=,则01111)(22=+-+='x x x f ,所以)(x f 为一常数.设c x f =)(,又因为(1)2f π=,故 )(2c o t a r c t a n ∞<<-∞=+x x arc x π.4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中12a x x <<3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf .证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上 符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf .5. 证明方程062132=+++x x x 有且仅有一个实根. 证明:设621)(32x x x x f +++=, 则031)2(,01)0(<-=->=f f ,根据零点存在定理至少存在一个)0,2(-∈ξ, 使得0)(=ξf .另一方面,假设有),(,21+∞-∞∈x x ,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在),(21x x ∈η使0)(='ηf ,即02112=++ηη,这与02112>++ηη矛盾.故方程062132=+++x x x 只有一个实根. 6. 设函数)(x f 的导函数)(x f '在],[b a 上连续,且0)(,0)(,0)(<><b f c f a f ,其中c 是介于b a ,之间的一个实数. 证明: 存在),(b a ∈ξ, 使0)(='ξf 成立.证明: 由于)(x f 在],[b a 内可导,从而)(x f 在闭区间],[b a 内连续,在开区间(,)a b 内可导.又因为()0,()0f a f c <>,根据零点存在定理,必存在点1(,)a c ξ∈,使得0)(1=ξf . 同理,存在点2(,)c b ξ∈,使得0)(2=ξf .因此()f x 在[]21,ξξ上满足罗尔定理的条件,故存在),(b a ∈ξ, 使0)(='ξf 成立.7. 设函数)(x f 在]1,0[上连续, 在)1,0(内可导. 试证:至少存在一点(0,1)ξ∈, 使证明: 只需令2)(x x g =,利用柯西中值定理即可证明. 8.证明下列不等式(1)当π<<x 0时,x xxcos sin >. 证明: 设t t t t f cos sin )(-=,函数)(t f 在区间],0[x 上满足拉格朗日中值定理的条件,且t t t f sin )(=', 故'()(0)()(0), 0f x f f x x ξξ-=-<<, 即0sin cos sin >=-ξξx x x x (π<<x 0)因此, 当π<<x 0时,x xxcos sin >.(2)当 0>>b a 时,bba b a a b a -<<-ln . 证明:设x x f ln )(=,则函数在区间[,]b a 上满足拉格朗日中值定理得条件,有因为'1()f x x=,所以1ln ()a a b b ξ=-,又因为b a ξ<<,所以111a b ξ<<,从而bb a b a a b a -<<-ln . §3.1 洛毕达法则1. 填空题 (1) =→xxx 3cos 5cos lim2π35-(2)=++∞→xx x arctan )11ln(lim0 (3))tan 11(lim 20x x x x -→=31(4)0lim(sin )xx x +→=1 2.选择题(1)下列各式运用洛必达法则正确的是( B ) A . ==∞→∞→nn n n n en ln limlim11lim=∞→nn eB . =-+→x x x x x sin sin lim0 ∞=-+→xxx cos 1cos 1lim 0C . xx x x x x x x x cos 1cos1sin 2lim sin 1sin lim020-=→→不存在 D . x x e x 0lim →=11lim 0=→x x e(2) 在以下各式中,极限存在,但不能用洛必达法则计算的是( C )A . x x x sin lim 20→B . x x x tan 0)1(lim +→C . x x x x sin lim +∞→D . x nx e x +∞→lim3. 求下列极限(1)nn mm a x a x a x --→lim .解: n n m m a x a x a x --→lim =nm n m a x a nm nx mx ---→=11lim. (2)20222lim x x x x -+-→.解: 20222lim xx x x -+-→=x x x x 22ln 22ln 2lim 0-→-=2)2(ln 2)2(ln 2lim 220x x x -→+=2)2(ln . (3)30tan sin lim x xx x -→ .解:30tan sin lim x x x x -→=32030)21(lim )1(cos tan lim x x x x x x x x -⋅=-→→=21-. (4) 20)(arcsin 1sin lim x x e x x --→.解:20)(arcsin 1sin lim x x e x x --→=201sin lim x x e x x --→=212sin lim 2cos lim00=+=-→→x e x x e x x x x . (5)x x x x xx ln 1lim 1+--→.解: )ln 1()(x x x xx +=', x x x x xx ln 1lim1+--→=xx x xx 11)ln 1(1lim 1+-+-→=22111)ln 1(limx x x x x xx x --+-→2])ln 1([lim 1221=++=++→x x x x x x .(6) )111(lim 0--→x x e x .解:2121lim )1(1lim )111(lim 22000==---=--→→→xxe x x e e x x x xx x x (7) xx xtan 0)1(lim +→ .