(完整word版)应用统计学 利用spss进行居民消费结构变化的分析
- 格式:doc
- 大小:216.50 KB
- 文档页数:9
SPSS统计分析案例专业:经济学姓名:000 学号:00000000一、我国城镇居民现状近年来,我国宏观经济形势发生了重大变化,经济发展速度加快,居民收入稳定增加,在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下,全国居民的消费支出也强劲增长,消费结构发生了显著变化,消费结构不合理现象得到了一定程度的改善。
本文通过相关数据分析总结出了我国城镇居民消费呈现富裕型、娱乐教育文化服务类消费攀升的趋势特点。
二、我国居民消费结构的横向分析第一,食品消费支出比重随收入增加呈现出明显的下降趋势,这与恩格尔定律的表述一致。
但最低收入户与最高收入恩格尔系数相差太过悬殊,城镇最低收入户刚刚解决了温饱问题,而最高收入户的生活水平按照恩格尔系数的评价标准早已达到了富裕型,甚至接近最富裕型。
第二,衣着消费支出比重随收入增加缓慢上升,到高收入户又有所下降,但各收入组支出比重相差不大。
衣着支出比重没有更多的递增且最高收入户的支出比重有所下降,这些都符合恩格尔定律关于衣着消费的引申。
随着收入的增加,衣着支出比重呈现先上升后下降的走势。
事实上,在当前的价格水平和服装业的发展水平下,城镇居民的穿着是有一定限度的,而且居民对衣着的需求也不是无限膨胀的,即使收入水平继续提高,也不需要将更大的比例用于购买服饰用品了。
第三,家庭设备用品及服务、交通通讯、娱乐教育文化服务和杂项商品与服务的支出比重呈逐组上升趋势,说明居民的生活水平随收入的增加而不断提高和改善。
第四,医疗保健支出比重随收入水平提高呈现一种两端高、中间低的走势。
这是因为医疗保健支出作为生活必须支出,不论居民生活水平高低,都要将一定比例的收入用于维持自身健康,而且由于医疗制度改革,加重了个人负担的同时,也减小了旧制度可能造成的不同行业、不同体制下居民医疗保健支出的差别,因而不同收入等级的居民在医疗保健支出比重上差别不大。
第五,居住支出比重基本上呈先上升后下降的趋势,这与我国居民消费能级不断提升,住宅商品正在越来越成为城镇居民关注的热点是相吻合的,同时与恩格尔定律的引申也是一致的。
基于SPSS的全国城镇居民消费水平差异分析随着中国经济的持续发展,城镇居民的生活水平不断提高,消费水平也呈现出明显的差异。
消费水平的差异性不仅直接反映了城镇居民的经济实力和生活水平,也对整个国民经济的发展有着重要的影响。
对于城镇居民消费水平的差异分析具有重要的理论和现实意义。
一、研究内容本文主要基于SPSS统计软件,对全国城镇居民的消费水平进行差异性分析。
主要研究内容包括以下几个方面:1. 基本情况分析:分析全国城镇居民的基本情况,包括性别、年龄、教育程度、职业等因素对消费水平的影响。
2. 消费水平差异分析:分析不同城镇居民的消费水平情况,包括食品、衣着、居住、交通、通信、教育文化娱乐等方面的消费水平。
3. 影响消费水平的因素:分析影响城镇居民消费水平的主要因素,包括收入水平、家庭人口数、职业类型等。
4. 消费结构分析:分析不同城镇居民的消费结构情况,包括生活必需品和非生活必需品的消费占比。
二、研究方法1. 数据来源:本文所用数据主要来自国家统计局的全国城镇居民收入和消费水平调查数据。
2. 数据处理:利用SPSS软件对收集到的数据进行处理和分析,包括描述性统计分析、方差分析、相关分析等。
3. 统计模型:采用多元线性回归模型来分析影响城镇居民消费水平的主要因素,探讨各因素对消费水平的影响程度。
三、基本情况分析1. 性别差异:通过对全国城镇居民中男女消费水平的比较发现,男性在食品、交通、通信等方面的消费相对较高,而女性在衣着、教育文化娱乐等方面的消费相对较高。
2. 年龄差异:随着年龄的增长,城镇居民的消费水平也呈现出不同的特点。
年轻人更注重时尚和娱乐消费,而中年人更注重家庭生活和子女教育消费。
3. 教育程度差异:受教育程度的影响,不同城镇居民在教育文化娱乐方面的消费水平存在较大差异,受教育程度高的人群更愿意用钱提高生活品质。
4. 职业差异:不同职业的城镇居民在消费水平上也存在明显差异,高收入职业人群的消费水平显著高于低收入职业人群。
农民人均生活收入及消费支出分析摘要: 在我国的国民经济问题中,增加农民收入是我国扩大内需的关键,通过运用SPSS分析方法对我国农民的收入及消费支出进行了各种分析, 以便能够更好地了解我国农村居民的收入结构和消费结构与消费行为等。
关键词:农民生活收入消费支出线性回归分析一、问题提出我国是一个农业大国,至今仍有9亿农村人口,占全国人口总数的70%,农民是我国最大的消费群体,农村消费能力的提升直接关系到国民经济的全局。
从农村市场看,中国有近六成人口(约8亿)生活在农村。
农村城镇化的进程对经济增长的带动作用是非常明显的,世界上还没有哪个国家有规模如此巨大的城镇化。
农村居民的收入虽然低于城市居民,但是基数巨大,且农村人口的收入也在稳定增长。
据测算,目前1个城镇居民的消费水平大体相当于3个农民的消费;城市化率提高1个百分点,就会有100万~120万人口从农村到城市。
由于城市人口的消费是农村的2.7~3倍,约拉动最终消费增长1.6个百分点。
随着经济的发展,我国农民的消费水平和结构也发生了很大变化,农民生活水平的提高和消费的增加对于实现国民经济又好又快发展、正确处理好内需和外需的关系至关重要。
但从总体来看,农民消费水平仍然较低,调查显示有的地区都不及城市居民人均消费支出的三分之一。
而且消费结构不合理,局限于食品类等生存基本需求品,消费在衣着装饰等方面的极少。
而影响农民消费水平的根本原因是农民的收入。
农民生活消费支出主要包括食品、衣着、医疗卫生、教育文化、家庭设备、交通等方面,本文只挑选了四种典型的消费支出作为代表来分析农村居民的消费结构。
二、分析问题(一)数据来源说明(二)家庭总收入分析1、农村家庭总收入单线图,农村家庭总收入逐年增加。
3、家庭经营收入快速增长,是农民增收的最主要来源。
工资性收入持续平稳增长。
移性收入有所增长但增速明显减缓。
财产性收入中间期间还有所下降。
(三)、农民总支出分析1、如条形如所示分析,农民生活消费水平继续提高。
用spss分析我国各省城镇居民消费水平差异分析文章结构1 研究背景及意义 (1)2 研究方法 (1)3 数据来源与数据处理 (2)4. 实证分析 (3)4.1因子分析 (3)4.2 聚类分析 (8)5 结论 (11)1 研究背景及意义我国地域广阔,各省份的经济发展很不平衡,各省之间的居民消费水平差距较大。
经济快速发展的同时我国居民收入稳步增加,各省居民的消费支出也强劲增长,消费结构发生了巨大变化。
为了正确引导消费,进一步改善消费结构,提高我国城市居民的消费水平和生活的质量,有必要对全国各省居民消费结构之间的异同进行考察并做比较研究,以期发现经济水平和城市居民的消费水平之间的关系.2 研究方法本文运用多元统计分析中的主成分分析方法和聚类分析方法,将描述各省份城镇居民全年现金消费支出的八个指标压缩成两个综合指标( 称为主成分) , 这两个主成分保留了原始八个指标的绝大部分信息,在指标压缩的同时能够最大限度地反映出各省份城镇居民消费水平差异。
在综合因子基础上进行层次聚类分析,根据消费差异将全国31个省分为四类。
因子分析模型是根据变量间的相关性大小,把变量分组,利用同组内的变量之间相关性较高而不同组的变量之间相关性较低,每组变量代表一个基本结构,这个基本结构称为公共因子。
因子分析的出发点是用较少的相互独立的因子变量来代替原来变量的大部分信息,可以通过下面的数学模型来表示:X1=α11F1+α12F2+…+α1m Fm+α1ε1,X2=α21F1+α222+…+α2m Fm+α2ε2,…Xp=αp1F1+αp2F2+…+αpm Fm+αpεp,其中:x1,x2,x3,…,xp 为p 个原有变量,是均值为零、标准差为1 的标准化变量;F1,F2,F3,…,Fm 为m 个因子变量,m 小于p,表示成矩阵形式为X=AF+αε,其中:F=(F1,F2,…,Fm)为因子变量或公共因子;ε=(ε1,ε2,…,εp)为特殊因子;F 与ε均为不可观测的随机变量. A=(αij)p×m 为因子载荷矩阵,αj 称为第j 个因子对第i 个变量的载荷系数. 在模型中,特殊因子起着残差的作用,被定义为彼此不相关且与公因子也不相关。
