立体几何中的动态问题
- 格式:doc
- 大小:221.00 KB
- 文档页数:4
立体几何的动态问题立体几何的动态问题,主要有五种:动点问题、翻折问题、旋转问题、投影与截面问题以及轨 迹问题。
基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等。
解题时一般可以通过改变视角、平面化或者寻找变化过程中的不变因素而把问题回归到最本质的定义、定理或现有的结论中,若能再配以沉着冷静的心态去计算,那么相信绝大多数问题可以迎刃而解。
动点轨迹问题空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆,圆锥曲线。
很少有题目会脱离这三个方向。
(注意:阿波罗尼斯圆,圆锥曲线第二定义)1.(2015·浙江卷8)如图1110,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支式题 如图,平面α的斜线AB 交α于B 点,且与α所成的角为θ,平面α内有一动点C 满足∠BAC =π6,若动点C的轨迹为椭圆,则θ的取值范围为________.3.(2015春•龙泉驿区校级期中)在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持P A ⊥BD 1,则动点P 的轨迹所在的曲线是直线; ②若点P 到点A 的距离为,则动点P 的轨迹所在的曲线是圆;③若P 满足∠MAP =∠MAC 1,则动点P 的轨迹所在的曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为2:1,则动点P 的轨迹所在的曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在的曲线是抛物线. 其中真命题的个数为( )A .4B .3C .2D .14.(2018•温州模拟)已知线段AB垂直于定圆所在的平面,B,C是圆上的两点,H是点B在AC上的射影,当C 运动,点H运动的轨迹()A.是圆B.是椭圆C.是抛物线D.不是平面图形5.(2013•铁岭模拟)如图所示,△P AB所在的平面α和四边形ABCD所在的平面β互相垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=6.若tan∠ADP﹣2tan∠BCP=1,则动点P在平面α内的轨迹是()A.椭圆的一部分B.线段C.双曲线的一部分D.以上都不是6.(2013•嘉兴二模)设m是平面α内的一条定直线,P是平面α外的一个定点,动直线n经过点P且与m成30°角,则直线n与平面α的交点Q的轨迹是()A.圆B.椭圆C.双曲线D.抛物线7.(2008•浙江)如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线8.(2015春•台州校级月考)AB是平面α的斜线段,长度为2,点A是斜足,若点P在平面α内运动,当△ABP的面积等于3 时,点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线9.(2016•浙江二模)在正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1中,AB=AA1=2.若点M在△ABC所在平面上运动,且使得△AC1M的面积为1,则动点M的轨迹为()A.圆B.椭圆C.双曲线D.抛物线10.(2016•武汉校级模拟)如图,AB是平面α外的固定斜线段,B为斜足,若点C在平面α内运动,且∠CAB等于直线AB与平面α所成的角,则动点C的轨迹为()A.圆B.椭圆C.双曲线D.抛物线11.(2008年浙江·理10)如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线12.(2014年金华高二十校联考·文10)圆柱的轴截面ABCD是边长为2的正方形,M为正方形ABCD对角线的交点,动点P在圆柱下底面内(包括圆周),若直线BM与直线MP所成角为45°,则点P形成的轨迹为( ) A.椭圆的一部分B.抛物线的一部分C.双曲线的一部分D.圆的一部分13.(2014•杭州二模)在等腰梯形ABCD中,E,F分别是底边AB,BC的中点,把四边形AEFD沿直线EF折起后所在的平面记为α,p∈α,设PB,PC与α所成的角分别为θ1,θ2(θ1,θ2均不为零).若θ1=θ2,则满足条件的P所形成的轨迹是.BACDMPABP14.(2018秋•诸暨市校级期中)如图,在底面为平行四边形的四棱锥P﹣ABCD中,E,F分别是棱AD,BP上的动点,且满足AE=2BF,则线段EF中点的轨迹是()A.一条线段B.一段圆弧C.抛物线的一部分D.一个平行四边形15.(2015秋•太原期末)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,P为棱A1B1的中点,点Q在侧面DCC1D1内运动,给出下列结论:①若BQ⊥A1C,则动点Q的轨迹是线段;②若|BQ|=,则动点Q的轨迹是圆的一部分;③若∠QBD1=∠PBD1,则动点Q的轨迹是椭圆的一部分;④若点Q到AB与DD1的距离相等,则动点Q的轨迹是抛物线的一部分.其中结论正确的是(写出所有正确结论的序号).16.如图,长方体ABCD﹣A′B′C′D′中,AB=BC=,AA,上底面A′B′C′D′的中心为O′,当点E在线段CC′上从C移动到C′时,点O′在平面BDE上的射影G的轨迹长度为()A.B.C.D.17.(2016秋•温州期末)点P为棱长是2的正方体ABCD﹣A1B1C1D1的内切球O球面上的动点,点M为B1C1的中点,若满足DP⊥BM,则动点P的轨迹的长度为()A.B.C.D.18.(2018•宁波二模)已知棱长为1的正方体ABCD﹣A1B1C1D1中,E为侧面BB1C1C中心,F在棱AD上运动,正方体表面上有一点P满足=x(x≥0,y≥0),则所有满足条件的P点构成图形的面积为.19.(2017•定海区校级模拟)已知异面直线a,b所成角为60°,直线AB与a,b均垂直,且垂足分别是点A,B 若动点P∈a,Q∈b,|P A|+|QB|=m,则线段PQ中点M的轨迹围成的区域的面积是.20.(2017秋•赣州期末)如图,在等腰梯形ABCD中,CD=2AB=2EF=2a,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起,使得平面BEFC⊥平面ADFE.若动点P∈平面ADFE,设PB,PC与平面ADFE 所成的角分别为θ1,θ2(θ1,θ2均不为0).若θ1=θ2,则动点P的轨迹围成的图形的面积为()A.B.C.D.翻折问题面(动问题)翻折问题的一线五结论.DF AE ⊥一线:垂直于折痕的线即五结论:1)折线同侧的几何量和位置关系保持不变;折线两侧的几何量和位置关系发生改变; 2--D HF D H F ''∠)是二面角的平面角;3D DF ')在底面上的投影一定射线上; 1、(2016年联考试题)平面四边形ABCD 中,AD=AB=2,CD=CB=5,且AD AB ⊥,现将△ABD 沿对角线BD 翻折成'A BD ∆,则在'A BD ∆折起至转到平面BCD 的过程中,直线'A C 与平面BCD 所成最大角的正切值为_______2.(2015年10月浙江省学业水平考试18)如图,在菱形ABCD 中,∠BAD=60°,线段AD ,BD 的中点分别为E ,F 。
例说立体几何中的动态问题立体几何中的“动态问题”,是指空间图形中的某些点、线、面的位置关系是不确定的,可变的一类开放问题。
对学生来说,解决这类问题,对其空间想象能力,逻辑推理能力的要求更高,难度一般比较大。
但又因为这类问题是可变的,开放的,更有助于学生空间想象能力及综合思维能力的培养。
这类问题往往把立体几何知识和其他部分的知识有机地结合起来,解决问题的关键就是转化与化归,把空间问题转化为平面问题来解决。
本文归纳了几类动态问题,希望对大家解决立体几何中的动态问题有所启发。
一、与轨迹有关的动态问题例1:如图,正方体中,P为底面上的动点,于E,且则点P的轨迹是()A .线段 B.圆 C.椭圆的一部分D.抛物线的一部分解析:连结,可证,即,即点E是体对角线上的定点,直线AE也是定直线.,∴动点P必定在线段AE的中垂面上,则中垂面与底面的交线就是动点P的轨迹,所以动点P的轨迹是线段.故选A例2:在正方体中,点是侧面内一个动点,它到直线与直线的距离相等,则动点的轨迹所在曲线是()A.直线 B.圆 C.椭圆的一部分 D.抛物线的一部分解析:本题是立体几何与解析几何相结合的一道题目,学生难在空间问题如何转化为平面问题,即解析几何问题。
这里动点到直线的距离易作出,难在到直线的距离的距离是什么。
因垂直平面,所以,即点到点的距离与到直线的距离相等。
所以动点在侧面内的轨迹是一段抛物线。
评注:动点轨迹主要是把空间的关系转化为平面内动点所具有的特性。
这类问题综合了平面几何、立体几何、解析几何等知识,渗透了数形结合思想,转化与化归思想,分类讨论思想,对第一次碰到此类问题的学生有较好的检测功能。
二、与距离有关的动态问题例3:如图,在棱长为2的正方体中,点是的中点,动点在底面内(不包括边界),若平面,则的最小值是()A.B.C.D.解析如图,在上取中点,在上取中点,连接,且,易知平面平面,则动点的轨迹是(不含两点)又平面,则当时,取得最小值此时,评注:本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.例4:长方体中,且一只小虫子从,点沿长方体的表面爬到点处,则小虫子的最短行程是多少?解析:当小虫子沿侧面与侧面到时,将二侧面展开铺平,在平面内,连即为最短行程,记为。
培优提能10 立体几何中的动态问题立体几何中的“动态问题”是指空间中的某些点、线、面的位置是不确定的或可变的一类开放性问题,解答此类问题应该动静结合、化动为静,找到相应的几何关系,具体有以下几种解决方法:(1)函数法:某些点、线、面的运动,必然导致某些位置关系或一些变量的变化.变量变化时会引发其他变量的变化,从而建立函数关系,将立体几何问题转化为函数问题来解.(2)解析法:我们常利用空间直角坐标系解决立体几何问题,即实现几何问题代数化.因此利用空间直角坐标系将空间图形中的若干元素坐标化后,借助向量进行运算和分析,是解决这类问题的常用方法. (3)等价转换法:动和静是相对的,在运动变化过程中,要善于寻找或构造与之相关的一些不变因素,将一些变化的点、线、面进行合理转换,实现变量与不变量的结合.培优点1 以静制动(旋转问题、射影问题)典例1 正四面体ABCD的棱长为1,棱AB∥平面α(如图),则四面体上的所有点在平面α内的射影构成的图形面积的取值范围是.解析:去掉与问题无关的面,将四面体看成是以AB为棱的二面角C-AB-D(二面角大小一定),用纸折出这个二面角,不妨将AB置于平面α内,将二面角绕AB 转动一周,观察点C,D 在平面α上的射影,可以发现点C,D 在平面α上的射影始终在AB 的射影的中垂线上.当CD ∥平面α时,四边形ABCD 的面积最大,为12(如图1).当CD ⊥平面α时,四边形ABCD 的面积最小,为√24(如图2),转动过程中C,D 在平面α上的射影从C,D 变化到C ′,D ′(如图3),故图形面积的取值范围是[√24,12]. 答案:[√24,12]在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.触类旁通1 如图,直线l ⊥平面α,垂足为O.正方体ABC D −A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1的中点P 的距离的最大值为 .解析:从题图中分化出4个点O,A,B1,P,其中△AOB1为直角三角形,固定A,B1,点P的轨迹是在与AB1垂直的平面上且以AB1的中点Q为圆心的圆,从而OP≤OQ+QP=12AB1+2=√2+2,当且仅当OQ⊥AB1,即点O,Q,P共线时,取到等号,此时直线AB1与平面α成45°角.答案:√2+2培优点2 动点轨迹(长度)问题典例2 在棱长为2√2的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,AD 的中点,P为线段C1D上的动点,则直线A1P与平面D1EF的交点Q的轨迹长度为( )A.2√153B.4√33C.2√133D.4√23解析:如图,连接B1D1,因为E,F 分别为棱AB,AD 的中点,所以B 1D 1∥EF,则B 1,D 1,E,F 四点共面.连接A 1C 1,A 1D,设A 1C 1∩B 1D 1=M,A 1D ∩D 1F=N,连接MN,则点Q 的轨迹为线段MN,易得A 1D=√A 1D 12+DD 12=4,△A 1ND 1∽△DNF,且A 1D 1FD=2,所以A 1N=23A 1D=83.易知A 1C 1=C 1D=A 1D=4,所以∠C 1A 1D=60°,又A 1M=2,所以在△A 1MN 中,由余弦定理可得MN 2=A 1N 2+A 1M 2-2A 1N ·A 1Mcos 60°=529,所以MN=2√133,即点Q 的轨迹长度为2√133.故选C.空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆、圆锥曲线.很少有题目会脱离这三个方向.触类旁通2 (多选题)(2022·湖南郴州高三期末)如图,点P 是棱长为2的正方体ABCD-A 1B 1C 1D 1表面上的一个动点,则( AC )A.当点P 在平面BCC 1B 1上运动时,四棱锥P-AA 1D 1D 的体积不变B.当点P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是[π6,π2]C.当直线AP 与平面ABCD 所成的角为45°时,点P 的轨迹长度为π+4√2D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ∥平面B 1CD 1时,PF 长度的最小值是 √5解析:当P 在平面BCC 1B 1上运动时,点P 到平面AA 1D 1D 的距离不变,正方形AA 1D 1D 的面积不变,故四棱锥P-AA 1D 1D 的体积不变,故A 正确; 建立如图所示的空间直角坐标系,设P(x,2-x,0),0≤x ≤2,A 1(2,0,2),D 1(0,0,2),C 1(0,2,2),则D 1P →=(x,2-x,-2),A 1C 1→=(-2,2,0),设D 1P 与A 1C 1所成的角为θ(0≤θ≤π2),则cos θ=|cos<D 1P →,A 1C 1→>|=|D 1P →·A 1C 1→||D 1P →||A 1C 1→|=|x -1|√(x -1)2+3,因为0≤|x-1|≤1,当|x-1|=0时,θ=π2,当0<|x-1|≤1时,cos θ=|x -1|√(x -1)2+3=√1+3|x -1|2,0<cos θ≤12,则π3≤θ<π2,综上,π3≤θ≤π2,所以D 1P 与A 1C 1所成角的取值范围是[π3,π2],故B 错误;因为直线AP 与平面ABCD 所成的角为45°,若点P 在平面BCC 1B 1和平面DCC 1D 1内,因为∠B 1AB=45°,∠D 1AD=45°已为最大,不成立,在平面ADD 1A 1内,点P 的轨迹长度是AD 1=2√2,在平面ABB 1A 1内,点P 的轨迹长度是AB 1=2√2, 在平面A 1B 1C 1D 1内,如图所示,作PM ⊥平面ABCD,因为∠PAM=45°,所以PM=AM,又PM=AB,所以AM=AB,则A 1P=AB,所以点P 的轨迹是以A 1为圆心,以2为半径的四分之一圆,所以点P 的轨迹长度为14×2π×2=π,所以点P 的轨迹总长度为π+4√2,故C 正确; 建立如图所示的空间直角坐标系,设P(x,y,0),x,y ∈[0,2],B 1(2,2,2),D 1(0,0,2),C(0,2,0),F(2,1,2),则CB 1→=(2,0,2),CD 1→=(0,-2,2),FP →=(x-2,y-1,-2), 设平面B 1CD 1的法向量为n=(a,b,c),则{CD 1→·n =0,CB 1→·n =0,即{-2b +2c =0,2a +2c =0,令a=1,则n=(1,-1,-1), 因为PF ∥平面B 1CD 1,所以FP →·n=(x-2)-(y-1)+2=0,即y=x+1,所以|FP →|=√(x -2)2+(y -1)2+4=√2x 2-4x +8=√2(x -1)2+6≥√6,当x=1时,等号成立,故D 错误.