【2021中考数学复习】中考数学专题复习
- 格式:doc
- 大小:101.50 KB
- 文档页数:4
2021年中考数学总复习:专题24 矩形问题1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
2.矩形的性质(1)矩形的四个角都是直角;(2)矩形的对角线平分且相等。
3.矩形判定定理(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形。
4.矩形的面积:S=ab(a、b分别表示矩形的长、宽)【例题1】(2020•湘西州)如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于()A.a cos x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a sin x+b sin x【对点练习】(2019•贵州省铜仁市)如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°【例题2】(2020•菏泽)如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为.【对点练习】(2019内蒙古通辽)如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为.【例题3】(2020•聊城)如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.【对点练习】(2019•湖北省鄂州市)如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O 的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.一、选择题1.(2020•怀化)在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为()A.4 B.6 C.8 D.102.(2020•达州)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF=BD;③DF=√2AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是()A.4 B.3 C.2 D.13.(2019•广东广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10 D.84.(2019•山东泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.5.(2019湖北荆州)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是()A.①②B.①③C.②③D.①②③二、填空题6.(2020•绍兴)将两条邻边长分别为√2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的(填序号).,⑤√3.①√2,②1,③√2−1,④√327.(2020•泸州)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为.8.(2020•黔东南州)如图,矩形ABCD 中,AB =2,BC =√2,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ ⊥BC 于点Q ,则PQ = .9.(2019湖南娄底)如图,要使平行四边形 ABCD 是矩形,则应添加的条件是 (添加一个条件即可).10.(2019黑龙江省龙东地区)如图,矩形ABCD 中,AB =4,BC =6,点P 是矩形ABCD 内一动点,且S △PAB =12S △PCD ,则PC +PD 的最小值是________.11.(2019贵州省安顺市) 如图,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4,点D 为斜边BC 上的一个动点,过D 分别作DM ⊥AB 于点M ,作DN ⊥AC 于点N ,连接MN ,则线段MN 的最小值为 .12.(2019•湖北省咸宁市)如图,先有一张矩形纸片ABCD ,AB =4,BC =8,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于DA B PB D M NCA点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是(把正确结论的序号都填上).13.(2019·贵州贵阳)如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是.14.(2019•山东潍坊)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.15.(2019北京市)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合).对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是_______.三、解答题16.(2020•苏州)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=6,BC=4,求DF的长.17.(2020•贵阳)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.18.(2020•遂宁)如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.19.(2019湖南怀化)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.。
2021年九年级数学中考复习一元二次方程实际应用一.解答题(共10小题)1.为响应“美丽台州,美化环境”的号召,某校开展“美丽台州,清洁校园”的活动,该校经过精心设计,在绿化工作中设计一块170m2的矩形场地,矩形的长比宽的2倍长3m,则这块矩形场地的长和宽各是多少米?2.如图,某农场准备围建一块矩形菜地.其中一边靠墙(墙的长度不超过50m),另外三边用长为100m的篱笆围成.(1)怎样围才能使矩形菜地的面积为1200m2?(2)能否使所围矩形菜地的面积为1300m2?为什么?3.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按销售单价不低于成本价,且不高于60元的价格销售,要使销售该商品每天获得的利润为800元,求每天的销售量应为多少件?4.某商场一种商品的进价为每件30元,售价为每件40元.为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)若按此百分率再降价一次,是否会亏本,请说明理由.5.为了推进全民阅读,某社区增加了阅览室的开放时间,据统计:该社区阅览室在2018年图书借阅总量是7500册,2020年图书借阅总量是10800册.(1)求该社区图书借阅总量从2018年至2020年的年平均增长率;(2)如果2020年该社区居民借阅图书人数有1320人,预计2021年达到1440人,并且2020年至2021年图书借阅总量的增长率不低于2018年至2020年的年平均增长率,那么2021年的人均借阅量比2020年增长m%,求m的值至少是多少?6.某电商品牌旗舰店销售A、B两款玩具,其中A款玩具定价为60元/件,B款玩具定价为50元/件.(1)若该旗舰店按定价在10月份售出A、B两款玩具共300件,销售总额不低于17000元,则至少销售A款玩具多少件?(2)11月份,商家为回馈新老客户,共庆“双十一”,决定与网红直播合作,在“双十一”当晚通过直播促销A、B两款玩具.“双十一”当晚直播时,A款玩具的售价比定价降低了元,实际销量在(1)问的最低销量的基础上增加了a%;B款玩具以定价的8折销售,销量比A款玩具“双十一”当晚实际销量少a%.“双十一”当晚两款玩具的直播销售总额比(1)问中的两款玩具最低销售总额增加了2250元,求a的值.7.湖北省预计将于今年年底实现全省贫困人口全部脱贫.2018年,湖北省精准脱贫专项资金合计约30亿元,据扶贫办报告,2020年湖北省政府将合计拨款43.2亿元用于脱贫攻坚最后一战.根据以上信息,请你计算在2018~2020年期间,湖北省脱贫专项资金年平均增长率为多少?8.返校复学之际,育才学校为每个班级准备了免洗抑菌洗手液.去市场购买时发现当购买量不超过100瓶时,免洗抑菌洗手液的单价为8元;超过100瓶时,每增加10瓶,每瓶单价就降低0.2元,但最低价格不能低于每瓶5元,设学校共买了x瓶免洗抑菌洗手液.(1)当x=80时,每瓶洗手液的价格是元;当x=150时,每瓶洗手液的价格是元;当x=时,每瓶洗手液的价格恰好降为5元.(2)若学校购买洗手液共花费1200元,问一共购买了多少瓶洗手瓶?9.如图,一农户要建一个矩形鸡舍,为了节省材料鸡舍的一边利用长为12米的墙,另外三边用长为25米的建筑材料围成,为方便进出,在垂直墙的一边留下一个宽1米的门,所围成矩形鸡舍的长、宽分别是多少时,鸡舍面积为80平方米?10.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加件,每件商品,盈利元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案与试题解析一.解答题(共10小题)1.【解答】解:设这块矩形场地的宽是x米,则长是(2x+3)米,依题意,得:x(2x+3)=170,整理,得:2x2+3x﹣170=0,解得:x1=﹣10(不合题意,舍去),x2=8.5,∴2x+3=20.答:这块矩形场地的长是20米,宽是8.5米.2.【解答】解:(1)设AD=xm,则AB=(100﹣2x)m,依题意,得:x(100﹣2x)=1200,整理,得:x2﹣50x+600=0,解得:x1=20,x2=30,当x=20时,100﹣2x=60>50,不合题意,舍去;当x=30时,100﹣2x=40<50,符合题意.答:围成的长为40m,宽为30m.(2)设AD=ym,则AB=(100﹣2y)m,依题意,得:y(100﹣2y)=1300,整理,得:y2﹣50y+650=0.∵△=(﹣50)2﹣4×1×650=﹣100<0,∴原方程无实数根,∴不能使所围矩形菜地的面积为1300m2.3.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:(x﹣30)(﹣2x+160)=800,解得:x1=40,x2=70,∵销售单价不低于成本价,且不高于60元,∴x=40,∴y=﹣2x+160=﹣2×40+160=80(件).答:每天的销售量应为80件.4.【解答】解:(1)设两次下降的百分率为x,依题意,得:40(1﹣x)2=32.4,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:两次下降的百分率为10%.(2)32.4×(1﹣10%)=29.16(元),∵29.16<30,∴若按此百分率再降价一次,会亏本.5.【解答】解:(1)设该社区图书借阅总量从2018年至2020年的年平均增长率为x,依题意,得:7500(1+x)2=10800,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该社区图书借阅总量从2018年至2020年的年平均增长率为20%.(2)依题意,得:(1+m%)≥,解得:m%≥0.1,∴m≥10.答:m的值至少是10.6.【解答】解:(1)设销售A款玩具x件,则销售B款玩具(300﹣x)件,依题意,得:60x+50(300﹣x)≥17000,解得:x≥200.答:至少销售A款玩具200件.(2)依题意,得:(60﹣)×200(1+a%)+50×0.8×200(1+a%)(1﹣a%)=17000+2250,整理,得:a2+100a﹣7500=0,解得:a1=50,a2=﹣150(不合题意,舍去).答:a的值为50.7.【解答】解:设在2018~2020年期间,湖北省脱贫专项资金年平均增长率为x,依题意,得:30(1+x)2=43.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:在2018~2020年期间,湖北省脱贫专项资金年平均增长率为20%.8.【解答】解:(1)∵x=80<100,∴每瓶洗手液的价格是8元;∵x=150>100,∴每瓶洗手液的价格是8﹣0.2×=7(元);当x=100+×10=250(瓶)时,每瓶洗手液的价格恰好降为5元.故答案为:8;7;250.(2)∵100×8=800(元),800<1200,1200÷5=240(瓶),240<250,∴100<x<240.依题意,得:x(8﹣×0.2)=1200,整理,得:x2﹣500x+60000=0,解得:x1=200,x2=300(不合题意,舍去).答:一共购买了200瓶洗手瓶.9.【解答】解:设BC的长为xm,则AB的长为(25+1﹣x)m.依题意得:(25+1﹣x)x=80,化简,得x2﹣26x+160=0,解得:x1=10,x2=16(舍去),(25+1﹣x)=8米,答:若矩形猪舍的面积为80平方米,长和宽分别为10米和8米;10.【解答】解:(1)当天盈利:(50﹣3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50﹣x)元。
中考数学一轮专题复习学案02 代数式与整式代数式:像2(x -1),abc ,s t,a 2等式子都是代数式,单独一个数或字母也是 代数式.【例1】苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元【考点】列代数式.【分析】用单价乘数量得出,买2千克苹果和3千克香蕉的总价,再进一步相加即可.【解答】解:单价为a 元的苹果2千克用去2a 元,单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选:C .【点评】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.代数式的值:一般地,用 数值 代替代数式里的字母,按照代数式中的运算关系,计算得出的 结果 ,叫做代数式的值.知识点1:代数式知识点梳理典型例题知识点2:代数式的值知识点梳理【例2】(2020•重庆B 卷5/26)已知a +b =4,则代数式122a b ++的值为( ) A .3B .1C .0D .-1【考点】代数式求值【分析】将a +b 的值代入原式11()2a b =++计算可得. 【解答】解:当a +b =4时,原式11()2a b =++ 1142=+⨯ 12=+3=,故选:A .【点评】本题主要考查代数式求值,解题的关键是得出待求代数式与已知等式间的特点,利用整体代入的办法进行计算.典型例题整式思维导图知识点3:整式的加减知识点梳理1.整式加减的实质:合并同类项2.同类项:所含字母相同,并且相同字母的指数也相同的项.如3a与a是同类项,3a与a2不是同类项;所有的常数项是同类项3.合并同类项法则:把同类项的系数相加,字母和字母的指数保持不变,如3a+a=4a,当同类项的系数互为相反数时,合并后的结果为0.4.去括号法则:a+(b+c)=a+ b+c,即括号前是“+”号时,括号内各项均不变号;a-(b+c)=a- b-c,即括号前是“-”号时,括号内各项均变号.典型例题【例3】(2020•通辽2/26)下列说法不正确的是()A.2a是2个数a的和B.2a是2和数a的积C.2a是单项式D.2a是偶数【考点】单项式;合并同类项【分析】分别根据乘法的定义,单项式的定义以及偶数的定义逐一判断即可.【解答】解:A、2a = a + a,即2a是2个数a的和,说法正确;B、2a是2和数a的积,说法正确;C、2a是单项式,说法正确;D、2a不一定是偶数,故原说法错误.故选:D.【点评】本题主要考查了单项式的定义,偶数的定义,熟记相关定义是解答本题的关键.【例4】(2020•天津13/25)计算x+7x-5x的结果等于.【考点】合并同类项【分析】根据合并同类项法则求解即可.【解答】解:x+7x-5x=(1+7-5)x=3x.故答案为:3x.【点评】本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.1.同底数幂乘法:底数不变,指数相加,a m ·a n = a m +n ,如 a 3 ·a -2= a .2.同底数幂除法: 底数不变,指数相减 ,a m ÷a n = a m -n (a ≠0)3.幂的乘方: 底数不变,指数相乘 ,(a m )n = a mn4.积的乘方: 各因式乘方的积 ,(a m b n )p =____a mp b np __,如(-2a 2b )3= -8a 6b 3 ,(-ab )2= a 2b 2【例5】(2020•重庆B 卷3/26)计算a ·a 2结果正确的是( )A .aB .a 2C .a 3D .a 4【考点】同底数幂的乘法【分析】根据同底数幂的乘法法则计算即可.【解答】解:a ·a 2= a 1+2= a 3.故选:C .