2013年我国城镇居民人均消费的SPSS统计分析一、搜集到的2013年我国31个城市城镇居民人均消费水平的数据数据来源:国家统计局/workspace/index?m=hgnd 二、对数据的基本分析在数据文件建立好后,通常还需要对待分析的数据进行必要的预加工处理,这是数据分析过程中不可缺少的一个关键环节.(一)、对数据按人均消费(expend)进行降序排列操作步骤:(1):选择“数据”→“排序个案”菜单项(2):将“人均消费(expend)”选入“排序依据”列表框,选中“降序”(3):点击“确认”按钮,生成如下降序排列的数据集由数据的降序排列可以看出,全国只有上海、北京、广东等九个城市的城镇人均消费在全国城镇人均消费水平以上.(二)、作出人均收入和人均消费的直方图操作步骤:(1):选择“图形”,打开“图表构建程序”菜单项(2):从“库”中选择“直方图”将其拉入“图表预览使用数据实例”(3):将变量“地区”设置为x轴,将“人均收入”和“人均消费”设置为y轴(4):点击“确认”按钮,即生成如下直方图通过一个复合条形图,可以很明确的发现我国城镇居民生活水平存在很大的地区差异,地区发展很不平衡,从图中的生活消费支出和人均收入来看,北京,上海,浙江这些省市城镇居民消费水平最高,人均收入也是最高的,各省市的城镇居民消费水平差异较大,大多数省份城镇居民人均消费集中在15000元左右.(三)、对数据按照人均消费作出直方图,以统计我国农村人均消费的水平1、首先对数据分组,分组数目的确定.lg n,计算得组数为6.按照Sturges提出的经验公式来确定组数K,K=1+2lg2、确定组距组距=(最大值-最小值)/组数=(28155.00-12231.90)/6=2653.85,可近似取值为3000.00元.操作步骤:(1):选择“转换”→“可视离散化”菜单项,将“人均消费”选入“要离散的变量”列表框中,单击“继续”按钮进入主对话框.(2):单击“生成分割点”按钮,设定分割点数量为6,宽度为3000.00,可见系统会自动会填充第一个分割点的位置为12231.90,单击“应用”返回到主对话框.(3):此时可以看到下部数值标签网格里的“值”列已被自动填充,单击“生成标签”按钮,是标签列也得到自动填充.(4):将离散的变量名设定为expendNew.(5):单击“确定”按钮.3、频数分析操作步骤:(1):选择“分析”→“描述统计”→“频率”,打开频率对话框.(2):选定“expendNew”,点击“图表”,选择“条形图”点击继续.(3):点击“确认”,生成如下三张表.Statistics人均消费(已离散化)N Valid 32Missing 0Mean 3.13Median 3.00Std. Deviation 1.314Minimum 1Maximum 7Percentiles 25 2.0050 3.0075 3.75人均消费(已离散化)Frequency Percent Valid Percent Cumulative Percent Valid <= 12231.90 1 3.1 3.1 3.110 31.3 31.3 34.412231.91 -15231.9015231.91 -13 40.6 40.6 75.018231.903 9.4 9.4 84.418231.91 -21231.903 9.4 9.4 93.821231.91 -24231.9024231.91 -1 3.1 3.1 96.927231.9027231.91+ 1 3.1 3.1 100.0 Total 32 100.0 100.0由上图的频数分析可以看出,我国2013年城镇居民人均消费支出集中在第二组和第三组,大约占到百分之七十.由于在表格中不存在缺失值,因此频数分布表中的百分比和有效百分比相同.从此次分析中可以看出,我国城镇家庭居民人均消费的总体水平比较集中,大约在12000元--18000元之间,还有少数省市的消费水平处在中等阶段,而有上海、北京、浙江等一些经济较发达的地区的城镇家庭居民人均消费达到了21000元以上.三、对数据的回归分析(一)、作出人均收入与消费支出散点图,以观察他们的线性关系如何操作步骤:(1):选择“图形”,打开“图表构建程序”菜单项(2):从“库”中选择“散点图”将其拖入“图表预览使用数据实例”(3):将“人均收入”选定为x轴,将“人均消费”选定为y轴(4):点击“确认”生成如下散点图由散点图可以看出,人均消费Y和人均收入X大概呈一元线性关系,因此可以建立一元线性模型进行回归分析.(二)假设回归模型为Y=a+b X,其中,Y表示城镇人均消费支出,为被解释变量,X表示人均收入,为解释变量,b为回归系数.操作步骤:(1)选择“分析”→“回归”→“线性”菜单项,打开“线性回归”对话框.(2)将“人均消费”选入“因变量”列表框,将“人均收入”选入“自变量”列表框.(3)单击“确定”按钮.得到如下(1)、(2)、(3)、(4)四张表格,依次分析如下:表(1):移入/移出的变量Variables Entered/Removed bModel VariablesEnteredVariablesRemoved Method1 人均收入a. EnterVariables Entered/Removed bModel VariablesEnteredVariablesRemoved Method1 人均收入a. Entera. All requested variables entered.b. Dependent Variable: 人均消费从上表可以看出,放入模型的变量只有一个即“人均收入”,选择变量的方法为强行进入法,也就是说将所有的自变量都放入模型中,模型的因变量为“人均消费”.表(2):模型汇总Model SummaryModel R R Square Adjusted RSquareStd. Error of theEstimate1 .960a.922 .920 1106.90715a. Predictors: (Constant), 人均收入上表是对模型的简单汇总,其实就是对回归方程拟合情况的描述,通过这张表可以知道相关系数R=0.960,决定系数2R=0.922,调整决定系数2R=0.920,和回归系数的标准误=31106.90715.由于决定系数接近于1,说明模型的拟合程度较好.表(3):方差分析表ANOVA bModel Sum of Squares df Mean Square F Sig.1 Regression 4.353E8 1 4.353E8 355.256 .000aResidual 36757303.474 30 1225243.449Total 4.720E8 31a. Predictors: (Constant), 人均收入b. Dependent Variable: 人均消费F=355.256,P=0.000<0.05,表明回归方程高度显著,即农民人均收入对消费有高度影响.表(4):系数Coefficients aModel Unstandardized CoefficientsStandardizedCoefficientst Sig.B Std. Error Beta1 (Constant) 1897.504 835.983 2.270 .031人均收入.599 .032 .960 18.848 .000 a. Dependent Variable: 人均消费由上表知a=1897.504,b=0.599,由此可以得出以下回归方程:人均消费Y=1897.504+0.599人均收入X上述回归方程给出了如下信息:2013年中国城镇居民人均可支配收入增加1元,人均消费支出增加0.599元.四、单样本的T检验(一):由频数分析可知,分组后,全国31个省市的城镇家庭居民平均每人生活消费支出合计,大约有23个城市都集中在第一组,数额主要12231.91——18231.90元之间,其中在15231.91 - 18231.90之间的占到了百分之四十,因此可推断,全国农村家庭居民平均每人生活消费支出的平均数应该在15000--20000元之间,假设为18000元,由于该问题涉及的是单个总体,且要进行总体均值检验,同时农村家庭居民平均每人消费的总体可近似认为服从正态分布,因此,应采用单样本t检验来分析推断全国农村家庭居民人均消费的平均值是否为18000元.分析结果如下:(二):操作步骤:1、选择“分析”→“比较均值”→“单样本天t检验”菜单项,打开“单样本t检验”对话框如下图所示:2、单击“确定”按钮.生成如下两张图表:表(1):One-Sample StatisticsN Mean Std. Deviation Std. Error Mean人均消费32 17216.6031 3902.16064 689.81106表(2):One-Sample TestTest Value = 18000t df Sig. (2-tailed)MeanDifference95% Confidence Interval of theDifferenceLower Upper人均消费-1.136 31 0.265 -783.39688 -2190.2758 623.4821 由表(1)可知样本均值为17216.6031,低于基准线18000.00,标准差3902.16064,均值标准差689.81106.由表(2)为单样本t检验的分析结果,第一行注明了用于比较的假设总体均数为18000,下面从左到右依次为t值、自由度、p值、两均数的差值、差值.根据上面的检测结果t=-1.136,p=0.256,由于p>0.05,所以不能拒绝原假设,可以认为人均消费水平在18000元.