解:1)1(lim 202000sin limcsc 1lim cot ln limln tan lim tan 0=====+→+→+→+→+----→x xxx x x xx x x x x x x eeeex.(8))31ln()21ln(lim xxx +++∞→.解: )31ln()21ln(lim x x x +++∞→=2ln 23ln(12)12lim ln(12)3lim 3lim1x x x x x x x x x →+∞→+∞→+∞+++== =xxx 212lim 2ln 3++∞→=2ln 3.(9) n n n ∞→l i m .解: 因为1lim1limln 1lim===∞→∞→∞→xxxxx x x eex ,所以nn n ∞→lim=1.§3.3 泰勒公式 1.按1-x 的幂展开多项式43)(24++=x x x f .解: 10)1(,64)(3='+='f x x x f ,同理得24)1(,24)1(,18)1()4(=='''=''f f f ,且0)()5(=x f .由泰勒公式得:43)(24++=x x x f =432)1()1(4)1(9)1(108-+-+-+-+x x x x .2. 求函数xe x xf 2)(=的带有佩亚诺型余项的n 阶麦克劳林公式.解:因为)(!!2!112n nxx o n x x x e +++++= , 所以xe x xf 2)(==2222[1()]1!2!(2)!n n x x x x o x n --+++++-=)()!2(!2!1432n n x o n x x x x +-++++ . 3. 求一个二次多项式)(x p ,使得)()(22x x p x ο+=. 解:设xx f 2)(=,则2ln 2)(x x f =',2)2(ln 2)(x x f =''. 2)2(ln )0(,2ln )0(,1)0(=''='=f f f ,故 )(!2)2(ln !12ln 12222x x x xο+++=, 则 222)2(ln 2ln 1)(x x x p ++=为所求. 4.利用泰勒公式求极限)]11ln([lim 2xx x x +-∞→.解:因为 ))1((3)1(2)1(1)11ln(332xo x x x x ++-=+,所以 )11ln(2x x x +-=)])1((3)1(2)1(1[3322x o x x x x x ++--=)1(3121x o x +-,故 21)]1(3121[lim )]11ln([lim 2=+-=+-∞→∞→x o x x x x x x .5. 设)(x f 有三阶导数,且0)1(,0)(lim 20==→f x x f x ,证明在)1,0(内存在一点ξ,使0)(='''ξf .证明: 因为 0)(lim 20=→x x f x ,所以0)0(,0)0(,0)0(=''='=f f f .由麦克劳林公式得:332!3)(!3)(!2)0()0()0()(x f x f x f x f f x f ξξ'''='''+''+'+= (ξ介于0与x 之间),因此 !3)()1(ξf f '''=,由于0)1(=f ,故0)(='''ξf .§3.4函数的单调性与曲线的凹凸性1. 填空题(1) 函数)ln(422x x y -=的单调增加区间是),21()0,21(+∞-,单调减少区间)21,0()21,( --∞.(2)若函数)(x f 二阶导数存在,且0)0(,0)(=>''f x f ,则xx f x F )()(=在+∞<<x 0上是单调 增加 .(3)函数12+=ax y 在),0(∞+内单调增加,则a 0>.(4)若点(1,3)为曲线23bx ax y +=的拐点,则=a 23-,=b 29,曲线的凹区间为)1,(-∞,凸区间为),1(∞.2. 单项选择题(1)下列函数中,( A )在指定区间内是单调减少的函数. A . xy -=2),(∞+-∞ B . xy e = )0,(-∞C . x y ln = ),0(∞+D . x y sin = ),0(π(2)设)12)(1()(+-='x x x f ,则在区间)1,21(内( B ). A . )(x f y =单调增加,曲线)(x f y =为凹的 B. )(x f y = 单调减少,曲线)(x f y =为凹的 C. )(x f y =单调减少,曲线)(x f y =为凸的 D.)(x f y =单调增加,曲线)(x f y =为凸的(3))(x f 在),(+∞-∞内可导, 且21,x x ∀,当 21x x >时, )()(21x f x f >,则( D ) A. 任意0)(,>'x f x B. 任意0)(,≤-'x f xC. )(x f -单调增D. )(x f --单调增(4)设函数)(x f 在]1,0[上二阶导数大于0, 则下列关系式成立的是( B ) A. )0()1()0()1(f f f f ->'>' B. )0()0()1()1(f f f f '>->' C. )0()1()0()1(f f f f '>'>- D. )0()1()0()1(f f f f '>->' 2. 求下列函数的单调区间 (1)1--=x e y x.解:1-='x e y ,当0>x 时,0>'y ,所以函数在区间),0[+∞为单调增加; 当0<x 时,0<'y ,所以函数在区间]0,(-∞为单调减少.(2)(2y x =-解:)1(31031-='-x x y , 当1>x ,或0<x 时,0>'y ,所以函数在区间),1[]0,(+∞-∞ 为单调增加; 当01x <<时,0<'y ,所以函数在区间]1,0[为单调减少.(3))1ln(2x x y ++=解: 011111222>+=++++='xxx x x y ,故函数在),(+∞-∞单调增加.3. 证明下列不等式(1)证明: 对任意实数a 和b , 成立不等式||1||||1||||1||b b a a b a b a +++≤+++.证明:令xxx f +=1)(,则0)1(1)(2>+='x x f , )(x f 在) , 0 [∞+内单调增加. 