【点评】本题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【例6】(2020•河北11/26)若k 为正整数,则()k k kk k k ++⋯+=个( )A .2k kB .21k k +C .2k kD .2k k +【考点】幂的乘方与积的乘方【分析】根据乘方的定义及幂的运算法则即可求解.【解答】解:22()()()k k k k k kk k k k k k k ++⋯+=⋅==个,故选:A .【点评】本题考查了幂的乘方.解题的关键掌握幂的乘方的运算法则:底数不变,指数相乘.【例7】(2020•陕西5/25)计算:232()3x y -=( ) A .632x y - B .63827x y C .63827x y - D .54827x y - 【考点】幂的乘方与积的乘方知识点4:幂的运算知识点梳理典型例题【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积. 【解答】解:23323363228()()()3327x y x y x y -=-=-. 故选:C .【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【例8】(2020•吉林4/26)下列运算正确的是( )A .a 2·a 3=a 6B .(a 2)3=a 5C .(2a )2=2a 2D .a 3÷a 2=a【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方【分析】根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.【解答】解:A 、a 2·a 3=a 5,原计算错误,故此选项不符合题意;B 、(a 2)3=a 6,原计算错误,故此选项不符合题意;C 、(2a )2=4a 2,原计算错误,故此选项不符合题意;D 、a 3÷a 2=a ,原计算正确,故此选项符合题意.故选:D .【点评】本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.1.单项式乘以单项式:把系数、相同字母的幂分别相乘,其余字母连同它们的指数作为积的一个因式,如:2x 3y ·3x 2=2 ·3x 3+2y =6x 5y2.单项式乘以多项式:m (a +b )= ma +mb3.多项式乘以多项式:(m +n )(a +b )= ma +mb +na +nb4.(1)乘法公式:(a +b )(a -b )= a 2-b 2 ;(a +b )2= a 2+2ab +b 2 ;(a -b )2= a 2-2ab +b 2 ;(2)常见的变形有:a 2+b 2=(a +b )2-2ab ;(a -b )2=(a +b )2-4ab ;(-a -b )2=(a +b )2;知识点5:整式的乘除知识点梳理(-a+b)2=(a-b)25.单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.如:(3x)2y÷x= 9xy典型例题【例9】(2020•山西3/23)下列运算正确的是()A.3a+2a=5a2B.-8a2÷4a=2a C.-(2a2)3=-8a6D.4a3·3a2=12a6【考点】整式的混合运算【分析】直接利用合并同类项法则以及幂的乘方和积的乘方运算法则、整式的乘除运算法则分别计算得出答案.【解答】解:A、3a+2a=5a,故此选项错误;B、-8a2÷4a=-2a,故此选项错误;C、-(2a2)3=-8a6,正确;D、4a3·3a2=12a5,故此选项错误;故选:C.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.【例10】(2020•北京19/28)已知5x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)+x(x﹣2)的值.【考点】整式的混合运算—化简求值.【答案】见试题解答内容【分析】直接利用乘法公式以及单项式乘多项式运算法则化简,进而把已知代入得出答案.【解答】解:(3x+2)(3x﹣2)+x(x﹣2)=9x2﹣4+x2﹣2x=10x2﹣2x﹣4,∵5x2﹣x﹣1=0,∴5x2﹣x=1,∴原式=2(5x2﹣x)﹣4=﹣2.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.1.(2015•云南12/23)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.2.(2020•广东12/25)如果单项式3m x y与35nx y-是同类项,那么m n+=.3.(2020•广东14/25)已知5x y=-,2xy=,计算334x y xy+-的值为.4.(2020•山西12/23)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形⋯按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).5.(2020•呼和浩特15/24)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,⋯⋯,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数超过120张,则可算得5月1日到5月28日他共用宣纸张数为,并可推断出5月30日应该是星期几.6.(2020•赤峰18/26)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为.7.(2020•重庆A卷4/26)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()巩固训练A .10B .15C .18D .218.(2020•重庆B 卷8/26)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A .18B .19C .20D .219.(2019·天津市13/25)计算x 5•x 的结果等于 .10.(2019·安徽省2/23)计算a 3•(﹣a )的结果是( )A .a 2B .﹣a 2C .a 4D .﹣a 411.(2020•青海13/28)下面是某同学在一次测试中的计算:①22352m n mn mn -=-;②3262(2)4a b a b a b -=-;③325()a a =;④32()()a a a -÷-=.其中运算正确的个数为( )A .4个B .3个C .2个D .1个12.(2020•江西2/23)下列计算正确的是( )A .325a a a +=B .32a a a -=C .326a a a =D .32a a a ÷=13.(2020•河北2/26)墨迹覆盖了等式“3x 2(0)x x x =≠”中的运算符号,则覆盖的是( )A .+B .-C .⨯D .÷14.(2020•宁夏1/26)下列各式中正确的是( )A .326a a a =B .321ab ab -=C .261213a a a +=+D .2(3)3a a a a -=-15.(2020•新疆兵团3/23)下列运算正确的是( )A .236x x x =B .633x x x ÷=C .3362x x x +=D .33(2)6x x -=-16.(2020•新疆兵团16/23)计算:20(1)|(3)π-++--17.(2020•重庆A 卷13/26)计算:0(1)|2|π-+-= .18.(2020•上海7/25)计算:23a ab = .19.(2020•安徽2/23)计算63()a a -÷的结果是( )A .3a -B .2a -C .3aD .2a20.(2020•海南17(2)/22)计算:(2)(2)(1)a a a a +--+.21.(2020•兴安盟•呼伦贝尔2/26)下列计算正确的是( )A .236a a a =B .222()x y x y +=+C .5226()a a a ÷=D .22(3)9xy xy -=22.(2020•通辽14/26)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形⋯,按这样的方法拼成的第(1)n +个正方形比第n 个正方形多 个小正方形.23.(2020•鄂尔多斯4/24)下列计算错误的是( )A .(﹣3ab 2)2=9a 2b 4B .﹣6a 3b ÷3ab =﹣2a 2C .(a 2)3﹣(﹣a 3)2=0D .(x +1)2=x 2+124.(2020•吉林15/26)先化简,再求值:2(1)(1)1a a a ++--,其中a25.(2020•江西7/23)计算:2(1)a -= .26.(2020•广东18/25)先化简,再求值:22()()()2x y x y x y x +++--,其中x =y =.27.(2020•重庆B 卷19(1)/26)计算:2()(3)x y y x y ++-.28.(2020•重庆A 卷19(1)/26)计算:2()(2)x y x x y ++-.1.(2015•云南12/23)一台电视机原价是2500元,现按原价的8折出售,则购买a 台这样的电视机需要 元.【考点】列代数式.【分析】本题要从“以8折出售”入手,从而知现价为2500×80%=2000(元),易得购买a 台这样的电视机的费用为a 2000元;所以解题的关键是理解打折问题在实际问题中应用.【解答】解:a a 2000%802500=⨯(元).故答案:a 2000.2.(2020•广东12/25)如果单项式3m x y 与35n x y -是同类项,那么m n += .【考点】同类项【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得3m =,1n =,再代入代数式计算即可.【解答】解:单项式3m x y 与35n x y -是同类项,3m ∴=,1n =,314m n ∴+=+=.故答案为:4.【点评】本题考查同类项的定义,正确根据同类项的定义得到m ,n 的值是解题的关键.3.(2020•广东14/25)已知5x y =-,2xy =,计算334x y xy +-的值为 .【考点】代数式求值【分析】由5x y =-得出5x y +=,再将5x y +=、2xy =代入原式3()4x y xy =+-计算可得.【解答】解:5x y =-,5x y ∴+=, 当5x y +=,2xy =时,原式3()4x y xy =+-3542=⨯-⨯ 巩固训练解析=-158=,7故答案为:7.【点评】本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x y+、xy及整体代入思想的运用.4.(2020•山西12/23)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形⋯按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).【考点】列代数式;规律型:图形的变化类【分析】根据图形的变化发现规律,即可用含n的代数式表示.【解答】解:第1个图案有4个三角形,即4311=⨯+第2个图案有7个三角形,即7321=⨯+第3个图案有10个三角形,即10331=⨯+⋯按此规律摆下去,第n个图案有(31)n+个三角形.故答案为:(31)n+.【点评】本题考查了规律型-图形的变化类、列代数式,解决本题的关键是根据图形的变化寻找规律.5.(2020•呼和浩特15/24)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,⋯⋯,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数超过120张,则可算得5月1日到5月28日他共用宣纸张数为,并可推断出5月30日应该是星期几.【考点】规律型:数字的变化类【分析】首先得出5月1日~5月30日,包括四个完整的星期,分别分析5月30日分别为星期一到星期天时所有的可能,进而得出答案.【解答】解:5月1日~5月30日共30天,包括四个完整的星期,5∴月1日~5月28日写的张数为:7(17)41122⨯+⨯=, 若5月30日为星期一,所写张数为11271120++=,若5月30日为星期二,所写张数为11212120++<,若5月30日为星期三,所写张数为11223120++<,若5月30日为星期四,所写张数为11234120++<,若5月30日为星期五,所写张数为11245120++>,若5月30日为星期六,所写张数为11256120++>,若5月30日为星期日,所写张数为11267120++>,故5月30日可能为星期五、六、日.故答案为:112;五、六、日.【点评】此题主要考查了规律型:数字的变化类和推理与论证,根据题意分别得出5月30日时所有的可能是解题关键.6.(2020•赤峰18/26)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2,第三次从A 2点起跳,落点为OA 2的中点A 3;如此跳跃下去…最后落点为OA 2019的中点A 2020,则点A 2020表示的数为 .【考点】数轴;规律型:图形的变化类. 【答案】201912.【分析】根据题意,得第一次跳动到A 1处,离原点为1个单位,第二次跳到OA 1的中点A 2处,即在离原点12个单位处,第三次从A 2点跳动到A 3处,即距离原点(12)2处,依此即可求解.【解答】解:第一次落点为A 1处,点A 1表示的数为1;第二次落点为OA 1的中点A 2,点A 2表示的数为12;第三次落点为OA 2的中点A 3,点A 3表示的数为(12)2; …则点A 2020表示的数为(12)2019,即点A 2020表示的数为201912; 故答案为:201912.【点评】本题考查了数轴,是一道找规律的题目,本题注意根据线段中点的定义表示出各个点表示的数的规律.7.(2020•重庆A 卷4/26)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .21【考点】规律型:图形的变化类【分析】根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1234n ++++⋯⋯+,据此可得第⑤个图案中黑色三角形的个数.【解答】解:第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数312=+,第③个图案中黑色三角形的个数6123=++,⋯⋯∴第⑤个图案中黑色三角形的个数为1234515++++=,故选:B .【点评】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n 个图案中黑色三角形的个数为1234n ++++⋯⋯+.8.(2020•重庆B 卷8/26)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18B.19C.20D.21【考点】规律型:图形的变化类【分析】根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为++,据此求解可得.n n22【解答】解:第①个图形中实心圆点的个数5213=⨯+,第②个图形中实心圆点的个数8224=⨯+,第③个图形中实心圆点的个数11235=⨯+,⋯⋯∴第⑥个图形中实心圆点的个数为26820⨯+=,故选:C.【点评】本题主要考查图形的变化规律,解题的关键是根据已知图形得出第n个图形中实心圆点的个数为22++的规律.n n9.(2019·天津市13/25)计算x5•x的结果等于.【考点】同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加,即可解答.【解答】解:x5•x=x6.故答案为:x6【点评】本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂相乘,底数不变,指数相加.10.(2019·安徽省2/23)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【考点】同底数幂的乘法;单项式乘单项式.【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.11.(2020•青海13/28)下面是某同学在一次测试中的计算:①22352m n mn mn -=-;②3262(2)4a b a b a b -=-;③325()a a =;④32()()a a a -÷-=.其中运算正确的个数为( )A .4个B .3个C .2个D .1个【考点】同底数幂的除法;单项式乘单项式;合并同类项;幂的乘方与积的乘方【分析】根据合并同类项法则、单项式乘单项式的运算法则、幂的乘方法则、同底数幂的除法法则计算,判断即可.【解答】解:①23m n 与25mn 不是同类项,不能合并,计算错误;②32522(2)4a b a b a b -=-,计算错误;③32326()a a a ⨯==,计算错误;④3312()()()a a a a --÷-=-=,计算正确;故选:D .【点评】本题考查的是单项式乘单项式、合并同类项、幂的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.12.