最新人教版六年级(上册)数学知识点归纳与整理
- 格式:doc
- 大小:332.50 KB
- 文档页数:19
人教版六年级数学上册知识点整理归纳第一单元位置1.什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来.括号里面的数由左至右为列数和行数,即“先列后行”.作用:确定一个点的位置.经度和纬度就是这个原理.例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行).注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行.如:数对(3,2)表示第三列,第二行.(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线.(有一个数不确定,不能确定一个点)(列,行)↓↓竖排叫列横排叫行(从左往右看)(从下往上看)(从前往后看)2.图形左右平移行数不变;图形上下平移列数不变.3.两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变.第二单元分数乘法(一)分数乘法意义:1.分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.注:“分数乘整数”指的是第二个因数必须是整数,不能是分数.例如:×7表示: 求7个的和是多少?或表示:的7倍是多少?2.一个数乘分数的意义就是求一个数的几分之几是多少.注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数.(第一个因数是什么都可以)例如:× 表示: 求的是多少?9 ×表示: 求9的是多少?A ×表示: 求a的是多少?(二)分数乘法计算法则:1.分数乘整数的运算法则是:分子与整数相乘,分母不变.注:(1)为了计算简便能约分的可先约分再计算.(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数.(整数千万不能与分母相乘,计算结果必须是最简分数)2.分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母.(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算.(2)分数化简的方法是:分子.分母同时除以它们的最大公因数. (3)在乘的过程中约分,是把分子.分母中,两个可以约分的数先划去,再分别在它们的上.下方写出约分后的数.(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子.分母同时乘或者除以一个相同的数(0除外),分数的大小不变.(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数.a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数.a×b=c,当b <1时,c 一个数(0除外)乘等于1的数,积等于这个数.a×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况. 附:形如的分数可折成()×(四)分数乘法混合运算1.分数乘法混合运算顺序与整数相同,先乘.除后加.减,有括号的先算括号里面的,再算括号外面的.2.整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便.乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数.1.倒数是两个数的关系,它们互相依存,不能单独存在.单独一个数不能称为倒数.(必须说清谁是谁的倒数)2.判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”.例如:a×b=1则a.b互为倒数.3.求倒数的方法:①求分数的倒数:交换分子.分母的位置.②求整数的倒数:整数分之1.③求带分数的倒数:先化成假分数,再求倒数.④求小数的倒数:先化成分数再求倒数.4.1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母.5.任意数a(a≠0),它的倒数为;非零整数a的倒数为;分数的倒数是 .6.真分数的倒数是假分数,真分数的倒数大于1,也大于它本身.假分数的倒数小于或等于1.带分数的倒数小于1.(六)分数乘法应用题——用分数乘法解决问题1.求一个数的几分之几是多少?(用乘法)“1”× =例如:求25的是多少?列式:25× =15甲数的等于乙数,已知甲数是25,求乙数是多少?列式:25× =15注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘.2.(什么)是(什么)的 .()= ( “1” )×例1: 已知甲数是乙数的,乙数是25,求甲数是多少?甲数=乙数×即25× =15注:(1)“是”“的”字中间的量“乙数”是的单位“1”的量,即是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份.(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”.(3)单位“1”的量×分率=分率对应的量例2:甲数比乙数多(少),乙数是25,求甲数是多少?甲数=乙数±乙数×即25±25× =25×(1± )=40(或10)3.巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”.4.什么是速度?——速度是单位时间内行驶的路程.速度=路程÷时间时间=路程÷速度路程=速度×时间——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟.每小时.每秒钟等.5.求甲比乙多(少)几分之几?多:(甲-乙)÷乙少:(乙-甲)÷乙第三单元分数除法一.分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算.二.分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数.1.被除数÷除数=被除数×除数的倒数.例÷3= × =3÷=3× =52.除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数.3.分数除法算式中出现小数.带分数时要先化成分数.假分数再计算.4.被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c当b>1时,c<A&NBSP; (a≠0)②除以小于1的数,商大于被除数:a÷b=c当b<1时,c>a (a≠0b≠0)③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a三.分数除法混合运算1.混合运算用梯等式计算,等号写在第一个数字的左下角.2.运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算.加.减法为一级运算,乘.除法为二级运算.②混合运算:没有括号的先乘.除后加.减,有括号的先算括号里面,再算括号外面.注:(a±b)÷c=a÷c±b÷c四.比:两个数相除也叫两个数的比1.比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值.注:连比如:3:4:5读作:3比4比52.比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几.例:12∶20= =12÷20= =0.6 12∶20读作:12比20注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数.小数.比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式.3.比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变.3.化简比:化简之后结果还是一个比,不是一个数.(1). 用比的前项和后项同时除以它们的最大公约数.(2). 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简.也可以求出比值再写成比的形式. (3). 两个小数的比,向右移动小数点的位置,也是先化成整数比.4.求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比.5.比和除法.分数的区别:除法被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数分子分数线(——)分母(不能为0)分数的基本性质分数是一个数比前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变.分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变.五.