于是, 由 |||| ||b a b a +≤+, 就有 ) |||| () || (b a f b a f +≤+, 即(2)当1>x 时, 1)1(2ln +->x x x .证明:设)1(2ln )1()(--+=x x x x f , 11ln )('-+=xx x f ,由于当1x >时,211()0f x x x''=->, 因此)(x f '在),1[+∞单调递增, 当 1x >时, 0)1()(='>'f x f , 故)(x f 在),1[+∞单调递增, 当 1>x 时, 有0)1()(=>f x f .故当1>x 时,0)1(2ln )1()(>--+=x x x x f ,因此1)1(2ln +->x x x .(3)当 0>x 时,6sin 3x x x ->.证明:设6sin )(3x x x x f +-=, 021cos )(2=+-='x x x f ,当0>x ,()sin 0f x x x ''=->,所以)(x f '在),0[+∞单调递增, 当 0>x 时, 0)0()(='>'f x f , 故)(x f 在),0[+∞单调递增, 从而当 0>x 时, 有0)0()(=>f x f . 因此当 0>x 时,6sin 3x x x ->.4. 讨论方程k x x =-sin 2π(其中k 为常数)在)2,0(π内有几个实根. 解:设()sin ,2x x x k πϕ=-- 则()x ϕ在]2,0[π连续, 且k k -=-=)2(,)0(πϕϕ, 由()1cos 02x x πϕ'=-=,得2arccos x π=为)2,0(π内的唯一驻点.()x ϕ在2[0,arccos ]π上单调减少,在2[arccos ,]2ππ上单调增加.故k ---=242arccos )2(arccos 2πππϕ为极小值,因此)(x ϕ在]2,0[π的最大值是k -,最小值是k ---242arccos 2ππ.(1) 当,0≥k 或242arccos 2--<ππk 时,方程在)2,0(π内无实根;(2) 当0242arccos 2<<--k ππ时,有两个实根;(3) 当242arccos2--=ππk 时,有唯一实根.5. 试确定曲线d cx bx ax y +++=23中的a 、b 、c 、d ,使得2-=x 处曲线有水平切线,)10,1(-为拐点,且点)44,2(-在曲线上.解: c bx ax y ++='232,b ax y 26+='',所以 解得: 16,24,3,1=-=-==d c b a .6.求下列函数图形的拐点及凹或凸的区间(1)12-+=x xx y 解: 222)1(11-+-='x x y , 323)1(62-+=''x xx y , 令0=''y ,得0=x ,当1x =±时y ''不存在.当01<<-x 或1>x 时, 0>''y ,当1-<x 或10<<x 时, 0<''y .故曲线12-+=x xx y 在)1,0()1,( --∞上是凸的, 在区间和),1()0,1(+∞- 上是凹的,曲线的拐点为)0,0(.(2)32)52(x x y -=拐点及凹或凸的区间解:y '=,y ''=. 当0=x 时,y y ''',不存在;当21-=x 时,0=''y .故曲线在)21,(--∞上是凸的, 在),21(+∞-上是凹的,)23,21(3--是曲线的拐点,7.利用凹凸性证明: 当π<<x 0时, πx x >2sin 证明:令πx x x f -=2sin )(, 则π12cos 21)(-='x x f , 2sin 41)(xx f -=''.当π<<x 0时, 0)(<''x f , 故函数πxx x f -=2sin )(的图形在),0(π上是凸的, 从而曲线)(x f y =在线段AB (其中)(,()),0(,0(ππf B f A )的上方,又0)()0(==πf f , 因此0)(>x f ,即πx x >2sin .§3.5 函数的极值与最大值最小值1. 填空题(1)函数xx y 2=取极小值的点是1ln 2x =-. (2) 函数31232)1()(--=x x x f 在区间]2,0[上的最大值为322)21(=f ,最小值为(0)1f =- .2.选择题(1) 设)(x f 在),(+∞-∞内有二阶导数,0)(0='x f ,问)(x f 还要满足以下哪个条件,则)(0x f 必是)(x f 的最大值?( C )A . 0x x =是)(x f 的唯一驻点B . 0x x =是)(x f 的极大值点C . )(x f ''在),(+∞-∞内恒为负D . )(x f ''不为零 (2) 已知)(x f 对任意)(x f y =满足xex f x x f x --='+''1)]([3)(2,若00()0 (0)f x x '=≠,则( B )A. )(0x f 为)(x f 的极大值B. )(0x f 为)(x f 的极小值C.))(,00x f x (为拐点 D. )(0x f 不是极值点, ))(,00x f x (不是拐点 (3)若)(x f 在0x 至少二阶可导, 且1)()()(lim2000-=--→x x x f x f x x ,则函数)(x f 在0x 处( A ) A . 取得极大值 B . 取得极小值 C . 无极值 D . 不一定有极值 3. 求下列函数的极值 (1) ()3/223x x x f -=. 解:由13()10f x x-'=-=,得1=x .4''31(),(1)03f x x f -''=>,所以函数在1=x 点取得极小值.(2)xx x f 1)(=.解:定义域为),0(+∞,11ln 21, (1ln )x xxy ey xx x'==-, 令0y '=得驻点x e =,当(0,)x e ∈时,0y '>,当(,)x e ∈+∞时,0y '<.因此ee e y 1)(=为极大值.4. 求14123223+-+=x x x y 的在]4,3[-上的最大值与最小值. 解:(3)23, (4)132y y -==.由266120y x x '=+-=,得1=x , 2-=x .