(2020•江西2/23)下列计算正确的是( )A .325a a a +=B .32a a a -=C .326a a a =D .32a a a ÷=【考点】同底数幂的乘法;同底数幂的除法;合并同类项【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A 、2a 与3a 不是同类项,不能合并,故本选项错误;B 、3a 与2a 不是同类项,不能合并,故本选项错误;C 、应为325a a a =,故本选项错误;D 、32a a a ÷=,正确.故选:D .【点评】本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.13.(2020•河北2/26)墨迹覆盖了等式“3x 2(0)x x x =≠”中的运算符号,则覆盖的是( )A .+B .-C .⨯D .÷ 【考点】同底数幂的除法【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:3x 2(0)x x x =≠,∴覆盖的是:÷.故选:D .【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.14.(2020•宁夏1/26)下列各式中正确的是( )A .326a a a =B .321ab ab -=C .261213a a a +=+D .2(3)3a a a a -=-【考点】合并同类项;同底数幂的乘法;单项式乘多项式【分析】利用整式的计算法则对四个选项一一验证即可得出答案.【解答】解:A 、325a a a =,所以A 错误;B 、32ab ab ab -=,所以B 错误;C 、2611233a a a a+=+,所以C 错误; D 、2(3)3a a a a -=-,所以D 正确;故选:D .【点评】本题考查整式乘除法的简单计算,注意区分同底合并同类项的时候字母部分不变,系数进行计算,只有当系数计算结果为0时,整体为0.数幂相乘,底数不变,指数相加,而幂的乘方是底数不变,指数相乘,这两个要区分清楚;15.(2020•新疆兵团3/23)下列运算正确的是( )A .236x x x =B .633x x x ÷=C .3362x x x +=D .33(2)6x x -=-【考点】幂的乘方与积的乘方;同底数幂的乘法;合并同类项;同底数幂的除法【分析】根据同底数幂的乘法、除法和积的乘方以及合并同类项进行判断即可.【解答】解:A 、235x x x =,选项错误.不符合题意;B 、633x x x ÷=,选项正确,符合题意;C 、3332x x x +=,选项错误,不符合题意;D 、33(2)8x x -=-,选项错误,不符合题意;故选:B .【点评】此题考查同底数幂的乘法、除法和积的乘方以及合并同类项,关键是根据法则解答.16.(2020•新疆兵团16/23)计算:20(1)|(3)π-++-【考点】零指数幂;实数的运算;绝对值【分析】原式先计算乘方运算,再算加减运算即可得到结果.【解答】解:20(1)|(3)112π-++-+-=【点评】此题考查了实数的运算,绝对值、零指数幂、熟练掌握运算法则是解本题的关键.17.(2020•重庆A 卷13/26)计算:0(1)|2|π-+-= .【考点】绝对值;零指数幂【分析】根据零次幂和绝对值的意义,进行计算即可.【解答】解:0(1)|2|123π-+-=+=,故答案为:3.【点评】本题考查零次幂和绝对值的性质,掌握零次幂和绝对值的性质是正确计算的前提.18.(2020•上海7/25)计算:23a ab = .【考点】单项式乘单项式【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2236a ab a b =.故答案为:26a b .【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.19.(2020•安徽2/23)计算63()a a -÷的结果是( )A .3a -B .2a -C .3aD .2a【考点】同底数幂的除法;幂的乘方与积的乘方【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:原式633a a a =÷=.故选:C .【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.20.(2020•海南17(2)/22)计算:(2)(2)(1)a a a a +--+.【考点】平方差公式;单项式乘多项式【分析】根据平方差公式、单项式乘以多项式的计算方法计算即可.【解答】解:(2)(2)(1)a a a a +--+224a a a =---4a =--.【点评】本题考查平方差公式、单项式乘以多项式的计算方法,掌握运算方法和平方差公式的结构特征是正确计算的前提.21.(2020•兴安盟•呼伦贝尔2/26)下列计算正确的是( )A .236a a a =B .222()x y x y +=+C .5226()a a a ÷=D .22(3)9xy xy -=【考点】完全平方公式;幂的乘方与积的乘方;同底数幂的乘法【分析】根据同底数幂的乘法,完全平方公式,同底数幂的除法,幂的乘方与积的乘方法则逐项判断即可.【解答】解:A 、235a a a =,故选项错误;B 、222()2x y x y xy +=++,故选项错误;C 、5226()a a a ÷=,故选项正确;D 、22(3)9xy xy -=,故选项错误;故选:C .【点评】本题考查了同底数幂的乘法,完全平方公式,同底数幂的除法,幂的乘方与积的乘方,掌握运算法则是解题的关键.22.(2020•通辽14/26)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形⋯,按这样的方法拼成的第(1)n +个正方形比第n 个正方形多 个小正方形.【考点】规律型:图形的变化类【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可.【解答】解:第1个正方形需要4个小正方形,242=,第2个正方形需要9个小正方形,293=,第3个正方形需要16个小正方形,2164=,⋯,∴第1n +个正方形有2(11)n ++个小正方形,第n 个正方形有2(1)n +个小正方形,故拼成的第1n +个正方形比第n 个正方形多22(2)(1)23n n n +-+=+个小正方形. 故答案为:23n +.【点评】此题考查的知识点是图形数字的变化类问题,关键是通过图形找出规律,按规律求解.23.(2020•鄂尔多斯4/24)下列计算错误的是( )A .(﹣3ab 2)2=9a 2b 4B .﹣6a 3b ÷3ab =﹣2a 2C .(a 2)3﹣(﹣a 3)2=0D .(x +1)2=x 2+1【考点】整式的混合运算.【答案】D【分析】直接利用积的乘方运算法则以及整式的除法运算法则、完全平方公式分别化简得出答案.【解答】解:A 、(﹣3ab 2)2=9a 2b 4,原式计算正确,不合题意;B 、﹣6a 3b ÷3ab =﹣2a 2,原式计算正确,不合题意;C 、(a 2)3﹣(﹣a 3)2=0,原式计算正确,不合题意;D 、(x +1)2=x 2+2x +1,原式计算错误,符合题意.故选:D .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.24.(2020•吉林15/26)先化简,再求值:2(1)(1)1a a a ++--,其中a【考点】整式的混合运算-化简求值【分析】根据整式的混合运算顺序进行化简,再代入值即可.【解答】解:原式22211a a a a =+++--3a =.当a =原式=【点评】本题考查了整式的混合运算-化简求值,解决本题的关键是先进行整式的化简,再代入值.25.(2020•江西7/23)计算:2(1)a -= .【考点】完全平方公式【分析】直接利用完全平方公式计算即可解答.【解答】解:22(1)21a a a -=-+.故答案为:221a a -+.【点评】本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:222()2a b a ab b ±=±+.26.(2020•广东18/25)先化简,再求值:22()()()2x y x y x y x +++--,其中x =y =.【考点】整式的混合运算-化简求值【分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解答】解:22()()()2x y x y x y x +++--2222222x xy y x y x =+++--2xy =,当x y =原式2==【点评】本题考查了整式的混合运算-化简求值,解决本题的关键是先化简,再代入值求解.27.(2020•重庆B 卷19(1)/26)计算:2()(3)x y y x y ++-.【考点】单项式乘多项式;完全平方公式【分析】利用完全平方公式和多项式的乘法,进行计算即可;【解答】解:2()(3)x y y x y ++-22223x xy y xy y =+++-,25x xy =+.【点评】本题考查整式的四则运算,掌握计算法则是正确计算的前提.28.(2020•重庆A 卷19(1)/26)计算:2()(2)x y x x y ++-.【考点】完全平方公式;单项式乘多项式【分析】根据整式的四则运算的法则进行计算即可;【解答】解:2()(2)x y x x y ++-22222x xy y x xy =+++-,222x y =+.【点评】考查整式的四则混合运算,掌握计算法则是正确计算的前提.。
2021年中考数学专题复习:矩形与菱形一、选择题(本大题共10道小题)1. 已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为 ( ) A .2B .2C .4D .22. 下列命题中,假命题是( )A .矩形的对角线相等B .矩形对角线交点到四个顶点的距离相等C .矩形的对角线互相平D .矩形对角线交点到四条边的距离相等 3. 如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是( )A .互相平分B .相等C .互相垂直D .互相垂直平分 4. 如图,四边形ABCD 是菱形,E 、F 分别是BC 、CD 两边上的点,不能保证....△ABE 和△ADF 一定全等的条件是( )A .∠BAF =∠DAEB .EC =FC C .AE =AFD .BE =DF5. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC6. 如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是()F DEC A B7. 如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,AC =8.BD =6,点E 是CD 上一点,连接OE ,若OE =CE ,则OE 的长是( )A .2B .C .3D .48. 如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离.若AE 间的距离调节到60cm ,菱形的边长AB =20cm ,则∠DAB 的度数是( )A .90°B .100°C .120°D .150°9. 如图,矩形ABCD 的对角线AC 、BD 交于点O ,AB=6,BC=8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE+EF 的值为( )CDFOBAA .485B .325C .245 D .12510. 如图,在R t △ABC 中,CD 为斜边AB 的中线,过点D 作DE ⊥AC 于点E ,延长DE 至点F ,使EF =DE ,连接AF ,CF ,点G 在线段CF 上,连接EG ,且∠CDE +∠EGC =180°,FG =2,GC =3.下列结论:①DE =12BC ;②四边形DBCF 是平行四边形;③EF =EG ;④BC =5( )A .1个B .2个C .3个D .4个G F DE CAB二、填空题(本大题共10道小题)11. 已知一个菱形的边长为2,较长对角线长为2,则这个菱形的面积是.12. 如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=.13. 如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是________.14. 如图,在菱形ABCD中,E、F分别是AD、BD的中点,若EF=2,则菱形ABCD的周长为________.15. 把图①中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图②,图③所示的正方形,则图①中菱形的面积为.16. 如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是________.17. 如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是.18. 在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为________.19. (2020·四川甘孜州)如图,有一张长方形纸片ABCD,AB=8cm,BC=10cm,点E为CD上一点,将纸片沿AE折叠,BC的对应边B'C'恰好经过点D,则线段DE的长为__________cm.20. 如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,点P,E,F分别为线段AB,AD,DB上的任意一点,则PE+PF的最小值是.三、解答题(本大题共6道小题)21. 如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD. 求证:四边形AODE是矩形.22. 如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.23. 如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.24. 已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.25. 如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC 的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.26. 如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.参考答案一、选择题(本大题共10道小题) 1. C2. D【解析】矩形的对角线的交点到每一组对边的距离相等,故选项D 错误,是假命题. 3. C【解析】利用三角形的中位线定理,可得中点四边形有如下结论:任意四边形的中点四边形是平行四边形;对角线相等的四边形的中点四边形是菱形;对角线互相垂直的四边形的中点四边形是矩形;对角线相等且垂直的四边形的中点四边形是正方形.由此可知,该题选项C 符合题意. 4. C【解析】由菱形的性质可知AB =AD ,∠B =∠D ,因此△ABE 与△ADF 已具备了一边一角相等.当选项A 做条件时可用“ASA”判定全等;当选项B 或选项D 做条件时,可用“SAS”判定全等.选项C 做条件时是“边、边、角”,不能判定两个三角形全等.故选C .5. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.6. C 【解析】本题考查菱形的性质、相似三角形的性质、函数的图象和二次函数的图象和性质. 解题思路:设AC 、BD 交于点O ,由于点P 是菱形ABCD的对角线AC 上一动点,所以0<x <2.当0<x <1时,△AMN ∽△ABD ⇒APAO =MN BD ⇒x 1=MN 1⇒MN =x ⇒y =12x 2.此二次函数的图象开口向上,对称轴是x =0,此时y 随x 的增大而增大. 所以B 和D 均不符合条件.当1<x <2时,△CMN∽△CBD ⇒CP CO =MN BD ⇒2-x 1=MN 1⇒MN =2-x ⇒y =12x(2-x)=-12x 2+x.此二次函数的图象开口向下,对称轴是x =1,此时y 随x 的增大而减小. 所以A 不符合条件.综上所述,只有C 是符合条件的.7. B【解析】根据菱形的对角线互相垂直平分求出OB ,OC ,AC ⊥BD ,然后利用勾股定理列式求出BC ,最后根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.∵菱形ABCD 的对角线AC 、BD 相交于点O , ∴OBBD6=3,OA =OCAC8=4,AC ⊥BD , 由勾股定理得,BC 5,∴AD =5,∵OE=CE,∴∠DCA=∠EOC,∵四边形ABCD是菱形,∴∠DCA=∠DAC,∴∠DAC=∠EOC,∴OE∥AD,∵AO=OC,∴OE是△ADC的中位线,∴OE AD=2.5.8. 