材料力学性能第四章.
- 格式:doc
- 大小:3.35 MB
- 文档页数:16
材料力学第3版习题答案第一章:应力分析1. 某材料在单轴拉伸下的应力-应变曲线显示,当应力达到200 MPa 时,材料发生屈服。
若材料在该应力水平下继续加载,其应力将不再增加,但应变继续增加。
请解释这一现象,并说明材料的屈服强度是多少?答案:这种现象表明材料进入了塑性变形阶段。
在单轴拉伸试验中,当应力达到材料的屈服强度时,材料的晶格结构开始发生滑移,导致材料的变形不再需要额外的应力增加。
因此,即使继续加载,应力保持不变,但应变会因为材料内部结构的重新排列而继续增加。
在本例中,材料的屈服强度是200 MPa。
第二章:材料的弹性行为2. 弹性模量是描述材料弹性行为的重要参数。
若一块材料的弹性模量为210 GPa,当施加的应力为30 MPa时,其应变是多少?答案:弹性模量(E)与应力(σ)和应变(ε)之间的关系由胡克定律描述,即σ = Eε。
要计算应变,我们可以使用公式ε =σ/E。
将给定的数值代入,得到ε = 30 MPa / 210 GPa =1.43×10^-4。
第三章:材料的塑性行为3. 塑性变形是指材料在达到屈服点后发生的永久变形。
如果一块材料在单轴拉伸试验中,其屈服应力为150 MPa,当应力超过这个值时,材料将发生塑性变形。
请解释塑性变形与弹性变形的区别。
答案:塑性变形与弹性变形的主要区别在于材料在去除外力后是否能够恢复原状。
弹性变形是指材料在应力作用下发生的形状改变,在应力移除后能够完全恢复到原始状态,不留下永久变形。
而塑性变形是指材料在应力超过屈服点后发生的不可逆的永久变形,即使应力被移除,材料的形状也不会恢复到原始状态。
第四章:断裂力学4. 断裂韧性是衡量材料抵抗裂纹扩展的能力。
如果一块材料的断裂韧性为50 MPa√m,试样的尺寸为100 mm×100 mm×50 mm,试样中存在一个长度为10 mm的初始裂纹。
请计算在单轴拉伸下,材料达到断裂的临界应力。
材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力.一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后.随时间延长产生附加弹性应变的现象称为滞弹性.也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形.卸载后再同向加载.规定残余伸长应力增加;反向加载.规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时.便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下.当外加正应力达到一定数值后.以极快速率沿一定晶体学平面产生的穿晶断裂.因与大理石断裂类似.故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内.可以是韧性断裂.也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展.多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时.冲击吸收功明显下降.断裂方式由原来的韧性断裂变为脆性断裂.这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P153、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小.但是不改变金属原子的本性和晶格类型。
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=AA l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1 / 101-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
工程材料力学性能课后题答案第三版(束德林)第一章单向静拉伸力学性能1、解释下列名词。
(1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
(2)滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
(3)循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
(4)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(5)解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