故选AC.培优点3 翻折问题典例3 如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D,E,F 为圆O 上的点,△DBC,△ECA,△FAB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起△DBC,△ECA,△FAB,使得D,E,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积的最大值为 cm 3.解析:如图,连接OD,交BC于点G,由题意,知OD⊥BC,OG=√3BC.6设OG=x,则BC=2√3x,DG=5-x,×2√3x×3x=3√3x2,三棱锥的高h=√DG2-OG2=√25-10x,S△ABC=12则三棱锥的体积V=1S△ABC·h=√3x2·√25-10x=√3·√25x4-10x5.3),则f′(x)=100x3-50x4.令f′(x)=0,得令f(x)=25x4-10x5,x∈(0,52x=2.当x∈(0,2)时,f′(x)>0,f(x)单调递增;当x∈(2,5)时,f′2(x)<0,f(x)单调递减.故当x=2时,f(x)取得最大值80,则V≤√3×√80=4√15.所以三棱锥体积的最大值为4√15 cm3.答案:4√15在解决立体几何中的“动态”问题时,对于一些很难把握运动模型(规律)的求值问题,可以通过构建某个变量的函数,以数解形.触类旁通3 (1)(多选题)(2022·河北唐山高三期末)如图,四边形ABCD是边长为2的正方形,E为AB的中点,将△AED沿DE所在的直线翻折,使A与A′重合,得到四棱锥A′-BCDE,则在翻折的过程中( AB )A.DE⊥AA′B.存在某个位置,使得A′E⊥CDC.存在某个位置,使得A′B∥DED.存在某个位置,使四棱锥A′-BCDE的体积为1(2)(多选题)(2022·广东罗湖高三期末)在△ABC中,AB⊥BC,且AC=2,BC=1,若将△ABC沿AC边上的中线BD折起,使得平面ABD⊥平面BCD.点E在由此得到的四面体ABCD的棱AC上运动,则下列结论正确的为( BCD )A.∠ADC=π2B.四面体ABCD的体积为18C.存在点E使得△BDE的面积为14D.四面体ABCD外接球的表面积为13π3解析:(1)对于A,如图所示,过A′作A′O⊥DE,垂足为O,延长AO交BC于点F,因为DE⊥AO,且AO∩A′O=O,AO,A′O⊂平面A′AO,所以DE⊥平面A′AO,又因为A′A⊂平面A′AO,所以DE⊥AA′,A正确;对于B,取DC的中点G,连接EG,A′G,当A′在平面ABCD上的射影在直线EG上时,此时DC⊥平面A′EG,从而得到A′E⊥CD,B正确;对于C,连接A′B,因为点E∈平面A′BE,点D∉平面A′BE,所以直线A′B与DE是异面直线,所以不存在某个位置,使得A′B∥DE,C错误;对于D,由VA′BCDE =13×12×(1+2)×2×h=1,解得h=1,由A′O⊥DE,可得A′O=A′E·A′DDE =√5=√5,即此时四棱锥的高h∈(0,√5],此时√5<1,所以不存在某个位置,使四棱锥A′-BCDE的体积为1,D错误.故选AB.(2)对于A,取BD的中点M,连接CM,因为BC=CD=1,所以CM⊥BD,又平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,所以CM⊥平面ABD,则CM⊥AD,若∠ADC=π2,则AD⊥CD,所以AD⊥平面CBD,则AD⊥BD,显然不可能,A错误;对于B,易知△BCD的面积为√34,在平面ABD中,过A作BD的垂线,交BD的延长线于点H,易知AH=√32,因为平面ABD ⊥平面BCD,平面ABD ∩平面BCD=BD,所以AH ⊥平面BCD,即三棱锥A-BCD 的高为AH=√32,所以三棱锥A-BCD 的体积V=13×√34×√32=18,即四面体ABCD 的体积为18,B正确;对于C,显然当AC ⊥平面BDE 时,△BDE 的面积取得最小值,易知CD=1,DH=12,由余弦定理可得CH=√72,所以AC=√AH 2+CH 2=√102, 又四面体ABCD 的体积为18, 所以18=13×S ×√102,即S=3√1040<14, 且△BCD 的面积为√34>14,所以存在点E 使得△BDE 的面积为14,C 正确;对于D,设△BCD 与△ABD 的外心依次为O 1,O 2, 过O 1作平面BCD 的垂线l 1,过O 2作平面ABD 的垂线l 2,则四面体ABCD 的外接球球心O 为直线l 1与l 2的交点,延长CO 1交BD 于点M,则M 为BD 的中点,连接O 2M,则四边形MO 1OO 2为矩形,结合正弦定理可求得O 2M=√32,O 1C=√33, 所以四面体ABCD 的外接球半径为R=OC=√O 1O 2+O 1C 2=√O 2M 2+O 1C 2=√34+13=√1312,则四面体ABCD 外接球的表面积为S=4πR 2=4π×1312=13π3,D 正确.故选BCD.培优点4 动态最值问题典例4 (多选题)(2022·江苏常州高三期末)已知正方体ABCD-A 1B 1C 1D 1的棱长为3a,点M 是棱BC 上的定点,且BM=2CM,点P 是棱C 1D 1上的动点,则( )A.当PC 1=23a 时,△PAM 是直角三角形B.四棱锥A 1-PAM 体积的最小值为32a 3 C.存在点P,使得直线BD 1⊥平面PAM D.任意点P,都有直线BB 1∥平面PAM 解析:由已知及计算可得PC 1=23a,AM=√13a,AP=√2113a,MP=√943a,所以AP 2=MP 2+AM 2,所以△PAM 为直角三角形,A 正确;S △AA 1M =12×3a ×√13a=3√132a 2,当P 与C 1重合时,点P 到平面AA 1M 的距离最小,设点P 到平面AA 1M 的距离为h, 在B 1C 1上取M 1,使B 1M 1=2C 1M 1,sin ∠B 1M 1A 1=√13=ℎmin a,所以h min =√13a,所以V A 1PAM =V PAA 1M =13×S △AA 1M ×h ≥13×3√132a 2×√13a=32a 3,B 正确;因为BD 1⊥平面AB 1C,平面AB 1C 与平面PAM 不平行,所以BD 1与平面PAM 不垂直,C 错误;P 与C 1重合时,平面PAM 为平面C 1AM,BB 1∥CC 1,若BB 1∥平面PAM,则CC 1⊂平面C 1AM,与CC 1⊄平面C 1AM 矛盾,D 错误.故选AB.解决与空间图形有关的线段、角、距离、面积、体积等最值问题,一般可以从三方面着手:(1)从问题的几何特征入手,充分利用其几何性质去解决; (2)利用空间几何体的侧面展开图;(3)找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法,二次函数的配方法、公式法,函数有界法(如三角函数等)及导数法等.触类旁通4 (多选题)(2022·广东揭阳高三期末)如图所示,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M,N 分别是AD,CC 1的中点,P 是线段AB 上的动点,则下列说法正确的是( BD )A.平面PMN 截正方体所得的截面可以是四边形、五边形或六边形B.当点P 与A,B 两点不重合时,平面PMN 截正方体所得的截面是五边形C.△MPN 是锐角三角形D.△MPN 面积的最大值是√212解析:如图所示,当点P 与A,B 两点不重合时,将线段MP 向两端延长,分别交CD,CB 的延长线于点O,Q,连接NO,NQ 分别交DD 1,BB 1于R,S 两点,连接RM,SP,此时截面为五边形MPSNR,故B 正确;当点P 与点A 或点B 重合时,截面为四边形,不可能为六边形,故A 错误;考虑△MPN,当点P 与点A 重合时,MN=√6,PM=1,PN=3, 此时因为MN 2+PM 2<PN 2,故∠PMN 为钝角,故C 错误;当点P 与点B 重合时,点P 到直线MN 的距离取到最大值,△MPN 的面积取到最大值,此时MN=√6,BM=BN=√5,则MN 边上的高为√(√5)2-(√62)2=√142,△MPN的面积为12×√142×√6=√212,即最大值为√212,故D正确.故选BD.。
ʏ沈建良所谓动态立体几何问题,是指在点㊁线㊁面运动变化的几何图形中,探寻点㊁线㊁面的位置关系或进行有关角与距离的计算㊂立体几何中常求解一些固定不变的点㊁线㊁面的关系,若给静态的立体几何问题赋予 活力 ,渗透了 动态 的点㊁线㊁面元素,立意会更新颖㊁更灵活,能培养同学们的空间想象能力㊂下面是对破解立体几何 动态 问题的一些思考,以期抛砖引玉㊂一㊁ 动态 问题之轨迹问题例1如图1,在边长为a的正方体A B C D-A1B1C1D1中,E,F,G,H,N分别是C C1,C1D1,D D1,C D,B C的中点,M在四边形E F G H边上及其内部运动,若MNʊ面A1B D,则点M轨迹的长度是()㊂图1A.3aB.2aC.32aD.22a解:因为在边长为a的正方体A B C D-A1B1C1D1中,E,F,G,H分别是C C1, C1D1,D D1,C D的中点,N是B C的中点,则G HʊB A1,HNʊB D㊂又G H⊄面A1B D, B A1⊂面A1B D,所以G Hʊ面A1B D㊂同理可得,NHʊ面A1B D㊂又G HɘHN=H,所以面A1B Dʊ面G HN㊂因为点M在四边形E F G H上及其内部运动,MNʊ面A1B D,所以点M一定在线段G H上运动,即满足条件㊂易得G H=22a㊂故点M轨迹的长度是22a㊂应选D㊂本题利用线面平行㊁面面平行,在动态问题中提炼一些不变的 静态 的量,建立不变量与动点之间的关系,从而确定动点的轨迹长度㊂二㊁ 动态 问题之定值问题例2如图2,在单位正方体A B C D-A1B1C1D1中,点P在线段A D1上运动㊂图2给出以下四个命题:①异面直线A1P与B C1间的距离为定值;②三棱锥D-B P C1的体积为定值;③异面直线C1P与C B1所成的角为定值;④二面角P-B C1-D的大小为定值㊂其中真命题的序号是()㊂A.①②B.③④C.①②③D.①②③④解:对于①,异面直线A1P与B C1间的距离即为两平行平面A D D1A1和平面B C C1B1间的距离,即为正方体的棱长,为定值,①正确㊂对于②,V D-B P C1=V P-D B C1,因为SәD B C1为定值,点PɪA D1,A D1ʊ平面B D C1,所以点P到平面B D C1的距离即为正方体的棱长,所以三棱锥D-B P C1的体积为定值,②正确㊂对于③,在正方体A B C D-A1B1C1D1中,因为B1Cʅ平面A B C1D1,而C1P⊂平面A B C1D1,所以B1CʅC1P,即这0 1数学部分㊃知识结构与拓展高一使用2022年4月Copyright©博看网. All Rights Reserved.两条异面直线所成的角为90ʎ,③正确㊂对于④,因为二面角P -B C 1-D 的大小即为平面A B C 1D 1与平面B D C 1所成的二面角的大小,而这两个平面位置固定不变,所以二面角P -B C 1-D 的大小为定值,④正确㊂应选D㊂动态立体几何问题,在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口㊂三㊁ 动态 问题之翻折问题例3 如图3,在长方形A B C D 中,A B =2,B C =1,E 为D C 的中点,F 为线段E C (端点除外)上一动点㊂现将әAF D 沿A F 折起,使平面A B D ʅ平面A B C F ,得到如图4所示的四棱锥D -A B C F ㊂在平面A B D 内过点D 作D K ʅA B ,垂足为K ㊂设A K =t ,则t 的取值范围是㊂图3 图4解:过点F 作F M ʅA B 交A B 于点M (作法略)㊂设F C =x ,0<x <1,则M F =B C =1,M B =F C =x ㊂易知A K <A D =1,A B =2,所以点K 一定在点M 的左边,则MK =2-t -x ㊂在R t әA D K 中,D K 2=1-t2,在R tәF MK 中,F K 2=1+(2-t -x )2㊂因为平面A B D ʅ平面A B C F ,平面A B D ɘ平面A B C F =A B ,D K ʅA B ,D K ⊂平面A B D ,所以D K ʅ平面A B C F ,所以D K ʅF K ㊂在R t әD F K 中,D F =2-x ,D K 2+F K 2=D F 2,所以1-t 2+1+(2-t -x )2=(2-x )2,化简得1-2t +t x =0,即t =12-x㊂又因为t =12-x在(0,1)上单调递增,所以12<t <1,即t 的取值范围为12,1()㊂本题是一个动态的翻折问题,通过发现不变的垂直关系,从而得到相关变量间的关系,最终转化成函数的值域问题㊂解决折叠问题的关键是分清折叠前后图形的位置和数量关系的变与不变的量㊂四㊁ 动态 问题之展开问题例4 已知某圆锥的母线长为3,底面半径为1,则该圆锥的体积为㊂设线段A B 为该圆锥底面圆的一条直径,一质点从A 出发,沿着该圆锥的侧面运动,到达B 点后再沿侧面回到A 点,则该质点运动路径的最短长度为㊂解:易得该圆锥的高h =32-1=22㊂所以该圆锥的体积V =13ˑπˑ12ˑ22=223π㊂将该圆锥侧面沿母线S A 展开,如图5所示㊂图5因为圆锥底面周长为2π,扇形半径为3,所以侧面展开后得到的扇形的圆心角øA S A '=2π3㊂由题意知点B 是圆锥侧面展开后得到的扇形的弧A A '的中点,则øA S B =π3,所以A B =A 'B =A S =3㊂所以该质点运动路径的最短长度为A B +A 'B =6㊂空间动态问题常转化为平面的动态问题求解㊂化曲为直是求解曲面上路径长度最短问题的关键㊂本题是求解圆锥侧面上质点运动路径的最短长度问题,可将圆锥侧面沿一条母线展开成扇形,从而在平面图形中解决问题㊂作者单位:江苏省盐城市时杨中学(责任编辑 郭正华)11数学部分㊃知识结构与拓展高一使用 2022年4月Copyright ©博看网. All Rights Reserved.。
立体几何中的动态问题立体几何中的动态问题可以分为平移和旋转两类。
所求变量可以分为相关线、面、体的测度、角度和距离三类。
解决这类问题需要较高的空间想象能力和化归处理能力。
在高考选择题与填空题中,也时常会出现这类问题。
如果能够探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜。
解决立体几何中的动态问题,需要从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序。
这是解决动态问题的关键。
例如,在解决某个问题时,可以从图形中分化出几个点,然后找到其中的关系,进而得出答案。