连结AE,∵AE间的距离调节到60cm,木制活动衣帽架是由三个全等的菱形构成,∴AC=20cm,∵菱形的边长AB=20cm,∴AB=BC=20cm,∴AC=AB=BC,∴△ACB是等边三角形,∴∠B=60°,∴∠DAB=120°.故选:C.9. C【解析】本题考查了矩形的性质,由勾股定理可得AC=10,再由矩形的对角线相等且互相平分的性质可得,OA=OD=5. △ABD的面积为24,OA为△ABD 的中线,由中线等分面积可得,△AOD的面积为12.再由等面积法即可得OE+EF 的值.过程如下:∵AOE EOD AODS S S∴111222OA OE OD EF即11551222OE EF,∴OE+EF=245,因此本题选C.10. D【解析】(1)∵DF ⊥AC ,BC ⊥AC ,∴DE ∥BC .∵点D 是AB 的中点,∴点E 是AC 的中点.∴DE =12BC .可见结论①正确.(2)∵AC 与DF 互相垂直平分,∴四边形ADCF 是菱形.∴FC AD .∴FC DB .∴四边形DBCF 是平行四边形.可见结论②正确. (3)∵∠CDE +∠EGC =180°,∠EGF +∠EGC =180°,∴∠CDE =∠EGC .由菱形的性质得∠CDE =∠EFG ,∴∠EGF =∠EFG .∴EF =EG .可见结论③正确.(4)易知△FEG ∽△FCD ,∴FEFC=FGFD ,即FE·FD =FC·FG .∴2DE2=2×5,DE =5.∴BC =2DE =25.可见结论④正确.综上所述,正确结论有4个,故选D .二、填空题(本大题共10道小题)11. 2 [解析]∵菱形两对角线互相垂直且平分,较长对角线的一半为,∴菱形较短对角线的一半为=1.根据菱形面积等于两对角线长乘积的一半得:×2×2=2.12. 4 [解析]由题意可知,四边形ABCD 为矩形,则AC=BD ,OC=AC.已知∠ADB=30°,故在Rt △ABD 中,BD=2AB=8,∴AC=BD=8,OC=AC=4. 13. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3.14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.15. 12 [解析]设图①中小直角三角形的两直角边长分别为a ,b (b>a ),则由图②,图③可列方程组解得所以菱形的面积S=×4×6=12.故答案为12.16. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD =12×8×6=24.17. [解析]如图,当两矩形纸条有一条对角线互相重合时,菱形的周长最大,设菱形的边长AC=x ,则AB=4-x , 在Rt △ABC 中,AC 2=AB 2+BC 2, 即x 2=(4-x )2+12,解得x=, ∴菱形的最大周长=×4=.18. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.19. 5【解析】本题考查了矩形的性质,轴对称的性质,勾股定理.∵长方形纸片ABCD ,AB =8,BC =10,∴AB '=8,AD =10,B 'C '=10. 在R t △ADB '中,由勾股定理,得DB '=6.∴DC '=4. 设DE =x ,则CE =C 'E =8-x .在R t △C 'DE 中,由勾股定理,得DE 2=EC '2+DC '2 即x 2=(8-x )2+42.∴x =5.即线段DE 的长为5cm .461088-x x 108C'B'DA BC E20. 菱[解析]∵AC=BC ,∴△ABC 是等腰三角形.将△ABC 沿AB 翻折得到△ABD ,∴AC=BC=AD=BD ,∴四边形ADBC 是菱形. ∵△ABC 沿AB 翻折得到△ABD ,∴△ABC 与△ABD 关于AB 成轴对称.如图所示,作点E关于AB的对称点E',连接PE',根据轴对称的性质知AB垂直平分EE',∴PE=PE',∴PE+PF=PE'+PF,当E',P,F三点共线,且E'F⊥AC时,PE+PF有最小值,该最小值即为平行线AC与BD间的距离.作CM⊥AB于M,BG⊥AD于G,由题知AC=BC=2,AB=1,∠CAB=∠BAD,∴cos∠CAB=cos∠BAD,即=,∴AG=,在Rt△ABG中,BG===,由对称性可知BG长即为平行线AC,BD间的距离,∴PE+PF的最小值=.三、解答题(本大题共6道小题)21. 证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,(2分)∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,(4分)∵四边形AODE是平行四边形,∠AOD=90°,∴四边形AODE是矩形.(5分)22. (1)【思路分析】根据四边形ABCD是菱形,∠ABC∶∠BAD=1∶2,可求出∠DBC的度数,其正切值可求出.解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=12∠ABC,∴∠ABC+∠BAD=180°,又∵∠ABC∶∠BAD=1∶2,∴∠ABC=60°,(2分)∴∠DBC=12∠ABC=30°,∴tan∠DBC=tan30°=33.(3分)(2)【思路分析】由BE∥AC,CE∥BD可知四边形BOCE是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE是矩形.证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,(4分)∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,且∠BOC=90°,∴四边形OBEC是矩形.(5分)方法指导(1)要求一个角的正切值,可通过相关计算先求得角的度数,再求其正切值,这种情况往往所求角度为特殊值;或者将该角置于直角三角形中,通过求直角三角形边长来,求其正切值.(2)矩形的判定:①平行四边形+有一个角是直角;②平行四边形+对角线相等;③四边形的三个角是直角.23. 解:(1)证明:在矩形EFGH中,EH=FG,EH∥FG,∴∠GFH=∠EHF.∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,∴∠BFG=∠DHE,在菱形ABCD中,AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE.(2)连接EG,在菱形ABCD中,AD∥BC,AD=BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,又∵AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,在矩形EFGH中,EG=FH=2,∴AB=2,∴菱形ABCD的周长为8.24. (1)∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,B DAEB CFD AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(AAS);(2)∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.25. 证明:∵∠B=90°,AC=2AB,∴sin∠ACB=1 2,∴∠ACB=30°,(1分) ∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=12∠CAB=30°,∴∠CAD=∠ACD,∴AD=CD,(3分)∵AF∥CD,∴∠DCE=∠FAE,∠AFE=∠CDE,又∵AE=CE,∴△AFE≌△CDE(AAS),(6分)∴AF=CD,又AF∥CD,∴四边形ADCF是平行四边形,(7分)又AD=CD,∴四边形ADCF是菱形.(8分)26. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,(2分)∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,(3分)∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(4分)(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,(5分) 此时CE最小,且CE=CD=3;(6分)如解图②,当点G与点A重合时,CE最大.(7分)设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.(8分)。
2021年中考数学专题复习:圆周角定理一.选择题(共10小题)1.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是()A.22.5°B.30°C.45°D.60°2.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°3.如图:已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).若∠COA=60°,∠CDO=70°,∠ACD的度数是()A.60°B.50°C.30°D.10°4.如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D,连接AC,CD.则下列结论中错误的是()A.AC=CD B.+=C.OD⊥AB D.CD平分∠ACB 5.如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=30°,OD=2,那么DC的长等于()A.2 B.4 C.D.26.如图,AB是的直径,C、D是圆上两点,连接AC,AD,CD.若∠CAB=35°,则∠ADC的度数为()A.55°B.45 C.35°D.25°7.如图,在⊙O中,弦AB、CD所对的圆心角分别是∠AOB、∠COD,若∠AOB和∠COD互补,且AB=2,CD=4,则⊙O的半径是()A.B.2 C.D.48.如图,AD是⊙O的直径,=,若∠AOB=40°,则圆周角∠BPC的度数是()A.40°B.50°C.60°D.70°9.如图,AB是⊙O的弦,点C在上,点D是AB的中点.将在沿AC折叠后恰好经过点D,若⊙O的半径为2,AB=8.则AC的长是()A.6B.C.2D.410.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2C.D.二.填空题(共6小题)11.如图,AB是半圆的直径,O为圆心,C是半圆上的点,AB=10,BC=5,D是上的点,则∠D的度数为.12.如图,已知,在⊙O中,∠AOB=150°,E是优弧AB上一点,C、D是劣弧AB上不同的两点(不与A、B两点重合),则∠C+∠D的度数为°.13.如图,点A,B,C在⊙O上,∠A=50°,∠C=10°,则∠B=°.14.如图,AD为⊙O的直径,A,B,C三点在⊙O上,AB=BC,BD交AC于点E,∠ABC=110°,则∠CAD为°.15.如图,A(2,0)、B(6,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线OF绕O点旋转时,CD的最小值为.16.如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=8,点D是BC上一点,BC=3CD,点P是线段AC上一个动点,以PD为直径作⊙O,点M为的中点,连接AM,则AM的最小值为.三.解答题(共4小题)17.如图,圆内接四边形ABCD,AB是⊙O的直径,OD∥AC交BC于点E.(1)求证:△BCD为等腰三角形;(2)若BE=4,AC=6,求DE.18.如图,以平行四边形ABCD的顶点A为圆心,AB为半径作圆A,分别交BC,AD于E,F 两点,交BA的延长线于点G.(1)求证:=;(2)若为140°,求∠EGB的度数.19.如图,AB是⊙O的直径,CD⊥AB于E,BF∥OC,连接BC,CF,AC.(1)求证:∠OCF=∠ECB;(2)若∠BAC=30°,AC=6cm,求⊙O的半径.20.已知点C在⊙O上.AC=AB,点P与点C位于直径AB的异侧(点P不与A.B两点重合),连接BP.过点C作直线PB的垂线CD,交直线PB于点D.连接CP.(1)如图①,求∠CPD的度数;(2)如图②,当CP⊥AB,AC=2时,求△BPC的周长.参考答案一.选择题1.解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.2.解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.3.解:∵OA=OC,∠COA=60°,∴△ACO为等边三角形,∴∠CAD=60°,又∵∠CDO=70°,∴∠ACD=∠CDO﹣∠CAD=10°.故选:D.4.解:A、过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;B、∵AC=CD',∴,由折叠得:,∴=,故②正确;C、∵D为AB的中点,∴OD⊥AB,故③正确;D、延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:D.5.解:如图,连接OC,设AB交CD于E.∵AB⊥CD,AB是直径,∵OA=OC,∠OAC=∠OCA=30°,∴∠COE=60°,∴EC=OC•sin60°=,∴CD=2DE=2,故选:D.6.解:连接BD,∵,∴∠CDB=∠CAB=35°,∵AB为直径,∴∠ADB=90°,∴∠ADC=∠ADB﹣∠CDB=55°,故选:A.7.解:作直径DE,连接CE,如图,∵∠AOB+∠COD=180°,∠COD+∠COE=180°,∴∠AOB=∠COE,∴=,∴CE=AB=2,∵DE为直径,∴∠DCE=90°,∴DE==2,∴OD=,即⊙O的半径是.8.解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC=∠BOC=50°,故选:B.9.解:如图,延长BO交⊙O于E,连接AE,OA,OD,OC,BC,作CH⊥AB于H.∵AD=DB,∴OD⊥AB,∴∠ADO=90°,∵OA=2,AD=DB=4,∴OD==2,∵BE是直径,∴∠BAE=90°,∵AD=DB,EO=OB,∴OD∥AE,AE=2OD=4,∴AE=AD,∴=,∴=,∴∠CAE=∠CAH=45°,∴∠BOC=2∠CAB=90°,∴BC=OC=2,∵CH⊥AB,∴∠CAH=∠ACH=45°,∴AH=CH,设AH=CH=x,则BH=8﹣x,在Rt△BCH中,∵CH2+BH2=BC2,∴x2+(8﹣x)2=(2)2,∴x=6或2(舍弃),在Rt△ACH中,∵AC=,∴AC=6.故选:A.10.解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:D.二.填空题(共6小题)11.解;如图,连接BD,∵AB是半圆的直径,AB=10,BC=5,∴OC=OB=BC=5,∠ADB=90°.∴△OBC是等边三角形.∴∠BOC=60°.∵∠BDC=∠BOC=30°,∴∠ADC=∠ADB+∠CDB=90°+30°=120°.故答案是:120°.12.解:连接OE,∵在⊙O中,∠AOB=150°,∴∠AOE+∠BOE=360°﹣∠AOB=210°,∵∠D=∠BOE,∠C=∠AOE,∴∠C+∠D=∠AOE+∠BOE=(∠AOE+∠BOE)=105°.故答案为:105.13.解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B+∠A=∠BOC+∠C,∴∠B=100°+10°﹣50°=60°.故答案为60.14.解:∵AD为⊙O的直径,∴∠ABD=90°,∵∠ABC=110°,∴∠DBC=110°﹣90°=20°.∴∠CAD=∠DBC=20°.故答案为20.15.解:连接MD,如图,∵D为EF的中点,∴MD⊥EF,∴∠ODM=90°,∴点D在以A点为圆心,2为半径的圆上,当D点为CA与⊙A的交点时,CD的值最小,此时CD=AC﹣2=2﹣2,即CD的最小值为2﹣2.故答案为:2﹣2.16.解:如图,连接OM,CM,过点A作AT⊥CM交CM的延长线于T.∵=,∴OM⊥PD,∴∠MOD=90°,∴∠MCD=∠MOD=45°,∵∠ACB=90°,∴∠ACT=45°,∵AT⊥CT,∴∠ATC=90°,∵AC=10,∴AT=AC•sin45°=5,∵AM≥AT,∴AM≥5,∴AM的最小值为5,故答案为5.三.解答题(共4小题)17.解:(1)∵OD⊥BC于E,∴=,∴BD=CD,∴△BDC是等腰三角形.(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OD⊥BC于E,∴OD∥AC,∵点O是AB的中点,∴OE是△ABC的中位线,∴OE=AC=×6=3,在Rt△OBE中,∵BE=4,OE=3,∴OB===5,即OD=OB=5,∴DE=OD﹣OE=5﹣3=2.18.(1)证明:连接AE.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAF=∠AEB,∠GAF=∠B,∵AE=AB,∴∠B=∠AEB,∴∠EAF=∠GAF,∴=;(2)∵GB为⊙A的直径,∴为180°,∵为140°,∴为40°,∴∠BAE=40°∵∠EGB=∠BAE,∴∠EGB=20°.19.(1)证明:∵OC∥BF,∴∠OCF=∠BFC,∵AB⊥CD,∴,∴∠BFC=∠BCD,∴∠OCF=∠ECB;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ACB中,∵∠BAC=30°,∴BC=AC=×6=2,∴AB=2BC=4,∴⊙O的半径为.20.解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵AC=AB,∴∠ABC=30°,∴∠A=60°,∴∠CPD=∠A=60°;(2)由(1)知,∠A=60°,∴∠P=∠A=60°,∵CP⊥AB,∴∠ACP=30°,∴∠BCP=60°,∴△PBC是等边三角形,∵AC=2,∴BC=AC=2,∴△BPC的周长=6.。