(6)塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
(7)解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
(8)河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
(9)解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
(10)穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
(11)韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变。
2、说明下列力学性能指标的意义。
答:(1)E(G)分别为拉伸杨氏模量和切边模量,统称为弹性模量表示产生100%弹性变所需的应力。
σ规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。
(2)rσ名义屈服强度(点),对没有明显屈服阶段的塑性材料通常以产生0.2%的塑性形变对应的应力作为屈2.0服强度或屈服极限。
复合材料力学第四章层合板的宏观力学行为层合板是一种由多层材料在一定角度堆叠压制而成的复合材料结构。
它由胶合剂粘合在一起,形成一个整体的结构,具有较好的力学性能。
层合板在航空航天、汽车、建筑等行业中被广泛应用,因其具有良好的强度和刚度、较低的重量和成本等优势。
层合板的宏观力学行为可以从宏观角度和微观角度两个方面来研究。
从宏观角度来看,层合板可以看作是一个复合材料板。
在受力时,层合板主要承受拉、压、剪等力。
根据不同的力学模型,可以通过切变理论、薄板理论和剪切变形理论等方法来进行计算。
切变理论是最常用的方法之一、该理论是假设层合板在受力时,各层之间发生无滑移的切变变形,层间切应力在板的厚度方向分布均匀。
根据该理论,可以得到层合板的切变变形方程,进而计算出层合板的应力和变形。
薄板理论是另一种常用的方法。
该理论是假设层合板是一根薄板,其厚度远小于其他尺寸,因此在计算时可以忽略板厚度方向的变形。
根据薄板理论,可以得到层合板的挠度方程,并据此计算层合板的应力和变形。
剪切变形理论结合了切变理论和薄板理论的优点。
该理论考虑了层合板在受力时发生的切变变形和弯曲变形,对于层合板的力学行为具有较好的描述能力。
从微观角度来看,层合板的宏观力学行为可以理解为层与层之间的相互作用。
由于层合板是由多层材料堆叠而成的,不同材料的力学性质会影响整体的力学行为。
根据不同材料的应力应变关系和强度性能,可以得到层合板的宏观力学性能。
在层合板的设计和应用中,关键是如何选择合适的层厚度、层间胶合剂和夹层角度等参数。
通过合理选择这些参数,可以提高层合板的强度、刚度和耐疲劳性能。
总之,层合板的宏观力学行为是通过宏观角度和微观角度相结合来研究的。
在设计和应用层合板时,需要综合考虑材料的力学性能和结构的力学行为,以提高层合板的整体性能。
材料力学性能-课后答案-(时海芳-任鑫)第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。
⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。
2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b(抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率)4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。
答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。
5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。
试分析这两种故障的本质及改变措施。
答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。
第四章 应力应变关系前一章引进了应力和应变的概念以及应力分析和应变分析的公式。
应力分析仅用到力的平衡概念,应变分析仅用到几何关系和位移的连续性。
这些都没有涉及到所研究物体的材料性质。
本章开始将研究材料的性质。
这些性质决定了各种材料特殊的应力-应变关系,显示出材料的力学性能。
下面将着重描述低碳钢的力学性能,介绍各向同性材料的广义胡克定律。
作为选读材料,将介绍各向异性的复合材料单层板的应力-应变关系。