分数除法和比的应用1.已知单位“1”的量用乘法.例:甲是乙的,乙是25,求甲是多少?即:甲=乙× (15× =9)2.未知单位“1”的量用除法.例: 甲是乙的,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建议列方程答)3.分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几(例:甲是15的,求甲是多少?15× =9)乙=甲÷几分之几(例:9是乙的,求乙是多少?9÷ =15)几分之几=甲÷乙(例:9是15的几分之几?9÷15=)(“是”字相当“÷”号,乙是单位“1”)(2)甲比乙多(少)几分之几?A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15===)B 多几分之几是:–1 (例: 15比9少几分之几?15÷9= -1=–1=)C 少几分之几是:1–(例:9比15少几分之几?1-9÷15=1–=1–=)D 甲=乙±差=乙±乙× =乙±乙× =乙(1± )(例:甲比15少,求甲是多少?15–15× =15×(1–)=9(多是“+”少是“–”)E 乙=甲÷(1± )(例:9比乙少,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)(例:15比乙多,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)4.按比例分配:把一个量按一定的比分配的方法叫做按比例分配.例如:已知甲乙的和是56,甲.乙的比3∶5,求甲.乙分别是多少?方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35方法二:甲:56× =21 乙:56× =35例如:已知甲是21,甲.乙的比3∶5,求乙是多少?方法一:21÷3=7 乙:5×7=35方法二:甲乙的和21÷ =56 乙:56× =35方法二:甲÷乙=乙=甲÷ =21÷ =355.画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知. (2)分析数量关系.(3)找等量关系.(4)列方程.注:两个量的关系画两条线段图,部分和整体的关系画一条线段图. 第四单元圆一..圆的特征1.圆是平面内封闭曲线围成的平面图形,.2.圆的特征:外形美观,易滚动.3.圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心.圆心确定圆的位置.半径r:连接圆心到圆上任意一点的线段叫做半径.在同一个圆里,有无数条半径,且所有的半径都相等.半径确定圆的大小.直径d: 通过圆心且两端都在圆上的线段叫做直径.在同一个圆里,有无数条直径,且所有的直径都相等.直径是圆内最长的线段.同圆或等圆内直径是半径的2倍:d=2r 或r=d÷2= d=4.等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合.同心圆:圆心重合.半径不等的两个圆叫做同心圆.5.圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.折痕所在的直线叫做对称轴. 有一条对称轴的图形:半圆.扇形.等腰梯形.等腰三角形.角有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6.画圆(1)圆规两脚间的距离是圆的半径.(2)画圆步骤:定半径.定圆心.旋转一周.二.圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示.1.圆的周长总是直径的三倍多一些.2.圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示.即:圆周率π= =周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式: c=πd, c=2πr注:圆周率π是一个无限不循环小数,3.14是近似值.3.周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径.直径扩大的倍数相同.如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c34.半圆周长=圆周长一半+直径= ×2πr=πr+d三.圆的面积s1.圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形.圆的半径 = 长方形的宽圆的周长的一半 = 长方形的长长方形面积 = 长×宽所以:圆的面积 = 长方形的面积 = 长×宽 = 圆的周长的一半(πr)×圆的半径(r)S圆 = πr × rS圆 = πr×r =πr22.几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小.周长相同时,圆面积最大,利用这一特点,篮子.盘子做成圆形. 3.圆面积的变化的规律:半径扩大多少倍直径.周长也同时扩大多少倍,圆面积扩大的倍数是半径.直径扩大的倍数的平方倍.如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4则:S1∶S2∶S3=4∶9∶164.环形面积 = 大圆–小圆=πr大2 - πr小2=π(r大2 - r 小2)扇形面积 = πr2× (n表示扇形圆心角的度数)5.跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和.因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度.注:一个圆的半径增加a厘米,周长就增加2πa厘米一个圆的直径增加b厘米,周长就增加πb 厘米6.任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π7.常用数据π=3.14 2π=6.28 3π=9.42 4π=12.565π=15.7第五单元.百分数一.百分数的意义:表示一个数是另一个数的百分之几.注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位.1.百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系.(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位.分数不仅表示倍比关系,还能带单位表示具体数量.百分数的分子可以是小数,分数的分子只以是整数. 注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的.“%”的两个0要小写,不要与百分数前面的数混淆.一般来讲,出勤率.成活率.合格率.正确率能达到100%,出米率.出油率达不到100%,完成率.增长了百分之几等可以超过100%.一般出粉率在70.80%,出油率在30.40%.2.小数.分数.百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%”.(2)小数化百分数:小数点向右移动两位,添上“%”.(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数.(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数.(5)小数化分数:把小数成分母是10.100.1000等的分数再化简. (6)分数化小数:分子除以分母.二.百分数应用题1. 求常见的百分率如:达标率.及格率.成活率.发芽率.出勤率等求百分率就是求一个数是另一个数的百分之几2. 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几.减少了百分之几.节约了百分之几等来表示增加.或减少的幅度.求甲比乙多百分之几(甲-乙)÷乙求乙比甲少百分之几(甲-乙)÷甲3. 求一个数的百分之几是多少一个数(单位“1”)×百分率4. 已知一个数的百分之几是多少,求这个数部分量÷百分率=一个数(单位“1”)5. 折扣折扣.打折的意义:几折就是十分之几也就是百分之几十折扣成数几分之几百分之几小数通用八折八成十分之八百分之八十 0.8八五折八成五十分之八点五百分之八十五 0.85五折五成十分之五百分之五十 0.5 半价6. 纳税缴纳的税款叫做应纳税额.(应纳税额)÷(总收入)=(税率)(应纳税额)=(总收入)×(税率)7. 利率(1)存入银行的钱叫做本金.(2)取款时银行多支付的钱叫做利息.(3)利息与本金的比值叫做利率.利息=本金×利率×时间税后利息=利息-利息的应纳税额=利息-利息×5%注:国债和教育储蓄的利息不纳税8.