2021年九年级数学中考复习《抛物线与x轴的交点问题》1.已知二次函数y=(2﹣a)x2+(a+2)x﹣1,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程(2﹣a)x2+(a+2)x﹣1=0的两根之积为()A.﹣B.﹣C.﹣1D.02.如图,在平面直角坐标系中,抛物线y=﹣(x+3)2+k经过坐标原点O,与x轴的另一个交点为A.过抛物线的顶点B分别作BC⊥x轴于点C、BD⊥y轴于点D,则图中阴影部分图形的面积和为()A.18B.12C.9D.63.如图,二次函数y=﹣x2+﹣1的图象交x轴于A,B两点,图象上的一点C使∠CBA =135°,则点C的坐标是()A.(4,﹣1)B.(4,﹣)C.(4.5,﹣)D.(4.5,﹣)4.已知二次函数y=﹣x2+x+6及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=x+m 与这个新图象有四个交点时,m的取值范围是()A.﹣7<m<﹣3B.3<m<6C.﹣7<m<3D.﹣3<m<65.抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是()A.(2,0)B.(﹣2,0)C.(﹣4,0)D.(﹣1,0)6.抛物线y=x2+bx+3的对称轴为直线x=﹣1.若关于x的一元二次方程x2+(b+1)x+3﹣t=0(t为实数)在﹣4≤x≤1的范围内只有一个解,则t的值是()A.t=7B.t=3C.t=7或t=D.t=3或t=7.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m﹣2=0有两个不相等的实数根,则整数m的最小值为()A.﹣1B.0C.1D.28.已知二次函数y=(x﹣p)(x﹣q)﹣2,若m,n是关于x的方程(x﹣p)(x﹣q)﹣2=0的两个根,则实数m,n,p,q的大小关系可能是()A.m<p<q<n B.m<p<n<q C.p<m<n<q D.p<m<q<n 9.抛物线y=x2+bx+4与x轴有且只有1个公共点,则b=.10.如图,抛物线y=x2﹣3与x轴交于A、B两点,P是以点C(0,4)为圆心,3为半径的圆上的动点,M是线段P A的中点,连结OM.则线段OM的最大值是.11.将抛物线y=(x+1)2﹣4向上平移a个单位后得到的抛物线恰好与x轴只有一个交点,则a的值为.12.如图,在平面直角坐标系中,抛物线y=ax2﹣4ax+3a(a<0)与x轴交于A、B两点,与y轴交于点D,点C的坐标为(2,﹣4);当CD最短时,则抛物线顶点纵坐标为.13.如图,在平面直角坐标系中,抛物线y=﹣x2+2x的顶点为A,在x轴下方作垂直于y 轴的直线BC抛物线于点B、C,连接AB、AC,若点B到x轴的距离是点A到x轴距离的3倍,则△ABC的面积为.14.已知二次函数y1=(x+1)2﹣3向右平移2个单位得到抛物线y2的图象,则阴影部分的面积为.15.如图,抛物线y=x2+bx+c与x轴只有一个交点,与x轴平行的直线l交抛物线于A、B,交y轴于M.①若抛物线经过(0,4),则b=.②若AB=6,则OM的长为.16.若函数y=x2+bx﹣5的对称轴为直线x=2,则关于x的方程x2+bx﹣5=2x﹣13的解为.17.已知点P为二次函数y=x2﹣2x﹣3图象上一点,设这个二次函数的图象与x轴交于A,B两点(A在B的右侧),与y轴交于C点,若△APC为直角三角形且AC为直角边,则点P的横坐标的值为.18.已知关于x的二次函数y=x2﹣(m﹣2)x﹣3.(1)该函数图象经过点(2,﹣3).①求这个二次函数的表达式及顶点坐标;②分别求出这个二次函数图象与x轴,y轴的交点坐标;(2)将这个二次函数的图象沿x轴平移,使其顶点恰好落在y轴上,请直接写出平移后的函数表达式.19.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴;(3)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.20.如图,已知抛物线y=x2﹣9与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C'.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC'平行于直线AD,求新抛物线对应的函数表达式.21.如图,抛物线y=ax2+bx+3与x轴交于A,B两点,且点B的坐标为(2,0),与y轴交于点C,抛物线对称轴为直线x=﹣,连接AC,BC,点P是抛物线上在第二象限内的一个动点.过点P作x轴的垂线PH,垂足为点H,交AC于点Q.过点P作PG⊥AC 于点G.(1)求抛物线的解析式.(2)求△PQG周长的最大值及此时点P的坐标.22.如图,对称轴为直线x=﹣1的抛物线与x轴相交于A,B两点,C为抛物线与y轴的交点,点A(﹣3,0),点C(0,﹣3).(1)求抛物线的关系式.(2)在抛物线的对称轴上是否存在一点P,使△PBC的周长最小?若存在,请求出点P 的坐标,若不存在,请说明理由.(3)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.23.如图,已知二次函数y=ax2+bx+c的图象的顶点为(4,﹣2),且经过点B(0,6).(1)求该二次函数的解析式.(2)求出二次函数图象与x轴的交点A和C的坐标.(3)在抛物线上存在一点P,使△ACP的面积等于8.求出点P的坐标.24.如图,已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3),抛物线的顶点为P,连接AC.(1)求此抛物线的表达式;(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求D的坐标;(3)抛物线对称轴上是否存在一点M,使得S△MAP=3S△ACP,若存在,求出M点坐标;若不存在,请说明理由.参考答案1.解:∵二次函数y=(2﹣a)x2+(a+2)x﹣1,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,∴该函数的对称轴为直线x=﹣=0,解得a=﹣2,∴二次函数y=4x2﹣1,∴当y=0时,0=4x2﹣1,解得x1=﹣,x2=,∴一元二次方程(2﹣a)x2+(a+2)x﹣1=0的两根是x1=﹣,x2=,∴一元二次方程(2﹣a)x2+(a+2)x﹣1=0的两根之积是(﹣)×=﹣,故选:B.2.解:把(0,0)代入y=﹣(x+3)2+k,得﹣(0+3)2+k=0,解得k=6,∴抛物线解析式为y=﹣(x+3)2+6,∴B点坐标为(﹣3,6),∵BC⊥x轴于C,∴图中阴影部分图形的面积和=S矩形OCBD=3×6=18.故选:A.3.解:二次函数y=﹣x2+﹣1中,令y=0,则y=﹣x2+﹣1=0,解得x1=1,x2=3,∴A(1,0),B(3,0),过点C作CD⊥x轴于点D,∵∠CBA=135°,∴∠CBD=45°,∴△BCD是等腰直角三角形,∴BD=CD,设BD=CD=m,∴C(3+m,﹣m),∵点C在二次函数y=﹣x2+﹣1的图象上,∴﹣m=﹣(3+m)2+(3+m)﹣1,解得m1=1,m2=0(舍去),∴C(4,﹣1),故选:A.4.解:如图所示,当直线y=x+m与这个新图象有四个交点时,m一定小于0,故选:A.5.解:令x=0,得到y=c,∴C(0,c),∵D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=﹣2,即A点坐标为(﹣2,0),故选:B.6.解:∵抛物线y=x2+bx+3的对称轴为直线x=﹣1,∴﹣=﹣1,解得b=2,∴一元二次方程x2+(b+1)x+3﹣t=0可以写成x2+3x+3﹣t=0,当方程x2+3x+3﹣t=0有两个相等的实数根时,32﹣4×(3﹣t)=0,解得t=,此时x =﹣=﹣,∵关于x的一元二次方程x2+(b+1)x+3﹣t=0(t为实数)在﹣4≤x≤1的范围内只有一个解,∴当t=,x=﹣符合题意;令y=x2+3x+3﹣t,则或,解得t=7,由上可得,t的值是或7,故选:C.7.解:∵ax2+bx+m﹣2=0有两个不相等的实数根,∴ax2+bx=2﹣m有两个不相等的实数根,令y1=ax2+bx,y2=2﹣m(表示与x轴平行的直线),∴y1与y2有两个交点,∴2﹣m<2,∴m>0∵m是整数,∴m=1,故选:C.8.解:∵二次函数y=(x﹣p)(x﹣q)﹣2,∴该函数开口向上,当x=p或x=q时,y=﹣2,∵m,n是关于x方程(x﹣p)(x﹣q)﹣2=0的两个根,∴y=(x﹣p)(x﹣q)﹣2,当x=m或x=n时,y=0,∴p,q一定处在m,n中间故选:A.9.解:令y=0,则当抛物线y=x2+bx+4的图象与x轴只有一个公共点时,关于x的一元二次方程x2+bx+4=0的根的判别式△=0,即b2﹣4×4=0,解得b=±4.故答案是:±4.10.解:令y=x2﹣3,则x=±3,故点B(﹣3,0),设圆的半径为r,则r=3,连接PB,而点M、O分别为AP、AB的中点,故OM是△ABP的中位线,当B、C、P三点共线,且点C在PB之间时,PB最大,此时OM最大,则OM=BP=(BC+r)=(+3)=4,故答案为:4.11.解:抛物线y=(x+1)2﹣4向上平移a个单位后得到的抛物线的解析式为y=(x+1)2﹣4+a,此时抛物线的顶点坐标为(﹣1,﹣4+a),因为新抛物线恰好与x轴有一个交点,所以﹣4+a=0,解得a=4.故答案为:4.12.解:根题意知,当CD⊥y轴时,线段CD最短.∵点C的坐标为(2,﹣4),∴点D的坐标为(0,﹣4).将其代入y=ax2﹣4ax+3a,得3a=﹣4,解得a=﹣.∴该抛物线解析式是:y=﹣x2+x﹣4.∵y=﹣x2+x﹣4=﹣(x﹣2)2+.∴该抛物线的顶点坐标是(2,).∴抛物线顶点纵坐标为.故答案是:.13.解:由抛物线y=﹣x2+2x=﹣(x﹣1)2+1知,A(1,1).∵点B到x轴的距离是点A到x轴距离的3倍,∴y B=﹣3.则﹣x2+2x=﹣3,即x2﹣2x﹣3=0,解得x1=3,x2=﹣1.∵BC⊥y轴,∴B(﹣1,﹣3),C(3,﹣3).∴BC=4.∴S△ABC=×4×4=8.故答案是:8.14.解:设点M为抛物线y1的顶点,点N为抛物线y2的顶点,连接MA、NB,则四边形AMNB的面积和阴影部分的面积相等,∵二次函数y1=(x+1)2﹣3,∴该函数的顶点M的坐标为(﹣1,﹣3),∴点M到x轴的距离为3,∵MN=2,∴四边形AMNB的面积是2×3=6,∴阴影部分的面积是6,故答案为:6.15.解:①抛物线y=x2+bx+c与x轴只有一个交点,则b2﹣4c=0,抛物线过点(0,4),则c=4,故b2﹣16=0,解得b=±4(舍去正值),故b=﹣4,故答案为﹣4;②抛物线y=x2+bx+c与x轴只有一个交点,则b2﹣4c=0,设OM=h,A、B点的横坐标分别为m、n,则:A(m,h)、B(n,h),由题意得:x2+bx+(c﹣h)=0,则:m+n=﹣b,mn=c﹣h,AB=6=n﹣m==,解得:h=9,即OM=9,故答案为9.16.解:x=﹣=﹣=2,解得:b=﹣4,故x2﹣bx﹣5=2x﹣13,即为:x2﹣6x+8=0,解得:x=2或4,故答案为:x1=2,x2=4.17.解:对于y=x2﹣2x﹣3①,令y=0,则x=3或﹣1,令x=0,则y=﹣3,故点A、B、C的坐标分别为:(3,0)、(﹣1,0)、(0,﹣3).①当∠ACP为直角时,如下图,由点A、C的坐标知,OA=OC=3,即直线AC的与x轴负半轴的夹角为45°,而∠ACP为直角,故直线PC的倾斜角为45°,故设直线PC的表达式为:y=﹣x+b,将点C的坐标代入上式并解得:b=﹣3,故直线PC的表达式为:y=﹣x﹣3②,联立①②并解得:x=0或1(舍去0),故点P的坐标为:(1,﹣4);②当∠P AC为直角时,同理可得:点P(﹣2,5);故答案为﹣2或1.18.解:(1)①∵该二次函数图象经过点(2,﹣3),∴﹣3=22﹣(m﹣2)×2﹣3,解得m=4.∴二次函数的表达式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴二次函数顶点坐标为(1,﹣4);②令x=0,则y=﹣3.∴该二次函数图象与y轴的交点坐标为(0,﹣3).令y=0,则x1=﹣1,x2=3.∴该二次函数图象与x轴的交点坐标为(﹣1,0),(3,0).(2)y=x2﹣(m﹣2)x﹣3=(x﹣)2﹣﹣3,∴该函数的顶点坐标是(,﹣﹣3).∴顶点恰好落在y轴上,∴该函数图象向右平移个单位.∴.19.解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,∴,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)知,抛物线解析式为:y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴此抛物线的顶点坐标为(1,﹣4),对称轴为直线x=1;(3)联立方程组得:,解得:(舍去),,∴D(4,5).在直线y=x+1中,当x=0时,y=1,∴F(0,1)在抛物线y=x2﹣2x﹣3中,当x=0时,y=﹣3,∴E(0,﹣3).∴EF=1﹣(﹣3)=4.过点D作DM⊥y轴于点M,∴S△DEF=EF•DM=8.20.解:(1)由x2﹣9=0得,x1=﹣3,x2=3,∵点A位于点B的左侧,∴A(﹣3,0),∵直线y=x+m经过点A,∴﹣3+m=0,解得,m=3,∴点D的坐标为(0,3),∴AD==3;(2)设新抛物线对应的函数表达式为:y=x2+bx+3,y=x2+bx+2=(x+)2+3﹣,则点C′的坐标为(﹣,3﹣),∵CC′平行于直线AD,且经过C(0,﹣9),∴直线CC′的解析式为:y=x﹣9,∴3﹣=﹣﹣4,解得,b1=1+,b2=1﹣,∴新抛物线对应的函数表达式为:y=x2+(1+)x+3或y=x2+(1﹣)x+3.21.解:(1)∵抛物线y=ax2+bx+3过点B(2,0),对称轴为直线x=﹣,∴,解得,∴y=﹣x2﹣x+3.(2)令y=0,即﹣x2﹣x+3=0,∴x1=﹣3,x2=2,∴A(﹣3,0),令x=0,得C(0,3),∵直线AC经过A(﹣3,0),C(0,3),设直线AC的解析式为:y=kx+b,则,∴,∴直线AC的解析式为y=x+3,∴∠BAO=45°,∵PH⊥AO,PG⊥AB,∴∠AQH=∠PQG=∠QPG=45°,∴△PQG是等腰直角三角形,设P(m,﹣m2﹣m+3),∴Q(m,m+3),∴PQ=﹣m2﹣m+3﹣m﹣3=﹣m2﹣m,∴当m=﹣时,PQ max=,此时P(﹣,),∵△PQG是等腰直角三角,∴△PQG周长=﹣m2﹣m+(﹣m2﹣m),=(+1)(﹣m2﹣m),=(+1)PQ,∴△PFG周长的最大值为:(+1).22.解:(1)抛物线的对称轴为x=﹣1,点A(﹣3,0),则点B(1,0),设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣1)(x+3)=a(x2+2x﹣3),将点C的坐标代入上式并解得a=1,故抛物线的表达式为y=x2+2x﹣3;(2)存在,理由:点B关于函数对称轴的对称点为点A,AC交x=﹣1于点P,此时△PBC的周长最小,理由:△PBC的周长=BC+PB+PC=BC+P A+PC=BC+AC为最小,设直线AC的表达式为y=kx+b,则,解得,故直线AC的表达式为y=﹣x﹣3,当x=﹣1时,y=﹣x﹣3=1﹣3=﹣2,故点P的坐标为(﹣1,﹣2);(3)由点C的坐标知,OC=3,设P点坐标为(x,x2+2x﹣3),∵S△POC=4S△BOC,∴×3×|x|=4××3×1,解得x=4或﹣4.当x=4时,x2+2x﹣3=16+8﹣3=21;当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.∴点P的坐标为(4,21)或(﹣4,5).23.解:(1)抛物线的表达式为y=a(x﹣h)2+k=a(x﹣4)2﹣2,将点B的坐标代入上式得,6=a(0﹣4)2﹣2,解得a=,故抛物线的表达式为y=(x﹣4)2﹣2;(2)令y=(x﹣4)2﹣2=0,解得x=2或6,故点A、C的坐标分别为(2,0)、(6,0);(3)△ACP的面积=×AC×|y P|=×(6﹣2)×|y P|=8,则y P=±4,即±4=(x﹣4)2﹣2,解得x=4±2,故点P的坐标为(4﹣2,4)或(4+2,4).24.解:(1)设此抛物线的解析式为:y=a(x﹣x1)(x﹣x2),∵抛物线与x轴交于A(﹣1,0)、B(3,0)两点,∴y=a(x+1)(x﹣3),又∵抛物线与y轴交于点C(0,﹣3),∴a(0+1)(0﹣3)=﹣3,∴a=1,∴y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)∵点A(﹣1,0),点C(0,﹣3),∴OA=1,OC=3,∵DC⊥AC,∴∠DCO+∠OCA=90°,∵OC⊥x轴,∴∠COA=∠COQ=90°,∠OAC+∠OCA=90°,∴∠DCO=∠OAC,∴△QOC∽△COA,∴,即=,∴OQ=9,又∵点Q在x轴的正半轴上,∴Q(9,0),设直线QC的解析式为:y=mx+n,则,解得,∴直线QC的解析式为:y=x﹣3,∵点D是抛物线与直线QC的交点,∴,解得,∴点D(,﹣);(3)存在,理由:如图,点M为直线x=1上一点,连接AM,PC,P A,设点M(1,y),直线x=1与x轴交于点E,∴E(1,0),∵A(﹣1,0),∴AE=2,∵抛物线y=x2﹣2x﹣3的顶点为P,对称轴为x=1,∴P(1,﹣4),∴PE=4,则PM=|y+4|,∵S四边形AEPC=S四边形OEPC+S△AOC=×1×(3+4)+×1×3=5,又∵S四边形AEPC=S△AEP+S△ACP,S△AEP=AE×PE=×2×4=4,∴S△ACP=5﹣4=1,∵S△MAP=3S△ACP,∴×2×|y+4|=3×1,∴|y+4|=3,∴y1=﹣1,y2=﹣7,故抛物线的对称轴上存在点M使S△MAP=3S△ACP,点M的坐标为(1,﹣1)或(1,﹣7)。