在这个过程中,需要注意极端位置,通过穷尽极端特殊的方法,往往能够直接得出答案。
另外,使用法向量定平面也是解决立体几何中动态问题的一种有效方法。
通过寻找垂直,可以找到两个平面的夹角,从而解决问题。
综上所述,解决立体几何中的动态问题需要一定的数学基础和空间想象能力。
通过分化图形、寻找极端位置和使用法向量定平面等方法,可以有效地解决这类问题。
在解决立体几何中的“动态”问题时,可以利用角度计算和法向量定平面来转化线面角或面面角为线线角。
例如,在长方体ABCD-A1B1C1D1中,已知二面角A1-BD-A的大小为π/6,一条直线l与直线CC1所成的角为π/12.如果空间有π/6,则直线l与平面A1BD所成角的取值范围是π/4.解析如下图所示:过点A作AE⊥BD于点E,连接A1E,则∠A1EA=π/6.过点A作AH⊥A1E于点H,则AH为平面A1BD的法向量,且∠A1AH=π/2.因为l与直线CC1所成角的大小为π/12,即l与直线A1A所成角的大小为π/6,那么l与直线AH所成角的取值范围为π/4 ~ π/3.又因为l与直线AH所成的角和l与平面A1BD所成的角互余,所以直线l与平面A1BD所成角的取值范围是π/4 ~ π/3.在解决立体几何中的“动态”问题时,可以通过锁定垂面来破解翻折或投影问题,将空间化为平面,从而更容易找到问题的核心。
化繁为简㊀化难为易例谈立体几何的 动态 问题白亚军(甘肃省永昌县第一高级中学ꎬ甘肃金昌737200)摘㊀要:几何体中研究动点问题的总体思路是:运用几何知识ꎬ经过逻辑推理证明位置关系或表示出所求量ꎻ或者建立空间直角坐标系ꎬ将几何问题代数化ꎬ用空间向量研究动点问题.文章以定位问题㊁角度问题㊁距离问题㊁体积问题㊁轨迹问题等为例进行剖析.关键词:立体几何ꎻ动态问题ꎻ定位问题中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)19-0014-04收稿日期:2023-04-05作者简介:白亚军(1978.10-)ꎬ男ꎬ甘肃省永昌人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀动态问题是高中立体几何的重要题型ꎬ常见题型为定位问题㊁角度㊁距离与体积的计算㊁图形问题和动点轨迹以及翻折㊁旋转问题等.1定位问题例1㊀如图1ꎬ已知四边形ABCDꎬCDGFꎬADGE均为正方形ꎬ且边长为1ꎬ在DG上是否存在点Mꎬ使得直线MB与平面BEF的夹角为45ʎ?若存在ꎬ求出点M的位置ꎻ若不存在ꎬ请说明理由.解析㊀因为四边形CDGFꎬADGE均为正方形ꎬ所以CDʅDAꎬGDʅDC.又因为DAɘDC=Dꎬ所以GDʅ平面ABCD.又因为CDʅDAꎬ所以DAꎬDGꎬDC两两互相垂直.㊀图1㊀例1图㊀㊀㊀㊀㊀㊀图2㊀例1建系图如图2ꎬ以点D为原点建立空间直角坐标系ꎬ则B(1ꎬ1ꎬ0)ꎬE(1ꎬ0ꎬ1)ꎬF(0ꎬ1ꎬ1).因为点M在DG上ꎬ假设存在点M(0ꎬ0ꎬt)(0ɤtɤ1)ꎬ使得直线MB与平面BEF的夹角为45ʎ.设平面BEF的法向量为n=(xꎬyꎬz).因为BEң=(0ꎬ-1ꎬ1)ꎬBFң=(-1ꎬ0ꎬ1)ꎬ则n BEң=0ꎬn BFң=0.{即-y+z=0ꎬ-x+z=0.{令z=1ꎬ得x=y=1.所以n=(1ꎬ1ꎬ1)为平面BEF的一个法向量.又因为BMң=(-1ꎬ-1ꎬt)ꎬ直线BM与平面BEF所成角为45ʎꎬ所以sin45ʎ=BMң nBMң n=-2+tt2+2ˑ3=22.解得t=-4ʃ32.又因为0ɤtɤ1ꎬ所以t=-4+32.故在DG上存在点M(0ꎬ0ꎬ32-4)ꎬ直线MB与平面BEF所成的角为45ʎ.评注㊀由于立体几何中 动态 性的存在ꎬ代数法常常引入参量ꎬ达到以静制动的效果[1].2角度问题例2㊀如图3ꎬ四边形ABCD和ADPQ均为正方形ꎬ面ABCDʅ面ADPQꎬ动点M在线段PQ上ꎬEꎬF分别为ABꎬBC的中点.设异面直线EM与AF所成的角为θꎬ求cosθ的最大值.㊀㊀图3㊀例2图㊀㊀㊀㊀㊀㊀㊀㊀图4㊀例2建系数解析㊀如图4所示建立坐标系.设AB=1ꎬ则AFң=(1ꎬ12ꎬ0)ꎬE(12ꎬ0ꎬ0).设M(0ꎬyꎬ1)(0ɤyɤ1)ꎬ则EMң=(-12ꎬyꎬ1).所以cosθ=|AFң EMң||AFң| |EMң|=-1/2+y/21+1/4 1/4+y2+1=2(1-y)5 4y2+5.因为2(1-y)4y2+5éëêêùûúú2=1-8y+14y2+5ꎬ令t=8y+1(1ɤtɤ9)ꎬ所以1-8y+14y2+5=1-16tt2-2t+81=1-16t+81/t-2ɤ1-1680=45ꎬ当且仅当t=1时等号成立.所以cosθ=2(1-y)5 4y2+5ɤ15ˑ25=25.即y=0时cosθ取得最大值ꎬ最大值为25.评注㊀本题空间角除了用代数法ꎬ还可以用几何法ꎬ当点M在点P处时ꎬEM与AF所成角为直角ꎬ此时余弦值为0(最小)ꎬ当点M向左移动时ꎬEM与AF所成角逐渐变小时ꎬ点M到达点Q时ꎬ角最小ꎬ余弦值最大.3距离问题例3㊀如图5ꎬ在三棱锥A-BCD中ꎬ平面ABCʅ平面BCDꎬәBAC与әBCD均为等腰直角三角形ꎬøBAC=øBCD=90ʎꎬBC=2ꎬ点P是线段AB上的动点ꎬ若线段CD上存在点Qꎬ使得异面直线PQ与AC成30ʎ的角ꎬ则线段PA长的取值范围是(㊀㊀).A.(0ꎬ22)㊀㊀㊀㊀B.(0ꎬ63)C.(22ꎬ2)D.(63ꎬ2)㊀㊀㊀图5㊀例3图㊀㊀㊀㊀㊀㊀图6㊀例3建系图解析㊀设BC的中点为Oꎬ连接OAꎬ因为øBAC=90ʎꎬBC=2ꎬ所以OA=1.如图6ꎬ建立空间直角坐标系O-xyzꎬ则O(0ꎬ0ꎬ0)ꎬA(0ꎬ0ꎬ1)ꎬB(-1ꎬ0ꎬ0)ꎬC(1ꎬ0ꎬ0)ꎬP(sꎬ0ꎬt)ꎬQ(1ꎬmꎬ0)(s<0ꎬtꎬm>0).则PQң=(1-sꎬmꎬ-t)ꎬACң=(1ꎬ0ꎬ-1)ꎬPAң=(-sꎬ0ꎬ1-t).因为PQң ACң=1-s+tꎬPQң=(1-s)2+m2+t2ꎬACң=2ꎬ所以(1-s)2+m2+t2 2 cos30ʎ=1-s+t.即62(1-s)2+m2+t2=1-s+t.也即3m2=4t(1-s)-(1-s)2-t2.由此可得3m2=4t(1-s)-(1-s)2-t2>0.结合t-s=1可得4(1-s2)>2+2s2.即3s2<1.所以s<33.则PA=(-s)2+(1-t)2=2s<63.即0<PA<63.评注㊀求距离的基本方法是代数法ꎬ使用距离公式后转化为函数的最值问题.4体积问题例4㊀如图7ꎬ在әABC中ꎬAB=BC=2ꎬøABC=120ʎꎬ若平面ABC外一点P和线段AC上一点Dꎬ满足PD=DAꎬPB=BAꎬ则四面体P-BCD的体积的最大值是.图7㊀例4图㊀㊀㊀㊀㊀㊀图8㊀例4解析图解析㊀如图8ꎬ设MꎬN分别为ACꎬAP的中点ꎬ因为BA=BP=BCꎬPD=DAꎬ所以点B在平面PAC上的射影为әPAC的外心Oꎬ且点O在直线ND上.又因为AB=BC=2ꎬøABC=120ʎꎬ所以AC=23.所以BO=AB2-OA2ɤAB2-AM2=1ꎬ当且仅当点O与点M重合时取到等号.设AD=xꎬøPDC=θꎬ因为AC=23ꎬ所以DC=23-x.则SәPDC=12x (23-x) sinθɤ12x (23-x)ɤ12(x+23-x2)2=32ꎬ当且仅当点M与点D重合时取到等号.因此ꎬ四面体P-BCD的体积为Vp-BCD=13SәPCD OBɤ13ˑ32ˑ1=12.此时点OꎬMꎬD重合ꎬ即点D为AC的中点ꎬ且平面PBD与平面ABC垂直相交于BD.评注㊀对于运动模型(规律)的求值问题ꎬ适当引入某个变量求最值.5轨迹问题例5㊀如图9ꎬ已知线段AB垂直于定圆所在的平面ꎬBꎬC是☉O上的两个点ꎬH是点B在AC上的射影ꎬ当点C运动时ꎬ点H运动的轨迹是(㊀㊀).A.抛物线㊀B.圆㊀C.椭圆㊀D.不是平面图形图9㊀例5图㊀㊀㊀㊀㊀㊀图10㊀例5解析图解析㊀如图10ꎬ设☉O的半径为rꎬ取BC的中点Mꎬ则OMʅBCꎬMH=MC.因为ABʅ平面BCDꎬ所以BC是AC在平面BCD上的射影.从而OMʅ平面ABCꎬ得OMʅMH.于是OH2=MO2+MH2=MO2+MC2=r2.即OH=rꎬ亦即动点H在以O为球心㊁r为半径的球面上.又因为BHʅADꎬB为定点ꎬ所以动点H又在过点B且垂直于直线AD的定平面上ꎬ故点H运动的轨迹是圆.评注㊀解答轨迹问题的关键是将空间问题转化为平面问题ꎬ利用解析法求出轨迹方程[2].6翻折㊁旋转问题例6㊀如图11ꎬ在正方形ABCD中ꎬEꎬF分别为线段ADꎬBC上的点ꎬøABE=20ʎꎬøCDF=30ʎ.将әABE绕直线BE㊁әCDF绕直线CD各自独立旋转一周ꎬ则在所有旋转过程中ꎬ求AB与DF所成角的最大值.解析㊀由题әABE绕直线BE㊁әCDF绕直线CD形成两个圆锥体ꎬAB和DF成为圆锥的母线ꎬ所图11㊀例6图以无论怎么旋转ꎬ都有øABE=120ʎꎬøCDF=30ʎ.利用几何体性质得最大角是直线AB关于直线BE对称的直线BAᶄ和DF关于直线CD的对称直线DFᶄ在同一平面内时所成角ꎬ为øABAᶄ+øDCFᶄ=70ʎ.评注㊀处理翻折问题时ꎬ务必搞清楚翻折前后两个量之间的位置不变.7图象问题例7㊀在棱长为1的正方体ABCD-A1B1C1D1中ꎬEꎬFꎬGꎬH分别为A1B1ꎬC1D1ꎬABꎬCD的中点ꎬ点P从点G出发ꎬ沿折线GBCH匀速运动ꎬ同时点Q从点H出发ꎬ沿折线HDAG匀速运动ꎬ且点P与点Q运动的速度相等ꎬ记以EꎬFꎬPꎬQ四点为顶点的三棱锥的体积为Vꎬ点P运动的路程为xꎬ当0ɤxɤ2时ꎬ表示V与x关系的图象为(㊀㊀).图12㊀V与x关系的图象解析㊀因为点P与点Q运动的速度相等ꎬ设底面ABCD的中心为Oꎬ连接OEꎬOFꎬ则平面OEF把几何体PEFQ分割为体积相等的两部分[3].(1)当0ɤxɤ12时ꎬ点P在BG上ꎬ点Q在HD上ꎬ如图13所示ꎬSәOEF=12ˑ1ˑ1=12ꎬ易知点P到平面OEF的距离为xꎬ故V=2VP-OEF=2ˑ13ˑx2=x3.图13㊀0ɤxɤ12时㊀㊀㊀㊀图14㊀32<xɤ2时(2)当12<xɤ32时ꎬ点P在BC上ꎬ点Q在AD上ꎬ点P到平面OEF的距离为12ꎬ所以SәOEF=12ˑ1ˑ1=12ꎬ即V=2VP-OEF=2ˑ13ˑ12ˑ12=16为定值.(3)当32<xɤ2时ꎬ点P在CH上ꎬ点Q在AG上ꎬ如图14所示ꎬ所以SәOEF=12ˑ1ˑ1=12ꎬ点P到平面OEF的距离为2-x.故V=2VP-OEF=2ˑ13ˑ2-x2=2-x3.综上所述ꎬV=x3ꎬ0ɤxɤ12ꎬ16ꎬ12<xɤ32ꎬ2-x3ꎬ32<xɤ2.ìîíïïïïïïï故选C.评注㊀解决以立体几何为背景的分段函数的图象问题ꎬ解题的关键在于借助几何图形分析出动点在运动过程中图形的变化情况.参考文献:[1]陈诗玉.立体几何 动态 问题的解题方法探究[J].数理化解题研究ꎬ2019(31):16-18.[2]徐祖德.立体几何的动态轨迹问题[J].理科考试研究ꎬ2021ꎬ28(05):25-27.[3]陈姗姗.多元表征:培养学生思维品质的路径:以 一节立体几何习题课 为例[J].理科考试研究ꎬ2022ꎬ29(13):22-24.[责任编辑:李㊀璟]。
一.方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口.求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围.对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题.具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证.二.解题策略类型一 立体几何中动态问题中的角度问题例1. 已知平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将ABD △折起到PBD △的位置,使得平面PBD ⊥平面BCD ,如图,若M ,N 均是线段PD 的三等分点,点Q 是线段MN 上(包含端点)的动点,则二面角Q BC D --的正弦值的取值范围为( )A .12,23⎡⎤⎢⎥⎣⎦B .14192⎡⎢⎣⎦C .24193⎡⎢⎣⎦D .11,32⎡⎤⎢⎥⎣⎦【来源】2021年浙江省新高考测评卷数学(第五模拟) 【答案】B【解析】在ABD △中,1AB =,2AD =,60BAD ∠=︒,所以由余弦定理得3BD =,所以222AB BD AD +=,所以AB BD ⊥,由翻折的性质可知,PB BD ⊥.又平面PBD ⊥平面BCD ,平面PBD 平面BCD BD =,所以PB ⊥平面BCD ,过点Q 作//QQ PB ',交BD 于点Q ',则QQ '⊥平面BCD ,所以QQ BC '⊥,过Q '作Q T BC '⊥,垂足为T ,连接QT ,则BC ⊥平面QQ T ',立体几何的动态问题所以QTQ '∠为二面角Q BC D --的平面角. 设2QD a =(1233a ≤≤),则QQ a '=,3DQ a '=,33BQ a '=-,()113322Q T BQ a ''==-,所以2222211(33)76322QT QQ Q T a a a a ⎡⎤''=+=+-=-+⎢⎥⎣⎦, 所以22222sin 136176373142QQ aQTQ QT a a a aa ''∠====⎛⎫-+-+-+ ⎪⎝⎭. 由二次函数的单调性知,21314y a ⎛⎫=-+ ⎪⎝⎭在12,33⎡⎤⎢⎥⎣⎦上的值域为19,164⎡⎤⎢⎥⎣⎦,所以221419sin ,2191314QTQ a ⎡⎤'∠=∈⎢⎥⎣⎦⎛⎫-+ ⎪⎝⎭,即二面角Q BC D --的正弦的取值范围为1419,219⎡⎤⎢⎥⎣⎦. 故选:B.【举一反三】1.(2020·黑龙江牡丹江一中高三(理))如图,在正方体1111ABCD A B C D -中,O 是AC 中点,点P 在线段11A C 上,若直线OP 与平面11A BC 所成的角为θ,则sin θ的取值范围是( ).A .23⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .33⎣⎦D .11,43⎡⎤⎢⎥⎣⎦【答案】A【解析】如图,设正方体棱长为1,()11101A PAC λλ=≤≤.以D 为原点,分别以DA ,DC ,1DD 所在直线为x ,y ,z 轴建立空间直角坐标系. 则11,,022O ⎛⎫ ⎪⎝⎭,()1,,1P λλ-,所以11,,122OP λλ⎛⎫=--⎪⎝⎭.在正方体1111ABCD A B C D -中,可证1B D ⊥平面11A BC , 所以()11,1,1B D =---是平面11A BC 的一个法向量.所以122211()()122sin cos ,1113163222OP B D λλθλλλ-----===⎛⎫⎛⎫⎛⎫⨯-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以当12λ=时,sin θ30λ=或1时,sin θ取得最小值23. 所以23sin 3θ∈⎣⎦.故选A . 2.(2020·广东高考模拟)在正方体1111ABCD A B C D -中,E 是侧面11ADD A 内的动点,且1B E //平面1BDC ,则直线1B E 与直线AB 所成角的正弦值的最小值是( )A .13 B .33 C .12 D .22【答案】B【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为1, 设E(a,0,c),0a 1≤≤,0c 1≤≤,1B (1,1,1),B(1,1,0), D(0,0,0),1C (0,1,1),()1B E a 1,1,c 1=---,DB (1,=1,0),1DC (0,=1,1),设平面1DBC 的法向量n (x,=y ,z),则1n DB 0n DC 0x y y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x 1=,得()n 1,1,1=-,1B E //平面1BDC ,1B E n a 11c 10∴⋅=-++-=,解得a c 1+=,()222a c a c 2ac 12ac ∴+=+-=-,2a c 1ac 24+⎛⎫≤=⎪⎝⎭,设直线1B E 与直线AB 所成角为θ,AB (0,=1,0),()()1221AB B E 1cos θAB B Ea 11c 1⋅∴==⋅-++-2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,322ac 2∴-≥,1222ac 3∴≤-,()()()222211sin θ11a c 2a c 3a 11c 1∴=-=-+-++-++-221123111a c 122ac 33=-=-≥-=++-. ∴直线1B E 与直线AB 所成角的正弦值的最小值是33.3.