百分数应用题型分类(1)求甲是乙的百分之几——(甲÷乙)×100% = ×100% = 百分之几(2)求甲比乙多(少)百分之几——×100% = ×100%例①甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%②甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%③乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50④甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40⑤乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50⑥甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40⑦甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%⑧甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%⑨甲比乙多25%,多10,乙是多少?10÷25%=40⑩甲比乙多25%,多10,甲是多少?10÷25%+10=50⑪乙比甲少20%,少10,甲是多少?10÷20%=50⑫乙比甲少20%,少10,乙是多少?10÷20%-10=40⑬乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50⑭甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40⑮乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50⑯甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40第六单元.统计1. 扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图.2. 常用统计图的优点:(1).条形统计图直观显示每个数量的多少.(2).折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少.(3).扇形统计图直观显示部分和总量的关系.第七单元.数学广角一.研究中国古代的鸡兔同笼问题.1. 用表格方式解决有局限性,数目必须小,例:头数鸡(只)兔(只)腿数35 1 3435 2 3335 3 32……(逐一列表法.腿数少,小幅度跳跃;腿数多,大幅度跳跃.跳跃逐一相结合.取中列表)2. 用假设法解决(1)假如都是兔(2)假如都是鸡(3)假如它们各抬起一条腿(4)假如兔子抬起两条前腿3. 用代数方法解(一般规律)注释:这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?二.和尚分馒头100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个.大小和尚各多少人?国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?"如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完.如果大和尚一人分3只,小和尚3人分一只,试问大.小和尚各有几人?方法一,用方程解:解:设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程: 3x + (100-x)=100x=25100-25=75人方法二,鸡兔同笼法:(1)假设100人全是大和尚,应吃馒头多少个?3×100=300(个).(2)这样多吃了几个呢?300-100=200(个).(3)为什么多吃了200个呢?这是因为把小和尚当成大和尚.那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?3- = (个)(4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:小和尚:200÷ =75(人)大和尚:100-75=25(人)方法三,分组法:由于大和尚一人分3只馒头,小和尚3人分一只馒头.我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1)=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚.这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个."所谓"实"便是"被除数","法"便是"除数".列式就是:100÷(3+1)=25(组)大和尚:25×1=25(人)小和尚:100-25=75(人)或25×3=75(人)我国古代劳动人民的智慧由此可见一斑.三.整数.分数.百分数应用题结构类型(一)求甲是乙的几倍(或几分之几或百分之几)的应用题.解法:甲数除以乙数例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题.解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键.求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量例:六年级有学生180人,五年级的学生人数是六年级人数的56 .五年级有学生多少人?180×56 =150(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题.解法:对应数量÷对应分率=单位“1”例:育红小学六年级男生有120人,占参加兴趣活动小组人数的35 . 六年级参加兴趣活动小组人数共有学生多少人?120÷35 =200(人)21 / 21。
六年级上册全部笔记数学六年级上册数学笔记(人教版)一、分数乘法。
1. 分数乘整数。
- 意义:求几个相同加数的和的简便运算。
例如:(2)/(3)×3表示3个(2)/(3)相加的和是多少。
- 计算方法:用分子与整数相乘的积作分子,分母不变。
能约分的先约分再计算。
例如:(2)/(3)×3=(2×3)/(3) = 2。
2. 分数乘分数。
- 意义:求一个分数的几分之几是多少。
例如:(2)/(3)×(3)/(4)表示(2)/(3)的(3)/(4)是多少。
- 计算方法:用分子相乘的积作分子,分母相乘的积作分母。
例如:(2)/(3)×(3)/(4)=(2×3)/(3×4)=(1)/(2)。
3. 分数乘法混合运算。
- 运算顺序:与整数乘法混合运算顺序相同,先乘除后加减,有括号的先算括号里面的。
例如:(1)/(2)+(2)/(3)×(3)/(4),先算乘法(2)/(3)×(3)/(4)=(1)/(2),再算加法(1)/(2)+(1)/(2)=1。
4. 整数乘法运算定律推广到分数乘法。
- 乘法交换律:a× b = b× a,对于分数乘法(2)/(3)×(3)/(4)=(3)/(4)×(2)/(3)。
- 乘法结合律:(a× b)× c=a×(b× c),例如((2)/(3)×(3)/(4))×(4)/(5)=(2)/(3)×((3)/(4)×(4)/(5))。
- 乘法分配律:(a + b)× c=a× c + b× c,如((1)/(2)+(1)/(3))×(1)/(5)=(1)/(2)×(1)/(5)+(1)/(3)×(1)/(5)。
二、位置与方向(二)1. 确定物体位置的条件。
新人教版六年级数学上册知识点整理归纳第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
六年级上册数学知识点归纳总结一、整数1. 整数的概念整数组成了正整数、负整数和0三部分。
整数的定义包括自然数和自然数的相反数。
2. 整数的比较与加减整数比较时,绝对值大的整数可能正也可能负,需要根据正负号进行判断。
整数的加减法根据正负数的规律进行计算,同号相加为同号,异号相加为取绝对值相减并确定正负号。
3. 整数的乘除整数的乘法和除法同样遵循正负数的规律,同号相乘和除得正,异号相乘和除得负。
二、分数1. 分数的概念分数由分子和分母组成,分子表示几等份中的几份,分母表示被分为几等份。
2. 分数的加减和乘除分数的加减需要先通分,再按照通分后的分母进行计算。
分数的乘除则可以将其转化为乘法或除法进行计算,最后将结果化成最简形式。
三、小数1. 小数的概念小数是分数的一种表示方法,是指在整数部分以外还有小数部分表示的数。
2. 小数的加减和乘除小数的加减需要对齐小数点,然后按照小学数学四则运算进行计算。
小数的乘除可以先将小数化成分数,再按照分数的乘除法进行计算。
四、时间1. 时间的基本单位时间的基本单位包括年、月、日、小时、分钟、秒等。
2. 时间的计算时间的计算分为同年处理和跨年处理两种情况,需要根据具体情况进行计算。
五、长方形、正方形与三角形1. 长方形、正方形和三角形的周长和面积计算长方形的周长和面积分别为2×(长+宽)和长×宽,正方形的周长和面积分别为4×边长和边长的平方,三角形的周长为三条边的和,面积为底边乘以高后再除以2。
六、平行线与相交线1. 平行线的特性平行线是指不相交的两条直线,它们之间的距离始终相等。
2. 相交线的特性相交线是指相交的两条直线,相交形成角的种类有直角、钝角和锐角等。
以上就是六年级上册数学人教版的知识点归纳总结,学生需要认真学习这些知识点,并且进行不同类型的练习,才能更好地掌握数学知识。