同时,可知全国城镇居民2013年人均消费在95%的置信水平下的置信区间为:(15809.7242,18623.4821).五、非参数检验——多配比样本分参数检验数据中我国城镇家庭居民人均消费包括食品、衣着、居住、家庭设备、交通及通讯、文教娱乐、医疗保健、和其他8个指标,为了比较清楚的了解这8项指标对我国城镇居民人均消费总体的影响,以及其大概的消费动向,可以利用多配比样本的非参数检验Friedman 检验对各个指标进行检验.(一):操作步骤:(1)选择“分析”→“非参数检验”→“旧对话框”→“k个相关样本”菜单项,打开如下对话框:(2):单击“确定”按钮,得到如下两张表格:表(1):RanksMean Rank食物消费8.00衣物消费 5.09居住消费 4.50家居设备 2.66交通通讯 6.38医疗保健 2.34文教娱乐 5.88其它 1.16表(2):Test Statistics aN 32Chi-Square 198.604df 7Asymp. Sig. .000a. Friedman Test(二)、结果分析检验结果中的p值小于给定水平0.05,故拒绝原假设,认为八个指标对我国城镇居民人均消费的影响是有显著差异的.由表(1)知食物消费对人均消费的影响最大,其次是交通通讯和衣物消费,而影响最小的是其它.六、因子分析在研究我国城镇居民的消费情况时收集了食物、衣物、居住等八个影响居民消费情况的因素,以期对问题能够有比较全面、完整的把握和认识.由于数据过多,在实际建模时,这些变量未必能真正发挥预期的作用,会给统计分析带来许多问题,可以表现在:计算量的问题和变量间的相关性问题.为了解决这些问题,最简单和最直接的解决方案是削减变量个数,但这又必然会导致信息丢失和信息不完整等问题的产生.为此,人们希望探索一种更有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失.因子分析正是解决这种问题的方法.(一)操作步骤(1)、选择菜单“分析”→“降维”→“因子分析”,出现因子分析对话框;(2)、把参与因子分析的样本选到变量对话框中,如下图:(3)单击“确定”按钮,得到如下11张图:图(1)原有变量的相关系数矩阵:Correlation Matrix食物消费衣物消费居住消费家居设备医疗保健交通通讯文教娱乐其它Correlatio n 食物消费1.000 .288 .656 .744 .295 .787 .782 .732衣物消费.288 1.000 .337 .517 .694 .368 .374 .634居住消费.656 .337 1.000 .676 .505 .849 .750 .771家居设备.744 .517 .676 1.000 .441 .830 .853 .767医疗保健.295 .694 .505 .441 1.000 .479 .414 .600交通通讯.787 .368 .849 .830 .479 1.000 .860 .782文教娱乐.782 .374 .750 .853 .414 .860 1.000 .831 其它.732 .634 .771 .767 .600 .782 .831 1.000从上图可以看到,大部分的相关系数都较高,各变量呈较强的线性关系,能够从中提取公共因子,适合进行因子分析.图(2)巴特利特球度检验和KMO检验KMO and Bartlett's TestKaiser-Meyer-Olkin Measure of Sampling Adequacy. .833Bartlett's Test of Sphericity Approx. Chi-Square 233.009df 28Sig. .000由上图知,巴特利特球度检验统计量的观测值为233.009,相应的概率p为0.如果给出的显著性水平为0.05,由于概率p小于显著性水平,应拒绝零假设,认为相关系数矩阵与单位阵有显著地差异.同时,KMO值为0.833,根据Kaiser 给出了KMO度量标准可知原有变量适合进行因子分析.图(3)因子分析的初始解CommunalitiesInitial Extraction食物消费 1.000 .798衣物消费 1.000 .862居住消费 1.000 .750家居设备 1.000 .812医疗保健 1.000 .821交通通讯 1.000 .897文教娱乐 1.000 .885其它 1.000 .872Extraction Method: PrincipalComponent Analysis.由上图第二列可知,所有变量的共同度均较高,各个变量的信息丢失较少.因此,本次因子提取的总体效果较理想.图(4)因子解释原有变量总方差的情况:Total Variance ExplainedComponent Initial Eigenvalues Extraction Sums of SquaredLoadingsRotation Sums of SquaredLoadingsTotal% ofVarianceCumulative % Total% ofVarianceCumulative % Total% ofVarianceCumulative %1 5.504 68.794 68.794 5.504 68.794 68.794 4.524 56.545 56.5452 1.192 14.898 83.692 1.192 14.898 83.692 2.172 27.147 83.6923 .473 5.910 89.6024 .258 3.222 92.8245 .237 2.961 95.7856 .178 2.227 98.0127 .091 1.136 99.1478 .068 .853 100.000Extraction Method: Principal Component Analysis.上图◎第一组数据项描述了初始因子解的情况.可以看到,第一个因子解的特征根值为 5.504,解释原有八个变量总方差的68.794%,累计方差贡献率为68.794%.其余数据含义类似.在初始解中由于提取了八个因子,因此原有变量的总方差均被解释掉.◎第二组数据项描述了因子解的情况.可以看到,由于指定提取两个因子,两个因子共解释了原有变量总方差的83.692%.总体上,原有变量的信息丢失较少,因子分析效果较理想.◎第三组数据项描述了最终因子解的情况.可见,因子旋转后,累计方差比没有改变,也就是没有影响原有变量的共同度,但却重新分配了各个因子解释原有变量的方差,改变了各因子的方差贡献,使得因子更容易解释.图(5)因子的碎石图:上图横坐标为因子数目,纵坐标为特征根.可以看到,第一个因子的特征根值很高,对原有变量的贡献最大;第3个以后的因子特征根都较小,对解释原有变量的贡献很小,已经成为可被忽略的“高山脚下的碎石”,因此提取两个因子是合适的.图(6)因子载荷矩阵:Component Matrix aComponent1 2其它.929 .097交通通讯.921 -.222文教娱乐.909 -.241家居设备.895 -.103居住消费.854 -.143食物消费.822 -.350衣物消费.599 .710医疗保健.635 .646a. 2 components extracted.上图因子载荷矩阵是因子分析的核心内容.根据该表可以写出本案例的因子分析模型:其它=0.9291f +0.0972f 交通通讯=0.9211f -0.2222f 文教娱乐=0.9091f -0.2412f 家居设备=0.8951f -0.1032f 居住消费=0.8541f -0.1432f 食物消费=0.8221f -0.3502f 衣物消费=0.5991f +0.7102f 医疗保健=0.6351f +0.6462f 由上表知,八个变量在第一个因子上的载荷都很高,意味着他们与第一个因子的相关度高,第一个因子很重要. 图(7)旋转后的因子载荷矩阵:Rotated Component Matrix aComponent 1 2交通通讯 .915 .244 文教娱乐 .914 .222 食物消费 .889 .084 家居设备 .836 .336 居住消费 .819 .281 其它 .770 .528 衣物消费 .188 .909 医疗保健 .250.871a. Rotationconvergedin3 iterations.由上图知,交通通讯、文教娱乐、食物消费、家居设备、居住消费、其它在第一个因子上有较高的载荷,第一个因子主要解释了这几个变量;衣物消费、医疗保健在第二个因子上的载荷较高,第二个因子主要解释了这几个变量.图(8)因子旋转中的正交矩阵Component Transformation MatrixComponent 1 21 .879 .4772 -.477 .879图(9)因子协方差矩阵:Component Score Covariance MatrixComponent 1 21 1.000 .0002 .000 1.000从上表可以看出,两因子没有线性相关性,实现了因子分析的设计目标.