(2020·浙江台州中学高三)如图,已知正方体ABCD EFGR -的上底面中心为H ,点O 为AH 上的动点,P 为FG 的三等分点(靠近点F ),Q 为EF 的中点,分别记二面角P OQ R --,Q OR P --,R OP Q --的平面角为,,αβγ,则( )A .γαβ<<B .αγβ<<C .αβγ<<D .βαγ<<【答案】D【解析】分析:建立空间直角坐标系,对动点O 选取一个特殊位置,然后求出三个侧面的法向量,根据向量夹角的余弦值求得三个二面角的余弦值,比较后可得二面角的大小.详解:建立如图所示的空间直角坐标系E xyz -.考虑点O 与点A 重合时的情况.设正方体的棱长为1,则()()111,,0,Q ,0,0,R 01,0,O 0,0,132P ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭. 设平面OPQ 的一个法向量为1(,,)n x y z =,由111(,,)(,0,1)02211(,,)(,,0)02323x n OQ x y z z x y n PQ x y z ⎧⋅=⋅-=-=⎪⎪⎨⎪⋅=⋅--=--=⎪⎩,得322x y x z ⎧=-⎪⎪⎨⎪=⎪⎩,令2x =,得1(2,3,1)n =-.同理可得平面OPR 和平面OQR 的法向量分别为23(2,3,3),(6,3,7)n n ==. 结合图形可得:1323521cos cos ,,cos cos ,7471147n n n n αβ====⨯⨯12cos cos ,711n n γ==⨯∴cos cos cos γαβ<<,又0,,γαβπ<<,∴γαβ>>.故选D . 类型二 立体几何中动态问题中的距离问题【例2】(2020·山西高三)设点M 是棱长为2的正方体ABCD -A 1B 1C 1D 1的棱AD 的中点,点P 在面BCC 1B 1所在的平面内,若平面D 1PM 分别与平面ABCD 和平面BCC 1B 1所成的锐二面角相等,则点P 到点C 1的最短距离是( ) A 25B .22C .1D .63【答案】A【解析】如图,过点P 作1D M 的平行线交BC 于点Q 、交11B C 于点E ,连接MQ ,则PQ 是平面1D PM 与平面11BCC B 的交线,MQ 是平面1D PM 与平面ABCD 的交线.EF 与1BB 平行,交BC 于点F ,过点F 作FG 垂直MQ 于点G ,则有,MQ 与平面EFG 垂直,所以,EG 与MQ 垂直,即角EGF 是平面1D PM 与平面ABCD 的夹角的平面角,且sin EFEGF EG∠=, MN 与CD 平行交BC 于点N ,过点N 作NH 垂直EQ 于点H ,同上有:sin MNMHN MH∠=,且有EGF MHN ∠=∠,又因为EF MN AB ==,故EG MH =, 而2EMQ S EG MQ MH EQ ∆=⨯=⨯,故MQ EQ =,而四边形1EQMD 一定是平行四边形,故它还是菱形,即点E 一定是11B C 的中点, 点P 到点1C 的最短距离是点1C 到直线BE 的距离,以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立空间直角坐标系,()2,1,2E ,()2,0,0B , ()12,2,2C ,()0,1,2BE =, ()10,2,2BC =,∴点P 到点1C 的最短距离:22111||625||1()221()5||||58BE BC d BC BE BC =-=⨯-=⨯.故选:A .【指点迷津】求两点间的距离或其最值.一种方法,可建立坐标系,设点的坐标,用两点间距离公式写出距离,转化为求函数的最值问题;另一种方法,几何法,根据几何图形的特点,寻找那两点间的距离最大(小),求其值. 【举一反三】1.(2020·四川高三(理))已知三棱锥S ABC -中,1SA SB SC ===,且SA 、SB 、SC 两两垂直,P 是三棱锥S ABC -外接球面上一动点,则P 到平面ABC 的距离的最大值是( )A .33B .3C .233D .433【答案】C 【解析】【分析】,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,三棱锥S ABC -外接球就是正方体MNQB ADCS -的外接球,由正方体及球的几何性质可得点P 与N 重合时,点P 到平面ABC 的距离最大,求出平面ABC 的法向量,由点到直线的距离公式即可得结果. 【详解】三棱锥S ABC -,满足,,SA SB SC 两两垂直,且,,1SA SB SC =,∴如图,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 则()()()()()0,0,0,1,0,1,0,1,1,0,0,1,1,1,0B A C S N ,()()()1,0,1,0,1,1,1,1,0BA BC BN ===,设平面ABC 的法向量(),,n x y z =,则00n BA x z n BC y z ⎧⋅=+=⎨⋅=+=⎩,取1x =,得()1,1,1n =-,三棱锥S ABC -外接球就是棱长为1的正方体MNQB ADCS -的外接球,P 是三棱锥S ABC -外接球上一动点,∴由正方体与球的几何性质可得,点P 点与N 重合时,点P 到平面ABC 的距离最大,∴点P 到平面ABC 的距离的最大值为1102333BN n d n⋅++===.故选C. 2.已知四边形ABCD 是边长为5的菱形,对角线8BD =(如图1),现以AC 为折痕将菱形折起,使点B 达到点P 的位置.棱AC ,PD 的中点分别为E ,F ,且四面体PACD 的外接球球心落在四面体内部(不含边界,如图2),则线段EF 长度的取值范围为( )A .14,42⎛⎫ ⎪ ⎪⎝⎭B .141,2⎛⎫⎪ ⎪⎝⎭C .14,62⎛⎫⎪ ⎪⎝⎭D .()3,4【来源】江西省鹰潭市2021届高三高考二模数学(文)试题 【答案】A 【解析】由题意可知△APC 的外心1O 在中线PE 上, 设过点1O 的直线1l ⊥平面APC ,可知1l ⊂平面PED , 同理△ADC 的外心2O 在中线DE 上,设过点2O 的直线2l ⊥平面ADC ,则2l ⊂平面PED , 由对称性知直线12,l l 的交点O 在直线EF 上.根据外接球的性质,点O 为四面体PACD 的外接球的球心. 由题意得3,4EA PE ==,而2221111,4O A O E EA O A O E PE =++==所以178O E =. 令PEF θ∠=,显然02πθ<<,所以cos 4cos 4EF PE θθ==<. 因为1cos EF O EPE OEθ==, 所以172OE EF O E PE ⋅=⋅=, 又OE EF <,所以272EF >,即142EF >. 综上可知1442EF <<. 故选:A.3(2020广西柳州市模考)如图,在正方体中,棱长为1,点为线段上的动点(包含线段端点),则下列结论错误的是( )A .当时,平面B .当为中点时,四棱锥的外接球表面为C .的最小值为D .当时,平面【答案】C【解析】对于,连结,,,则,,,设到平面的距离为,则,解得,∴.∴当时,为与平面的交点.∵平面∥平面, ∵平面,∴∥平面,故A 正确. 又由以上分析可得,当时,即为三棱锥的高,∴平面,所以D 正确. 对于B ,当为中点时,四棱锥为正四棱锥, 设平面的中心为,四棱锥的外接球为,所以,解得,故四棱锥的外接球表面积为,所以B 正确.对于C ,连结,,则, ∴,由等面积法得的最小值为,∴的最小值为.所以C 不正确.故选:C.类型三 立体几何中动态问题中的面积、体积问题【例3】(2020·河南高三(理))在棱长为3的正方体1111ABCD A B C D -中,E 是1AA 的中点,P 是底面ABCD 所在平面内一动点,设1PD ,PE 与底面ABCD 所成的角分别为12θθ,(12θθ,均不为0),若12θθ=,则三棱锥11P BB C -体积的最小值是( ) A .92B .52C .32D .54【答案】C【解析】建系如图,正方体的边长为3,则(3E ,0,3)2,1(0D ,0,3),设(P x ,y ,0)(0x ,0)y ,则(3PE x =-,y -,3)2,1(PD x =-,y -,3),12θθ=,(0z =,0,1),12cos cos θθ∴=,即11||||||||||||PD z PE z PE z PD z =,代入数据,得:222233299(3)4x y x y =++-++,整理得:228120x y x +-+=,变形,得:22(4)4(02)x y y -+=, 即动点P 的轨迹为圆的一部分,过点P 作PF BC ⊥,交BC 于点F ,则PF 为三棱锥11P BB C -的高∴点P 到直线AD 的距离的最大值是2.则min 321PF =-=.1111119332212BB C BB B C S ∆=⋅⋅=⨯⨯=,1111193132213P BB C BB C V PF S -∆=⨯⨯⋅⋅=∴=故选:C .【指点迷津】求几何体体积的最值,先观察几何图形三棱锥,其底面的面积为不变的几何量,求点P到平面BCD 的距离的最大值,选择公式,可求最值. 【举一反三】1.(2020·四川高三期末)长方体1111ABCD A B C D -中,2AB =,1BC =,12AA =,P 为该正方体侧面11CC D D 内(含边界)的动点,且满足tan tan 22PAD PBC ∠+∠=.则四棱锥P ABCD -体积的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B .22,33⎡⎤⎢⎥⎣⎦ C .40,3⎛⎤ ⎥⎝⎦D .24,33⎡⎤⎢⎥⎣⎦ 【答案】B【解析】如图所示:在RT PAD 中,tan PD PAD PD AD ∠==,在RT PBC 中,tan PCPBC PC BC∠==, 因为tan tan 22PAD PBC ∠+∠=,所以22PD PC +=.因为222PD PC CD +=>=,所以点P 的轨迹是以,C D 为焦点 222a =的椭圆. 如下图所示:2a =1c =,211b =-=,椭圆的标准方程为:2212x y +=.1(0,1)P联立22112x x y =⎧⎪⎨+=⎪⎩,解得:2y =.所以22()P -,32P . 当点P 运动到1P 位置时,此时四棱锥P ABCD -的高最长, 所以max 1112()21333P ABCD ABCD V S PO -=⨯⨯=⨯⨯=. 当点P 运动到2P 或3P 位置时,此时四棱锥P ABCD -的高最短,所以min 21122()23323P ABCD ABCD V S P D -=⨯⨯=⨯⨯=. 综上所述:2233P ABCD V -≤≤. 2.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14 B .23 C 151-D 51- 【答案】A【解析】设过A 与DE 垂直的线段长为a ,则tan AE α=,150tan 2α<<,1cos DE α=,sin a α=,则四棱锥A BCDE '-的高πsin sin sin sin cos 2h a βαααα⎛⎫=⋅=⋅-=⎪⎝⎭, 则111515tan 1sin cos 3222A BCDE V ααα'-⎛=⨯⨯-+⨯⨯ ⎝⎭)115tan sin cos 6ααα=⨯ )2115cos sin 6ααα=- )11152cos 21212αα=+- 115112cos 234412αα⎛⎫=+- ⎪ ⎪⎝⎭()11sin 2312αϕ=+-,15tan 15ϕ⎛⎫= ⎪ ⎪⎝⎭, ∴四棱锥A BCDE '-体积的最大值为1113124-=. 故选:A.3.(2020·重庆市松树桥中学校高三)如图,在单位正方体1111ABCD A B C D -中,点P 在线段1AD 上运动,给出以下四个命题:①异面直线1A P 与1BC 间的距离为定值;②三棱锥1D BPC -的体积为定值;③异面直线1C P 与直线1CB 所成的角为定值; ④二面角1P BC D --的大小为定值.其中真命题有( ) A .1个 B .2个 C .3个 D .4个【答案】D【解析】对于①,异面直线1A P 与1BC 间的距离即为两平行平面11ADD A 和平面11BCC B 间的距离,即为正方体的棱长,为定值.故①正确.对于②,由于11D BPC P DBC V V --=,而1DBC S ∆为定值,又P ∈AD 1,AD 1∥平面BDC 1,所以点P 到该平面的距离即为正方体的棱长,所以三棱锥1D BPC -的体积为定值.故②正确.对于③,由题意得在正方体1111ABCD A B C D -中,B 1C ⊥平面ABC 1D 1,而C 1P ⊂平面ABC 1D 1,所以B 1C ⊥C 1P ,故这两条异面直线所成的角为90︒.故③正确;对于④,因为二面角P −BC 1−D 的大小,即为平面ABC 1D 1与平面BDC 1所成的二面角的大小,而这两个平面位置固定不变,故二面角1P BC D --的大小为定值.故④正确.综上①②③④正确.选D .类型四 立体几何中动态问题中的轨迹问题【例4】(2020南充高考一模)如图,直二面角AB αβ--,P α∈,C β∈,D β∈,且AD AB ⊥,BC AB ⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.一条直线D.两条直线【答案】A【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系,设点(),P x y ,()30A -,,()3,0B ,AD AB ⊥,BC AB ⊥,则AD α⊥,BC α⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,Rt APDRt CPB∴∆∆,()()22223511023x y APAD BPBC x y ++∴====-+ ,即()()2222343x y x y ⎡⎤-+=++⎣⎦,整理得:()22516x y ++=,故点P 的轨迹是圆的一部分,故选A .【指点迷津】空间轨迹问题的求解策略:1.利用侧面展开或展到一个平面上寻求轨迹;2.利用圆锥曲线定义求轨迹;3.这辗转过程中动点的轨迹;4.利用函数观点探求轨迹 【举一反三】1.