§4-1 低碳钢的拉伸试验在分别考虑了应力和应变后,从直觉上知道这两个量是互相关联的。
事实上,在第一章的绪论里已经提到过应力应变之间的胡克定律。
它描述了很大一类材料在小变形范围,在简单拉伸(压缩)条件下所具有的线性弹性的力学性能。
低碳钢Q235是工程上常用的金属材料。
这一节着重介绍低碳钢的力学性能,然后简单介绍其他一些材料的性能。
有关材料性能的知识来自于宏观的材料试验,以及从这些试验得出的宏观的、唯象的理论。
固体物理学家一直在从原子和分子量级上研究这些力学性能的微观基础。
力学家也已开始从细观尺度来分析材料的力学性能,并已经取得了很大进展。
材料力学作为固体力学的入门课程,将只限于材料的宏观力学性能的描述。
为了确定应力与应变关系,最常用的办法是用单向拉伸(压缩)试验来测定材料的力学性质。
这种试验通常是在常温(室温)下对试件进行缓慢而平稳加载的静载试验。
805l d =一、低碳钢拉伸试验按照我国的国家标准 “金属拉伸试验试样” (GB6397-86),将试件按规定做成标准的尺寸。
图4-1所示是一根中间直径为d 的圆杆型试件,两端的直径比中间部分大,以便于在试验机夹头上夹持。
试件中间取一段长度为l 的等直部分作为标距。
对圆截面标准试件,规定标距l 与直径d 的关系为 ,或,分别称为10倍试件和5倍试件。
试件也可制成截面为矩形的平板型,平板试件的10倍与5倍试件的标距分别为10l d==l和l =,其中A 为试件的横截面面积。
《材料的力学性能》第一章 材料的拉伸性能名词解释:比例极限P σ,弹性极限e σ,屈服极限s σ,屈服强度0.2σ,抗拉强度b σ,延伸率k δ,断面收缩率k ψ(P7-8),断裂强度f σ(k σ),韧度(P10)1、拉伸试验可以测定那些力学性能?对拉伸试件有什么基本要求? 答:拉伸试验可以测定的力学性能为:弹性模量E ,屈服强度σs ,抗拉强度σb ,延伸率δ,断面收缩率ψ。
2、拉伸图和工程应力-应变曲线有什么区别?试验机上记录的是拉伸图还是工程应力-应变曲线?答:拉伸图和工程应力—应变曲线具有相似的形状,但坐标物理含义不同,单位也不同。
拉伸图横坐标为伸长量(单位mm ),纵坐标为载荷(单位N );工程应力-应变曲线横坐标为工程应力(单位MPa ),纵坐标为工程应变(单位无)。
试验机记录的是拉伸图。
3、脆性材料与塑性材料的应力-应变曲线有什么区别?脆性材料的力学性能可以用哪两个指标表征?答:如下图所示,左图近似为一直线,只有弹性变形阶段,没有塑性变形阶段,在弹性变形阶段断裂,说明是脆性材料。
右图为弯钩形曲线,既有弹性变形阶段,又有塑性变形阶段,在塑性变形阶段断裂,说明是塑性材料。
脆性材料力学性能用“弹性模量“和”脆性断裂强度”来描述。
4、塑性材料的应力-应变曲线有哪两种基本形式?如何根据应力-应变曲线确定拉伸性能?答:分为低塑性和高塑性两种,如下图所示。
左图曲线有弹性变形阶段与均匀塑性变形阶段,没有颈缩现象,曲线在最高点处中断,即在均匀塑性变形阶段断裂,且塑性变形量小,说明是低塑性材料。
右图曲线有弹性变形阶段,均匀塑性变形阶段,颈缩后的局集塑性变形阶段,曲线在经过最高点后向下延伸一段再中断,即在颈缩后的局集塑性变形阶段断裂,且塑性变形量大,说明是高塑性材料。
5、何谓工程应力和工程应变?何谓真应力和真应变?两者之间有什么定量关系?答:6、如何测定板材的断面收缩率?答:断面收缩率是材料本身的性质,与试件的几何形状无关,其测试方法见P8。
第四章缺口试件的力学性能前面介绍的拉伸、压缩、弯曲、扭转乃至硬度试验等静载荷试验方法,都是采用横截面均匀的光滑试样,但实际生产中存在的构件,绝大多数都不是截面均匀无变化的的光滑体,往往存在着截面的急剧变化,例如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等。
这种截面变化的部位可以视为缺口(切口)。
由于缺口的存在,在载荷(静载荷或冲击载荷)作用下,缺口截面上的应力状态将发生变化,产生“缺口效应”,从而影响到金属材料的力学性能。
§4.1 静载荷作用下的缺口效应一、缺口试样在弹性状态下的局部应力和局部应变1. 应力集中和应变集中一薄板的中心边缘开缺口,并承受拉应力σ作用。
缺口部分不能承受外力,这一部分外力要有缺口截面其他部分材料来的承担,因而缺口根部的应力最大。
或者说,远离缺口处的截面上的力线的分布是均匀的,而在缺口截面上,由于截面突然缩小,力线密度增加,越靠近缺口根部力线越密,出现所谓应力集中的现象。
应力集中程度以应力集中系数表示之:maxmaxltnlnKσσσσ=-缺口截面轴向最大应力-缺口净截面平均轴向应力(名义应力)K t 和材料性质无关,只决定于缺口几何形状(所以又称为几何应力集中因子或弹性应力集中因子)。