图(10)旋转后的因子载荷图:由上图可以直观的看出,衣物消费和食物消费比较靠近两个因子坐标轴,表明如果分别用第一个因子刻画食物消费,用第二个因子刻画衣物消费,信息丢失较少,效果较好.图(11)因子得分系数矩阵:Component Score CoefficientMatrixComponent1 2食物消费.271 -.187衣物消费-.188 .576居住消费.194 -.032家居设备.184 .001医疗保健-.157 .532交通通讯.236 -.084文教娱乐.241 -.099其它.110 .152根据上表可以得到以下因子得分函数:F=0.271食物消费-0.188衣物消费+0.194居住消费+0.184家居设备-0.157医1疗设备+0.236交通通讯+0.241文教娱乐+0.110其它F=-0.187食物消费+0.576衣物消费-0.032居住消费+0.001家居设备+0.532 2医疗设备-0.084交通通讯-0.099文教娱乐+0.152其它可见计算两个因子得分变量的变量值时,食物消费和衣物消费的权重较高,但方向恰好相反,这与因子的实际含义是相吻合的.七、实验心得本科的时候有概率统计和数理分析的基础,但是从来没有接触过应用统计分析的东西,SPSS也只是听说过,从来没有学过.一直以为这一块儿会比较难,这学期最初学的时候,因为没有认真看教材,课下也没有认真搜集相关资料,所以学起来有些吃力,总感觉听起来一头雾水.老师说最后的考核是通过提交学习报告,然后我从图书馆里借了些教材查了些资料,发现很多问题都弄清楚了.结合软件和书上的例子,实战一下,发现SPSS的功能相当强大.这门课要学习完了,整个学习的过程是充满曲折和挑战的,我见证了自己从一无所知到困惑迷茫再到略懂再到会用的过程.甚至学完之后有些问题还没有彻底搞清楚,自己接下来还会不断的探索的.SPSS是个很神奇的工具,结合AMOS和EXCEL更是如虎添翼,相信学习了SPSS在以后的论文和数据分析中很有用.这门课给我的感觉是看起来很难,但是实际学起来就好很多,因为当我结合具体实例和软件的时候,很多抽象的问题就豁然开朗了.但是想给老师一个建议,这门课需要很强的统计和概率论的基础,要不然就会很难听懂或者听得半懂.然后这门课的很多方法的相关资料都是用在医疗卫生、自然科学领域的,在管理中的应用的资料不怎么多.老师希望我们上课的时候结合在管理中的应用来学习,但是资料有限,希望老师在这个方面多给学生一些引导.。
基于SPSS的全国城镇居民消费水平差异分析背景:随着经济的快速发展,中国城镇居民的消费水平也在不断提高。
不同地区的消费水平差异较大,特别是经济发展水平和消费观念不同的地区。
了解全国城镇居民消费水平的差异对于制定有效的经济政策和消费策略具有重要意义。
目的:本研究旨在使用SPSS软件对全国城镇居民消费水平的差异进行分析,以便更好地了解和解释这些差异,并为相关决策提供科学依据。
研究方法:1. 数据收集:通过调查问卷收集全国城镇居民的消费水平数据。
问卷内容涵盖了相关消费指标,如个人收入、家庭年收入、教育水平、职业等。
2. 数据预处理:对收集的数据进行清洗和整理,确保数据的准确性和完整性。
进行缺失值和异常值的处理,以避免数据分析时的误差。
3. 描述性统计分析:使用SPSS软件进行描述性统计分析,计算各个变量的平均值、标准差、最大值和最小值等。
通过这些统计指标了解全国城镇居民消费水平的整体分布情况。
4. 单因素方差分析:使用单因素方差分析检验不同地区的城镇居民消费水平是否存在显著差异。
将消费水平作为因变量,地区作为自变量,使用SPSS软件进行方差分析,得出各地区之间是否存在显著性差异。
5. 多因素方差分析:对于可能影响消费水平的多个因素,如个人收入、教育水平和职业等,使用多因素方差分析检验它们对城镇居民消费水平的影响。
通过SPSS软件进行多因素方差分析,统计各个因素的主效应和交互效应。
分析结果:通过上述分析,我们可以得到全国城镇居民消费水平的整体分布情况以及不同地区之间的消费水平差异。
还可以了解不同因素对消费水平的影响程度,从而为相关政策和策略的制定提供科学参考。
结论与启示:全国城镇居民消费水平的差异较大,不同地区的消费水平具有显著性差异。
个人收入、教育水平和职业等因素对消费水平有一定的影响。
根据分析结果,可以制定针对性的经济政策和消费策略,促进城镇居民消费的合理增长,并提高整体消费水平。
PS: 此回答仅供参考,具体的数据收集和分析方法还需要根据实际情况进行调整和优化。
SPSS统计分析案例一、我国城镇居民现状近年来;我国宏观经济形势发生了重大变化;经济发展速度加快;居民收入稳定增加;在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下;全国居民的消费支出也强劲增长;消费结构发生了显著变化;消费结构不合理现象得到了一定程度的改善..本文通过相关数据分析总结出了我国城镇居民消费呈现富裕型、娱乐教育文化服务类消费攀升的趋势特点..二、我国居民消费结构的横向分析第一;食品消费支出比重随收入增加呈现出明显的下降趋势;这与恩格尔定律的表述一致..但最低收入户与最高收入恩格尔系数相差太过悬殊;城镇最低收入户刚刚解决了温饱问题;而最高收入户的生活水平按照恩格尔系数的评价标准早已达到了富裕型;甚至接近最富裕型..第二;衣着消费支出比重随收入增加缓慢上升;到高收入户又有所下降;但各收入组支出比重相差不大..衣着支出比重没有更多的递增且最高收入户的支出比重有所下降;这些都符合恩格尔定律关于衣着消费的引申..随着收入的增加;衣着支出比重呈现先上升后下降的走势..事实上;在当前的价格水平和服装业的发展水平下;城镇居民的穿着是有一定限度的;而且居民对衣着的需求也不是无限膨胀的;即使收入水平继续提高;也不需要将更大的比例用于购买服饰用品了..第三;家庭设备用品及服务、交通通讯、娱乐教育文化服务和杂项商品与服务的支出比重呈逐组上升趋势;说明居民的生活水平随收入的增加而不断提高和改善..第四;医疗保健支出比重随收入水平提高呈现一种两端高、中间低的走势..这是因为医疗保健支出作为生活必须支出;不论居民生活水平高低;都要将一定比例的收入用于维持自身健康;而且由于医疗制度改革;加重了个人负担的同时;也减小了旧制度可能造成的不同行业、不同体制下居民医疗保健支出的差别;因而不同收入等级的居民在医疗保健支出比重上差别不大..第五;居住支出比重基本上呈先上升后下降的趋势;这与我国居民消费能级不断提升;住宅商品正在越来越成为城镇居民关注的热点是相吻合的;同时与恩格尔定律的引申也是一致的..可以看出;城镇居民的消费状况虽然受价格水平、消费习惯、消费环境、消费心理预期等诸多因素的影响;但归根结底仍取决于居民的收入水平;要提高城镇居民的消费支出;必须增加居民收入..因此;采取切实有效的措施增加城镇居民的可支配收入;不仅可以提高全国城镇居民的总体消费水平;促进消费结构向着更加健康、合理的方向发展;而且在启动内需;促进我国的经济发展方面有着重大的现实意义..三、我国居民消费结构的纵向分析进入21世纪以来;随着经济体制改革的深入;国民经济的迅速发展;我国城乡居民的消费水平显著提高;居民的各项支出显著增加..随着消费水平的提高;我国城乡居民消费从注重量的满足到追求质的提高;从以衣食消费为主的生存型到追求生活质量的享受型、发展型;消费质量和消费结构都发生了明显的变化..城镇居民在食品、衣着、家庭设备用品三项支出在消费支出中的比重呈现明显的下降趋势;其中食品类支出比重降幅最大;衣着类有所下降;家庭设备用品类下降幅度不是很大..与此同时;医疗保健、交通通讯、文化娱乐教育服务、居住及杂项商品支出在消费支出中的比例均有上升;富裕阶段的消费特征开始显现..四、我国城镇居民消费结构及趋势的统计分析下图是出自中国统计年鉴—2009这一资料性年刊;它系统收录了全国和各省、自治区、直辖市2008年经济、社会各方面的统计数据;以及近三十年和其他重要历史年份的全国主要统计数据..此年鉴正文内容分为24个篇章;本文选取其中的第九篇章-人民生活;用以探究我国城镇居民消费结构及其趋势..表1 中国统计年鉴—2009统计表9-5 城镇居民家庭基本情况可支配收入1510.16 4282.95 6279.98 13785.81 15780.76平均每人消费性支出元1278.89 3537.57 4998.00 9997.47 11242.85 食品693.77 1771.99 1971.32 3628.03 4259.81衣着170.90 479.20 500.46 1042.00 1165.91居住60.86 283.76 565.29 982.28 1145.41 家庭设备用品及服务108.45 263.36 374.49 601.80 691.83 医疗保健25.67 110.11 318.07 699.09 786.20交通通信40.51 183.22 426.95 1357.41 1417.12 教育文化娱乐服务112.26 331.01 669.58 1329.16 1358.26 杂项商品与服务66.57 114.92 171.83 357.70 418.31 平均每人消费性支出构成人均消费性支出=100食品54.25 50.09 39.44 36.29 37.89衣着13.36 13.55 10.01 10.42 10.37居住 6.98 8.02 11.31 9.83 10.19 家庭设备用品及服务10.14 7.44 7.49 6.02 6.15 医疗保健 2.01 3.11 6.36 6.99 6.99交通通信 1.20 5.18 8.54 13.58 12.60 教育文化娱乐服务11.12 9.36 13.40 13.29 12.08 杂项商品与服务0.94 3.25 3.44 3.58 3.72注:1.