已知正方体1111ABCD A B C D -的棱长为23M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积63PMN S =△P 的轨迹长度为( )A .269π B .263π C .469π D .463π 【答案】B【解析】如图所示:连接11BC B C O =,因为四边形11BCC B 是正方形,所以11BC B C ⊥,因为11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以11D C ⊥1B C , 又11111,BC D C C BC =⊂平面11BC D ,11D C ⊂平面11BC D ,所以1B C ⊥平面11BC D ,所以11B C D B ⊥, 同理可知:11B A D B ⊥,又因为1B C ⊂平面1ACB ,1B A ⊂平面1ACB ,111B C B A B =,所以1D B ⊥平面1ACB ,根据题意可知:11136,26D B AB AB BC AC =====所以1ACB 为正三角形,所以160∠=︒B AC ,所以11326266322ACB S=⨯⨯⨯=,设B 到平面1ACB 的距离为h , 因为11B ACB B ABC V V --=,所以111133ACB ACBSh S BB ⋅⋅=⋅⋅,所以11ACB ACBSh SBB ⋅=⋅,所以()232323262342h ⨯⨯⨯=⨯,所以1123h D B ==,所以h BN =, 所以N 即为1D B 与平面1ACB 的交点,由题意可知:1D B ⊥平面1ACB ,所以MN PN ⊥,所以11262223PMNSMN PN PN PN =⋅=⋅⋅==,再如下图所示:在正三角形1ACB 中,高3sin 6026322AO AC =︒== 所以内切圆的半径16233r AO ==<,且623AN <=,取1B C 的两个三等分点,E F ,连接,EN FN ,所以1//,//NE AB NF AC ,所以NEF 是以PN 长度为边长的正三角形,所以P 的轨迹是以N 为圆心,半径等于263的圆,圆的周46π,在1ACB 内部的轨迹是三段圆弧,每一段圆弧的圆心角为60︒,所以对应的轨迹长度是圆周长的一半为63π,故选:B. 2、(2020贵阳高考模拟)在正方体1111ABCD A B C D -中,已知点P 为平面11AA D D 中的一个动点,且点P 满足:直线1PC 与平面11AA D D 所成的角的大小等于平面PBC 与平面11AA D D 所成锐二面角的大小,则点P 的轨迹为( )A .直线B .椭圆C .圆D .抛物线 【答案】DF E P C 1B 1D 1A 1DCBA z yx3.几何中常用表示L 的测度,当L 为曲线、平面图形和空间几何体时,L 分别对应其长度、面积和体积.在ABC 中,3AB =,4BC =,5AC =,P 为ABC 内部一动点(含边界),在空间中,到点P 的距离为1的点的轨迹为L ,则L 等于( ) A .612π+B .2263π+ C .20123π+ D .22123π+ 【来源】安徽省合肥市2021届高三下学期第三次教学质量检测理科数学试题 【答案】D【解析】空间中,到点P 的距离为1的点的轨迹所构成的空间几何体在垂直于平面ABC 的角度看,如下图所示:其中:BCDF ,ACEI 和ABGH 区域内的几何体为底面半径为1的半圆柱;CDE ,BFG ,AHI 区域内的几何体为被两平面所截得的部分球体,球心分别为,,C B A ;ABC 区域内的几何体是高为2的直三棱柱. 四边形BCDF 和ACEI 为矩形,2DCB ECA π∴∠=∠=,2DCE ACB ACB πππ∴∠=--∠=-∠,同理可得:FBG ABC π∠=-∠,HAI CAB π∠=-∠,()332DCE FBG HAI ACB ABC CAB ππππ∴∠+∠+∠=-∠+∠+∠=-=,∴CDE ,BFG ,AHI 区域内的几何体合成一个完整的,半径为1的球,则CDE ,BFG ,AHI 区域内的几何体的体积之和3144133V ππ=⨯=; 又BCDF ,ACEI 和ABGH 区域内的几何体的体积之和()221134562V ππ=⨯⨯++=;ABC 区域内的直三棱柱体积31342122V =⨯⨯⨯=,4226121233L πππ∴=++=+.故选:D.三.强化训练1.(2020·内蒙古高三期末)如图,棱长为1的正方体1111ABCD A B C D -中,M 是线段1A B 上的动点,则下列结论正确的是( ).①异面直线AD 与1CB 所成的角为45︒②11DC D M ⊥③三棱锥1M DCC -的体积为定值 ④1AM MD +的最小值为2. A .①②③ B .①②④C .③④D .②③④【答案】A【解析】①∵AD ∥BC ,∴异面直线AD 与1CB 所成的角即为BC 与1CB 所成的角, 可得夹角为45︒,故①正确;②连接1CD ,∵1DC ⊥平面A 1BCD 1,1D M ⊂平面A 1BCD 1, ∴11DC D M ⊥,故②正确;③∵1A B ∥平面DCC 1D 1,∴线段A 1B 上的点M 到平面DCC 1D 1的距离都为1, 又△DCC 1的面积为定值12, 因此三棱锥M −DCC 1的体积1111326V =⨯⨯=为定值,故③正确; ④将面AA 1B 与面A 1BCD 1沿A 1B 展成平面图形,线段AD 1即为AP +PD 1的最小值, 在△D 1A 1A 中,∠D 1A 1A =135°, 利用余弦定理解三角形得111211135222AD cos =+-⨯⨯⨯︒=+<,故④不正确.因此只有①②③正确.故选:A .2.(2020河南省焦作市高三)在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别在棱AA 1和AB 上,且C 1E ⊥EF ,则|AF|的最大值为( )A .B .1C .D .2【答案】B【解析】以AB ,AD ,AA 1所在直线为x ,y ,z 轴,建立空间直角坐标系如图所示,则C 1(4,4,4),设E (0,0,z ),z ∈[0,4],F (x ,0,0),x ∈[0,4],则|AF|=x .=(4,4,4﹣z ),=(x ,0,﹣z ).因为C 1E ⊥EF ,所以,即:z 2+4x ﹣4z =0,x =z ﹣.当z =2时,x 取得最大值为1.|AF|的最大值为1.故选:B .3.(2020·重庆巴蜀中学高三(理))棱长为2的正方体1111ABCD A B C D -中,N 为1CC 的中点,P 在底面ABCD 内运动,1D P 与平面ABCD 所成角为1θ,NP 与平面ABCD 所成角为2θ,若12θθ=,则AP 的最小值为( ) A .2 B .83C .4D .1【答案】A【解析】分析:先证明PD=2PC ,再在底面ABCD 内建立如图所示的直角坐标系,求出211680sin()99PA αϕ=-+,再利用三角函数的图象和性质求出|AP|的最小值. 【详解】设12θθθ==,所以12tan tan DD PD θθ==,1PC tan tan CN θθ==,所以PD=2PC. 在底面ABCD 内建立如图所示的直角坐标系,设点P(x,y),则2222(1)2(+1)x y x y -+=+整理得22516454(),cos ,sin 39333x y x y αα++=∴=-=, 所以2224841168011680(cos )(sin 2)sin()43339999PA αααϕ=-+-=-+≥-=, 即||2AP ≥,所以|AP|的最小值为2.故选:A4.已知三棱锥A BCD -的所有棱长均为2,E 为BD 的中点,空间中的动点P 满足PA PE ⊥,PC AB ⊥,则动点P 的轨迹长度为( ) A .1116πB 3πC 11πD 3π【来源】浙江省五校2021届高三下学期5月联考数学试题 【答案】C【解析】正四面体A BCD -2,建立空间直角坐标系如图所示,()()22,,2,2,2,0,0,2,222E C B ⎛⎫ ⎪ ⎪⎝⎭,设(),,P x y z ,()22,,2,,,22PE x y z AP x y z ⎛⎫=---= ⎪ ⎪⎝⎭,()2,2,PC x y z =---.由于PA PE ⊥,PC AB ⊥,所以00AP PE PC AB ⎧⋅=⎨⋅=⎩,即()()2220222220x x y y z z y z ⎧⎛⎫⎛⎫-+-+-=⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=⎪⎩,即22222202220x x y y z z y z ⎧-+-+-=⎪⎨⎪+-=⎩, 即2222223442420x y z y z ⎧⎛⎫⎛⎫⎛⎫⎪-+-+-= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎪+-=⎪⎩, 22222234424x y z ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭表示球心为222,,442⎛⎫ ⎪ ⎪⎝⎭,半径为32R =的球. 20y z +-=表示垂直于yAz 平面的一个平面.所以P 的轨迹是上述平面截球面所得圆.球心222,,442⎛⎫ ⎪ ⎪⎝⎭到平面20y z +-=的距离为22222142411d +-==+, 所以截得的圆的半径2231114164r R d =-=-=, 所以截得的圆,也即P 点的轨迹的长度为11112242r πππ=⨯=. 故选:C5.(2020郑州一中高三期末)在三棱锥中,平面,M是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是()A.B.C.D.【答案】C【解析】如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以:,在中,设外接圆的直径为,则:,所以:外接球的半径,则:,故选:C.(2020九江高三一模)在长方体中,,,分别是棱6.的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.B.C.D.【答案】C【解析】补全截面EFG为截面EFGHQR如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小, ∴三角形面积的最小值为,故选:C .7.(2020·浙江高三期末)在三棱锥P ABC -中,2,3PA PB PC AB AC BC ======,点Q 为ABC ∆ 所在平面内的动点,若PQ 与PA 所成角为定值θ,π(0,)4θ∈,则动点Q 的轨迹是 A .圆 B .椭圆C .双曲线D .抛物线【答案】B【解析】建立空间直角坐标系,根据题意,求出Q 轨迹方程,可得其轨迹.由题,三棱锥P ABC -为正三棱锥,顶点P 在底面ABC 的射影O 是底面三角形ABC 的中心,则以O 为坐标原点,以OA 为x 轴,以OP 为z 轴,建立如图所示的空间直角坐标系,根据题意可得1OA OP ==,设Q 为平面ABC 内任 一点,则()()()()()1,0,0,0,0,1,,,0,1,0,1,,,1A P Q x y PA PQ x y =-=- ,由题PQ 与PA 所成角为定值θ,π0,4θ⎛⎫∈ ⎪⎝⎭,则,221cos 21PA PQ x PA PQ x y θ⋅+==⋅++则()()22222cos11x y x θ++=+ ,化简得222cos22cos 2cos20x y x θθθ⋅+⋅-+= ,ππ0,,20,,cos 20,42θθθ⎛⎫⎛⎫∈∴∈> ⎪ ⎪⎝⎭⎝⎭故动点Q 的轨迹是椭圆.选B8.(2020·上海格致中学高三月考)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与AC '所成的角为45︒的点P 的个数为( )A .0B .3C .4D .6【答案】B 【解析】【分析】建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P 的个数.【详解】建立如图所示的空间直角坐标系,不妨设棱长1AB =,(1B ,0,1),(1C ,1,1). ①在Rt △AA C ''中,||tan 2||A C A AC AA '''∠'=='45A AC '∠'≠︒.同理AB ,AD 与AC '所成的角都为arctan 245≠︒.故当点P 位于(分别与上述棱平行或重合)棱BB ',BA ,BC 上时,与AC '所成的角都为arctan 245≠︒,不满足条件;②当点P 位于棱AD 上时,设(0P ,y ,1),(01)y ,则(1BP =-,y ,0),(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '-+=<'>=='+, 化为2410y y ++=,无正数解,舍去; 同理,当点P 位于棱A D ''上时,也不符合条件; ③当点P 位于棱B C ''上时,设(1P ,y ,0),(01)y , 则(0BP =,y ,1)-,(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '+=<'>=='+, 化为2410y y -+=,01y ,解得23y =-,满足条件,此时点(1,23,0)P -.④同理可求得棱C D ''上一点(532,1,0)P -,棱C C '上一点(1,1,324)P -. 而其它棱上没有满足条件的点P .综上可知:满足条件的点P 有且只有3个.故选:B 9.(2020上海交通大学附属中学高三)如图,已知三棱锥,平面,是棱上的动点,记与平面所成的角为,与直线所成的角为,则与的大小关系为( )A .B .C .D .不能确定【答案】C【解析】如图所示:∵PA ⊥平面ABC ,∴PD 与平面ABC 所成的角=∠PDA, 过点A 作AE ⊥BC ,垂足为E ,连接PE ,∵PA ⊥平面ABC ,∴PA ⊥BC ,∴BC⊥平面PAE ,∴BC⊥PE,在Rt△AED ,Rt△PAD ,Rt△PED 中:cos ,cos ,cos,∴coscoscos < cos ,又均为锐角, ∴,故选C.10.(2020·湖南长郡中学高三(理))在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,23AB =,Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( ) A .45π B .57πC .63πD .84π【答案】B【解析】分析:根据题意画出图形,结合图形找出ABC △的外接圆圆心与三棱锥P ABC - 外接球的球心,求出外接球的半径,再计算它的表面积.详解:三棱锥P ABC PA ABC 中,平面,-⊥ 设直线PQ 与平面ABC 所成角为θ ,如图所示;则3PAsinPQ PQ ,θ== 由题意且θ的最大值是3π3PQ=,,解得PQ =即PQ 的最小值为∴AQ ,即点A 到BC ,AQ BC ∴⊥,AB BC ∴== 6BC ;∴= 取ABC △的外接圆圆心为O ',作OO PA ' ,62120r sin ∴=︒,解得r =;O A ∴'=M 为PA 的中点,32OM O A PM ∴='==,由勾股定理得CP R === ∴三棱锥P ABC -的外接球的表面积是224457S R πππ==⨯⨯=.故选B.11.在直三棱柱111ABC A B C -中,底面ABC 是以B 为直角的等腰三角形,且3AB =,1AA =若点D 为棱1AA 的中点,点M 为面BCD 的一动点,则11 B M C M +的最小值为( )A .B .6C . D【来源】江西省赣州市2021届高三二模数学(理)试题 【答案】C【解析】由题意知,BC AB ⊥,111ABC A B C -为直三棱柱,即面ABC ⊥面11ABB A ,面ABC面11ABB A AB =,BC ⊂面ABC ,∴BC ⊥面11ABB A ,又BC ⊂面BCD , ∴面BCD ⊥面11ABB A .∴易得1B 关于平面BCD 对称点E 落在1A A 的延长线上,且AE =1A E =11 B M C M +的最小时,1C 、M 、E 三点共线.