2021年九年级数学中考复习——专题:找规律之数字变化类(三)1.阅读下列材料,然后回答问题:已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,….当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1.直接写出S2020=(用含a的代数式表示);计算:S1+S2+S3+…+S2022=.2.定义一种关于整数n的“F”运算:(1)当n是奇数时,结果为3n+5;(2)当n是偶数时,结果是(其中k是使是奇数的正整数),并且运算重复进行.例如:取n=58,第一次经F运算是29,第二次经F运算是92,第三次经F运算是23,第四次经F运算是74…;若n=72,则第2019次运算结果是.3.观察下面的变化规律:=1﹣,=﹣,=﹣,=﹣,…根据上面的规律计算:=.4.一组按规律排列的式子:,﹣,,﹣,…(ab≠0),其中第10个式子是.5.按下面一组数的排列规律,在横线上填上适当的数:,,,,,.6.下列各正方形中的四个数之间都有相同的规律,请你仔细观察,找出规律,根据这种规律计算可知:m的值为.7.观察多项式:8x﹣16x2+32x3﹣64x4+128x5…,以此规律,第n项为.8.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a6=,a200=.9.观察下列式子:2=22×,3=32×,4=42×,….你发现它们之间存在的规律是.(用含n的式子表示出来,n表示大于等于2整数)10.给定一列按规律排列的数:,1,,,…,根据前4个数的规律,第2020个数是.11.小磊想编一个循环“插数”程序,对有序的数列:﹣2,0进行有规律的“插数”:对任意两个相邻的数,都用右边的数减去左边的数之差“插”在这相邻的两个数之间,产生一个个新数列.如:第1次“插数”产生的一个新数列是﹣2,2,0;第2次“插数”产生的一个新数列是﹣2,4,2,﹣2,0;第3次“插数”产生的一个新数列是﹣2,6,4,﹣2,2,﹣4,﹣2,2,0;……,第2019次插数产生的一个新数列的所有数之和是.12.观察下列一组数,按规律在横线上填写适当的数,﹣,,﹣,,……,第7个数是.13.在一列数a1,a2,a3,a4,…a n中,已知a1=2,a2=,a3=,a4=,…a n=,则a=.202014.按照一定规律排列的一组数:,,,,…,,,…(其中a,b 为正整数),则a﹣b=.15.已知一列数的和x1+x2+……+x2019=×(1+2+…+2019),|x1﹣3x2+1|=|x2﹣3x3+2|=…=|x2018﹣3x2019+2018|=|x2019﹣3x1+2019|,则x1﹣2x2﹣3x3=.16.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,当m=99时,则M的值为.17.按一定规律排列的一列数依次为,﹣,,﹣,,﹣,…,按此规律排列下去,这列数中第8个数是,第n个数是(n为正整数).18.一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗的取出,最终盒内都只剩下一颗糖,如果每次以11颗的取出,那么正好取完,则盒子里共有颗糖.19.观察这一列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…,若将这列数排成如图所示的形式,按照这个规律排下去,那么第10行从左边起第8个数是.20.按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为.参考答案1.解:∵S1=,S=﹣S1﹣1=,2S==,3S=﹣S3﹣1=,4S==﹣a﹣1,5S=﹣S5﹣1=a,6S==,7….当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1.发现规律:每6个结果为一个循环,所以2020÷6=336…4,所以S2020=;因为2022÷6=337,所以S1+S2+S3+…+S2022=337(+++﹣a﹣1+a)=337(﹣1﹣1﹣1)=﹣1011.故答案为:,﹣1011.2.解:由题意n=72时,第一次经F运算是9,第二次经F运算是32,第三次经F运算是1,第四次经F运算是8,第五次经F运算是1…以后出现1、8循环,奇数次是1,偶数次是8,∴第2019次运算结果1,故答案为:1.3.解:由题干信息可抽象出一般规律:(a,b均为奇数,且b=a+2).故=1﹣+﹣+﹣+…+﹣=1﹣=.故答案:.4.解:分子为b,其指数为2,5,8,11,…,其规律为3n﹣1,分母为a,其指数为1,2,3,4,…,其规律为n,分数符号为+、﹣,+,﹣,…,其规律为(﹣1)n+1,…第n个式子是(﹣1)n+1.所以,第10个式子是﹣.故答案是:﹣.5.解:∵,,,,…,∴这列数的第n个数为:,∴当n=5时,=,故答案为:.6.解:由表格可得,左上角的数字是一些连续的奇数,从大到小排列,从3开始,左下角的数字比左上角的数字大2,右上角的数字比左下角的数字大2,右下角的数字等于左下角与右下角的数字的乘积,∴当左上角的数字为﹣3时,左下角的数字为﹣3+2=﹣1,右上角的数字为﹣1+2=1,右下角的数字为(﹣1)×1=﹣1,∴m=﹣1,故答案为:﹣1.7.解:根据分析的规律,得第n项为(﹣1)n+12n+2x n.(n≥1的自然数).故答案为:(﹣1)n+12n+2x n(n≥1的自然数).8.解:由题意可得,a=1,1a=1+2=3,2a=1+2+3=6,3a=1+2+3+4=10,4a=1+2+3+4+5=15,5…,∴a n=1+2+3+…+n=,∴当n=6时,a6==21,当n=200时,a200==20100,故答案为:21,20100.9.解:2=22×,3=32×,4=42×,…∴用含n(n表示大于等于2整数)的代数式表示出来为:n+.故答案为n+.10.解:观察这列数发现,奇数项是负数,偶数项是正数;分子分别为3,5,7,9,…;分母分别为12+1,22+1,32+1,…,∴该列数的第n项是(﹣1)n,∴第2020个数是=,故答案为.11.解:∵第一次操作增加数字:2,第二次操作增加数字:4,2,﹣2,第三次操作增加数字:6,4,﹣2,2,﹣4,﹣2,2,∴第一次操作增加2,第二次操作增加4+2﹣2=4,第三次操作增加6+4﹣2+2﹣4﹣2+2=6,…,即,每次操作加2,第2019次操作后所有数之和为﹣2+0+2019×2=4036.故答案为:4036.12.解:观察一组数,﹣,,﹣,,……,发现规律:第n个数是(﹣1)n,所以第7个数是﹣.故答案为:﹣.13.解:∵a1=2,∴a2==﹣1;a==;3a==2;4…,发现规律:每3个数一个循环,所以2020÷3=673…1,则a2020=a1=2.故答案为:2.14.解:∵一组数:,,,,…,,,…(其中a,b为正整数),∴这组数是:,,,,…,,,,…,∴a=15×16=240,b=17×18=306,∴a﹣b=240﹣306=﹣66,故答案为:﹣66.15.解:因为x1﹣3x2+1+x2﹣3x3+2+...+x2018﹣3x2019+2018+x2019﹣3x1+2019 =x1+x2+......+x2019﹣3(x1+x2+......+x2019)+(1+2+3+ (2019)=×(1+2+...+2019)﹣3××(1+2+...+2019)+(1+2+ (2019)=0.所以绝对值内的2019个式子相加等于0,且它们的绝对值相等,所以|x1﹣3x2+1|=|x2﹣3x3+2|=…=|x2018﹣3x2019+2018|=|x2019﹣3x1+2019|=0,所以x2=3x3﹣2,所以x1=3x2﹣1=3(3x3﹣2)﹣1=9x3﹣7,所以x1﹣2x2﹣3x3=9x3﹣7﹣2(3x3﹣2)﹣3x3=﹣3.故答案为:﹣3.16.解:∵3=2×1+1,15=4×3+3,35=6×5+5,∴M=mn+m,且n=m+1,当m=99时,M=99×100+99=9999,故答案为:9999.17.解:根据分析可知:一列数依次为:,﹣,,﹣,,﹣,…,按此规律排列下去,则这列数中的第8个数是﹣,所以第n个数是:(﹣1)n+1(n是正整数).故答案为:﹣;(﹣1)n+1.18.解:已知如果每次11颗地取出正好取完,则盒子内糖数必为11的倍数.又知盒子里装有不多于200颗糖,则盒子内糖数可能为11、22、33、44、55、66、77、88、99、110、121、132、143、154、165、176、187、198.又已知如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,则盒子内糖数为12的倍数+1.又知盒子里装有不多于200颗糖则盒子内糖数可能为13,25,37,49,61,73,85,97,109,121,133,145,157,169,181,193.取上面两组数的交集可得121,故盒子里共有121颗糖.故答案为:121.19.解:∵第n行左边第一个数的绝对值为(n﹣1)2+1,奇数为负,偶数为正,∴第10行从左边数第1个数绝对值为82,即这个数为82,∴从左边数第8个数等于﹣89.故答案为:﹣89.20.解:由数列知第n个数为,则前2018个数的和为++++…+=++++…+=1﹣+﹣+﹣+﹣+…+﹣=1﹣=,故答案为:.。
2021年中考数学专题复习:数轴类动点问题1.已知:a是最大的负整数,b是最小的正整数,且c=a+b,请回答下列问题:(1)请直接写出a,b,c的值:a=;b=;c=;(2)a,b,c在数轴上所对应的点分别为A,B,C,请在如图的数轴上表示出A,B,C三点;(3)在(2)的情况下.点A,B,C开始在数轴上运动,若点A,点C以每秒1个单位的速度向左运动,同时,点B以每秒5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请问:AB﹣BC的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出AB﹣BC的值.2.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a=,b=,c=;(2)a、b、c所对应的点分别为A、B、C,点P为一动点,点A、B、C开始在数轴上运动,若点A以每秒2n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和6n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.3.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,c满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=.(2)①若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.②点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,则AC=.(用含t的代数式表示)(3)在(2)②的条件下,请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.4.在数轴上有三点A,B,C分别表示数a,b,c,其中b是最小的正整数,且|a+2|与(c﹣7)2互为相反数.(1)a=,b=,c=;(2)若将数轴折叠,使点A与点C重合,则点B与表示数的点重合;(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度的速度和4个单位长度的速度向右运动,若点A与点B的距离表示为AB,点A与点C的距离表示为AC,点B与点C的距离表示为BC,则t秒钟后,AB=,AC=,BC=;(用含t的式子表示)(4)请问:3BC﹣2AB的值是否随时间t的变化而变化?若变化,请说明理由;若不变,请直接写出其值.5.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b﹣6)2=0.(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,直接写出C点表示的数;(3)若点D,E,F,G是线段AB上从左到右的四个点,并且AD=DE=EF =FG=GB.计算与点F所表示的数最接近的整数.6.已知b是最小的正整数,且a,b,c满足(c﹣5)2+|a+b|=0.(1)填空:a=,b=,c=;(2)a,b,c在数轴上所对应的点分别为A,B,C,点P为数轴上一动点,其对应的数为x,点P在1到2之间运动时(即1≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x﹣5|(请写出化简过程);.(3)在(1),(2)的条件下,点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒m(m<5)个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,点B与点C 之间的距离表示为BC,点A与点B之间的距离表示为AB.若BC﹣AB的值保持不变,求m的值.7.在数轴上点A表示数a,点B表示数b,点C表示数c;a是最大的负整数,a、b、c满足|a+b|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)P为数轴上一动点,其对应的数是x,当P在线段AC上,且PA+PB+PC =7时,求x的值.(3)若点P,Q分别从A,C同时出发,匀速相向运动,点P的速度为3个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回A;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q的相遇点在数轴上对应的数.8.点A,B在数轴上对应的数分别是a,b,其中a,b满足(a﹣4)2+|b+6|=0.(1)求a,b的值;(2)数轴上有一点C使得AC+BC=AB,求点C所对应的数;(3)点D为A,B中点,O为原点,数轴上有一动点P,求PA+PB+PD﹣PO 的最小值及点P所对应的数的取值范围.9.阅读下面的材料并解答问题:A点表示数a,B点表示数b,C点表示数c,且点A到点B的距离记为线段AB的长,线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.若b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)b=,c=.(2)若将数轴折叠,使得A与C点重合:①点B与数表示的点重合;②若数轴上P、Q两点之间的距离为2018(P在Q的左侧),且P、Q两点经折叠后重合,则P、Q两点表示的数是、.(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为t秒,试探索:3AC﹣5AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出其值.10.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和1的两点之间的距离是.(2)数轴上表示x和﹣1的两点之间的距离表示为.(3)在数轴上点A表示数a,点B表示数b,点C表示数c,且满足|a+2|+(c ﹣7)2+|b﹣1|=0,若P是数轴上任意一点,点P表示的数是x,当PA+PB+PC =11时,x的值为多少?参考答案1.解:(1)由题意可得a=﹣1,b=1,c=﹣1+1=0 (2)(3)∵BC=(1+5t)﹣(0﹣t)=1+6tAB=(1+5t)﹣(﹣1﹣t)=2+6t∴AB﹣BC=2+6t﹣(1+6t)=1∴AB﹣BC的值不会随着时间的变化而改变,AB﹣BC的值为1.2.