本表至9-17表为城镇住户抽样调查资料..2.从2002年起;城镇住户调查对象由原来的非农业人口改为城市市区和县城关镇住户;本篇章相关资料均按新口径计算;历史数据作了相应调整..五、SPSS统计分析图一给出了基本的描述性统计图;图中显示各个变量的全部观测量的Mean均值、Std.Dev iation标准差和观测值总数N..图2给出了相关系数矩阵表;其中显示3个自变量两两间的Pearson相关系数;以及关于相关关系等于零的假设的单尾显著性检验概率..图1 描述性统计表图2 相关系数矩阵从表中看到因变量家庭设备用品及服务与自变量食品、衣着之间相关关系数依次为0.869、0.684;反映家庭设备用品及服务与食品、衣着之间存在显著的相关关系..说明食品与衣着对于家庭设备用品及服务条件的好转有显著的作用..自变量居住于因变量家庭设备用品及服务之间的相关系数为-0.894;它于其他几个自变量之间的相关系数也都为负;说明它们之间的线性关系不显著..此外;食品与衣着之间的相关系数为0.950;这也说明它们之间存在较为显著的相关关系..按照常识;它们之间的线性相关关系也是符合事实的..图3给出了进入模型和被剔除的变量的信息;从表中我们可以看出;所有3个自变量都进入模型;说明我们的解释变量都是显著并且是有解释力的..图3 变量进入/剔除信息表图4给出了模型整体拟合效果的概述;模型的拟合优度系数为0.982;反映了因变量于自变量之间具有高度显著的线性关系..表里还显示了R平方以及经调整的R值估计标准误差;另外表中还给出了杜宾-瓦特森检验值DW=2.632;杜宾-瓦特森检验统计量DW是一个用于检验一阶变量自回归形式的序列相关问题的统计量;DW在数值2到4之间的附近说明模型变量无序列相关..图4 模型概述表图4给出了方差分析表;我们可以看到模型的设定检验F统计量的值为9.229;显著性水平的P值为0.236..图5 方差分析表图6给出了回归系数表和变量显著性检验的T值;我们发现;变量居住的T值太小;没有达到显著性水平;因此我们要将这个变量剔除;从这里我们也可以看出;模型虽然通过了设定检验;但很有可能不能通过变量的显著性检验..图6 回归系数表图7给出了残差分析表;表中显示了预测值、残差、标准化预测值、标准化残差的最小值、最大值、均值、标准差及样本容量等;根据概率的3西格玛原则;标准化残差的绝对值最大为1.618;小于3;说明样本数据中没有奇异值..图7 残差统计表图8给出了模型的直方图;由于我们在模型中始终假设残差服从正态分布;因此我们可以从这张图中直观地看出回归后的实际残差是否符合我们的假设;从回归残差的直方图于附于图上的正态分布曲线相比较;可以认为残差的分布不是明显地服从正态分布..尽管这样也不能盲目的否定残差服从正态分布的假设;因为我们用了进行分析的样本太小;样本容量仅为5..图8 残差分布直方图从上面图4的分析结果看;我们的模型需要剔除居住这个变量;用本次实验中的方法和步骤重新令家庭设备用品及服务对食品和衣着回归;得到的主要结果如图9、图10和图11所示;跟上面的分析类似;从中可以看出;剔除居住这个变量后;模型拟合优度为0.964;比原来有所降低;而方差分析的F检验为27.071;新模型与原来的模型相比;各个系数都通过了显著性T检验;因此更加合理;从而我们可以得出结论:剔除居住这个变量后的模型更加合理;因此在做预测过程中要使用剔除不显著变量后的模型..图9 模型概述图10 方差分析表图11 回归系数表六、我国居民消费变化的趋势特点1食品消费质量提高;衣着消费支出比重下降..食品消费水平由过去简单的吃饱吃好;转变为品种更加丰富;营养更加全面..一方面由于食品供应的日益充足..另一方面由于在外饮食的增加;粮食消费比重减小;购买量大幅度下降..衣着是两项基本生存资料之一;衣着消费向时装化、名牌化、个性化发展的倾向更加明显;成衣化倾向成为主流..从衣着和食品消费比重的下降可以看出城镇居民满足基本生活的支出并没有随着收入水平的提高而提高;这表明我国城镇居民满足吃、穿为主的生存型消费需求阶段已经结束;逐步向以发展型和享受型消费的阶段过渡..2 居民收入迅速增长;消费水平大幅度提高;消费结构呈现明显的富裕型特征消费是收入的函数;收入的增加是消费水平提高和消费结构变化的前提..随着我国经济的发展;我国居民的收入水平不断提高;特别是21世纪以来;我国居民的收入水平迅速提高..伴随着收入水平的提高;城乡居民各项支出全面增加;消费性支出大幅度增长..今后5—10年以至更长时间;我国经济保持一个较高的增长速度是完全可能的;城乡居民的消费水平将大幅度提高..3消费能级不断提高;消费内容日益丰富;住房与轿车消费同时升温;可望提前成为消费热点在消费水平提高和消费结构改善的同时;城乡居民的消费能级不断提高....4以教育为龙头的娱乐教育文化服务类消费继续攀升随着人们对知识认知程度的提高和自我完善意识的增强;对教育的投入仍会保持增长..目前从子女教育在人们储蓄目的位居前列的情况看;对教育及教育产品的投入仍是今后一个时期的消费热点..大力发展教育事业;特别是高等教育、成人教育、职业教育应是政府长期坚持和倡导的提高城镇居民收入水平;缩小收入差距;应做到:1.进一步强化收入分配的宏观调控力度采取切实措施努力提高低收入群体的收入水平..2.加快西部大开发步伐;做好扶贫开发工作..3.进一步完善社会保障制度;改善居民整体尤其是社会弱势群体的生存环境..4.通过完善税收制度来缩小部分不合理的高低收入阶层差距..5.对不动产、金融资产收益以及财产的继承与赠与;要通过合理设置税种税率;征收房产税、利息税以及遗产与赠与税等税种来进行调节..参考文献1 吕振通张凌云spss统计分析与应用机械工程出版社;2009年2 Nancy L.Leech Karen C.Barrett Ceorge A.Morgan SPSS for Intermediate Statistics Use and InterpretationThird Edition PUBLISHING HOUSE OF ELECTRONICS INDUSTRY;2009年。
课程论文我国居民消费水平研究分析班级:09经51学号:姓名:***2012年 11 月摘要:居民消费水平是指一个国家一定时期内人们在消费过程中对物质和文化生活需要的满足程度。
要刺激消费、扩大内需,必须找出影响我国居民消费水平的关键因素,才能对症下药。
本文结合居民消费水平的影响因素和居民消费水平的历史及现状列出了五个相关因素(国内生产总值GDP、城镇和农村居民可支配收入、人口自然增长率以及居民消费价格指数),运用SPSS 17.0软件进行三个方面的分析:描述性分析、因子分析、回归分析。
本案例的研究目地是分析我国居民消费水平的影响因素,为更好的提高居民消费水平提供科学的依据。
关键字:居民消费水平 SPSS分析扩大内需刺激消费引言居民消费水平是按国民收入或国内生产总值的使用总量中用于居民消费的总额除以年平均人口计算的,它反映一个国家或一个地区居民的一般消费水平。
居民消费水平是GDP 中一个重要组成部分,是拉动经济增长的三驾马车之一,一直是经济学家关注的焦点和研究的热门领域。
在改革开放以来,居民消费水平提高的较快,消费结构也有了很大的改善,因此对其进行分析有较强的经济意义。
分析目地、分析思路与数据选取本案例的研究目地是分析我国居民消费水平的影响因素,为更好的提高居民消费水平提供科学的依据。
分析思路主要如下,首先利用描述性分析对居民消费水平、国内生产总值GDP、城镇和农村居民可支配收入、人口自然增长率以及居民消费价格指数进行基础性的描述,以便对我国居民消费水平和其主要影响因素有一个直观的印象,然后利用因子分析提取对我国居民消费水平影响较为显著的因素,分析我国居民消费水平的影响的因素,最后利用回归分析方法确定这些因素对我国居民消费水平的影响方向和强弱。
在现实生活中,影响消费的因素很多,例如收入水平、商品价格水平、利率水平、收入分配状况、消费者偏好、家庭财产状况、消费信贷状况、消费者年龄构成、制度、风俗习惯等等。
基于SPSS的全国城镇居民消费水平差异分析一、引言消费水平是一个国家或地区经济发展水平的重要标志之一。
城镇居民消费水平的差异分析可以帮助我们了解不同地区居民的生活水平、消费习惯和经济能力,为政府部门和企业提供决策支持,促进经济社会的发展。