希望大家在学习过程中能够加强对这些知识点的理解和掌握,夯实基础,为学习更深层次的数学知识打下坚实的基础。
一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。
2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。
3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。
4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。
6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。
二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。
2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。
3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。
4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。
2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。
3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。
人教版六年级数学上册教材的知识点重点梳理重点梳理:人教版六年级数学上册教材的知识点一、整数的认识与比较1. 整数的定义及表示方法2. 正整数、负整数、零的概念3. 整数的大小比较二、整数的加减运算1. 整数的加法运算2. 整数的减法运算3. 整数的加减法运算规则三、整数的乘法与除法运算1. 整数的乘法运算2. 整数的除法运算3. 乘法、除法的运算规则四、整数的应用1. 整数在坐标系中的表示与应用2. 整数的温度计表示法3. 整数在日常生活中的应用五、小数的认识与比较1. 小数的定义及表示方法2. 小数的大小比较3. 小数的整数部分与小数部分六、小数的加减运算1. 小数的加法运算2. 小数的减法运算3. 小数的加减法运算规则七、小数的乘法与除法运算1. 小数的乘法运算2. 小数的除法运算3. 乘法、除法的运算规则八、分数的认识与比较1. 分数的定义及表示方法2. 分数的大小比较3. 分数的整数部分与分数部分九、分数的加减运算1. 分数的加法运算2. 分数的减法运算3. 分数的加减法运算规则十、分数的乘法与除法运算1. 分数的乘法运算2. 分数的除法运算3. 乘法、除法的运算规则十一、分数的应用1. 分数在日常生活中的应用2. 分数在图形中的应用十二、单位换算1. 长度单位的换算2. 容量单位的换算3. 质量单位的换算十三、面积的认识与计算1. 长方形的面积计算2. 正方形的面积计算3. 三角形的面积计算十四、容量与质量的认识与计算1. 容量的认识与计算2. 质量的认识与计算十五、几何图形1. 图形的分类2. 平行线与垂直线的认识3. 常见几何图形的性质与应用以上是人教版六年级数学上册教材的知识点重点梳理。
通过对这些知识点的学习与掌握,学生将能够建立起整数、小数、分数等数学概念的基础,并能够进行相应的计算与运用。
这些知识点的理解与掌握对于学生进一步学习数学及日常生活中的应用都具有重要意义。
第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。
易错点:单位“1”的选取容易出错。
举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。
小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。
2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。
第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。
2.1的倒数是1,0没有倒敬。
分数除法除以一个数(0除外),等于乘这个数的倒数。
整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。
1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。
2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。
新人教版六年级上册数学知识点总结新人教版六年级上册数学知识点简单总结第一单元分数乘法在分数乘法中,有以下几个计算法则:1.分数与整数相乘时,分子与整数相乘的积做分子,分母不变。
例如:3/5×4=12/5.2.分数与分数相乘时,用分子相乘的积做分子,分母相乘的积做分母。
例如:3/4×1/2=3/8.3.为了计算简便,能约分的要先约分,再计算。
带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
乘法中比较大小时,有以下规律:1.一个数(除外)乘小于1的数(除外),积小于这个数。
例如:3/6×3/5<3/6.2.一个数(除外)乘1,积等于这个数。
例如:5/5×1=5/5.3.一个数(除外)乘大于1的数,积大于这个数。
例如:3/5×2>3/5.分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
第二单元位置与方向在位置和方向的概念中,有以下几个要点:1.位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。
以谁为参照物,就以谁为观测点。
2.方向可以用角度表示,例如XXX也可以说成北偏东60°。
但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。
3.确定一个物体的准确位置,只知道方向或距离是不可以的,要同时知道这两个条件才行。
4.根据方向和距离确定物体位置的方法:1)确定好方向并用量角器测量出被测物体所在的方向(角度);2)用直尺测量出被测物体和观测点之间的图上距离,结合单位长度计算出实际距离。
分数除法是指将一个分数除以另一个分数,得到一个新的分数,表示被除数能够被除数整除的次数。
2、分数除法的方法:将除法转化为乘法,即将被除数乘以除数的倒数。
3、分数除法的性质:1)分数除以一个数,等于分子除以这个数再除以分母。
2)分数除以分数,等于分子乘以除数的倒数再除以分母。
3)分数除以分数,可以先将除数取倒数,再将除法转化为乘法。
小学六年级数学知识点总结篇一(一)数与计算(1)分数的乘法和除法。
分数乘法的意义。
分数乘法。
乘法的运算定律推广到分数。
倒数。
分数除法的意义。
分数除法。
(2)分数四则混合运算。
分数四则混合运算。
(3)百分数。
百分数的意义和写法。
百分数和分数、小数的互化。
(二)比和比例比的意义和性质。
比例的意义和基本性质。
解比例。
成正比例的量和成反比例的量。
(三)几何初步知识圆的认识。
圆周率。
画圆。
圆的周长和面积。
_扇形的认识。
轴对称图形的初步认识。
圆柱的认识。
圆柱的表面积和体积。
圆锥的认识。
圆锥的体积。
球和球的半径、直径的初步认识。
(四)统计初步知识统计表。
条形统计图,折线统计图,_扇形统计图。
(五)应用题分数四则应用题(包括工程问题)。
百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。
比例尺。
按比例分配。
(七)整理和复习六年级数学学习方法:进入小学高年级后,科目稍微增加、内容拓宽、知识深化……学生认知结构发生根本变化,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于道题目的解答。
总结比较,理清思绪知识点的总结比较。
每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。
对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。
题目的总结比较。
同学们可以建立自己的题库。
在学习《位置》在用数对确定点的位置,这部分渗透了数形结合的思想,和一一对应的思想。
学生可在方格纸上画画。
学习分数乘法的意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、分数乘分数是求一个数的几分之几是多少。
例:一小时刷一面墙的1/4,1/5小时刷一面墙的多少?实际上是求1/5的1/4是多少?这种题型可以利用数形结合的数学思想,画一画,折一折。
再就是利用:工作效率_工作时间=工作总量在学习分数除法这一节时,例如:分数、除法和小数之间的关系和区别,以及分数除法应用题无论是折纸实验,还是画线段图,都是用图形语言揭示分数除法计算过程的几何意义。
数学六年级上册人教版知识点总结一、分数乘法。
1. 分数乘法的意义。
- 分数乘整数:表示几个相同分数相加的简便运算。
例如:(2)/(3)×3表示3个(2)/(3)相加。