解:(1)由最小的正整数为1,得到b=1,∵(c﹣5)2+|a+b|=0,∴a=﹣1,b=1,c=5;故答案为:﹣1;1;5;(2)BC﹣AB的值不随着时间t的变化而改变,∵BC=5+6nt﹣(1+2nt)=4+4nt,AB=1+2nt﹣(﹣1﹣2nt)=2+4nt,∴BC﹣AB=4+4nt﹣(2+4nt)=2,所以BC﹣AB的值不随着时间t的变化而改变.3.解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)①(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.②AC=t+4t+9=5t+9;故答案为:5t+9;(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.4.解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.5.解:(1)∵|a+2|+(b﹣6)2=0,∴a+2=0,b﹣6=0,∴a=﹣2,b=6,∴AB的距离=|b﹣a|=8;(2)设数轴上点C表示的数为c.∵AC=2BC,∴|c﹣a|=2|c﹣b|,即|c+2|=2|c﹣6|.∵AC=2BC>BC,∴点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有﹣2≤c≤6,得c+2=2(6﹣c),解得c=;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c﹣6),解得c=14.故当AC=2BC时,c=或c=14;(3)∵AB=8,∴,∴AF=3AD=4.8,∴点F对应的有理数为﹣2+4.8=2.8,所以与点F最接近的整数是3.6.解:(1)∵(c﹣5)2+|a+b|=0,∴c﹣5=0,a+b=0,b是最小的正整数,∴a=﹣1,b=1,c=5;故答案为:﹣1;1;5;(2)|x+1|﹣|x﹣1|+2|x﹣5|=(x+1)﹣(x﹣1)+2(5﹣x)=x+1﹣x+1+10﹣2x=﹣2x+12,故答案为﹣2x+12;(3)根据题意得,BC=(5+5t)﹣(1+mt)=4+5t﹣mt,AB=(1+mt)﹣(﹣1﹣t)=2+mt+t,∴BC﹣AB=(4+5t﹣mt)﹣(2+mt+t)=2+4t﹣2mt=2+(4﹣2m)t,若BC﹣AB的值保持不变,则4﹣2m=0,∴m=2.7.解:(1)∵a是最大的负整数,∴a=﹣1;∵|a+b|+(c﹣5)2=0,|a+b|≥0,(c﹣5)2≥0,∴a+b=0,c﹣5=0,∴b=﹣a=﹣(﹣1)=1,c=5.故答案为:﹣1,1,5;(2)∵PA+PB+PC=7,∴|x+1|+|x﹣1|+|x﹣5|=7,①当点P在线段AB上,即当﹣1≤x<1时,x+1+1﹣x+5﹣x=7,解得:x=0;②当点P在线段BC上,即当1≤x≤5时,x+1+x﹣1+5﹣x=7,解得:x=2.综上所述,x的值是0或2.(3)设运动时间为t,①当P、Q第一次相遇时,有:3t+t=5﹣(﹣1),解得:t=1.5,此时,相遇点在数轴上对应的数为5﹣1.5=3.5;②当P到达C点返回追上Q时,有:3t﹣t=5﹣(﹣1)解得:t=3,此时,相遇点在数轴上对应的数为5﹣3=2.∴在此运动过程中P,Q的相遇点在数轴上对应的数是3.5或2.8.解:(1)∵(a﹣4)2+|b+6|=0,∴a=4,b=﹣6;(2)设点C对应的数是c,∵AC+BC=AB,∴|x﹣4|+|x+6|=×10=15,∴x=﹣8.5或x=6.5,∴C点对应的数是﹣8.5或6.5;(3)∵点D为A,B中点,∴D点表示的数是﹣1,设P点表示的数是p,∴PA+PB+PD﹣PO=|p﹣4|+|p+6|+|p+1|﹣|p|,当p≤﹣6时,原式=4﹣p﹣p﹣6﹣p﹣1+p=﹣2p﹣3,最小值为9,当﹣6<p<﹣1时,原式=﹣p+4+p+6﹣p﹣1+p=9,当﹣1≤p≤0时,原式=4﹣p+p+6+p+1+p=2p+11,最小值为9,当0<p<4时,原式=4﹣p+p+6+p+1﹣p=11,当p≥4时,原式=p﹣4+p+6+p+1﹣p=2P+3,最小值为11.9.解:(1)∵b是最小的正整数,∴b=1,∵(c﹣5)2+|a+b|=0.∴c=5,a=﹣b=﹣1,故答案为:1,5;(2)①∵将数轴折叠,使得A与C点重合:∴AC的中点表示的数是=2,∴与点B重合的数=2﹣1+2=3,②点P表示的数为2﹣=﹣1008,点Q表示的数为2+=1012,故答案为:①3;②﹣1008;1012;(3)3AC﹣5AB的值不变.理由:3AC﹣5AB=3[(5+3t)﹣(﹣1﹣2t)]﹣5[(1+t)﹣(﹣1﹣2t)]=8,所以4AC﹣5AB的值不变,值为8.10.解:(1)数轴上表示﹣2和1的两点之间的距离是1﹣(﹣2)=3.故答案为:3;(2)数轴上表示x和﹣1的两点之间的距离表示为|x+1|,故答案为:|x+1|;(3)∵|a+2|+(c﹣7)2+|b﹣1|=0,∴a=﹣2,b=1,c=7,∴PA+PC最小值为:7﹣(﹣2)=7+2=9,∵PA+PB+PC=11,∴|x﹣1|+9=11,解得x=3或x=﹣1。
2021中考数学复习专题【实际问题与二次函数】拓展训练一.选择题1.已知关于x的二次三项式(m+1)x2﹣(2m﹣1)x+m的值恒为正,则m的取值范围是()A.且m≠B.m>﹣1C.﹣1<m<D.<m<12.某工厂2017年产品的产量为a吨,该产品产量的年平均增长率为x(x>0),设2019年该产品的产量为y吨,则y关于x的函数关系式为()A.y=a(1﹣x)2B.y=C.y=a(1+x)2D.y=a+a(1+x)+a(1+x)23.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=B.S=C.S=D.S=4.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠和喷头的水平距离x(米)的函数解析式是y=x2+6x(0≤x≤4),那么水珠的高度达到最大时,水珠与喷头的水平距离是()A.1米B.2米C.5米D.6米5.共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y 辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A.y=x2+a B.y=a(1+x)2C.y=(1﹣x)2+a D.y=a(1﹣x)26.已知函数y=+x,下列结论中正确的是()A.有最大值B.有最小值C.有最大值D.有最小值7.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.3或5B.﹣1或1C.﹣1或5D.3或18.关于二次函数y=x2+4x﹣7的最大(小)值,叙述正确的是()A.当x=2时,函数有最大值B.当x=2时,函数有最小值C.当x=﹣1时,函数有最大值D.当x=﹣2时,函数有最小值9.当a,b为实数,二次函数y=a(x﹣1)2+b的最小值为﹣1时有()A.a<b B.a=b C.a>b D.a≥b10.如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m,门宽为2m.若饲养室长为xm,占地面积为ym2,则y关于x的函数表达式为()A.y=﹣x2+26x(2≤x<52)B.y=﹣x2+50x(2≤x<52)C.y=﹣x2+52x(2≤x<52)D.y=﹣x2+27x﹣52(2≤x<52)二.填空题21.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h(单位:m)与水流喷出时间t (单位:s)之间的关系式为h=30t﹣5t2,那么水流从喷出至回落到水池所需要的时间是s.22.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为.23.若P是抛物线y=﹣(x﹣2)2+1的最高点,则点P的坐标是.24.铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣x2+x+,铅球推出后最大高度是m,铅球落地时的水平距离是m.25.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.三.解答题31.如图,从某建筑物9米高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直),如果抛物线的最高点M离墙1米,离地面12米,建立平面直角坐标系,如图.(1)求抛物线的解析式;(2)求水流落地点B离墙的距离OB.32.小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,y与x的几组对应值如下表所示:x(s)00.51 1.52…y(m)08.751518.7520…(Ⅰ)求y关于x的函数解析式(不要求写x的取值范围);(Ⅱ)问:小球的飞行高度能否达到22m?请说明理由.33.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.(1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?(2)若墙体长度为20米,问长方形面积最大是多少?34.某超市购进一批牛肉销售,经过还价,实际价格每千克比原来少2元,发现原来买这批牛肉32千克的钱,现在可买33千克.(1)现在实际购进这批牛肉每千克多少元?(2)若这批牛肉的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.求y与x之间的函数关系式;(3)这批牛肉的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)35.如图,在直角三角形ABC中,直角边AC=6cm,BC=8cm,设P,Q分别为AB,BC上的动点,点P自点A沿AB方向向点B作匀速移动且速度为每秒2cm,同时点Q自点B沿BC方向向点C 作匀速移动且速度为每秒1cm.当P点到达B点时,Q点就停止移动,设P,Q移动的时间t秒.(1)写出△PBQ的面积S(cm2)与时间t(s)之间的函数表达式,并写出t的取值范围.(2)当t为何值时,△PBQ为等腰三角形?参考答案一.选择题1.解:设y=(m+1)x2﹣(2m﹣1)x+m,∵二次三项式(m+1)x2﹣(2m﹣1)x+m的值恒为正,∴(m+1)x2﹣(2m﹣1)x+m>0且2m﹣1≠0,∴在函数y=(m+1)x2﹣(2m﹣1)x+m中,m+1>0且△=[﹣(2m﹣1)]2﹣4(m+1)•m<0且2m﹣1≠0,解得,m>且m≠,故选:A.2.解:根据题意,得:y关于x的函数关系式为y=a(1+x)2,故选:C.3.解:∵∠C=90°,BC=a,AC=b,AB=c,∴a2+b2=c2,∵Rt△ABC的面积S,∴S=ab,∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,∴c2+4S=25,∴S=.故选:A.4.解:方法一:根据题意,得y=x2+6x(0≤x≤4),=﹣(x﹣2)2+6所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.方法二:因为对称轴x==2,所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.故选:B.5.解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选:B.6.解:设=t,则6﹣x=t2,即x=6﹣t2,y=t+6﹣t2=﹣(t﹣)2+,所以当t=时,y有最大值.故选:A.7.解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:C.8.解:原式可化为y=x2+4x+4﹣11=(x+2)2﹣11,由于二次项系数1>0,故当x=﹣2时,函数有最小值﹣11.故选:D.9.解:∵二次函数y=a(x﹣1)2+b的最小值为﹣1,∴a>0,b=﹣1,∴a>b.故选:C.10.解:y关于x的函数表达式为:y=(50+2﹣x)x=﹣x2+26x(2≤x<52).故选:A.二.填空题21.解:∵h=30t﹣5t2,∴当h=0时,t=0或t=6,∴水流从喷出至回落到水池所需要的时间是:6﹣0=6,故答案为:6.22.解:由正方形边长3,边长增加x,增加后的边长为(x+3),则面积增加y=(x+3)2﹣32=x2+6x+9﹣9=x2+6x.故应填:y=x2+6x.23.解:抛物线y=﹣(x﹣2)2+1的最高点P的坐标为(2,1).故答案为(2,1).24.解:∵y=﹣x2+x+,∴y=﹣(x﹣4)2+3因为﹣<0所以当x=4时,y有最大值为3.所以铅球推出后最大高度是3m.令y=0,即0=﹣(x﹣4)2+3解得x1=10,x2=﹣2(舍去)所以铅球落地时的水平距离是10m.故答案为3、10.25.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.三.解答题31.解:(1)根据题意,得A(0,9),顶点M(1,12),设抛物线解析式为y=a(x﹣1)2+12,把A(0,9)代入,得a=﹣3,所以抛物线的解析式为y=﹣3(x﹣1)2+12=﹣3x2+6x+9.答:抛物线的解析式为y=﹣3x2+6x+9.(2)当y=0时,0=﹣3x2+6x+9解得x1=3,x2=﹣1所以B(3,0).答:水流落地点B离墙的距离OB为3米.32.解:(Ⅰ)∵x=0时,y=0,∴设y与x之间的函数关系式为y=ax2+bx(a≠0),∵x=1时,y=15;x=2时,y=20,∴,解得,∴y与x之间的函数关系式为y=﹣5x2+20x;(Ⅱ)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴小球飞行的最大高度为20m,∵22>20,∴小球的飞行高度不能达到22m.33.解:(1)设AB=x,则BC=50﹣2x,长方形面积为y 得:y=x(50﹣2x)=﹣2x2+50x,=﹣2(x﹣)2+,=,当x=时,y最大值BC=50﹣2×=25,答:当AB=米,BC=25米时,面积最大是平方米;(2)若墙体长度是20米,则BC≤20,AB≥15,在函数y=﹣2x2+50x中,a=﹣2<0,当x>时,y随x的增大而减小,=300,所以当x=15时,y最大值答:面积最大为300平方米.34.解:(1)设现在实际购进这种牛肉每千克a元,则原来购进这种牛肉每千克(a+2)元,由题意,得32(a+2)=33a,解得a=64.答:现在实际购进这种牛肉每千克64元;(2)设y与x之间的函数关系式为y=kx+b,将(70,140),(80,40)代入,得,解得,故y与x之间的函数关系式为y=﹣10x+840;(3)设这种牛肉的销售单价为x元时,所获利润为w元,则w=(x﹣64)y=(x﹣64)(﹣10x+840)=﹣10x2+1480x﹣53760=﹣10(x﹣74)2+1000,所以当x=74时,w有最大值1000.答:将这种牛肉的销售单价定为74元时,能获得最大利润,最大利润是1000元.35.解:(1)∵Rt△ABC中直角边AC=6,BC=8,∴AB==10,∴BP=10﹣2t,BQ=t.如图1,过点P作PH⊥BC,垂足为H,∵AC⊥BC,∴△BPH∽△ABC,∴=,即=,解得PH=6﹣t,∴S=BQ•PH=t•(6﹣t)=﹣t2+3t(0<t≤5);(2)①当BP=BQ时,10﹣2t=t,解得t=秒;②如图2,当BQ=PQ时,作QE⊥BD,垂足为E,∵BQ=PQ,QE⊥BD,∴BE=BP=(10﹣2t)=5﹣t,∵∠B=∠B,∠ACB=∠QEB=90°,∴△BQE∽△BAC,∴=,即=,解得t=秒;③如图3,当BP=PQ时,作PF⊥BC,垂足为F,∵BP=PQ,PF⊥BC,∴BF=BQ=t.∵∠B=∠B,∠PFB=∠C=90°,∴△BPF∽△BAC,∴=,即=,解得t=秒.∴当t=秒,t=秒,t=秒时,均使△PBQ为等腰三角形.。