本文以中国城镇居民消费水平为研究对象,利用SPSS软件对全国城镇居民消费水平的差异进行分析,从而探讨不同地区消费水平的特点和存在的差异,为相关部门提供决策建议和引导。
二、方法1. 数据来源本文选取了中国统计年鉴、国家统计局等权威机构发布的数据,通过调查问卷和实地调研,收集了全国各省级行政单位城镇居民的消费数据。
数据包括个人收入、家庭开支、日常消费、大宗消费等方面的内容,时间跨度为5年,以保证数据的全面性和可靠性。
2. 数据处理在收集到的数据基础上,使用SPSS软件进行数据处理和分析。
首先进行数据清洗,包括数据去重、数据整理、缺失值填补等工作,保证数据的完整性和准确性。
然后进行描述性统计分析和多变量分析,对不同地区的消费水平进行比较和差异分析。
三、结果分析1. 不同地区消费水平的比较通过对全国各省级行政单位城镇居民消费水平的分析,发现不同地区的消费水平存在明显的差异。
一般来说,发达地区的消费水平相对较高,如北京、上海、广东等经济发达地区,其居民的收入水平和消费水平较高;而相对欠发达地区的消费水平较低,如西部地区、东北地区等,居民的消费水平偏低。
2. 消费结构的差异分析除了消费水平的差异外,不同地区的城镇居民还存在着消费结构的差异。
一般来说,发达地区的居民更注重高品质、高档次的消费,如旅游、文化娱乐、高端消费品等;而欠发达地区的居民更多地侧重于基本生活消费,如食品、衣物、住房等。
在具体的消费项目上也存在差异,发达地区的居民更倾向于数字化消费、智能消费,如网购、移动支付等;而欠发达地区则更多地依赖传统消费方式,如实体商店购物、现金支付等。
3. 影响消费水平的因素通过多元回归分析,我们探讨了影响消费水平的因素。
关于某市近20年居民消费结构变动的分析本文的目的是分析居民随着年份的增加,消费结构发生的变化,通过收集的数据。
利用spss软件进行因子分析,得出结论,为产业政策的制订和宏观经济的调控提供参考。
引言:消费结构是指在一定的社会经济条件下,人们在消费过程中各种不同内容、不同形式的消费在消费总量中所占的比重以及它们之间的关系。
按1993年国家统计局对生活消费品类别的划分方法,把居民生活消费品分为八个大类,即食品、衣着、居住、家庭设备用品及服务、医疗保健、交通通信、文化教育娱乐用品及服务、其他商品及服务。
消费结构的变动不仅是经济领域内的重要问题,而且也关系到整个国民经济的发展,合理的消费结构及消费结构的升级和优化不仅反映了消费层次和质量的提高,也为建立合理的产业结构和产品结构提供了重要依据。
一数据的理解及处理本文采用的数据来自于网络(见附录),其中主要包含食品、衣着、居住、家庭设备用品及服务、医疗保健、交通通信、文化教育娱乐用品及服务、其他商品及服务8个指标,这些指标之间存在着不同程度而相关性如果单独分析这些指标,无法分析居民消费结构的特点,因此采用因子分析法,将这八个指标综合为几个少数因子,通过这些公共因子来反映居民消费结构的变化情况。
且各数具比较完整,无异常数据因此直接处理。
我们先通过图形来观察各项消费的平均值支出所占居民消费的比重,由图像可以看出食品所占消费比重最大,文化教育娱乐用品及服务及居住次之,其它相差不大而其他商品及服务最小。
图一通过图形二我们可以看到各消费随着年份的增加的变化,可以得出以下结论(1)虽然在2002年左右食品消费所占比例发生一定程度的震荡但保持一直下降的趋势。
(2)文教娱乐及服务消费随着年份增加而不断上升。
(3)居住消费支出保持较大幅度的震荡变化上升下降总体趋势不是太明显。
(4)其它消费支出变化趋势较相近,且震荡幅度不大。
图二三因子分析法步骤及结果分析1相关性分析图三先进相关性分析,其步骤是,选择‘分析’菜单中‘相关’的‘双变量’,并将影响因素选入变量列表。
结课论文题目:东、中、西部及东北地区——城镇居民家庭基本情况分析姓名:学号:姓名:学号:学校:学院:专业:班级:指导老师:日期:目录摘要 (2)一、各地区平均每人全部年收入随着时间的关系 (3)二、各地区可支配收入随着时间的关系 (4)三、各地区可平均每人消费性支出随着时间的关系 (5)四、各地区平均每人全部年收入与平均每人消费性支出的关系 (6)五、各地区城镇居民消费结构分析 (12)六、总结 (15)附录 (16)东、中、西部及东北地区城镇居民家庭基本情况分析摘要本文根据2005年~2010年东、中、西部及东北地区城镇居民家庭基本情况,根据数据中的所显示的平均每人就业情况、平均每人每人全部年收入、人均可支配收入、人均消费性支出和每个人在各个方面的消费以及构成比的基本基本情况,应用SPSS软件对这些数据进行分析,从中掌握城镇近几年的发展状况,城镇居民的就业情况,城镇居民消费方式的转变以及消费的构成情况,从而了解我国城镇居民生活的情况。
但是考虑到不同地区经济发展水平不一致,于是分别对东、中、西部及东北地区城镇居民家庭基本情况的分析,从中体现我国不同区域和地区的城镇发展状况,进而也可知道我国不同地区经济发展的差距,特别是东、中、西部地区经济在近几年内发展的差距。
希望政府及相关部门能够及时进行调整,缩小地区之间发展的差异,使全国能全面协调和谐发展。
对城镇居民平均每人全部年收入和平均每人消费性支出之间数量关系的基本规律的研究采用一元线性回归分析的方法,全部年收入和平均每人消费性支出之间有显著性的相关性,它们之间的数量关系满足很强的线性关系,不同地区之间的回归方程为:东部地区平均每人消费性支出=0.544×平均每人全部年收入+2002.914中部地区平均每人消费性支出=0.571×平均每人全部年收入+1216.976西部地区平均每人消费性支出=0.614×平均每人全部年收入+1102.893东北地区平均每人消费性支出=0.649×平均每人全部年收入+731.135在研究城镇居民消费结构时采用多元进入法线性回归进行分析,由于地域的不同,可以知道各地区城镇居民消费性支出与不同消费支出之间的情况:东部地区平均每人消费性支出主要用于医疗保健的消费支出、教育文化娱乐服务的消费支出、杂项商品与服务的消费支出、居住的消费支出和家庭设备用品及服务的支出。
我国各地区城镇居民消费支出结构的因子分析一.实验数据描述X1-食品 X2-衣鞋 X3- 家庭设备 X4-医疗保健 X5-交通与通讯 X6-文教娱乐 X7-居住 X8-杂项商品与服务2012年我国各省市城镇居民家庭平均每人全年消费性支出数据地区 1x2x3x4x5x6x7x8x北京 2959.19 730.79 749.41 513.34 467.87 1141.82 478.42 457.64 天津 2459.77 495.47 697.33 302.87 284.19 735.97 570.84 305.08 河北 1495.63 515.90 362.37 285.32 272.95 540.58 364.91 188.63 山西 1406.33 477.77 290.15 208.57 201.50 414.72 281.84 212.10 内蒙古 1303.97 524.29 254.83 192.17 249.81 463.09 287.87 192.96 辽宁 1730.84 553.90 246.91 279.81 239.18 445.20 330.24 163.86 吉林 1561.86 492.42 200.49 218.36 220.69 459.62 360.48 147.76 黑龙江 1410.11 510.71 211.88 277.11 224.65 376.82 317.61 152.85 上海 3712.31 550.74 893.37 346.93 527.00 1034.98 720.33 462.03 江苏 2207.58 449.37 572.40 211.92 302.09 585.23 429.77 252.54 浙江 2629.16 557.32 689.73 435.69 514.66 795.87 575.76 323.36 安徽 1844.78 430.29 271.28 126.33 250.56 513.18 314.00 151.39 福建 2709.46 428.11 334.12 160.77 405.14 461.67 535.13 232.29 江西 1563.78 303.65 233.81 107.90 209.70 393.99 509.39 160.12 山东 1675.75 613.32 550.71 219.79 272.59 599.43 371.62 211.84 河南 1427.65 431.79 288.55 208.14 217.00 337.76 421.31 165.32 湖北 1783.43 511.88 282.84 201.01 237.60 617.74 523.52 182.52 湖南 1942.23 512.27 401.39 206.06 321.29 697.22 492.60 226.45 广东 3055.17 353.23 564.56 356.27 811.88 873.06 1082.82 420.81 广西 