- 一个数乘分数:表示求这个数的几分之几是多少。
例如:5×(3)/(4)表示5的(3)/(4)是多少。
2. 分数乘法的计算方法。
- 分数乘整数:用分子乘整数的积作分子,分母不变。
能约分的先约分再计算。
例如:(2)/(3)×3=(2×3)/(3) = 2。
- 分数乘分数:用分子相乘的积作分子,分母相乘的积作分母。
例如:(2)/(5)×(3)/(4)=(2×3)/(5×4)=(3)/(10)。
3. 分数乘法的简便运算。
- 整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
- 例如:(1)/(2)×(3)/(5)×2=(1)/(2)×2×(3)/(5)=1×(3)/(5)=(3)/(5)(运用乘法交换律);- ((1)/(3)+(1)/(4))×12=(1)/(3)×12+(1)/(4)×12 = 4 + 3=7(运用乘法分配律)。
二、位置与方向(二)1. 确定位置的要素。
- 要确定一个物体的位置,需要知道观测点、方向和距离。
- 例如,以学校为观测点,图书馆在学校东偏北30^∘方向,距离学校500米处。
2. 描述路线图。
- 描述路线图时,要按照行走的路线,依次描述出每一段的方向和距离。
- 例如,从家出发,先向东走300米到超市,再从超市向南偏东45^∘方向走400米到公园。
三、分数除法。
1. 分数除法的意义。
- 分数除法是分数乘法的逆运算。
已知两个因数的积与其中一个因数,求另一个因数的运算。
例如:如果(2)/(3)× x=(4)/(9),那么x=(4)/(9)÷(2)/(3)。
新人教版六年级上册数学各单元知识点总结第一单元:分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如:98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图: (1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”“相当于”的后面3、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×几几。
4、写数量关系式技巧:(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”(2)分率前是“的”: 单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量第二单元 :位置与方向1、位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。
六年级数学上册知识点归纳与整理班级姓名第一单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
第1单元分数乘法一、分数乘整数的意义及计算方法分数乘整数的意义与整数乘法的意义相同, 都是求几个相同加数的和的简便运算。
计算时用分数的分子和整数相乘的积作分子,分母不变,能约分的要先约分。
二、一个数乘分数的意义一个数乘分数的意义就是求这个数的几分之几是多少。
三、分数乘分数的计算方法分数乘分数,用分子相乘的积作分子,分母相乘的积作分母,能约分的要先约分。
四、小数乘分数的计算方法小数乘分数,可以把小数化成分数再计算,也可以把分数化成小数再计算,还可以直接将小数与分数的分母进行约分,再计算。
五、分数混合运算的运算顺序没有括号的,先算乘除法,再算加减法;有括号的,先算括号里面的,再算括号外面的。
六、整数乘法运算律推广到分数乘法整数乘法的运算律对于分数乘法同样适用。
应用乘法的运算律进行计算,可以使一些计算简便。
七、连续求一个数的几分之几是多少的实际问题解答这类实际问题的关键是弄清楚单位“1”是谁,要求的量是单位“1”的几分之几,再根据分数乘法的意义进行解答。
八、求比一个数多(或少)几分之几的数是多少的问题解题方法:①单位“1”的量±单位“1”的量×比单位“1”多(或少)的几分之几=另一个量;②单位“1”的量×(1±比单位“1”多(或少)的几分之几)=另一个量。
第2单元位置与方向(二)一、根据平面示意图确定某个点的位置在平面图上描述某个点的位置时,需要描述清楚方向和距离这两个条件。
二、在平面图上确定某个点的位置在平面图上确定某个点的位置时,先确定方向,再确定距离。
三、描述简单的路线图先按行走路线确定每一个观测点, 然后以每一个观测点为起点,再描述到下一个目标行走的方向和距离。
四、绘制简单的路线图根据描述,从起点出发,确定方向和距离,第一段以起点为观测点,后面每段都要以前一段的终点为观测点。
以谁为观测点,就以谁为中心画出“十”字方向标,然后判断下一段的方向和距离。
第3单元分数除法一、倒数的意义积是1的两个数互为倒数。
六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:〔7,9〕表示第七列第九行。
4、两个数对,前一个数一样,说明它们所表示物体位置在同一列上。
如:〔2,4〕和〔2,7〕都在第2列上。
5、两个数对,后一个数一样,说明它们所表示物体位置在同一行上。
如:〔3,6〕和〔1,6〕都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法〔一〕、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义一样,就是求几个一样加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数〔小数、分数、整数〕乘分数:一个数乘分数的意义与整数乘法的意义不一样,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
〔二〕、分数乘法的计算法那么:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。
〔三〕、分数大小的比拟:1、一个数〔0除外〕乘以一个真分数,所得的积小于它本身。
一个数〔0除外〕乘以一个假分数,所得的积等于或大于它本身。
一个数〔0除外〕乘以一个带分数,所得的积大于它本身。
2、假如几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
〔四〕、解决实际问题。
1分数应用题一般解题步行骤。
〔1〕找出含有分率的关键句。
新人教版六年级数学上册各单元知识点归纳第一单元:整数1. 整数的概念整数是正整数、零、负整数的总称。
用于表示具有相反意义的数,其绝对值较大的数是正数,较小的数是负数。
2. 整数的比较整数的大小关系可通过数轴、绝对值、直接比较等形式进行判断。
3. 整数的加法和减法整数之间的加法和减法运算规则与非负整数相同,注意正数加负数和负数减正数的特殊情况。
4. 整数的乘法和除法整数之间的乘法和除法运算规则可通过实际问题、计算器等途径进行理解与计算。
第二单元:有理数1. 有理数的概念有理数包括整数和分数,是指可以表达为两个整数的比例的数。
2. 有理数的分类有理数可以分为正有理数、负有理数和零,需要注意有理数的绝对值和大小关系。
3. 有理数的加法和减法有理数的加法和减法运算规则与整数相似,需要注意同号和异号数的相加与相减。
4. 有理数的乘法和除法有理数的乘法和除法运算规则与整数相似,需要注意同号和异号数的相乘与相除。
第三单元:分数1. 分数的概念分数是指整数除以非零整数所得的数,由分子和分母两部分组成。
2. 分数的化简分数可通过约分化简,使分子和分母的最大公约数为1,从而得到最简分数。
3. 分数之间的关系分数可以通过比较分子和分母的大小关系进行大小比较。
4. 分数的加法和减法分数的加法和减法需要找到公共分母,并将分数转化为通分后再进行运算。
第四单元:小数1. 小数的概念小数是指除不尽的分数,可表示为有限小数或循环小数。
2. 小数的读法和写法小数的读法和写法要熟练掌握,包括整数部分、小数点、小数位数等。
3. 小数之间的关系小数的大小关系可通过比较小数位数、小数点后面的数字大小进行判断。
4. 小数的加法和减法小数的加法和减法运算规则与整数相同,需要注意小数位数对齐和进位借位的特点。
第五单元:相反数和绝对值1. 相反数的概念相反数是指绝对值相等、符号相反的两个数。
2. 相反数的性质相反数的加法和减法运算满足特定性质,即相反数相加等于零。