∴221111111||992735B M C M EM C M EC AC A E +=+≥=+=++=. 故选:C12.在棱长为2的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足433PA PB +=,则PD 的最大值为( ) A .3B .2103C .393D .2【来源】河南省鹤壁市2021届高三一模数学(文)试题 【答案】B【解析】如图所示,在平面ABC 内,4323PA PB +=>, 所以点P 在平面ABC 内的轨迹为椭圆,取AB 的中点为点O ,连接CO ,以直线AB 为x 轴,直线OC 为y 建立如下图所示的空间直角坐标系O xyz -,则椭圆的半焦距1c =,长半轴a =b ==所以,椭圆方程为()2233104x y z +==.点D 在底面的投影设为点E ,则点E 为ABC 的中心,11333OE OC ===, 故点E 正好为椭圆短轴的一个端点,23CE OC ==,则DE ==, 因为222PD DE EP =+,故只需计算EP 的最大值.设(),,0P x y ,则E ⎛⎫⎪ ⎪⎝⎭,则22222241543333EP x y y y y y y ⎛=+=-++=--+ ⎝⎭,当y ⎡=⎢⎣⎦时,2EP 取最大值,即22max516393939EP ⎛⎛=-⨯---+= ⎝⎭⎝⎭,因此可得2241640999PD ≤+=,故PD . 故选:B.13.在棱长为1的正方体1111ABCD A B C D -中,P 是线段1BC 上的点,过1A 的平面α与直线PD 垂直,当P 在线段1BC 上运动时,平面α截正方体1111ABCD A B C D -所得的截面面积的最小值是( )A .1B .54C D【来源】北京市朝阳区2021届高三一模数学试题 【答案】C【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,1A 、()1,0,0B 、()11,0,1B 、()1,1,0C 、()11,1,1C 、()0,1,0D 、()10,1,1D , 设点()1,,P t t ,其中01t ≤≤.①当0t =时,点P 与点B 重合,()1,1,0BD =-,()1,1,0AC =,()10,0,1AA =, 所以,0BD AC ⋅=,10BD AA ⋅=,则BD AC ⊥,1BD AA ⊥, 1AC AA A ⋂=,BD ∴⊥平面11AAC C ,此时平面α即为平面11AAC C ,截面面积为12S AA AC =⋅= ②当1t =时,同①可知截面面积为2S =③当01t <<时,()1,1,DP t t =-,()11,1,1AC =-, 1110DP AC t t ⋅=+--=,1A C PD ∴⊥,则1A C α⊂, 设平面α交棱1DD 于点()0,1,E z ,()1,0,CE z =-,10DP CE tz ⋅=-+=,可得11z t=>,不合乎题意. 设平面α交棱AB 于点(),0,0M x ,()1,1,0CM x =--,()110DP CM x t ⋅=---=,可得x t =,合乎题意,即(),0,0M t ,同理可知,平面α交棱11C D 于点()1,1,1N t -,()11,1,0A N t MC =-=,且1A N 与MC 不重合,故四边形1A MCN 为平行四边形,()11,1,1AC =-,()11,1,0A N t =-,1112112cos 322AC A N t CA N AC A N t t ⋅-∠==⋅⋅-+,则()()2211221sin 1cos 322t t CA N CA N t t -+∠=-∠=-+,所以,截面面积为()1221111362sin 2122242CA NS S AC A N CA N t t t ⎡⎤⎛⎫==⋅∠=-+=-+=<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦△. 综上所述,截面面积的最小值为62. 故选:C.14.如图,斜线段AB 与平面α所成的角为π4,B 为斜足.平面α上的动点P 满足π6PAB ∠=,则点P 的轨迹为( )A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分【答案】B【解析】建立如图所示的空间直角坐标系,设(0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-22223cos ,62(2)1121AB AP x y x y ⇒<>=⇒+-=⋅++ 所以点P 的轨迹是椭圆. 故选:B.15.已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是( )A .2B .233C .62D .1【答案】B【解析】A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ', 记d 为直线EB '与AC 之间的距离,则MT NT M T NT M N d ''+=+≥≥, 由//B E D C '',d 为E 到平面ACD '的距离, 因为111111333D ACE ACEV S '-=⨯⨯==⨯⨯=,而()21332346D ACE E ACD V V d d ''--==⨯⨯⨯=,故233d =, 故选:B.16.如图,ABC 是等腰直角三角形,AB AC =,点D 是AB 上靠近A 的三等分点,点E 是AC 上靠近C 的三等分点,沿直线DE 将ADE 翻折成A DE ',所成二面角A DE B '--的平面角为α,则( )A .A DB A EC α∠≥∠'≥' B .A EC A DB α∠≥∠'≥' C .A DB A EC α≥∠'∠≥'D .A EC A DB α≥∠'∠≥'【答案】B【详解】如图,在等腰直角三角形中,过B 作直线//l DE ,作BM ED ⊥交直线DE 于点M ,过C 作直线DE 的垂线,垂足为R ,交直线l 与T ,过A 作DE 的垂线,垂足为O ,且交l 于N ,不妨设3AB =,则1,2AD CE BD AE ====, 在直角三角形ADE 中,255AO ==, 因为BMD AOD ,故12AO AD BM BD ==,故455BM =,同理52522155DM DO ==⨯⨯= 所以45ON =,35BN OM ==,同理5RC OS ==65NT =.在几何体中连接,,A B A S A C ''',如图,因为,,A O DE NO DE '⊥⊥故NOA '∠为二面角A DE B '--的平面角,故NOA α'∠=,而A O NO O '⋂=,故DE ⊥平面AON ',所以TB ⊥平面AON ',而A N '⊂平面AON ',故BN A N '⊥.24162545162cos 4cos 55555A N αα'=+-⨯=-, 故216929164cos cos 5555A B αα'=-+=-,故29165cos 4155cos cos 21255A DB αα-+'∠==-⨯⨯, 同理14cos cos 55A EC α'∠=-,11cos cos cos 055A DB αα'∠-=--<,故cos cos A DB α'∠<,同理cos cos A EC α'∠<,33cos cos cos 055A DB A EC α''∠-∠=+>,故cos cos A DB A EC ''∠>∠,因为(),,0,A DB A EC απ''∠∠∈,故A EC A DB α''∠>∠>, 故选B.17.如图,棱长为2的长方体1111ABCD A B C D -中,P 为线段11B D 上动点(包括端点).则以下结论正确的为( )A .三棱锥1P A BD -中,点P 到面1A BD 2B .过点P 平行于面1A BD 的平面被正方体1111ABCD A BCD -3C .直线1PA 与面1A BD 所成角的正弦值的范围为36⎣⎦D .当点P 和1B 重合时,三棱锥1P A BD -3【来源】广东省普宁市2020-2021学年高三上学期期末数学试题 【答案】C【解析】对于A 中,由111142222323P A BD A PBD V V --==⨯=,1A BD 为等边三角形,面积为11226232A BD =⨯=△S ,设点P 到面1A BD 的距离为h ,由142333h ⨯=,求得23h =所以A不正确;对于B 中,过点P 平行于平面1A BD 的平面被正方体截得的多边形平面11B D C , 此时三角形11B D C 为边长为221226=232⨯B 不正确; 对于C 中,由正方体的结构特征和性质,可得点P 到平面1A BD 23当点P 在线段11B D 上运动时,1max 2PA =(P 为端点时),in 1m 2PA =设直线1PA 与平面1A BD 所成角为θ,则36sin ,33θ∈⎣⎦,所以C 正确;对于D 中,当点P 与1B 重合时,此时三棱锥为11B A BD -,设1B D 的中点为O ,因为11190B BD B A D ∠=∠=︒,可得11OA OB OD OB === 所以三棱锥1P A BD -的外接球的球心为1B D 的中点,其半径为3,所以三棱锥1P A BD -的外接球的体积为34(3)433ππ⨯=,所以D 不正确.故选:C.18.如图,在棱长为33的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足15213DP PB +=+,则直线1B P 与直线1AD 所成角的取值范围为( )(参考数据:43sin 53,sin 3755==)A .37,143⎡⎤⎣⎦B .37,90⎡⎤⎣⎦C .53,143⎡⎤⎣⎦D .37,127⎡⎤⎣⎦【来源】江西省景德镇一中2020-2021学年高三上学期期末考试数学(理)试题 【答案】B【解析】如图,建立空间直接坐标系,连结1B D ,交平面11A BC 于点O ,()0,0,0D ,()133,33,33B ,()133,0,33A ,()33,33,0B ,()10,33,33C ,()133,33,33DB =,()10,33,33A B =-,()133,0,33BC =-,110DB A B ⋅=,110DB BC ⋅=,111111,DB A B DB BC A B BC B ∴⊥⊥⋂=,,1DB ∴⊥平面11A BC ,根据等体积转化可知111111B A BC B A B C V V --=, 即()()23111311363332232B O ⨯⨯⨯⨯=⨯⨯,解得:13B O =, 13339B D =⨯=,16D O ∴=,11//AD BC ,∴异面直线1AD 与1B P 所成的角,转化为1BC 与1B P 所成的角,如图,将部分几何体分类出来,再建立一个空间直角坐标系,取1BC 的中点E ,过点O 作1//OF BC ,则以点O 为原点,1,,OF OE OB 为,,x y z 轴的正方向,建立空间直角坐标系(),,0P x y ,()10,0,3B ,()0,0,6D -,3326,22B ⎫⎪⎪⎭,13326,22C ⎛⎫ ⎪ ⎪⎝⎭,()1,,3B P x y =-,()136,0,0BC =-, 15213PB PD +=+,22229365213x y x y ++++=+2222936x y x y ++<++,即15PB =22925x y ∴++=,即2216x y +=,[]4,4x ∈-1111113644cos ,,555365B P BC x x B P BC B P BC ⋅-⎡⎤<>===-∈-⎢⎥⨯⎣⎦,因为异面直线所成的角是锐角,并设为θ,则4cos 0,5θ⎛⎤∈ ⎥⎝⎦,4sin 535=,4cos375∴=,37,90θ⎡⎤∴∈⎣⎦ 故选:B19.如图,在三棱锥D ABC -中,,1,1AD BC BC AD ⊥==.且2AB BD AC CD +=+=,则四面体ABCD 的体积的最大值为( )A .14B .212C .36D .524【来源】浙江省衢州市五校联盟2020-2021学年高三上学期期末联考数学试题 【答案】B【解析】作BE ⊥AD 于E ,连接CE ,如图,因为,AD BC ⊥,BE BC 再平面BEC 内相交,所以AD ⊥平面BEC , 因为CE ⊂平面BEC ,所以CE ⊥AD , 因为2AB BD AC CD +=+=,所以B 与C 都是在以A 、D 为焦点的椭球上,且BE 、CE 都垂直于焦距AD , AB +BD = AC +CD =2,显然ABD ACD ≅,所以BE =CE . 取BC 中点F ,,,BC E AD E F F ⊥∴⊥ 要求四面体ABCD 的体积的最大值,因为AD 是定值,只需三角形EBC 的面积最大, 因为BC 是定值,所以只需EF 最大即可,当△ABD 是等腰直角三角形时几何体的体积最大, 因为AB +BD = AC +CD =2,1AB ∴=,22222131121,(1)22222EB EF ⎛⎫⎛⎫⎛⎫∴=-==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以几何体的体积为11221132212⨯⨯⨯⨯=故选:B20.如图,三棱锥A BCD -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三棱锥A BCD -绕棱CD 旋转,设直线BE 与平面α所成的角为θ,则cos θ的取值范围为( )A .36⎤⎥⎣⎦B .5,16⎡⎤⎢⎥⎣⎦C .110,6⎡⎢⎣⎦D .330,6⎡⎢⎣⎦【来源】浙江省宁波市慈溪市2020-2021学年高三上学期期末数学试题 【答案】A【解析】取AD 的中点F ,连接EF 、BF ,如下图所示:。
立体几何微专题1 :动态问题之轨迹立体几何动态问题的分为以下基本类型:点动问题、线动问题、面动问题、体动问题、多动问题等,很多的动态问题只要知道轨迹,把空间转化为平面问题要解决,立体几何中某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于转化为平面问题.轨迹的几何判断方法:动点P满足如下轨迹定义条件时(1)平面内到定点距离等于定长(圆);(2)空间中到定点距离等于定长(球面);(3)两不同平面公共点的集合(直线);(4)平面内到两定点距离之和为定值(大于定点间的距离)(椭圆);(5)平面内到两定点距离之差的绝对值为定值(小于定点间的距离)(双曲线);(6)平面内到定直线距离等于到定点(不在定直线上)距离(抛物线)©考点突破[例1] (2004北京,理4)如图,在正方体力NCD-4/C;〃中,尸是侧面内••封点,若「到直线"C与直线的距离相等,则动点「的轨迹所在的曲线是()A,直线H,圆 C.双曲线 D.抛物线解析:选D.由于G〃,平面Mga连接尸G,则产C;_LGR,即点尸到直线qq的距离即尸q,因此,动点尸到定点G与定直线BC的距离相等,由抛物线的定义可知,动点尸的轨迹为抛物线.[例2] (2006北京,理4)平面口的斜线力疗交1于点过定点/的动直线/与X/垂直,且交a于点C ,则动点。