2033.87 300.82 338.65 157.78 329.06 621.74 587.02 218.27 海南 2057.86 186.44 202.72 171.79 329.65 477.17 312.93 279.19 重庆 2303.29 589.99 516.21 236.55 403.92 730.05 438.41 225.80 四川 1974.28 507.76 344.79 203.21 240.24 575.10 430.36 223.46 贵州 1673.82 437.75 461.61 153.32 254.66 445.59 346.11 191.48 云南 2194.25 537.01 369.07 249.54 290.84 561.91 407.70 330.95 西藏 2646.61 839.70 204.44 209.11 379.30 371.04 269.59 389.33 陕西 1472.95 390.89 447.95 259.51 230.61 490.90 469.10 191.34 甘肃1525.57472.98328.90219.86206.65449.69249.66228.19青海1654.69 437.77 258.78 303.00 244.93 479.53 288.56 236.51宁夏1375.46 480.89 273.84 317.32 251.08 424.75 228.73 195.93新疆1608.82 536.05 432.46 235.82 250.28 541.30 344.85 214.40二、实验操作步骤Step01:打开数据文件,进入SPSS Statistics数据编辑器窗口,在菜单栏中依次单击“分析”│“降维”│“因子分析”选项卡,将“X1”、“X2”……“X8”变量选入“变量”列表。
SPSS统计分析案例一、我国城镇居民现状近年来,我国宏观经济形势发生了重大变化,经济发展速度加快,居民收入稳定增加,在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下,全国居民的消费支出也强劲增长,消费结构发生了显著变化,消费结构不合理现象得到了一定程度的改善。
本文通过相关数据分析总结出了我国城镇居民消费呈现富裕型、娱乐教育文化服务类消费攀升的趋势特点。
二、我国居民消费结构的横向分析第一,食品消费支出比重随收入增加呈现出明显的下降趋势,这与恩格尔定律的表述一致。
但最低收入户与最高收入恩格尔系数相差太过悬殊,城镇最低收入户刚刚解决了温饱问题,而最高收入户的生活水平按照恩格尔系数的评价标准早已达到了富裕型,甚至接近最富裕型。
第二,衣着消费支出比重随收入增加缓慢上升,到高收入户又有所下降,但各收入组支出比重相差不大。
衣着支出比重没有更多的递增且最高收入户的支出比重有所下降,这些都符合恩格尔定律关于衣着消费的引申。
随着收入的增加,衣着支出比重呈现先上升后下降的走势。
事实上,在当前的价格水平和服装业的发展水平下,城镇居民的穿着是有一定限度的,而且居民对衣着的需求也不是无限膨胀的,即使收入水平继续提高,也不需要将更大的比例用于购买服饰用品了。
第三,家庭设备用品及服务、交通通讯、娱乐教育文化服务和杂项商品与服务的支出比重呈逐组上升趋势,说明居民的生活水平随收入的增加而不断提高和改善。
第四,医疗保健支出比重随收入水平提高呈现一种两端高、中间低的走势。
这是因为医疗保健支出作为生活必须支出,不论居民生活水平高低,都要将一定比例的收入用于维持自身健康,而且由于医疗制度改革,加重了个人负担的同时,也减小了旧制度可能造成的不同行业、不同体制下居民医疗保健支出的差别,因而不同收入等级的居民在医疗保健支出比重上差别不大。
第五,居住支出比重基本上呈先上升后下降的趋势,这与我国居民消费能级不断提升,住宅商品正在越来越成为城镇居民关注的热点是相吻合的,同时与恩格尔定律的引申也是一致的。
Spss期末作业关于我国城镇居民消费结构及趋势的数据分析本次分析采用的数据来源于《中国统计年鉴—2011》,我选用的是其中的第十篇章—人民生活下的城镇居民家庭基本情况的相关数据,用以研究城镇居民消费结构及其趋势。
(附数据部分截图)(A)下面是我对该数据做的相关分析。
表一给出的是基本的描述性统计图,表中显示各个变量的全部观测量的均值、标准差和观测值总数N,表2给出的是相关系数矩阵表,其中显示4个变量两两之间的pearson相关系数,以及关于相关关系等于零的假设的单侧显著性检验概率。
描述性统计量均值标准差N表1 描述性统计表相关性食品衣着居住家庭设备用品及服务食品Pearson 相关性 1 .998**.991**.995**显著性(单侧).000 .001 .000平方与叉积的和 1.300E7 4000739.197 4039135.855 2468266.142协方差3250108.892 1000184.799 1009783.964 617066.535N 5 5 5 5 衣着Pearson 相关性.998** 1 .985**.994**显著性(单侧).000 .001 .000平方与叉积的和4000739.197 1235103.975 1238672.922 760246.419协方差1000184.799 308775.994 309668.230 190061.605N 5 5 5 5 居住Pearson 相关性.991**.985** 1 .996**显著性(单侧).001 .001 .000平方与叉积的和4039135.855 1238672.922 1279080.565 775005.410协方差1009783.964 309668.230 319770.141 193751.352N 5 5 5 5 家庭设备用品及服务Pearson 相关性.995**.994**.996** 1 显著性(单侧).000 .000 .000平方与叉积的和2468266.142 760246.419 775005.410 473179.063协方差617066.535 190061.605 193751.352 118294.766N 5 5 5 5相关性食品衣着居住家庭设备用品及服务食品Pearson 相关性 1 .998**.991**.995**显著性(单侧).000 .001 .000平方与叉积的和 1.300E7 4000739.197 4039135.855 2468266.142协方差3250108.892 1000184.799 1009783.964 617066.535N 5 5 5 5 衣着Pearson 相关性.998** 1 .985**.994**显著性(单侧).000 .001 .000平方与叉积的和4000739.197 1235103.975 1238672.922 760246.419协方差1000184.799 308775.994 309668.230 190061.605N 5 5 5 5 居住Pearson 相关性.991**.985** 1 .996**显著性(单侧).001 .001 .000平方与叉积的和4039135.855 1238672.922 1279080.565 775005.410协方差1009783.964 309668.230 319770.141 193751.352N 5 5 5 5 家庭设备用品及服务Pearson 相关性.995**.994**.996** 1 显著性(单侧).000 .000 .000平方与叉积的和2468266.142 760246.419 775005.410 473179.063协方差617066.535 190061.605 193751.352 118294.766N 5 5 5 5 **. 在 .01 水平(单侧)上显著相关。
居民消费水平研究SPSS居民消费水平是指居民在一定时间内用于购买和消费商品和服务的总量。
它反映了一个国家或地区的居民在经济发展和日常生活水平方面的表现。
在SPSS中,我们可以利用统计方法对居民消费水平进行研究和分析以了解人们的消费行为和态度。
一、数据收集和准备在研究居民消费水平前,首先需要收集和准备相关数据。
可以通过问卷调查、社会统计和其他方法获取数据。
假设我们已经收集到了一份关于居民消费行为的数据,其中包括消费金额、消费种类、消费时间和地点等信息。
这些数据需要整理、清洗和分类,以便后续的分析和处理。
二、描述性统计分析在SPSS中,我们可以使用描述性统计方法对消费数据进行分析,了解其基本特征和分布情况。
常见的描述性统计指标包括中位数、众数、平均数、标准差和四分位数等。
以消费金额为例,我们可以计算其平均值、中位数和众数,以反映人均消费水平和消费偏好。
同时,我们还可以绘制直方图和箱线图,以展示其分布情况和异常值情况。
三、相关性分析居民消费水平受到多种因素的影响,如个人收入、社会文化、市场竞争等。
在SPSS中,我们可以利用相关性分析方法研究不同变量之间的相关性,了解它们之间的关系和影响。