六年级上册数学知识点(概念)归纳与整理(人教版)第二单元 分数乘法(一)、分数乘法的意义.1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算. 例如:512 ×6,表示:6个512 相加是多少,还表示512的6倍是多少.2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少.例如:6×512 ,表示:6的512 是多少.27 ×512 ,表示:27 的512 是多少.(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变.2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母.3、注意:能约分的先约分,然后再乘,得数必须是最简分数.当带分数进行乘法计算时,要先把带分数化成假分数再进行计算.(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身.一个数(0除外)乘以一个带分数,所得的积大于它本身.2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大.(四)、解决实际问题. 1分数应用题一般解题步行骤. (1)找出含有分率的关键句. (2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量. (4)根据已知条件和问题列式解答. 2.乘法应用题有关注意概念.(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则.当句子中的单位“1”不明显时,把原来的量看做单位“1”.(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几.(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近.(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式. (7)乘法应用题中,单位“1”是已知的.(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则. (9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前). 单位“1”×分率=比较量 ; 比较量÷分率=单位“1” (10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减.(11).单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量. (12)分率与量要对应.①多的对应量对多的分率; ②少的对应量对少的分率; ③增加的对应量对增加的分率; ④减少的对应量对减少的分率; ⑤提高的对应量对提高的分率; ⑥降低的对应量对降低的分率; ⑦工作总量的对应量对工作总量的分率; ⑧工作效率的对应量对工作效率的分率; ⑨部分的对应量对部分的分率; ⑩总量的对应量对总量的分率; 例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算) 方法:单位“1”的数量×对应分率=对应数量. 2、分数的连乘.找到每一个分率的单位“1”. (五)、倒数1、倒数:乘积是1的两个数互为倒数.2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置.3、0没有倒数,1的倒数是它本身.4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身. 注意:倒数必须是成对的两个数,单独的一个数不能称做倒数.第三单元 分数除法(一)、分数除法的意义:分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.例如: 4152 表示:已知两个数的积是52 ,与其中一个因数41,求另一个因数是多少.52÷4表示已知两个数的积是52,与其中一个因数4,求另一个因数是多少.还表示把52平均分成4份,每份是多少.(二)、分数除法的计算:分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数. (三)比和比的应用:1.比的意义:两个数相除又叫做两个数的比.比的后项不能为0. 2. 比值的意义:比的前项除以后项所得的商,叫做比值. 3.比值的表示方式:通常用分数、小数和整数表示.4.比同除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商. 5.比同分数的关系:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值. 6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.7. 化简比的方法:根据比的基本性质,把两个数的比化成最简单的整数比,叫做化简比,比的前项和后项必须是互质的整数.例如:(1) 16﹕20=(16÷4)﹕(20÷4)=4﹕5 (2)56 ﹕34 =(56 ×12)﹕(34 ×12)=10﹕9(3)1.8﹕0.09 =(1.8×100)﹕(0.09×100)=180﹕9=20﹕18.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配.这种方法通常叫做按比例分配.9.按比例分配的解题方法:(1)先求出总的份数,再求出各部分数量占总数的几分之几. (2)用总数乘各部分的分率求出各部分的数量. 10.分数除法中,被除数与商的大小关系:一个数(0除外)除以一个真分数,所得的商大于它本身. 一个数(0除外)除以一个假分数,所得的商小于或等于它本身. 一个数(0除外)除以一个带分数,所得的商小于它本身. (四)解分数应用题注意事项:1.找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则.当句子中的单位“1”不明显时,把原来的量看做单位“1”.2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前).数量关系: 单位“1”×对应分率=对应数量; 对应量÷对应分率=单位“1”的量3.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减.4.单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量. 5.“已知一个数的几分之几是多少,求这个数”的解题方法:(1)设单位“1”的量为x,列方程解答. (2)对应数量÷对应分率=单位“1”的总数量. 6.工程问题:把工作总量看作单位“1”,工作效率=1工作时间工作时间=1÷工作效率合作时间 = 工作总量÷工作效率之和 第四单元 圆1、圆心:圆中心一点叫做圆心.用字母“O ”来表示.半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r ”来表示. 直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d ”表示. 2.圆心确定圆的位置,半径确定圆的大小.3.在同一个圆内,所有的半径都相等,所有的直径都相等.在同一个圆内,有无数条半径,有无数条直径.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半.用字母表示为:d =2r r =12d4.圆的周长:围成圆的曲线的长度叫做圆的周长.5.圆的周长总是直径的3倍多一些,这个比值是一个固定的数.我们把圆的周长和直径的比值叫做圆周率,用字母π表示.圆周率是一个无限不循环小数.在计算时,取π≈3.14.世界上第一个把圆周率算出来的人是我国的数学家祖冲之.6.圆的周长公式:C=πd 或C=2πr7、圆的面积:圆所占平面的大小叫圆的面积.8.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= πr ×r =πr²9.圆的面积公式:S=πr² 或者S=π(d ÷2)² 或者S=π(C ÷π ÷2)²10.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长.圆的面积和正方形面积的比是π:4. 在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2 .11.在一个长方形里画一个最大的圆,圆的直径等于长方形的短边.12.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR ²-πr² 或 S=π(R ²-r²). (其中R =r +环的宽度.)13.环形的周长=外圆周长+内圆周长14.半圆的周长等于圆的周长的一半加直径. 半圆周长公式:C=πd ÷2+d 或C=πr +2r 15.半圆面积=圆面积÷2 公式为:S=πr²÷246.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数.而面积扩大或缩小以上倍数的平方倍.例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍. 17.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方.例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9. 18.当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米.19.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.20.