而34)2(,7)1(=-=y y , 所以最大值为132,最小值为7.5. 在半径为R 的球内作一个内接圆锥体,问此圆锥体的高、底半径为何值时,其体积V 最大. 解:设圆锥体的高为h , 底半径为r ,故圆锥体的体积为h r V 2 31π=, 由于222)(R r R h =+-,因此)2( 31)(2h Rh h h V -=π )20(R h <<, 由0)34( 31)(2=-='h Rh h V π,得34R h =,此时R r 322=. 由于内接锥体体积的最大值一定存在,且在)2,0(R 的内部取得. 现在0)(='h V 在)2,0(R 内只有一个根,故当34Rh =, R r 322=时, 内接锥体体积的最大. 6. 工厂C 与铁路线的垂直距离AC 为20km , A 点到火车站B 的距离为100km . 欲修一条从工厂到铁路的公路CD , 已知铁路与公路每公里运费之比为3:5,为了使火车站B 与工厂C 间的运费最省, 问D 点应选在何处? 解: 设AD x =, B 与C 间的运费为y , 则)100(340052x k x k y -++= (1000≤≤x ), 其中k 是某一正数. 由 0)34005(2=-+='xx k y , 得15=x .由于k y x 400|0==, k y x 380|15==, 2100511500|+==x y , 其中以k y x 380|15==为最小, 因此当AD =15=x km 时, 总运费为最省.7. 宽为b 的运河垂直地流向宽为a 的运河. 设河岸是直的,问木料从一条运河流到另一条运河去,其长度最长为多少?解: 问题转化为求过点C 的线段AB 的最大值. 设木料的长度为l , y CB x AC ==,,木料与河岸的夹角为t ,则l y x =+,且t by t a x sin ,cos ==, t b t a l sin cos += )2,0(π∈t .则ttb t t a l 22sin cos cos sin -=', 由0='l 得3tan abt =, 此时233232)(b a l +=, 故木料最长为233232)(b a l +=.§3.6 函数图形的描绘1.求23)1(+=x x y 的渐近线. 解:由 -∞=+-→231)1(limx x x ,所以1x =为曲线)(x f y =的铅直渐近线. 因为 2)1(lim )(lim ,1)1(limlim 2322-=-+=-=+=∞→∞→∞→∞→x x x x y x x x y x x x x 所以2-=x y 为曲线)(x f y =的斜渐近线.2.作函数23)1(22--=x x y 的图形。
导数练习题及答案导数练习题及答案导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
以下是导数练习题及答案,欢迎阅读。
一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的`瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx=4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。
第二章导数与微分(A)1 .设函数y 二f x ,当自变量x 由x 0改变到x 0 * e x 时,相应函数的改变量 y =()A. f x 0 : =x B . fx^_x C . f x 0 : =x f x 0D . f x 0 x2. 设f(x )在 x 处可,则曲区弋ix °)= () A. - f x oB . f -X 。
C . f x oD . 2f x o3 .函数f x 在点x 0连续,是f x 在点x 0可导的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数y = f u 是可导的,且u =x 2,则dy=()dxA. f x 2B . xf x 2C . 2xf x 2D . x 2f x 25. 若函数f x 在点a 连续,则f x 在点a () A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6 . f(x)=x-2在点x=2处的导数是() A . 1 B . 0 C . -1 D .不存在 7.曲线y =2x 3 -5x 2 • 4x -5在点2,-1处切线斜率等于()A . 8B . 12C . -6D . 68. 设y=e f 卜且f(x 二阶可导,则y"=() A . e f (x ) B . e f *)f "(x ) C . e f (x )〔f "(x f "(x jD . e f (x X 【f *(x 9 + f*(x 》e axx < 09. 若f"〔b+sin2x, x,0在x=°处可导'则a,b的值应为()717118.210. 若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F X 二 f X g X , G X A f X — g X 在 x ° 处()A .一定都没有导数B . 一定都有导数C .恰有一个有导数D .至少一个有导数11. 函数fx 与g X 在X o 处都没有导数,则Fx 二fx^gx , G x i= f x -g x 在 X o 处()A .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12. 已知F x 二f !g x 1,在x 二X 。