以个人收入和消费金额为例,我们可以计算它们之间的相关系数,以了解收入增加是否会对消费水平产生影响。
同时,我们还可以绘制散点图,以展示它们之间的分布和趋势。
四、回归分析回归分析是一种常用的统计方法,可以研究自变量对因变量的影响,并预测未来的趋势和变化。
在SPSS中,我们可以使用回归分析方法探索居民消费水平的影响因素,找出主要的驱动因素和预测未来的趋势。
以个人收入、社会文化和市场竞争为自变量,消费金额为因变量,我们可以建立一个多元回归模型,并进行参数估计和显著性检验。
通过分析模型的方差分析表和残差图,我们可以评估模型拟合效果和可信度,并进行预测和决策。
综上所述,居民消费水平是一个复杂的经济现象,需要综合运用不同的统计方法进行研究和分析。
关于某市近20年居民消费结构变动的分析
本文的目的是分析居民随着年份的增加,消费结构发生的变化,通过收集的数据。
利用spss软件进行因子分析,得出结论,为产业政策的制订和宏观经济的调控提供参考。
引言:
消费结构是指在一定的社会经济条件下,人们在消费过程中各种不同内容、不同形式的消费在消费总量中所占的比重以及它们之间的关系。
按1993年国家统计局对生活消费品类别的划分方法,把居民生活消费品分为八个大类,即食品、衣着、居住、家庭设备用品及服务、医疗保健、交通通信、文化教育娱乐用品及服务、其他商品及服务。
消费结构的变动不仅是经济领域内的重要问题,而且也关系到整个国民经济的发展,合理的消费结构及消费结构的升级和优化不仅反映了消费层次和质量的提高,也为建立合理的产业结构和产品结构提供了重要依据。
一数据的理解及处理
本文采用的数据来自于网络(见附录),其中主要包含食品、衣着、居住、家庭设备用品及服务、医疗保健、交通通信、文化教育娱乐用品及服务、其他商品及服务8个指标,这些指标之间存在着不同程度而相关性如果单独分析这些指标,无法分析居民消费结构的特点,因此采用因子分析法,将这八个指标综合为几个少数因子,通过这些公共因子来反映居民消费结构的变化情况。
且各数具比较完整,无异常数据因此直接处理。
我们先通过图形来观察各项消费的平均值支出所占居民消费的比重,由图像可以看出食品所占消费比重最大,文化教育娱乐用品及服务及居住次之,其它相差不大而其他商品及服务最小。
图一
通过图形二我们可以看到各消费随着年份的增加的变化,可以得出以下结论(1)虽然在2002年左右食品消费所占比例发生一定程度的震荡但保持一直下降的趋势。
(2)文教娱乐及服务消费随着年份增加而不断上升。
(3)居住消费支出保持较大幅度的震荡变化上升下降总体趋势不是太明显。
(4)其它消费支出变化趋势较相近,且震荡幅度不大。
图二
三因子分析法步骤及结果分析
1相关性分析
图三
先进相关性分析,其步骤是,选择‘分析’菜单中‘相关’的‘双变量’,并将影响因素选入变量列表。
通过观察图三我们可以看到很多变量之间都存在或强或弱的相关关系,所以可以对变量进行因子分析。
2 KMO及Bartlett 的检验
选择‘分析’中‘降维’的‘因子分析’,并在‘描述’子对话框中选KMO 和Bartlett球形度检验
图四
图四中我们可以看到,KMO小于0.7,但是因为数据来源有限,本论文只是表现统计方法的使用,所以仍然继续进行分析。
3描述性统计表
图五
从图五我们可以看到各费支出的描述统计量,比如均值标准差,这为后续的因子分析提供一个直观的分析结果,从图中可以看到,食品支出消费比重最大,其均值为39.68%其次是文教娱乐及服务和居住支出消费。
4 因子共同度
图六
图六是因子分析的共同度。
显示了所有变量的共同数据。
第二列是因子分析初始解下的变量共同度。
它表明对原有8个变量如果采用主成分析法提取所有的8个特征值,那么原有的所有变量的方差都可以被解释,变量的共同性均为1。
事实上因子个数小于元变量的个数才是因子分析的目的,所以不可能提取所有特征根于是第三列给出了提取条件提取特征根时的共同度,可以看到所有变量的绝大部分信息可被因子解释,这些变量信息丢失较少,因此本次因子提取的总
体效果较为理想。
5 因子分析的总方差解释
图七
图七所示是因子分析的总方差解释,是相关系数矩阵的特征值,方差贡献率及累计方差贡献率的统计结果,第一组数据项(从第二道第四列)描述了初始因子解的情况,可以看出第一个因子的特征根值为4.341,解释了原有8个变量总方差的54.264%前三个因子的累计贡献率为88.059%并且只有他们的取值大于1,说明前三个公因子基本包含了全部变量的主要信息,因此选前3个因子为主因子即可。
同时提取平方和载入和旋转平方和载入数据组列出了因子提取后和旋转后的因子方差解释情况,从中可以看出他们都支持3个公共因子。
6 因子碎石图
图八
图八所示为因子分析的碎石图,横坐标为因子数目,纵坐标为特征根,可以看到第一个因子的特征值为很高,对解释原有变量的贡献最大,第三个因子以后的特征根都很小,对解释原有的变量都很小,因此就提取前三个因子。
7旋转前因子载荷矩阵
图九
图九旋转前因子载荷矩阵,它是因子分析的核心内容,通过载荷系数大小可以分析不同公共因子所反映的主要指标的区别,从结果可以看到大部分因子解释性较好,但是仍有少部分因子因子解释性能力较差,比如食品指标,在三个因子的载荷系数区别不大,因此接着因子旋转法使得因子载荷系数向0和1两极分化,使大的载荷更大,小的载荷更小,这样结果更具解释性。
8旋转后的因子载荷矩阵
图十
图十现实实施旋转后的因子载荷矩阵,可以看到,第一主因子在交通通讯,文教娱乐及服务医疗保健,居住等指标上有较大的载荷系数,说明第一个公因子综合反映这几个方面的变动情况可以将其命名为第一基本消费因子。
从载荷系数绝对值大小表明自1993年以来,该市居民消费结构中变化最大的依次为交通和通讯0.975文教娱乐及服务0.973医疗保健0.952食品为-0.893,其中交通和通讯0.975文教娱乐及服务0.973医疗保健0.952为上的载荷系数为正值。
表明在1993~2012年间居民在交通和通讯,文教娱乐及服务,医疗保健上的消费为递增的,而在食品上的消费为递减的,这与前文分析还有实际是相符的。
第二个主因子在衣着,家庭设备用品及服务,居住指标上系数较大,可以将其命名为第二基本消费因子,衣着0.737家庭设备用品及服务为0.644居住为-0.632说明居民在衣着,家庭设备用品及服务为消费时增加的在居住上是递减的,这与实际情况也是相符的,随着收入的增加人们对衣着的要求也是多样化发展,对家庭电器需求变大,同时越来越高的房价对居民来说无法承担,居住消费呈现出下降。
而第三个主因子在杂项商品及服务上系数最大,可以将其命名为第三基本消费因子,系数为0.919表明市民生活内容日益丰富。
9因子得分系数
图十一
图十一采用回归法估计因子的得分系数,根据表中的内容可以写出以下因子得分函数。
因子8123456710.2130.1490.1170.2190.2230.2290.0420.027F x x x x x x x x =-+-++++- 因子8123456720.0630.5490.5170.0100.0190.0750.3780.181F x x x x x x x x =-+---++- 因子8
123456730.1230.0830.2250.0250.0540.0670.4020.727F x x x x x x x x =--++--+ 10因子变动趋势图
不仅如此原数据还给出了FAC_1,FAC_2,FAC_3三个变量,它表示3个因子在不同年份的得分值,为了进一步揭示因子变动的情况绘制了图十二所示的因子变动趋势图。
从图十二可以看出在第一公因子在1993~2000年期间一直比较稳定,但进入21世纪以后虽然在2002年出现下降,但其后一直保持上升并在2007年达到最大值,2008年出现明显的下降之后又保持了稳定的上升。
这主要是因为该市在进入21世纪之前经济发展不是太强劲,随着中国加入世贸组织,该市经济出现较快发展,人们的第一类消费开始逐渐增加,但由于2008年经济危机的发生,使该市受到了一定的冲击,第一公因子出现明显的下降,但随着国家刺激经济的发展,该市经济出现复苏,第一公因子又开始保持稳定上升。
第二公因子得分的起伏波动主要由居住,衣着比重有升有降的波动引起的,根本原因是国家执行住房改革的力度密切相关,但由于住房改革政策的推行相对
于其他的改革政策比较缓慢。
所以居民对住房消费存在一定的不确定性,这就造成第二因子的波动。
第三因子一直波动不已,说明市民在杂项上的的消费仍有很大的空间。
四结论
总的来看,该市居民生活已逐步提高,迈向富裕。
居民消费从过去的单一型向享受型、发展型消费品等多层次需求的消费结构方向发展。
在消费结构上,食品、衣着、家庭设备及服务和的支出比例下降,而居住、教育文化娱乐服务、医疗保健和交通通信这四项消费项目支出比例增加,说明城镇居民的消费层次己经提高,消费的重心逐渐发生改变。
但经济发展需进一步深化,因为食品消费支出还占很大一部分。
当然还有一部分缺陷比如KMO小于0.7,但是因为数据来源有限,但本论文只是表现统计方法的使用,所以仍然继续进行分析。