的轨迹是()A. 一条直线B. 一个圆C. 一个桶圆D.双曲线的一支解析:选A.设/与「是其中的两条任意的直线,则这两条直线确定一个平面,且斜线回垂直于这个平面,由过平面外一点有且只有一个平面与己知直线垂直可知过定点刃与山?垂直所有直线都在这个平面内,故动点C都在这个平面与平面b的交线上,故选A.[例3] (2008浙江,理10)如图,川匕是平面戊的斜线段,凡为斜足,若点户在平面内运动,使得A4用尸的面枳为定值,则动点P的轨迹是(A.圆B.椭圆C. 一条直线D.两条平行直线解析:选人由题意知,点尸到线段乂月的距离为定值,则点尸在以为旋转轴的圆柱表面上一点।故平面a斜截圆柱,所得图形为椭圆.[例4](2015浙江,文7)如图,斜线段45与邛面仪所成的角为60、B为斜足,平面a上的动点户满足乙匕13 = 30"则点尸的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支解析:选C由题可知,当尸点运动时,在空间中,满足条件的/尸绕旋转形成一个圆锥,用一个与圆锥高成60口角的平面截圆锥,所得图形为椭圆.[例5](2012浙江模拟)如果一个平面与一个圆柱的轴成](0<tz<-)2角,则该平面与圆柱侧面的交线是一个椭圆,当以=2时;椭圆的离心率是6百八1 8B, — C. 一 D.—2 2 2解析:选既由题意得,椭圆的短半轴长等于底面半径小即5=人若平面与圆柱的轴所成角为30,则平面与圆柱底面成60 ,从而可得椭圆的长半轴长为4二—-—= r L1|I a = 2b t故总= J]- (2)-=---cos 60 V a 2[例6](2013西城 模)如图,正方体4武力-/用£口中,F 为底面/用⑦ 上的动点, PE 工邓:于E ,且/Y =/%,则点P 的轨迹是()A.线段 B,圆弧 C ,椭圆的一部分 D.抛物级的一部分 解析:选/t 由题意知,\A {AP^\A X EP,则点P 在线段/五的中垂面上 运动,从而与底面力人力的交线为线段.[例7](2011广州・•模,理SO 如图所示,已知正方体/狄力-的 棱长为3长为2的线段上W 的一个端点M 在棱Z)口上运动,另一端点N 在正方形⑷?CD 内运动,则河、的中点的轨迹的面积为()A. 4 笈B. 2 乃C. 7T 解析:选D.易知I)J)] 1平面/BCD ,乙MDN = 90 ,取线段的中点 尸,则QF 二4= 所以点尸的轨迹是以。
第1页共5页2024年高考数学总复习:立体几何中的动态问题[解题策略]立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜.1.去掉枝蔓见本质——大道至简在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.例1如图1,直线l ⊥平面α,垂足为O .正方体ABCD -A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1中点P 的距离的最大值为________.图1答案2+2解析从图形分化出4个点O ,A ,B 1,P ,其中△AOB 1为直角三角形,固定AOB 1,点P 的轨迹是在与AB 1垂直的平面上且以AB 1的中点Q 为圆心的圆,从而OP ≤OQ +QP =12AB 1+2=2+2,当且仅当OQ ⊥AB 1,且点O ,Q ,P 共线时取到等号,此时直线AB 1与平面α成45°角.2.极端位置巧分析——穷妙极巧在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案.例2在正四面体A -BCD 中,E 为棱BC 的中点,F 为直线BD 上的动点,则平面AEF 与平面ACD 所成二面角的正弦值的取值范围是________.答案1解析本例可用极端位置法来加以分析.。
§7.10立体几何中的动态、轨迹问题重点解读“动态”问题是高考立体几何问题最具创新意识的题型,它渗透了一些“动态”的点、线、面等元素,给静态的立体几何题赋予了活力,题型更新颖.同时,由于“动态”的存在,也使立体几何题更趋多元化,将立体几何问题与平面几何中的解三角形问题、多边形面积问题以及解析几何问题之间建立桥梁,使得它们之间灵活转化.题型一平行、垂直中的动态轨迹问题例1如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,N 分别是CC 1,C 1D 1,DD 1,CD ,BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥平面A 1BD ,则点M 轨迹的长度是()A.3aB.2aC.3a 2D.2a 2答案D 解析连接HN ,GN (图略),∵在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,N 分别是CC 1,C 1D 1,DD 1,CD ,BC 的中点,则GH ∥BA 1,HN ∥BD ,又GH ⊄平面A 1BD ,BA 1⊂平面A 1BD ,∴GH ∥平面A 1BD ,同理可证得NH ∥平面A 1BD ,又GH ∩HN =H ,GH ,HN ⊂平面GHN ,∴平面A 1BD ∥平面GHN ,又∵点M 在四边形EFGH 上及其内部运动,MN ∥平面A 1BD ,则点M 在线段GH 上运动,即满足条件,又GH =22a ,则点M 轨迹的长度是2a 2.思维升华动点轨迹的判断一般根据线面平行、线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程.跟踪训练1正四棱锥S -ABCD 的底面边长为2,高为2,E 是边BC 的中点,动点P 在正四棱锥表面上运动,并且总保持PE ⊥AC ,则动点P 的轨迹的周长为()A.6+2B.6-2C .4D.5+1答案A 解析如图,设AC ,BD 交于O ,连接SO ,由正四棱锥的性质可得SO ⊥平面ABCD ,因为AC ⊂平面ABCD ,故SO ⊥AC .又BD ⊥AC ,SO ∩BD =O ,SO ,BD ⊂平面SBD ,故AC ⊥平面SBD .由题意,PE ⊥AC 则动点P 的轨迹为过E 且垂直AC 的平面与正四棱锥S -ABCD 的交线,即平面EFG ,则AC ⊥平面EFG .由线面垂直的性质可得平面SBD ∥平面EFG ,又由面面平行的性质可得EG ∥SB ,GF ∥SD ,EF ∥BD ,又E 是边BC 的中点,故EG ,GF ,EF 分别为△SBC ,△SDC ,△BCD 的中位线.由题意BD =22,SB =SD =22+2=6,故EG +EF +GF =12×(6+6+22)=6+ 2.即动点P 的轨迹的周长为6+ 2.题型二距离、角度有关的动态轨迹问题例2已知长方体ABCD -A 1B 1C 1D 1的外接球的表面积为5π,AA 1=2,点P 在四边形A 1ACC 1内,且直线BP 与平面A 1ACC 1所成的角为π4,则长方体的体积最大时,动点P 的轨迹长为()A .πB.2π2C.π2D.2π4答案C解析因为长方体ABCD -A 1B 1C 1D 1的外接球的表面积为5π,设外接球的半径为R ,所以4πR 2=5π,解得R =52R =-52(舍去),即外接球的直径为5,设AB =a ,BC =b ,则a 2+b 2+22=5,可得a 2+b 2=1,所以V =2ab ≤a 2+b 2=1,当且仅当a =b =22时,等号成立.如图,设AC ,BD 相交于点O ,因为BO ⊥AC ,BO ⊥AA 1,AC ∩AA 1=A ,AC ,AA 1⊂平面A 1ACC 1,所以BO ⊥平面A 1ACC 1,因为直线BP 与平面A 1ACC 1所成的角为π4,所以∠BPO =π4,故OP =12,则点P 的轨迹是以O 为圆心,半径r =12的半圆弧,所以动点P 的轨迹长为πr =π2.思维升华距离、角度有关的轨迹问题(1)距离:可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹.(2)角度:直线与面成定角,可能是圆锥侧面;直线与定直线成等角,可能是圆锥侧面.跟踪训练2已知三棱锥P -ABC 的外接球O 的半径为13,△ABC 为等腰直角三角形,若顶点P 到底面ABC 的距离为4,且三棱锥P -ABC 的体积为163,则满足上述条件的顶点P 的轨迹长度是________.答案43π解析设底面等腰直角三角形ABC 的直角边的边长为x (x >0),∵顶点P 到底面ABC 的距离为4且三棱锥P -ABC 的体积为163,∴13×12x 2×4=163,解得x =22,∴△ABC 的外接圆半径为r 1=12×2×22=2,∴球心O 到底面ABC 的距离d 1=R 2-r 21=13-22=3,又∵顶点P 到底面ABC 的距离为4,∴顶点P 的轨迹是一个截面圆的圆周(球心在底面ABC 和截面圆之间)且球心O 到该截面圆的距离d 2=1,∵截面圆的半径r 2=R 2-d 22=13-1=23,∴顶点P 的轨迹长度是2πr 2=2π×23=43π.题型三翻折有关的动态轨迹问题例3在矩形ABCD 中,E 是AB 的中点,AD =1,AB =2,将△ADE 沿DE 折起得到△A ′DE ,设A ′C 的中点为M ,若将△ADE 沿DE 翻折90°,则在此过程中动点M 形成的轨迹长度为________.答案2π8解析如图,设AC 的中点为M 0,△ADE 沿DE 翻折90°,此时平面A ′DE ⊥平面ABCD ,取CD 中点P ,CE 中点Q ,PQ 中点N ,连接PQ ,MP ,MQ ,MN ,M 0P ,M 0Q ,M 0N .MP =M 0P =12AD =12,MQ =M 0Q =12AE =12,PQ =12DE =22,△MPQ 和△M 0PQ 是等腰直角三角形,且在旋转过程中保持形状大小不变,故动点M 的轨迹是以N 为圆心,12PQ 为半径的一段圆弧,又MP ∥A ′D ,MP ⊄平面A ′DE ,A ′D ⊂平面A ′DE ,∴MP ∥平面A ′DE ,同理MQ ∥平面A ′DE ,又∵MP ∩MQ =M ,∴平面MPQ ∥平面A ′DE ,又平面A ′DE ⊥平面ABCD ,故平面MPQ ⊥平面ABCD ,又平面MPQ ∩平面ABCD =PQ ,MN ⊥PQ ,故MN ⊥平面ABCD ,又M 0N ⊂平面ABCD ,∴MN ⊥M 0N ,故动点M 形成的轨迹长度为14π·PQ =2π8.思维升华翻折有关的轨迹问题(1)翻折过程中寻找不变的垂直的关系求轨迹.(2)翻折过程中寻找不变的长度关系求轨迹.(3)可以利用空间坐标运算求轨迹.跟踪训练3(2024·连云港模拟)在矩形ABCD 中,AB =3,AD =1,点E 在CD 上,现将△AED 沿AE 折起,使平面AED ⊥平面ABC ,当E 从D 运动到C 时,求点D 在平面ABC 上的射影K 的轨迹长度为()A.22 B.223 C.π2 D.π3答案D解析由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,垂足K 为D 在平面ABC 上的射影,连接D ′K ,由翻折的特征知,则∠D ′KA =90°,故K 点的轨迹是以AD ′为直径的圆上一段弧,根据长方形知圆半径是12,如图当E 与C 重合时,∠D ′AC =60°,所以AK =12,取O 为AD ′的中点,得到△OAK 是正三角形.故∠KOA =π3,所以∠KOD ′=2π3,射影K 的轨迹长度为12×2π3=π3.课时精练一、单项选择题1.在正方体ABCD -A 1B 1C 1D 1中,Q 是正方形B 1BCC 1内的动点,A 1Q ⊥BC 1,则Q 点的轨迹是()A .点B 1B .线段B 1C C .线段B 1C 1D .平面B 1BCC 1答案B 解析如图,连接A 1C ,因为BC 1⊥A 1Q ,BC 1⊥A 1B 1,A 1Q ∩A 1B 1=A 1,A 1Q ,A 1B 1⊂平面A 1B 1Q ,所以BC 1⊥平面A 1B 1Q ,又B 1Q ⊂平面A 1B 1Q ,所以BC 1⊥B 1Q ,又BC 1⊥B 1C ,所以点Q 在线段B 1C 上.2.(2023·佛山模拟)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 为正方形A 1B 1C 1D 1内的动点,满足直线BP 与下底面ABCD 所成角为60°的点P 的轨迹长度为()A.33B.3π6 C.3 D.3π2答案B 解析直线BP 与下底面ABCD 所成的角等于直线BP 与上底面A 1B 1C 1D 1所成的角,连接B 1P ,如图,因为BB 1⊥平面A 1B 1C 1D 1,PB 1⊂平面A 1B 1C 1D 1,所以BB 1⊥PB 1,故∠BPB 1为直线BP 与上底面A 1B 1C 1D 1所成的角,则∠BPB 1=60°,因为BB 1=1,所以PB 1=BB 1tan 60°=33,故点P 的轨迹为以B 1为圆心,33为半径,位于平面A 1B 1C 1D 1内的14圆,故轨迹长度为14×2π×33=3π6.3.如图,在三棱柱ABC -A 1B 1C 1中,M 为A 1C 1的中点,N 为侧面BCC 1B 1上的一点,且MN ∥平面ABC 1,若点N 的轨迹长度为2,则()A .AC 1=4B .BC 1=4C .AB 1=6D .B 1C =6答案B 解析如图,取B 1C 1的中点D ,BB 1的中点E ,连接MD ,DE ,ME ,由MD ∥A 1B 1∥AB ,DE ∥BC 1,又MD ⊄平面ABC 1,AB ⊂平面ABC 1,所以MD ∥平面ABC 1,同理可得DE ∥平面ABC 1,又MD ∩DE =D ,MD ,DE ⊂平面MDE ,所以平面MDE ∥平面ABC 1,又MN ∥平面ABC 1,故点N 的轨迹为线段DE ,又由DE =12BC 1=2,可得BC 1=4.4.已知四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 为正方形,侧棱与底面垂直,点P 是侧棱DD 1上的点,且DP =2PD 1,AA 1=3,AB =1.若点Q 在侧面BCC 1B 1(包括其边界)上运动,且总保持AQ ⊥BP ,则动点Q 的轨迹长度为()A.3B.2C.233D.52答案D 解析如图,在侧棱AA 1上取一点R ,使得AR =2RA 1,连接PR ,BR ,过点A 作AN ⊥BR 交BR 于点M ,交BB 1于点N ,连接AC ,CN ,BD ,由PR ∥AD ,可知PR ⊥AN ,BR ,PR ⊂平面BPR ,BR ∩PR =R ,从而AN ⊥平面BPR ,BP ⊂平面BPR ,所以BP ⊥AN ,又由BP 在平面ABCD 内的射影BD ⊥AC ,所以BP ⊥AC ,AN ,AC ⊂平面ACN ,AN ∩AC =A ,知BP ⊥平面ACN ,CN ⊂平面ACN ,所以BP ⊥CN ,所以动点Q 的轨迹为线段CN ,在Rt △ABN ,Rt △RAB 中,∠BAN =∠ARB ,所以Rt △ABN ∽Rt △RAB ,则BN AB =AB RA ,得BN =12,易得CN =BN 2+BC 2=122+12=52.5.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱AD ,B 1C 1的中点.若点P 为侧面正方形ADD 1A 1内(含边界)动点,且B 1P ∥平面BEF ,则点P 的轨迹长度为()A.12B .1C.52D.π2答案C 解析取A 1D 1的中点M ,连接AM ,B 1M ,AB 1,EM ,FM ,如图所示,在正方体ABCD -A 1B 1C 1D 1中,AD ∥B 1C 1且AD =B 1C 1,因为E ,F 分别是棱AD ,B 1C 1的中点,则AE ∥B 1F 且AE =B 1F ,所以四边形AB 1FE 为平行四边形,则AB 1∥EF ,因为AB 1⊄平面BEF ,EF ⊂平面BEF ,所以AB 1∥平面BEF ,同理可证AM ∥平面BEF ,因为AB 1∩AM =A ,AB 1,AM ⊂平面AB 1M ,所以平面AB 1M ∥平面BEF ,因为AM ⊂平面AA 1D 1D ,若P ∈AM ,则B 1P ⊂平面AB 1M ,所以B 1P ∥平面BEF ,所以点P 在侧面AA 1D 1D 内的轨迹为线段AM ,由勾股定理可得AM =AA 21+A 1M 2=52.6.