第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆0 2.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim( )A .()0x f '-B .()0x f -'C .()0x f 'D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则=dxdy( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){}x f x f e x f ''+'29.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( )A .2=a ,1=bB . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数 12.已知()()[]x g f x F =,在0x x =处可导,则( ) A .()x f ,()x g 都必须可导 B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( )A .211x +-B .211x + C .221x x +- D . 221x x +14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( )A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在 16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim。
经济数学一元微积分第四章导数及应用第一节微分中值定理本次练习有4题,你已做4题,已提交4题,其中答对4题。
当前页有4题,你已做4题,已提交4题,其中答对4题。
1.不用求出函数的导数,分析方程有几个实根?()A.0B.1C.2D.3答题:A.B.C.D.(已提交)参考答案:D问题解析:2.=?()A.0B.1C.-1D.2答题:A.B.C.D.(已提交)参考答案:B问题解析:3.=?,()A.0B.1C.-1D.2答题:A.B.C.D.(已提交)参考答案:A问题解析:4.求不能使用洛必塔法则。
()答题:对.错.(已提交)参考答案:√问题解析:元微积分·第四章导数的应用·第二节函数单调性、极值和渐近线本次练习有4题,你已做4题,已提交4题,其中答对4题。
当前页有4题,你已做4题,已提交4题,其中答对4题。
1.下面关于函数的描述,那两句话是正确的?()上单调递减上单调递增上单调递减上单调递增A.函数在B.函数在C.函数在D.函数在答题:A.B.C.D.(已提交)参考答案:AC问题解析:2.在上是单调递增的。
()答题:对.错.(已提交)参考答案:√问题解析:3.函数的极大值就是函数的最大值。
()答题:对.错.(已提交)参考答案:某问题解析:4.如果函数在点。
()处二阶可导,且=0,若,则在点处取得极小值答题:对.错.(已提交)参考答案:√问题解析:一元微积分·第四章导数的应用·第三节经济中的优化模型本次练习有2题,你已做2题,已提交2题,其中答对2题。
当前页有2题,你已做2题,已提交2题,其中答对2题。
1.某厂生产某产品,每批生产台得费用为,得到的收入为,则利润为?()A.B.C.D.答题:A.B.C.D.(已提交)参考答案:A问题解析:2.在上题中,请问生产多少台才能使得利润最大?()A.220B.230C.240D.250答题:A.B.C.D.(已提交)参考答案:D问题解析:一元微积分·第四章导数的应用·第四节函数的作图本次练习有1题,你已做1题,已提交1题,其中答对1题。
数学分析课本(华师大三版)-习题及答案05第五章 导数和微分习题§5.1导数的概念1、已知直线运动方程为2510t t s +=,分别令01.0,1.0,1=∆t ,求从t=4至t t ∆+=4这一段时间内运动的平均速度及时的瞬时速度。
2、等速旋转的角速度等于旋转角与对应时间的比,试由此给出变速旋转的角速度的定义。
3、设4)(,0)(0='=x f x f ,试求极限xx x f x ∆+∆→∆)(lim 00。
4、设⎩⎨⎧<+≥=,3,,3,)(2x b ax x x x f 试确定的a,b 值,使f在x=3处可导。
5、试确定曲线y x ln =上哪些点的切线平行于下列直线:(1);1-=x y (2)32-=x y6、求下列曲线在指定点P 的切线方程与法线方程:(1)).1,0(,cos )2();1,2(,42p x y p x y ==7、求下列函数的导函数: ⎩⎨⎧<≥+==,0,1,0,1)()2(;)()1(3x x x x f xx f8、设函数⎪⎩⎪⎨⎧=≠=,0,0,0,1sin )(x x xx x f m(m 为正整数),试问:(1)m 等于何值时,f 在x=0连续;(2)m 等于何值时,f 在x=0可导; (3)m 等于何值时,f '在x=0连续。
9、求下列函数的稳定点:(1)f(x)=sinx-cosx ;(2)x x x f ln )(-=。
10、设函数f 在点0x 存在左右导数,试证明f 在点0x 连续。
11、设0)0()0(='=g g ,⎪⎩⎪⎨⎧=≠=,0,0,0,1sin )()(x x xx g x f求)0(f '。
12、设f 是定义在R 上的函数,而且对任何Rxx ∈21,,都有)()()(2121x f x f x x f =+。
若1)0(='f ,证明对任何R x ∈,都有)()(x f x f ='。
高等数学练习题第二章导数与微分第一节导数观点一.填空题1. 若f (x0)存在,则lim f (x0x)f (x)= f ( x0)x 0x2. 若f (x0)存在,lim f (xh) f ( xh)=2 f ( x0).h 0hlim0f ( x3 x) f ( x)=3 f ( x0).x x3. 设f ( x0)2x 1, 则lim4x 0 f ( x0 2 x) f ( x0 ) )4.已知物体的运动规律为 s t t 2(米),则物体在t 2秒时的刹时速度为 5(米/秒)5. 曲线y cosx 上点(,1)处的切线方程为 3 x 2 y 10 ,法线323方程为2x3y3202 36.用箭头 ? 或? 表示在一点处函数极限存在、连续、可导、可微之间的关系,可微可导|连续极限存在。