例如:12t cK ρ=+圆孔:3t K ≈(无限宽板)应力集中必然导致应变集中,在弹性状态下,有:E σε=则: max max l t n l t n n K K K E Eεσσεεε⋅===⋅=⋅ 即在弹性状态下,应力集中系数和应变集中系数相同。
2. 多轴应力状态由图可见,薄板开有缺口承受拉应力后,缺口根部还出现了横向拉伸应力σx ,它是由材料的横向收缩引起的。
可以设想,加入沿x 方向将薄板分成很多细小的纵向拉伸试样,每一个小试样受拉伸后都能产生自由变形。
根据小试样所处的位置不同,它们所受的纵向拉伸应力σy 大小也不一样,越靠近缺口根部,σy 越大,相应的纵向应变εy 也越大(应力应变集中)。
每一个小试样在产生纵向应变εy 的同时,必然也要产生横向收缩应变εx ,且εx =-νεy 。
如果横向应变能自由进行,则每个小试样必然相互分离开来。
但是,实际上薄板是弹性连续介质,不允许各部分自由收缩变形。
由于这种约束,各个小试样在相邻界面上必然产生横向拉应力σx ,以阻止横向收缩分离。
因此,σx 的出现是金属变形连续性要求的结果。
在缺口截面上σx 的分布是先增后减,这是由于缺口根部金属能自由收缩,所以根部的σx =0。
自缺口根部向内部发展,收缩变形阻力增大,因此σx 逐渐增加。
当增大到一定数值后,随着σy 的不断减小,σx 也随之减小。
(薄板,平面应力,z 向变形自由,σz =0,有单向拉伸状态转变为两向拉伸状态) 如是厚板,处于平面应变状态,垂直于板厚方向上的收缩变形同样收到约束,σz =ν(σx +σy )。
厚板缺口单向拉伸时,缺口根部为两向拉伸应力状态,缺口内侧为三向拉伸应力状态。
缺口处出现应力集中和多轴拉伸应力状态后,使缺口根部的应力状态柔度因数α降低(<0.5),金属难以产生塑性变形(或者说,要使试样发生屈服,就需要更高的轴向应力,因τmax =(σ1-σ3)/2,σ3↑,要想屈服,必须σ1↑),则:➢ 屈服强度增加(缺口强化)sn sQ σσ=,称为约束系数 ➢ 材料的脆性增加(脆断倾向增加,缺口脆性)此外,在缺口圆柱试样中,切口根部处于两向拉伸应力作用下(σl 、σθ),可知:l t n K σσ=;0r σ=;l t n K θσνσνσ==Mises 等效应力:()1221e t n K σσνν=-+ ()1221e t t nK K σννσ'==-+ 称为复合应力集中因子(≈0.88K t )3. 局部应变速率的增大 试验机夹头移动速率:dl v dt=, 试样应变速率:d dtεε=&, 由dl d lε=可得: d dl v dt ldt lεε===& 可知:试验机的夹头移动速率恒定时,试样应变速率的大小取决于试样的工作长度。
(如l 0为100mm 的试样,v=0.01mm/s ,应变速率ε&为10-4/s ),而对于缺口处相当于l 0=1mm 的试样,应变速率为10-2/s ,换言之,相对于光滑试样而言,即使对于这种不太尖锐的缺口,缺口处的应变速率ε&已提高了两个数量级。
应变速率的急剧增加将带来严重后果(后面讲)。
二、缺口试样在弹塑性状态下的局部应力和局部应变1. 应力重分布对于塑性较好的材料,随外加载荷的增大,从缺口根部开始出现塑性变形,。
而且塑性区逐渐扩大,直至整个截面上都产生塑性变形,应力将重新分布。
以厚板为例,根据Tresca 屈服准则,金属屈服的条件是σ1-σ3=σs (或σy -σx =σs )。
在缺口根部,σx =0,σy 最大,因此,随着载荷的增加,σy 增加,在缺口根部最先满足屈服条件σy -σx =σs ,首先屈服,产生塑性变形,该处应力σy得到松弛(不考虑硬化,σy =σs ),导致应力峰值向内部移动,峰值之前出现所谓的“塑性区”,峰值成为塑性区和弹性区的分界线(在塑性区中,由于的σy 下降,σx 、σz 也随之下降)。
当然,随着峰值的内移,σx ≠0,需要更大的σy 才能保证塑性变形连续进行下去。
随着载荷的增加,塑性变形逐步向内部转移,各应力峰值也逐步向中心移去,直至缺口截面的全面屈服,这时,应力峰值处于试样中心(颈缩就是这样一种状态)。
2. 弹塑性条件下的局部应变在绝大多数的零构件的设计中,其名义应力总是低于屈服强度,但由于应力集中,切口根部的局部应力有可能高于屈服强度。
因此,零构件在整体上是弹性的,而在切口根部产生了塑性应变,形成塑性区。
且切口根部局部应变最大。
这里,切口根部局部应力与名义应力之比定义为弹塑性应力集中因子:nK σσσ= 弹塑性状态下的应变集中因子仍以K ε表示之。
根据Neuber 于1961年提出的法则(诺贝尔法则):2t n nK K K σεσεσε=⋅=⋅ (弹性情况:t K K K σε==)则:2..n n t K σεσε⋅=Neuber 关系虽然不能给出缺口顶端一定深度范围内塑性应力、应变的分布,但可求出缺口顶端表面的应力、应变值。