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小; 当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小.*21.扇形弧长公式:L=2360n nr d ππ⨯⨯ 或 360扇形的面积公式:S=360n⨯πr² (n 为扇形的圆心角度数,r 为扇形所在圆的半径)22.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.23.有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆.有2条对称轴的图形是:长方形 有3条对称轴的图形是:等边三角形 有4条对称轴的图形是:正方形 有无数条对称轴的图形是:圆、圆环. 24.直径所在的直线是圆的对称轴. 25、π倍表第五单元 百分数1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比. 百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称. 例如:25%的意义:表示一个数是另一个数的25%.2.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示.分子部分可为小数、整数,可以大于100,小于100或等于100.3.小数与百分数互化的规则:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;(加向右) 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.(去向左) 4.百分数与分数互化的规则:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数; 把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数. 5、常用的分数、小数及百分数的互化12 =0.5=50% 14 =0.25=25% 34 =0.75=75% 15 =0.2=20% 25 =0.4=40% 35 =0.6=60 45 =0.8=80% 18 =0.125=12.5% 38 =0.375=37.5% 58 =0.625=62.5% 78 =0.875=87.5% 110 =0.1=10%116 =0.0625=6.25% 120 =0.05=5% 125 =0.04=4% 140 =0.025=2.5%150 =0.02=2% 1100=0.01=1% 6.百分率公式:求百分率就是求一个数是另一个数的百分之几.(算式要加×100%,包括浓度、利润率)100%=⨯发芽种子数发芽率试验种子总数 100%=⨯面粉的重量出粉率小麦的重量100%=⨯合格产品数合格率产品总数 100%=⨯实际出勤人数出勤率总人数()100%=⨯油的重量出油率花生仁油菜子的重量100%=⨯盐的重量含盐率盐水的重量 100%⨯糖的重量含糖率=糖水的重量 100%=⨯及格的人数及格率参加考试的总人数100%=⨯命中的数量命中率打的总数量 100%=⨯活了的棵数成活率栽的总棵数100%=⨯正确的题数正确率做题的总数 100%=⨯大米的重量出米率稻谷的重量7. 求一个数比另一个数多(或少)百分之几(另一个数是单位“1”)实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度.求甲比乙多百分之几 (甲-乙)÷乙×100% 求乙比甲少百分之几 (甲-乙)÷甲×100%8.求一个数的百分之几是多少 ? 一个数(单位“1”) ×百分率9. 已知一个数的百分之几是多少,求这个数 ? 部分量÷百分率=一个数(单位“1”) 10、浓度问题溶质(盐)的重量+溶剂(水)的重量=溶液(盐水)的重量 溶质(盐)的重量÷溶液(盐水)的重量×100%=浓度 溶液(盐水)的重量×浓度=溶质(盐)的重量 溶质(盐)的重量÷浓度=溶液(盐水)的重量 最常用的是用方程解浓度问题比如两种不同浓度的溶液混合,最常用的数量关系是 甲溶液质量×甲的浓度+乙溶液质量×乙的浓度 =总溶液质量×总的浓度第六单元 统计扇形统计图的特点:可以清楚直观地反映各部份数量同总量之间的关系.折线统计图的特点:不但能够看出数量的多少,还可以反映出数量增减变化的情况. 条形统计图的特点:能够清楚的看出数量的多少.补充一:图形计算公式1 正方形:周长=边长×4 面积=边长×边长2 长方形:周长=(长+宽)×2 长=周长÷2-宽 面积=长×宽 长=面积÷宽3 三角形:面积=底× 高÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高4 平行四边形:面积=底×高 底=面积÷高5 梯形:面积=(上底+下底)×高÷2 高=面积 ×2÷(上底+下底) 上底=面积 ×2÷高-下底6 圆形 (1)周长=直径×圆周率(π)=2×圆周率π×半径 (2)面积=半径×半径×圆周率(π)7 正方体 表面积=棱长×棱长×6 体积=棱长×棱长×棱长8 长方体 表面积=(长×宽+长×高+宽×高)×2 体积=长×宽×高补充二:其他应用题基本数量关系式平均数问题:总数÷总份数=平均数和差问题:(和+差)÷2=大数(和-差)÷2=小数和倍问题:和÷(倍数+1)=1份数 1份数×倍数=几份数差倍问题:差÷(倍数-1)=1份数 1份数×倍数=几份数植树问题:(1)两端都要植树棵数=全长÷棵距+1⑵一端植树及封闭线路上植树棵数=全长÷棵距⑶两端都不植树棵数=全长÷棵距-1盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间年龄问题:年龄差永远不变。
六年级上册人教版数学知识点归纳总结一、分数乘法1. 分数乘法的意义:乘法的意义:把一个数平均分成若干份,求其中的几份,就是求这个数的几分之几是多少。
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2. 分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3. 分数混合运算的运算顺序和整数的运算顺序相同。
4. 整数乘法的交换律、结合律和分配律,对于分数乘法也适用。
二、分数除法1. 分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2. 分数除法的计算方法:除以一个数(0除外),等于乘上这个数的倒数。
a÷b=a×b倒数(b≠0)三、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
四、比的意义和性质1. 比的意义:两个数相除又叫做两个数的比。
2. 比的性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
五、比例的意义和性质1. 比例的意义:表示两个比相等的式子叫做比例。
2. 比例的性质:在比例里,两个内项的积是最小的合数;两个外项的积是最大的合数。
六、百分数的意义和性质1. 百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。
百分数通常用“%”来表示。
百分号是一个符号,它代表1%。
2. 百分数的性质:百分数只表示两个数的倍数关系,不能带单位名称。
最新人教版六年级(上册)数学知识点归纳与整理六年级数学上册知识点归纳与整理第一单元分数乘法一、分数乘法的意义1.分数乘整数的意义与整数乘法相同,都是求几个相同加数和的简便运算。
例如:3/4×6,表示6个3/4相加的和是多少,也表示6的3/4倍是多少。
2.一个数(小数、分数、整数)乘以分数的意义不同于整数乘法,它表示这个数的几分之几是多少。
例如:6×2/3,表示6的2/3是多少。
二、分数乘法的计算法则1.整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2.分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3.注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
三、分数大小的比较1.一个数(除外)乘以一个真分数,所得的积小于它本身。
一个数(除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(除外)乘以一个带分数,所得的积大于它本身。
2.如果几个不相等的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
四、解决实际问题1.分数应用题一般解题步骤:1)找出含有分数的关键句。
2)找出单位“1”的量。
3)根据线段图写出等量关系式:单位“1”的量×对应分数=对应量。
4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念:1)乘法应用题的解题思路是:已知一个数,求这个数的几分之几是多少?2)找单位“1”的方法是:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少的数占乙的几分之几。