二、选择题1.设 f (0) 0 ,且 f ( 0) 存在,则 lim f ( x)=xx 0[B](A)f ( x)(B) f (0)(C) f (0)(D)1f (0)22.设 f ( x) 在 x 处可导, a ,b为常数,则lim f (x a x) f (x b x) =x 0x [ B ](A)f (x)( B)( a b) f (x)(C)(a b) f (x)(D)a bf (x)23.函数在点 x0处连续是在该点 x0处可导的条件[ B ](A)充足但不是必需(B)必需但不是充足( C)充足必需(D)即非充足也非必需4.设曲线y x2x 2 在点M 处的切线斜率为,则点M的坐标为3[ B ]( A) (0,1)( B) (1, 0)(C) ( 0,0)(D) (1,1)5.设函数 f ( x) | sin x |,则 f (x)在x 0处[ B ](A)不连续。
(B)连续,但不行导。
(C) 可导,但不连续。
(D)可导,且导数也连续。
三、设函数 f ( x)x2x 1为了使函数 f (x) 在x 1 处连续且可导,ax b x1a ,b应取什么值。
第二章 导 数 与 微 分第 一 节 作 业一、填空题:1. 假定:,)('0按照导数定义存在x f.)()(lim )2(.)()(lim)1(000000=--+=∆-∆-→→∆h h x f h x f x x f x x f h x2. 设=⋅=',5322y xx x y 则 .3. 曲线y=e x 在点(0,1)处的切线方程为 .4. 已知物体的运动规律为 s=t 3(米),则这物体在t=2(秒)时的速度为 . 二、选择题(单选):1. 设f(x)=x(x-1)(x+2)(x-3)(x+4)…(x+100),则f’(1)的值等于: (A )101!; (B )100!101-; (C )-100; (D ).99!100 答:( ).1)(;1)(;21)(;0)(:)0(',0,00,1)(.22-⎪⎩⎪⎨⎧=≠-=-D C B A f x x x e x f x为则设答:( ) 三、试解下列各题:1. 讨论函数.00,00,1sin 处的连续性与可导性在=⎪⎩⎪⎨⎧=≠=x x x xx y2. 已知).(',0,,sin )(x f x x x x x f 求⎩⎨⎧≥<=3. 设?,,1)(,1,1,)(2应取什么值处可导在为了使b a x x f x b ax x x x f =⎩⎨⎧>+≤=四、试证明下列各题:1. 证明:双曲线xy=a 2上任一点处的切线与两坐标轴构成的三角形的面积等于2a2.2. 如果f(x)为偶函数,且f’(0)存在,证明f’(0)=0.第 二 节 作 业一、填空题:.)]sin )(cos cos [(sin .2.',3ln .12=+-=+=x x x x dxdy x e y x则设二、选择题(单选):.)()()(;)()()(;)()()(;)()()(:,)(,)(00必可导必不可导必不可导必可导处则在不可导可导处设在x g x f D x g x f C x g x f B x g x f A x x g x f x -+答:( ) 三、试解下列各题: 1. 设.,cos 21sin 4πϕϕρϕϕϕρ=+=d d 求2. 求曲线y=2sinx+x 2上横坐标为x=0的点处的切线方程和法线方程。
1. 13arctan )1()(2+--=x x x x f ,求f’(1) 2. 设1lim )()1()1(2+++=--∞>-x n x n n e b ax e x x f 是区间),(+∞-∞内是可导函数,试确定常数a,b 3. 设f(x)是周期为2的周期函数,且在点x=1处连续,22cos ]3)(ln[lim 1=+>-xx f x π,求曲线y=f(x)在(-1,f(-1))处的切线方程。
4. 设函数在),(+∞-∞内有定义,对任意的x,y 都有)()()(x f e y f e y x f y x +=+,e f =)0(',求f (x )的表达式5. 设函数0,)(;0,)()(==≠-=-x a x f x x e x x f xϕ,其中的)(x ϕ具有二阶导数,且1)0(',1)0(-==ϕϕ1) 确定常数a 的值,使得f (x )在x=0时连续2) 求f’(x);3) 讨论f’(x)在区间),(+∞-∞内的连续性6. 设函数)()()(x g x f x F =,如果f(x)在x 0点可导,g (x )在x 0点连续不可导,证明:F(x)在x 0点可导⇔f(x 0)=07. 设曲线y=f(x)与曲线y e y x =-++)14tan(π在(1,0)处有公切线. 1)求公切线方程2)计算极限)1(lim +∞>-n n nf n 8. 设f(x)是周期为3的连续函数,在点x=0的某一邻域内恒有x x x f x f 2tan 6)tan 1(2)tan 1(+=--+,已知f(x)在点x=1处可导,求曲线y=f(x)在点(10.f(10))处的切线方程。
9. 设函数f(x)在x ≤x 0时具有二阶导数,00200,)()()(;),()(x x c x x b x x a x F x x x f x F >+-+-=≤=,试确定常数a ,b ,c ,使得F(x)在x 0处二阶可导。
高等数学经管类习题册答案高等数学经管类习题册答案高等数学是经管类专业的一门重要课程,对于学生来说,掌握数学知识和解题能力是非常重要的。
为了帮助学生更好地学习和掌握高等数学,许多出版社推出了经管类习题册。
这些习题册包含了大量的练习题和习题解析,可以帮助学生巩固知识和提高解题能力。
然而,很多学生在学习过程中会遇到一些难题,需要查阅习题册的答案来进行参考和对比。
本文将为大家提供一些高等数学经管类习题册的答案,希望能够帮助到大家。
一、导数与微分1. 求函数f(x)=3x^2-4x+2的导数。
解:f'(x)=6x-4。
2. 求函数f(x)=e^x+lnx的导数。
解:f'(x)=e^x+1/x。
3. 求函数f(x)=sin^2(x)+cos^2(x)的导数。
解:f'(x)=2sin(x)cos(x)-2sin(x)cos(x)=0。
二、积分与微积分基本定理1. 求函数f(x)=3x^2-4x+2在区间[1,3]上的定积分。