如载荷一定,试样(缺口尺寸)一定,则弹塑性条件下的局部应力和局部应变可以根据真应力-真应变曲线获得。
也可根据Hollomon 方程求取:n n p K K σεε=≈;n n E σε=;2.n n n E σσε=()121n t n K EK σε+⎡⎤=⎢⎥⎢⎥⎣⎦综上所述,机件上的缺口造成了三向应力应变状态和应力应变集中,使机件的安全性受到威胁,因此,必须采用缺口试样进行静载荷力学性能试验,以确定材料对不同缺口的敏感性。
§4.2 缺口试样静拉伸试验一、试验方法切口圆柱试样 双切口平板试样切口深度:t切口根部曲率半径:ρ;切口张角:ω偏置5mm二、测试指标1. 切口强度(切口试样的抗拉强度)(缺口强度)max24bnnPdσπ=2. 切口强度比(切口敏感性)(缺口强度比)bnbNSRσσ=若NSR>1.0,表示材料对缺口不敏感,缺口处发生了塑性变形的扩展,比值越大,塑性扩展量越大,脆化倾向越小,称为缺口韧性,若NSR<1.0,表示材料对缺口敏感,缺口处还未发生明显的塑性变形就出现低应力脆断,称为缺口脆性。
(缺口形状强烈影响缺口敏感性,为了便于比较,缺口形状和尺寸规定严格,其中ω=45º~60º;ρ=0.1~0.2mm;d n=7~15mm;d n/d0=0.7~0.85;所用光滑试样直径应等于d n)三、断口形貌➢a)脆性金属,随外载荷增加,应力分布不变,但应力值随之增大,平均应力σn尚低时,因应力集中形成的处于缺口根部表面的最大应力σlmax有可能超过材料的断裂抗力,此处萌生裂纹,引起过早的脆性断裂。
NSR<1;➢b)有一定塑性的材料,因外载荷增加,应力峰值σlmax增加(应变硬化),且位置内移,当达到材料的断裂抗力时,在此处启裂(多为微孔聚集型,因有塑性),表现为亚表面存在纤维区。
此时,NSR可以稍低于1,或稍大于1,视塑性区大小而定;➢c)塑性好的材料,随外载荷增加,塑性区可以扩展到试样中心,出现全面屈服,应力峰值σlmax位于试样中心,如缺口较钝(K t较小,<2),则类似于光滑试样出现的颈缩,中心启裂,形成杯锥状断口;如缺口尖锐(K t较大,>6),断裂由塑性应变集中引起,因此,断裂由外向内而完成,形成环心圆的纤维层断口。
两种情况均有NSR>1。
(注意:不能把NSR>1误认为缺口使材料得到了强化,似乎缺口的存在是一件好事,实际材料并非得到强化,而是缺口几何的存在造成多轴应力状态阻止了塑性变形的发展,阻止了颈缩和载荷下降,使得缺口试样的缺口强度σbn 接近了材料的实际断裂抗力S k(σf))§4.3 切口强度的估算及切口敏感性再评价一、切口强度的估算1. 基本假设含缺口的构件的断裂可能包含三个阶段:①裂纹在缺口根部起始;②裂纹的亚临界扩展,裂纹由初始尺寸扩展到临界尺寸(a c);③当裂纹扩展到临界尺寸时,即当a=a c 时,缺口试件最终断裂。
裂纹在切口根部形成,可以假定是由切口根部材料的材料元的断裂引起的。
裂纹起始后的尺寸a近似地等于切口深度(a n)加起始裂纹尺寸a i,通常a n>>a i,因此有a=a n+a i≈a n。
假设裂纹在根部形成后,其长度立即达到临界裂纹长度,则切口试件将在不发生亚临界裂纹扩展的条件下断裂,则切口根部裂纹形成应力近似地等于切口试件的断裂应力,即切口强度。
2. 脆性材料的切口强度脆性材料在发生塑性屈服之前发生断裂,其断裂遵循正应力断裂准则。
但局部应力达到材料的断裂强度σf 时,缺口根部材料元发生断裂而形成裂纹,有切口根部形成应力:t ni f ni f t K K σσσσ=⇒=根据上述假设,有切口强度:bn ni f t b t K K σσσσ===3. 高塑性材料的切口强度高塑性材料遵循正应变断裂准则。
当局部应变达到材料的断裂延性εf 时,缺口根部材料元发生断裂而形成裂纹,在薄板(平面应力)条件下(缺口根部表面为单向拉伸应力状态),根据前述可得:()121n t n f K EK σεε+⎡⎤==⎢⎥⎢⎥⎣⎦→t ni K σ=ni t σ=在厚板(平面应变)条件下,由于应力状态的变化,材料的断裂强度和断裂延性值要发生变化:()**1.05~1.070.30f f f f σσεε==且应力集中因子应以复合应力集中因子(0.88K t )代入:从而得到:ni t σ=统一为:1.00.64ni t σαα⎧==⎨⎩平面应力平面应变 由上述假设,得切口强度:1.00.64bn tσαα⎧==⎨⎩平面应力平面应变(因平面应力条件下,裂纹的亚临界扩展不可忽略,因此根据上述公式得到的切口强度的估算值略低于实测值,或者说,应是实测值的下界)4. 低塑性材料的切口强度低塑性材料,即使是薄板,由于沿厚度方向的应力σz 无法通过塑性变形而得到释放,因此,其切口根部仍处于平面应变状态下,α=0.64。