4)在应用题中,例如“小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?”题目中的“增产”是指多的意思,因此应该是“多比少多”。
即今年水稻的亩产量比去年水稻的亩产量多几分之几。
人教版,六年级数学上册,概念与公式总
结与归纳汇总
本文档旨在总结和归纳人教版六年级数学上册的概念与公式,
帮助学生更好地理解和记忆重要知识点。
以下是各章节的内容概述:第一章:整数
- 整数的概念及表示方法
- 整数加法和减法的运算规则
- 整数乘法和除法的运算规则
- 整数的绝对值和相反数
第二章:有理数和小数
- 有理数的概念及表示方法
- 有理数的大小比较
- 小数的概念及表示方法
- 小数和有理数的转化
第三章:比例与百分数
- 比例的概念及表示方法
- 比例的性质和运算规则
- 百分数的概念及表示方法
- 百分数和比例的转化
第四章:图形的认识
- 点、线、线段和射线的概念及表示方法- 角的概念及分类
- 三角形、四边形、圆的概念及性质
第五章:长方体和正方体
- 长方体的概念及表示方法
- 长方体的表面积和体积计算
- 正方体的概念及性质
- 正方体的表面积和体积计算
第六章:数据和图表
- 数据的概念及分类
- 统计数据的收集和整理方法
- 图表的概念及种类
- 图表的制作和分析方法
以上是人教版六年级数学上册的重要概念和公式的总结与归纳。
希望本文档能帮助学生们复和掌握相关知识,并在研究中取得更好
的成绩。
六年级数学上册知识点归纳与整理班级姓名第一单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。
(7)乘法应用题中,单位“1”是已知的。
(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。
(9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。
单位“1”×分率=比较量;比较量÷分率=单位“1”(10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
(11).单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量。
(12)分率与量要对应。
①多的对应量对多的分率; ②少的对应量对少的分率; ③增加的对应量对增加的分率; ④减少的对应量对减少的分率; ⑤提高的对应量对提高的分率; ⑥降低的对应量对降低的分率;⑦工作总量的对应量对工作总量的分率; ⑧工作效率的对应量对工作效率的分率; ⑨部分的对应量对部分的分率; ⑩总量的对应量对总量的分率;例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算) 方法:单位“1”的数量×对应分率=对应数量。
2、分数的连乘。
找到每一个分率的单位“1”。
(五)、倒数1、倒数:乘积是1的两个数互为倒数。
2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置。
3、0没有倒数,1的倒数是它本身。
4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身。
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
(一)分数乘法意义:1、分数乘整数的意义:(与整数乘法的意义相同) 就是求几个相同加数的和的简便运算。
◆“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义:就是求一个数的几分之几是多少。
◆“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
第一个因数是什么都可以。
例如:53×61表示: 求53的61是多少? A × 61表示: 求A 的61是多少? (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
◆为了计算简便,能约分的先约分再计算。
3、分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:1、一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a.2、一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0).3、一个数(0除外)乘等于1的数,积等于这个数。
a ×b=c,当b =1时,c=a . ◆在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数混合运算1、分数合运算顺序:(与整数相同),先乘、除后加、减,有括号的先算括号里面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a ×b=b ×a乘法结合律:(a ×b)×c=a ×(b ×c) 乘法分配律:a ×(b ±c)=a ×b ±a ×c(五)分数乘法应用题 ——用分数乘法解决问题◆已知单位“1”的量,求它的几分之几是多少,用单位“1”的量与分数相乘。
1、求一个数的几分之几是多少?(用乘法) 例如:求25的5是多少? 列式:25×53=15 甲数的53等于乙数,已知甲数是25,求乙数是多少? 列式:25×53=15 2、求比一个数多(少)几分之几的数是多少?例如:甲数比乙数多(少)53,乙数是25,求甲数是多少? 甲数=乙数+乙数×53 即25+25×53=25×(1+53)=40(或10)◆巧找单位“1”的量:“的” 前 “比” 后,“的”字相当于“×”,“是”字相当于“=”3、求甲比乙多(少)几分之几? 多:(甲-乙)÷乙少:(乙-甲)÷乙第二单元 位置与方向一、确定物体位置的方法: 1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
相差数÷单位“1”三、位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
1、确定位置的条件:当观测点(中心)确定以后,确定物体位置是条件是(方向)和(距离)。
2、在平面图上标出物体位置的方法: 先确定(中心或观测点),然后确定(方向),再以图例选定的单位长度为基准来确定(距离);最后在具体位置标出(名称)。
3、描述并绘制简单的路线图:先按路线确定每一个观测点,然后以每一个观测点建立(方向标),描述到下一个目的地的(方向)和(距离)。
4、位置关系的相对性;(1)描述物体的位置与(观测点)有关系,观测点不同,物体位置的描述就(不同)。
(2)两地的位置具有(相对性),观测点不同,叙述的(方向)正好相反,(角度)和(距离)不变。
第三单元 分数除法(一)、分数除法的意义:分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例如:4152 表示:已知两个数的积是52 ,与其中一个因数41,求另一个因数是多少。
52÷4表示已知两个数的积是52 ,与其中一个因数4,求另一个因数是多少。
还表示把52平均分成4份,每份是多少。
(二)、分数除法的计算:分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
(三)比和比的应用:1.比的意义:两个数相除又叫做两个数的比。
比的后项不能为0。
2. 比值的意义:比的前项除以后项所得的商,叫做比值。
3.比值的表示方式:通常用分数、小数和整数表示。
4.比同除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商.5.比同分数的关系:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
7. 化简比的方法:根据比的基本性质,把两个数的比化成最简单的整数比,叫做化简比,比的前项和后项必须是互质的整数。
例如:(1) 16﹕20=(16÷4)﹕(20÷4)=4﹕5 (2)56 ﹕34 =(56 ×12)﹕(34×12)=10﹕9(3)1.8﹕0.09 =(1.8×100)﹕(0.09×100)=180﹕9=20﹕18.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
9.按比例分配的解题方法:(1)先求出总的份数,再求出各部分数量占总数的几分之几。
(2)用总数乘各部分的分率求出各部分的数量。
10.分数除法中,被除数与商的大小关系:一个数(0除外)除以一个真分数,所得的商大于它本身。
一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
一个数(0除外)除以一个带分数,所得的商小于它本身。
(四)解分数应用题注意事项:1.找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。
数量关系: 单位“1”×对应分率=对应数量; 对应量÷对应分率=单位“1”的量3.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。