解:∫[1,3] (3x^2-4x+2)dx=[x^3-2x^2+2x]1^3=[27-18+6-1]=16。
2. 求函数f(x)=e^x+lnx在区间[1,2]上的定积分。
解:∫[1,2] (e^x+lnx)dx=[e^x+xlnx]1^2=[e^2+2ln2-(e+ln1)]=e^2+2ln2-e。
3. 求函数f(x)=sin^2(x)+cos^2(x)在区间[0,π]上的定积分。
解:∫[0,π] (sin^2(x)+cos^2(x))dx=[x]0^π=π。
三、级数与收敛性1. 判断级数∑(n=1)^∞ (1/n)的收敛性。
解:根据调和级数的性质,该级数发散。
2. 判断级数∑(n=1)^∞ (1/2^n)的收敛性。
解:根据几何级数的性质,该级数收敛,和为2。
3. 判断级数∑(n=1)^∞ (1/n^2)的收敛性。
解:根据p级数的性质,该级数收敛,和为π^2/6。
高等数学练习题 第二章 导数与微分第一节 导数概念一.填空题1.若)(0x f '存在,则xx f x x f x ∆-∆-→∆)()(lim000= )(0x f '-2. 若)(0x f '存在,hh x f h x f h )()(lim000--+→= )(20x f ' .000(3)()limx f x x f x x∆→+∆-∆=03()f x '.3.设20-=')(x f , 则=--→)()2(lim)000x f x x f xx 414.已知物体的运动规律为2t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点(3π,21)处的切线方程为03123=--+πy x ,法线方程为0322332=-+-πy x 6.用箭头⇒或⇏表示在一点处函数极限存在、连续、可导、可微之间的关系,;可微 ⇔可导<≠⇒| 连续 <≠⇒ 极限存在。
二、选择题1.设0)0(=f ,且)0(f '存在,则xx f x )(lim 0→= [ B ](A ))(x f ' ( B) )0(f ' (C) )0(f (D) 21)0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则xx b x f x a x f x ∆∆--∆+→∆)()(lim 0 = [ B ](A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2ba +)(x f ' 3.函数在点x 处连续是在该点x 处可导的条件[ B ](A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要4.设曲线22-+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ](A )(0,1) ( B) (1, 0) (C) ( 0,0) (D) (1,1)~5.设函数|sin |)(x x f =,则 )(x f 在0=x 处 [ B ] (A )不连续。
(B )连续,但不可导。
(C)可导,但不连续。
(D )可导,且导数也连续。
三、设函数⎩⎨⎧>+≤=11)(2x b ax x x x f 为了使函数)(x f 在1=x 处连续且可导,a ,b 应取什么值。
解:由于)(x f 在1=x 处连续, 所以 )1()1(1)1(f b a f f =+===+-即1=+b a又)(x f 在1=x 处可导,所以2'11(1)lim 21x x f x --→-==-'1()(1)lim 1x ax b a b f ax ++→+-+==-有 2=a , 1-=b —故 求得 2=a , 1-=b四、如果)(x f 为偶函数,且)0(f '存在,证明)0(f '=0。
解:由于)(x f 是偶函数, 所以有 )()(x f x f -=0()(0)(0)lim 0x f x f f x →-'=-0()(0)lim 0x f x f x →--=-()(0)lim (0)x tt f t f f t=→-'==--令 即 0)0(2='f , 故 0)0(='f五、 证明:双曲线2a xy =上任一点处的切线与两坐标轴构成三角形的面积为定值。
解:222,xa y x a y -='=在任意),(00y x 处的切线方程为 <)(02020x x x a y y --=-则该切线与两坐标轴的交点为:)2,0(02x a 和)0,2(0x所以切线与两坐标轴构成的三角形的面积为20222221a x x a A =⋅⋅=,(a 是已知常数) 故其值为定值.第二节 求导法则一、填空题1.x x y sin )sec 2(+=, y '=1cos 2tan2++x x ; x e y sin -=, y '=x xe sin cos --.2.)2cos(xe y =,y '= 2sin(2)xxe e -; y =x x2sin ,y '=22sin 2cos 2x x x x - *3.2tan ln θρ=,ρ'=θcsc ; =r 2ln log 2+x x , r '=e x 22log log +4.)tan ln(sec t t w +=, w '=t sec .2arccos()y x x =+,y '=5. ='+)1(2x 21xx +; (c x ++21 )'=21xx + .6. ]2tan [ln 'x= ; ( c x x +++)1ln(2)'=211x+ .二、选择题1.已知y=xxsin ,则 y '= [ B ] (A )2cos sin x x x x - (B) 2sin cos x x x x - (C) 2sin sin xx x x - (D)x x x x sin cos 23- 2. 已知y=xxcos 1sin + ,则 y '=[ C ] <(A )1cos 21cos +-x x (B) 1cos 2cos 1-+x x (C) x cos 11+ (D) xx cos 11cos 2+-3.已知xe y sec =,则y '=[ A ](A )xxxe e e tan sec (B) x xe e tan sec(C) x e tan (D)xx e e cot4.