已知菱形ABCD 边长为2,∠ABC =60°,沿对角线AC 折叠成三棱锥B ′-ACD ,使得二面角B ′-AC -D 为60°,设E 为B ′C 的中点,F 为三棱锥B ′-ACD 表面上动点,且总满足AC ⊥EF ,则点F 轨迹的长度为()A .23B .33 C.3 D.332答案D 解析连接AC ,BD 交于点O ,连接OB ′,四边形ABCD 为菱形,∠ABC =60°,所以AC ⊥BD ,OB ′⊥AC ,△ABC ,△ACD ,△AB ′C 均为正三角形,所以∠B ′OD 为二面角B ′-AC -D 的平面角,于是∠B ′OD =60°,又因为OB ′=OD ,所以△B ′OD 为正三角形,所以B ′D =OB ′=OD =2×32=3,取OC 的中点P ,取CD 的中点Q ,连接EP ,EQ ,PQ ,所以PQ ∥OD ,EP ∥OB ′,所以AC ⊥EP ,AC ⊥PQ ,EP ∩PQ =P ,所以AC ⊥平面EPQ ,所以在三棱锥B ′-ACD 表面上,满足AC ⊥EF 的点F 轨迹为△EPQ ,因为EP =12OB ′,PQ =12OD ,EQ =12B ′D ,所以△EPQ 的周长为3×32=332,所以点F 轨迹的长度为332.二、多项选择题7.(2024·济南模拟)已知正方体ABCD -A 1B 1C 1D 1的各顶点均在表面积为12π的球面上,P 为该球面上一动点,则()A .存在无数个点P ,使得PA ∥平面A 1B 1C 1D 1B .当平面PAA 1⊥平面CB 1D 1时,点P 的轨迹长度为2πC .当PA ∥平面A 1B 1CD 时,点P 的轨迹长度为2πD .存在无数个点P ,使得平面PAD ⊥平面PBC答案ACD 解析因为该球的表面积为4πr 2=12π,故半径r =3,且正方体的棱长满足(2r )2=3a 2=12,故棱长a =2,选项A ,由题意可知平面ABCD ∥平面A 1B 1C 1D 1,且PA ∥平面A 1B 1C 1D 1,故PA ⊂平面ABCD ,则P 的轨迹为正方形ABCD 的外接圆,故有无数个点P 满足,故A 正确;选项B ,易知AC 1⊥平面CB 1D 1,且平面PAA 1⊥平面CB 1D 1,PA ⊂平面PAA 1,故P 的轨迹为矩形AA 1C 1C 的外接圆,其周长为2πr =23π,故B 错误;选项C ,因为PA ∥平面A 1B 1CD ,设过PA 且与平面A 1B 1CD 平行的平面为α,则P 的轨迹为α与外接球的交线,其半径为a 2=1,周长为2π,故C 正确;选项D ,若平面PAD ⊥平面PBC ,则点P 在以四边形ABCD 为轴截面的某个圆柱面上,该圆柱面与球面交线为曲线,故有无数个点P 满足,故D 正确.8.(2023·长沙模拟)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为正方体表面上的动点,N 为线段AC 1上的动点,若直线AM 与AB 的夹角为π4,则下列说法正确的是()A .点M 的轨迹确定的图形是平面图形B .点M 的轨迹长度为π2+22C .C 1M 的最小值为2-1D .当点M 在侧面BB 1C 1C 上时,33AN +MN 的最小值为1答案BCD 解析如图,建立空间直角坐标系,则D (0,1,0),C 1(1,1,1),∵直线AM 与AB 的夹角为π4,当点M 在侧面AA 1D 1D 上时,AB ⊥AM ,不合题意;当点M 在底面A 1B 1C 1D 1和侧面CC 1D 1D (不包含边界)上时,点M 到直线AB 的距离大于AB 的长度,此时,AM 与AB 的夹角大于π4;当点M 在侧面AA 1B 1B 和底面ABCD 上时,可知线段AB 1,AC 满足题意;当点M 在侧面BCC 1B 1上时,由AB ⊥BM ,可知BM =AB ,此时弧B 1C 为所求.∴M 点的轨迹为线段AC ,AB 1,弧B 1C ,显然线段AC ,AB 1,弧B 1C 不共面,∴A 错误;对于B ,点M 的轨迹长度为π2+22,∴B 正确;对于C ,若M 在线段AC 上,则C 1M 的最小值为1,同理,若M 在线段AB 1上,则C 1M 的最小值也为1,若M 在弧B 1C 上,则C 1M 的最小值为C 1B -1=2-1,∴C 正确;对于D ,M (1,y ,z )(0≤y ≤1,0≤z ≤1),且y 2+z 2=1,由题意设N (λ,λ,λ),λ∈[0,1],则33AN +MN =λ+(1-λ)2+(y -λ)2+(z -λ)2≥λ+(1-λ)2=λ+(1-λ)=1,当且仅当y =z =λ,且y 2+z 2=1,即y =z =λ=22时,等号成立,∴D 正确.三、填空题9.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 为棱B 1C 1的中点,N 为底面正方形ABCD上一动点,且直线MN 与底面ABCD 所成的角为π3,则动点N 的轨迹长度为________.答案43π9解析如图所示,取BC 中点G ,连接MG ,NG ,由正方体的特征可知,MG ⊥底面ABCD ,故MN 与底面ABCD 的夹角即为∠MNG ,所以∠MNG =π3,则MG NG =tan π3⇒NG =233,故点N 在以G 为圆心,233为半径的圆上,又N 在底面正方形ABCD 上,即点N 的轨迹为图示中的圆弧 EF ,易知BG EG =1233=32⇒∠EGB =π6⇒∠EGF =π-π6-π6=2π3,所以动点N 的轨迹长度为233×2π3=43π9.10.如图所示,在平行四边形ABCD 中,E 为AB 中点,DE ⊥AB ,DC =8,DE =6.沿着DE 将△ADE 折起,使A 到达点A ′的位置,且平面A ′DE ⊥平面ADE .设P 为△A ′DE 内的动点,若∠EPB =∠DPC ,则点P 的轨迹长度为______.答案4π3解析建立如图所示的空间直角坐标系,则D (0,0,0),C (0,8,0),E (6,0,0),B (6,4,0),设P (x ,0,z ),则PD →=(-x ,0,-z ),PC →=(-x ,8,-z ),PE →=(6-x ,0,-z ),PB →=(6-x ,4,-z ),∴cos ∠EPB =cos 〈PE →,PB →〉=PE →·PB →|PE →||PB |→=(6-x )2+z 2(6-x )2+z 2(6-x )2+16+z 2,cos ∠DPC =cos 〈PD →,PC →〉=PD →·PC →|PD →||PC |→=x 2+z 2x 2+z 2x 2+64+z 2,∵∠EPB =∠DPC ,∴cos ∠EPB =cos ∠DPC ,∴(6-x )2+z 2(6-x )2+z 2(6-x )2+16+z 2=x 2+z 2x 2+z 2x 2+64+z 2,整理化简得x 2+z 2-16x +48=0,即(x -8)2+z 2=16,∴点P 的轨迹为圆弧,所在圆交A ′E 于P 1(6,0,23),交DE 于P 2(4,0,0),则|P 1P 2—→|=(6-4)2+(0-0)2+(23-0)2=4,∴ 12PP 所对应的圆心角α=π3,∴弧长l =αr =π3×4=4π3,即点P 的轨迹长度为4π3.。
微难点9立体几何中的动态问题——动点、翻折、截取一、单项选择题(选对方法,事半功倍)1. 把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A. 90°B. 60°C. 45°D. 30°2. 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能是()A BC D3. 如图,在下列三个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面.在各正方体中,直线BD1与平面EFG的位置关系描述正确的是()①②③(第3题)A. BD1∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②③B. BD1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有①C. BD1∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②D. BD1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有③二、多项选择题(练—逐项认证,考—选确定的)4. 已知正方体ABCD-A1B1C1D1的棱长为2,平面α⊥AC1,则关于α截此正方体所得截面的判断正确的是()A. 截面形状可能为正三角形B. 截面形状可能为正方形C. 截面形状可能为正六访形D. 截面面积最大值为335. 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个结论,其中结论正确的是()图(1)图(2)(第5题)A. 水的部分始终呈棱柱状B. 水面EFGH的面积不改变C. 棱A1D1始终与水面EFGH平行D. 当容器倾斜到如图(2)时,BE·BF是定值6. (2020·淄博质检)在正方体ABCD-A1B1C1D1中,P,Q分别为棱BC和棱CC1的中点,则下列说法正确的是()A. BC1∥平面AQPB. 平面APQ截正方体所得的截面为等腰梯形C. A1D⊥平面AQPD. 异面直线QP与A1C1所成的角为60°三、填空题(精准计算,整洁表达)7. 已知一个空间几何体的所有棱长均为1 cm,其表面展开图如图所示,则该空间几何体的体积V=________cm3.(第7题)8. 如图所示,在边长为2的菱形ABCD中,若∠ADC=60°,现将△ADC沿AC边折到△APC的位置,则三棱锥P-ABC体积的最大值为________.(第8题)9. 如图,圆形纸片的圆心为O,半径为6 cm,该纸片上的正方形ABCD的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别以AB,BC,CD,DA为底边的等腰三角形,沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为________.(第9题)。
立体几何中的动态问题
立体几何中的动态问题主要包括:空间动点轨迹的判断,求轨迹的长度及动角的范围等;求解方法一般根据圆锥曲线的定义判断动点轨迹是什么样的曲线;利用空间向量的坐标运算求轨迹的长度等.
一、常见题目类型
(优质试题·金华十校高考模拟)在正方体ABCD -A 1B 1C 1D 1中,点
M 、N 分别是直线CD 、AB 上的动点,点P 是△A 1C 1D 内的动点(不包
括边界),记直线D 1P 与MN 所成角为θ,若θ的最小值为π3
,则点P 的轨迹是( )
A .圆的一部分
B .椭圆的一部分
C .抛物线的一部分
D .双曲线的一部分
【解析】 把MN 平移到平面A 1B 1C 1D 1中,直线D 1P 与MN 所成角为
θ,直线D 1P 与MN 所成角的最小值是直线D 1P 与平面A 1B 1C 1D 1所成角,
即原问题转化为:直线D 1P 与平面A 1B 1C 1D 1所成角为π3
,点P 在平面A 1B 1C 1D 1的投影为圆的一部分,
因为点P 是△A 1C 1D 内的动点(不包括边界),
所以点P 的轨迹是椭圆的一部分.故选B.
【答案】 B
(优质试题·浙江名校协作体高三联考)已知平面ABCD ⊥平面ADEF ,AB ⊥AD ,CD ⊥AD ,且AB =1,AD =CD =2.ADEF 是正方形,在正方形ADEF 内部有一点M ,满足MB ,MC 与平面ADEF 所成的角相等,则点M 的轨迹长度为( )
A.43
B.163
C.49π
D.83
π 【解析】 根据题意,以D 为原点,分别以DA ,DC ,DE 所在直线为x ,y ,z 轴,建立空间直角坐标系Dxyz ,如图1所示,则B (2,1,0),C (0,2,0),设M (x ,0,z ),易知直线MB ,MC 与平面ADEF 所成的角分别为∠AMB ,∠DMC ,均为锐角,且∠AMB =∠DMC ,所以sin ∠AMB =sin ∠DMC ⇒AB MB =CD MC ,即2MB =MC ,因此2(2-x )2+12+z 2=
x 2+22+z 2,整理得⎝⎛⎭⎫x -832
+z 2=169,由此可得,点M 在正方形ADEF 内的轨迹是以点O ⎝⎛⎭⎫83,0,0为圆心,半径为43的圆弧M 1M 2,如图2所示,易知圆心角∠M 1OM 2=π3
,所以lM 1M 2=π3×43=49
π.故选C.
【答案】 C
(优质试题·杭州市高考模拟)
在等腰直角△ABC 中,AB ⊥AC ,BC =2,M 为BC 中点,N 为AC
中点,D 为BC 边上一个动点,△ABD 沿AD 翻折使BD ⊥DC ,点A
在面BCD 上的投影为点O ,当点D 在BC 上运动时,以下说法错误
的是( )
A .线段NO 为定长
B .|CO |∈[1,2)
C .∠AMO +∠ADB >180°
D .点O 的轨迹是圆弧
【解析】 如图所示,对于A ,△AOC 为直角三角形,ON 为斜边AC
上的中线,ON =12
AC 为定长,即A 正确;对于B ,D 在M 时,AO =1,CO =1,所以|CO |∈[1,2),即正确;对于D ,由A 可知,点O 的轨
迹是圆弧,即D 正确,故选C.
【答案】 C
求解立体几何中的轨迹问题时,首先要探究点的轨迹的形成过程,同时还要注意动点的性质以及点、线、面之间的位置关系,若动点的性质满足解析几何中圆锥曲线的定义,也可借助定义求出轨迹.
二、巩固提高
(1)(优质试题·台州市高考模拟)如图,在棱长为2的正四面体A -BCD 中,
E 、
F 分别为直线AB 、CD 上的动点,且|EF |= 3.若记EF 中点P 的轨迹
为L ,则|L |等于________.(注:|L |表示L 的测度,在本题,L 为曲线、平面图形、空间几何体时,|L |分别对应长度、面积、体积)
(2)(优质试题·宁波诺丁汉大学附中高三期中考试)如图,矩形ABCD
中,AB =1,BC =3,将△ABD 沿对角线BD 向上翻折,若翻折过
程中AC 长度在⎣⎡
⎦⎤102,132内变化,则点A 所形成的运动轨迹的长度为________.
解析:(1)如图,当E 为AB 中点时,F 分别在C ,D 处,满足|EF |=3,
此时EF 的中点P 在EC ,ED 的中点P 1,P 2的位置上;当F 为CD 中
点时,E 分别在A ,B 处,满足|EF |=3,此时EF 的中点P 在BF ,AF
的中点P 3,P 4的位置上,连接P 1P 2,P 3P 4相交于点O ,则四点P 1,P 2,
P 3,P 4共圆,圆心为O ,圆的半径为12,则EF 中点P 的轨迹L 为以O 为圆心,以12
为半径的圆,其测度|L |=2π×12
=π. (2)过A 作AE ⊥BD ,垂足为E ,连接CE ,A ′E .
因为矩形ABCD 中,AB =1,BC =3,
所以AE =32,CE =72
. 所以A 点的轨迹为以E 为圆心,以
32为半径的圆弧.∠A ′EA 为二面角A -BD -A ′的平面角. 以E 为原点,以EB ,EA ′所在直线为x 轴,y 轴建立如图所示空间直角坐标系E -xyz ,设∠A ′EA =θ,
则A ⎝⎛⎭⎫0,32cos θ,32sin θ,C ⎝⎛⎭
⎫-1,-32,0, 所以AC =
1+34(cos θ+1)2+34sin 2θ=5+3cos θ2, 所以102≤ 5+3cos θ2≤132,解得0≤cos θ≤12
, 所以60°≤θ≤90°,所以A 点轨迹的圆心角为30°,
所以A 点轨迹的长度为π6·32=3π12
.
3答案:(1)π(2)
12π。