已知)1ln(2x x y ++=,则y '=[ A ] (A )211x + (B) 21x + (C)21x x+ (D) 12-x5.已知xy cot ln ==,则4|π='x y =[ D ](A )1 (B )2 (C )2/1- (D) 2- 6.已知xxy +-=11,则y '=[ B ] (A ) 2)1(2+x (B) 2)1(2+-x (C) 2)1(2+x x (D) 2)1(2+-x x三、'四、计算下列函数的导数:(1) y =+ (2) )tan(ln x y =解:2311(ln )3y x x -''=+ 解:xx y 1)(ln sec '2= 23111(ln )33y x x x -'=+ )(ln sec 12x x= (3) v e u 1sin 2-= (4 ) )(ln sec 3x y =解:⋅-⋅=-v eu v1sin 2('1sin 2))1(1cos 2v v -⋅ 解:⋅=)sec(ln )(ln sec 3'2x x y xx 1)tan(ln ⋅v e v v 1sin 222sin 1-= )tan(ln )(ln sec 33x x x=(5) ln(y x = (6) 1arctan 1xy x-=+解:''y x =+ 解:211()111()1xy x xx-''=-+++=211x-=+ -=五、设)(x f 可导,求下列函数y 的导数dxdy (1))()(x f xe ef y =(2))(cos )(sin 22x f x f y +=解:)()(''x f x x e e e f y ⋅⋅= 解:x x x f y cos sin 2)(sin ''2= )(')()(x f e e f x f x ⋅⋅+ 2'(cos )(2cos (sin ))f x x x +⋅-=)()(')('[)(x x x x f e f x f e f e e+ =22sin 2('(sin )'(cos ))x f x f x -(3) )](arctan[x f y = (4))](sin[)(sin x f x f y += 解:)(')(11'2x f x f y ⋅+=解:+=x x f y cos )(sin '')('))(cos(x f x f ⋅ =)(1)('2x f x f + +=)(sin 'cos x x ))(cos()('x f x f》第三节 隐函数及由参数方程所确定的函数的导数一、填空题1.设yxe y +=1,则y '=ye y-2 .2. 设)tan(r r +=θ,则r '=)(csc 2r +-θ .3. 设x yy x arctan ln22=+,则y '=yx y x -+ 。
4.设⎩⎨⎧==te y t e x t t cos sin ,则dx dy =t t tt cos sin sin cos +- ,3|π=t dx dy =23- 。
二、选择题1. 由方程0sin =+yxe y 所确定的曲线)(x y y =在(0,0)点处的切线斜率为 [ A ] (A )1- (B )1 (C )21 (D )21- 2.设由方程22=xy 所确定的隐函数为)(x y y =,则dy =[ A ]…(A )dx x y 2- (B )dx x y 2 (C )dx x y - (D )dx xy 3. 设由方程0sin 21=+-y y x 所确定的隐函数为)(x y y =,则dxdy=[ A ] (A )y cos 22- (B )y sin 22+ (C )y cos 22+ (D )xcos 22-4. 设由方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 所确定的函数为)(x y y =,则在2π=t 处的导数为[ B ](A )1- (B )1 (C )0 (D )21-5.设由方程arctan x y t ⎧⎪=⎨=⎪⎩)(x y y =,则=dx dy [ B ](A(B )1t(C )12t ; (D )t .三、求下列函数的导数dy dx1.222333x y a += , 2. 33cos sin x a ty a t⎧=⎨=⎩ 解:方程两边同时对x 求导,得 解: 223sin cos tan 3cos sin a t ty t a t t'==-- …113322'033x y y --+=y '=3.2310xy x y ye +++= 4. x e x x y -=1sin解:方程两边同时对x 求导,得 解:)1ln(41sin ln 21ln 21ln x e x x y -++=322230x xy xy x y y ye y e '''++++= )1(4sin 2cos 21'1x xe e x x x y y --++=322213xxxy ye y x y e +'=-++))1(4cot 221(1sin 'x xx e ex x e x x y --+-=四、求曲线⎩⎨⎧=--=+-0201sin 3θθθy e x x 在0=θ处的切线方程,法线方程 解: θθd dy )23(2+=0cos sin =+⋅-θθθd e dx e dx x x】θθθsin 1cos x x e d e dx -=∴, 从而θθθcos )sin 1)(23(2x x e e dx dy -+=当0,1,0=-==y x θ,e dxdy20==θ故 切线方程为)1(2+=x e y 法线方程为)1(21+-=x ey第四节 高阶导数一、填空题1.设φφcos =r ,则r ', r ''.2.设)1ln(2x x y ++=,则y 'y ''3若)(2t f y =, 且)(t f '' 存在,则dt dy 22dty d .4.设yxe y +=1,则y '=y e y-2 , y ''=32)2()3(y y e y --5.设⎩⎨⎧-==arctgtt y t f x )(,且2t dx dy =,则22dx y d =t t 412+。