2021年中考数学专题复习:三角形基础一、单选题1.已知等腰△ABC ,AB =AC ,点D 是BC 上一点,若AB =10,BC =12,则△ABD 的周长可能是( )A .15B .20C .28D .36 2.如图,M 是△ABC 的边BC 的中点,AN 是△ABC 的外角平分线,BN ⊥AN 于点N ,且AB =4,MN =2.8,则AC 的长是( )A .1.2B .1.4C .1.6D .1.8 3.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( ) A .4cm ,6cm B .6cm ,8cm C .8cm ,12cm D .20cm ,30cm 4.平面内将一副直角三角板(90A FDE ∠=∠=︒,45F ∠=︒,60C ∠=°,点D 在边AB 上)按图中所示位置摆放,两条斜边,EF BC 互相平行,则BDE ∠等于( )A .20︒B .15︒C .12︒D .10︒ 5.在Rt △ABC 中,∠C =90°,∠A =70°,则∠B 的度数为( )A .20°B .30°C .40°D .70° 6.如图,已知在ABC 中,AB AC =,70ABC ∠=︒,点P 是BAC ∠的平分线AP 和CBD ∠的平分线BP 的交点,射线CP 交AB 的延长线于点D ,则D ∠的度数为( )A .15︒B .17.5︒C .20︒D .22.5︒ 7.已知一个三角形的两条边长分别是3和5,则第三条边的长度不能..是( ) A .2 B .3 C .4 D .58.将一副三角板按如图所示放置,则BFD ∠的度数为( )A .75°B .85°C .95°D .105° 9.三角形的两边长为2和4,第三边长是方程2680x x -+=的根,则这个三角形的周长是( )A .8B .10C .8或10D .不能确定 10.如图,在△ABC 中,已知点D ,E ,F 分别为边AC ,BD ,CE 的中点,且阴影部分图形面积等于4平方厘米,则△ABC 的面积为( )平方厘米A .8B .12C .16D .1811.在三角形中,一定能将其面积分成相等两部分的是( )A .中线B .高线C .角平分线D .某一边的垂直平分线 12.如图,在ABC 中,点D 在边BC 上,且满足AB AD DC ==,过点D 作DE AD ⊥,交AC 于点E .设BAD ∠=α,CAD β∠=,CDE γ∠=,则( )A .23180αβ+=︒B .32180αβ+=︒C .290βγ+=︒D .290βγ+=︒二、填空题 13.等腰三角形一腰上的高与另一腰的夹角为30度,则它的底角的度数为_______14.如图,在ABC 中,D 是ABC 的重心,1BDE S =,则AEC 的面积是________.15.如图,在ABC ∆中,点D 是BC 上的中点,点E 是AD 上的中点,连结BE ,若BDE S ∆=3,则ABC ∆的面积为____.16.一张小凳子的结构如图所示,12∠=∠,若3120∠=︒,则1∠的度数为________.三、解答题17.已知a ,b 是某一等腰三角形的底边长与腰长,且23a b +=.(1)求a 的取值范围;(2)设32ca b +=,求c 的取值范围18.证明:三角形内角和180 .(画出图形,写出已知、求证,并证明)19.如图,在等腰Rt △ABC 中,∠BAC =90°,延长BA 至点D ,连结DC ,过点B 作BE ⊥DC 于点E ,F 为BC 上一点,FC =FE .连结AF ,AE .(1)求证:F A =FE .(2)若∠D =60°,BC =10,求△AEF 的周长.20.如图,ABC 的顶点A ,B ,C 都在小正方形的顶点上,利用网格线按下列要求画图.(1)画111A B C △,使它与ABC 关于直线l 成轴对称;(2)在直线l 上找一点P ,使点P 到点A ,点B 的距离之和最短;(3)在直线l 上找一点Q ,使点Q 到边AC ,BC 的距离相等.21.在ABC 中,ABC ∠与ACB ∠的平分线相交于点P .(1)如图①,如果80A ∠=︒,求BPC ∠的度数;(2)如图②,作ABC 外角MBC ∠,NCB ∠的角平分线,且交于点Q ,试探索Q ∠,A ∠之间的数量关系;(3)如图③,在图②中延长线段BP ,QC 交于点E 若BQE △中存在一个内角等于另一个内角的2倍,求A ∠的度数.22.已知ABC 的周长为37cm ,AD 是BC 边上的中线,23AC BC =.(1)如图,当15AB cm =时,求BD 的长.(2)若14AC cm =,能否求出DC 的长?为什么?参考答案1.C【分析】根据三角形的三边关系求出△ABD的周长的取值范围即可解答.【详解】解:如图,∵两边之和大于第三边,∴AD+DB>AB,∴AD+DB+AB>2AB,即△ABD的周长>20,当D与C重合时,△ABD周长最长,为AB+AC+BC=32,∴20<△ABD周长<32,故选:C.【点睛】本题考查了三角形的三边关系,注意两边之和大于第三边是解题的关键.2.C【分析】延长CA得射线CD,取AB的中点E,连接NE、ME,可证N、E、M三点共线,即MN与AB的交点即为AB的中点E,从而易得ME,由AC=2ME即可求解.【详解】解:延长CA得射线CD,取AB的中点E,连接NE、ME,如图,∵M为BC的中点,∴ME//AC,ME12=AC∵BN⊥AN,∴ANB∆是直角三角形,∴AE=NE12=AB=2又∵AN是△ABC的外角平分线,∴EAN ENA NAD∠=∠=∠∵NEB ENA EAN EAN NAD DAE∠=∠+∠=∠+∠=∠∴NE//AC∴N、E、M三点共线,即MN与AB的交点即为AB的中点E,∵NE=2,MN=2.8∴ME=0.8∴AC=2 ME=20.8⨯=1.6故选:C.【点睛】本题主要考查了直角三角形的性质,中位线的性质,解题的关键是准确作出辅助线,得出M、N、AB的中点三点共线.3.D【分析】平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形,从而可得答案.【详解】解:由平行四边形的对角线互相平分,可得:A、∵2+3<10,∴不能构成三角形,故A不符合题意;B、4+3<10,∴不能构成三角形,故B不符合题意;C、4+6=10,∴不能构成三角形,故C不符合题意;D、1010+>15,∴能构成三角形,故D符合题意;故选:D.【点睛】本题主要考查了平行四边形的性质,三角形的三边之间的关系,解题的关键是掌握平行四边形的对角线互相平分.4.B【分析】依据平行线的性质,即可得到∠BGD 的度数,再根据三角形外角的性质,即可得到∠ADG 的度数,从而求解.【详解】解:如图所示,CB 与FD 交点为G ,∵90A ∠=︒,60C ∠=°∴∠B=30°,∵EF ∥BC ,∴∠F=∠BGD=45°,又∵∠ADG 是△BDG 的外角,∴∠ADG=∠B+∠BGD=30°+45°=75°,∴∠BDE=180°-∠ADG-∠EDF=180°-75°-90°=15°故选:B .【点睛】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.5.A【分析】根据直角三角形的性质直接求解即可.【详解】解:在Rt △ABC 中,∠C =90°,∴∠A +∠B =90°,∵∠A=70°,∴∠B=20°故选:A.【点睛】此题考查了直角三角形的性质,掌握直角三角形两锐角互余是解题的关键.6.A【分析】由AB=AC,根据等腰三角形的性质推出∠ABC=∠ACB=70°,由角平分线的定义推出∠APB=12∠ACB=35°,最后用三角形外角的性质即可得出结论.【详解】解:如图,AP与BC相交于点O,∵AB=AC,∴∠ABC=∠ACB=70°,∴∠CAB=40°,∵点P是△ABC内角和外角角平分线的交点,∴∠APB=12∠ACB=35°,∵AB=AC,AP是∠BAC的平分线,∴AP⊥BC,OB=OC,∴CP=BP,∴∠APC=∠APB=35°,∴∠BPC=70°,∵BP是△ABC的外角的平分线,∴∠PBD=12∠CBD=55°,∴∠D=∠BPC-∠PBD=70°-55°=15°.故选:A.【点睛】本题考查等腰三角形的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.A【分析】设第三边长为x,然后再利用三边关系列出不等式,进而可得答案.【详解】解:设第三边长为x,由题意得:5-3<x<5+3,即:2<x<8,故选:A.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.8.D【分析】由∠BAC=∠ACD=90°,∠ACB=30°可得∠BCD=60°,由三角形外角性质可得∠BFD 的度数.【详解】解:∵∠BAC=∠ACD=90°,∠ACB=30°,∴∠BCD=∠ACD﹣∠ACB=90°﹣30°=60°,∴∠BFD=∠D+∠B CD=45°+60°=105°,故选:D.【点睛】本题考查特殊直角三角形的性质、三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.B【分析】首先解方程x2-6x+8=0得:x1=2,x2=4,再根据三角形的三边关系确定第三边长为x=4,再求出三角形的周长即可.解:解方程x 2-6x +8=0,得:x 1=2,x 2=4,∵2+2=4,∴x =2不合题意舍去,∴x =4,∴这个三角形的周长是:2+4+4=10,故选:B .【点睛】此题主要考查了解一元二次方程,以及三角形的三边关系,关键是正确确定三角形的第三边的长度.10.C【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可.【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=,∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=,∵8AED ECD AEC S S S ∆∆∆+==,∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯,故选:C .【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键.11.A根据三角形的中线、角平分线、高的性质和垂直平分线的性质即可判断.【详解】解:三角形的中线将三角形分成面积相等的两部分,故选:A .【点睛】本题考查三角形的中线的性质,解题的关键是熟练掌握基本概念.12.D【分析】先根据AB AD DC ==,得出B ADB ∠=∠,β∠=∠=C CAD ,再根据三角形的外角得出+γβ∠=AED ,再根据直角三角形的两锐角互余即可得出结论【详解】解:∵AB=AD=DC ,BAD ∠=α,∴B ADB ∠=∠,β∠=∠=C CAD ,∵DE AD ⊥,∴90ADE ∠=︒,∴+90∠∠=CAD AED∵CDE γ∠=,+∠=∠∠AED CDE C∴+γβ∠=AED∴290βγ+=故选:D【点睛】本题考查了等腰三角形的性质和三角形的外角的性质,熟练掌握相关的知识是解题的关键13.30°或60°【分析】由于此高不能确定是在三角形的内部,还是在三角形的外部,所以要分锐角三角形和钝角三角形两种情况求解.【详解】解:分两种情况:①如图,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=12(180°-∠A )=60°; ②如图,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=12(180°-∠BAC )=30°. 故答案为:30°或60°.【点睛】本题考查了等腰三角形的性质和直角三角形的性质.解决问题的关键是根据已知画出图形并注意要分类讨论.14.3【分析】由三角形的重心是三角形三条中线的交点可得:点E 是BC 的中点,点F 是AC 的中点,BD ∶DF=2∶1,进而根据三角形的中线与三角形面积的关系可得:11,22BFC ABC AEC ABC S S S S ==,12BEF BFC S S =,然后由1BDE S =可进行求解.【详解】解:由三角形的重心是三角形三条中线的交点可得:点E 是BC 的中点,点F 是AC 的中点,∴BD ∶DF=2∶1,∴BD ∶BF=2∶3, 由三角形的中线与三角形面积的关系可得:11,22BFC ABC AEC ABC S S S S ==,12BEF BFC S S =, ∴2BFC AEC BEF SS S ==, ∵1BDE S =, ∴3322BEF BDE S S ==, ∴3232AEC S =⨯=; 故答案为3.【点睛】本题主要考查三角形的重心,熟练掌握三角形的重心是解题的关键.15.12【分析】根据中线的性质可得S △ABE =S △BDE =3,从而得到S △ABD =6,根据中线的性质可得S △ADC =S △ABD =6,所以可得△ABC 的面积.【详解】解:∵点E 是AD 上的中点,∴S △ABE =S △BDE =3,∴S △ABD = S △ABE +S △BDE =6,∵点D 是BC 上的中点,∴S △ADC =S △ABD =6,∴S △ABC = S △ADC +S △ABD =12.故答案为12.【点睛】本题考查了三角形中线的性质.三角形中线分三角形所得的两个三角形面积相等. 16.60°【分析】根据三角形外角等于与它不相邻的两个内角之和可得∠1的度数.【详解】解:∵∠3=∠1+∠2,∠1=∠2,∠3=120°, ∴113602∠=∠=︒, 故答案为:60°.【点睛】本题考查三角形外角的性质.能正确识图是解题关键.17.(1)0 1.5a <<;(2)36c <<【分析】(1)根据23a b+=可得23b a -=,再根据三角形三边关系得2b >a ,即可求出a 的取值范围;(2)用含a 的代数式表示c ,再根据a 的取值范围和不等式的性质即可求得c 的取值范围.【详解】解:(1)∵23a b+=, ∴23b a -=,∵a ,b 是某一等腰三角形的底边长与腰长,∴b+b=2b >a >0∴3a a ->>0,解得:0 1.5a <<;(2)∵32ca b +=,23a b +=, ∴32c a b +==3323a a a +-=+∵0 1.5a <<,∴3236a <+<,即36c <<.【点睛】本题考查等式的性质、不等式的性质、解一元一次不等式、三角形的三边关系,掌握不等式的性质,以及三角形的三边关系是解答的关键.18.见解析.【分析】利用平行线的性质,将三角形的三个内角集中到同一个顶点,再由平角为180°,证明解题即可.【详解】已知:如图,ABC求证:180A B C ∠+∠+∠=︒证明:过点A 作//EF BC ,如图,//EF BC1,2B C ∴∠=∠∠=∠12180BAC ∠+∠+∠=︒180A B C ∴∠+∠+∠=︒∴三角形内角和180︒.【点睛】 本题考查三角形的内角和定理、平行线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.(1)见解析;(2)15【分析】(1)证明∠EBC=∠BEF,得出BF=FE=FC,在Rt△BAC中,AF是斜边BC上的中线,即可得出结论;(2)易证∠ACD=30°,∠ABC=∠ACB=45°,则∠ECF=∠ACD+∠ACB=75°,由(1)得F A=FE,AF是斜边BC上的中线,得出AF⊥BC,AF=12BC=5,由FC=FE,推出∠EFC=180°﹣2∠ECF=30°,得出∠AFE=60°,则△AEF是等边三角形,即可得出结果.【详解】(1)证明:∵BE⊥DC,∴∠EBC+∠ECB=∠CEF+∠BEF=90°,∵FC=FE,∴∠ECB=∠CEF,∴∠EBC=∠BEF,∴BF=FE=FC,在Rt△BAC中,AF是斜边BC上的中线,∴F A=FC,∴F A=FE;(2)解:∵∠D=60°,∠BAC=90°,∴∠ACD=30°,∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ECF=∠ACD+∠ACB=30°+45°=75°,由(1)得:F A=FE,AF是斜边BC上的中线,∴AF⊥BC,AF=12BC=5,∵FC=FE,∴∠EFC=180°﹣2∠ECF=180°﹣2×75°=30°,∴∠AFE=90°﹣30°=60°,∴△AEF 是等边三角形,∴△AEF 的周长=3AF =3×5=15.【点睛】本题考查了等腰直角三角形的性质、等腰三角形的判定与性质、直角三角形的性质、三角形内角和定理、等边三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明△AEF 是等边三角形是解题的关键.20.(1)答案见解析;(2)答案见解析;(3)答案见解析【分析】(1)根据轴对称的性质,在网格上分别找到点A 、点B 、点C 的对称点点1A 、点1B 、点1C ,连接11A B 、11A C 、11B C ,即可得到答案;(2)根据轴对称的性质,得1PB PB =;再根据两点之间线段最短的性质,即可得到答案;(3)结合题意,根据角平分线的性质分析,即可得到答案.【详解】(1)如图所示,在网格上分别找到点A 、点B 、点C 的对称点点1A 、点1B 、点1C ,连接11A B 、11A C 、11B C;(2)根据(1)的结论,点B 、点1B 关于直线l 成轴对称∴1PB PB =∴1PA PB PA PB +=+如下图,连接1AB∴当点P 在直线l 和1AB 的交点处时,11PA PB AB +=,为最小值,∴当点P 在直线l 和1AB 的交点处时,PA PB +取最小值,即点P 到点A 、点B 的距离之和最短;(3)如图所示,连接1CC根据题意的:11ACC BCC ∠=∠∴点Q 在直线l 和1CC 的交点处时, 点Q 到边AC ,BC 的距离相等.【点睛】本题考查了轴对称、两点之间线段最短、角平分线的知识;解题的关键是熟练掌握轴对称、两点之间线段最短、角平分线的性质,从而完成求解.21.(1)130︒;(2)1902Q A ∠=︒-∠;(3)A ∠的度数是90°或60°或120° 【分析】(1)运用三角形的内角和定理及角平分线的定义,首先求出∠PBC+∠PCB ,进而求出∠BPC 即可解决问题;(2)根据三角形的外角性质分别表示出∠MBC 与∠BCN ,再根据角平分线的性质可求得∠CBQ+∠BCQ ,最后根据三角形内角和定理即可求解;(3)在△BQE 中,由于∠Q=90°12-∠A ,求出∠E=12∠A ,∠EBQ=90°,所以如果△BQE 中,存在一个内角等于另一个内角的2倍,那么分四种情况进行讨论:①∠EBQ=2∠E=90°;②∠EBQ=2∠Q=90°;③∠Q=2∠E ;④∠E=2∠Q ;分别列出方程,求解即可.【详解】(1)∵80A ∠=︒,∴100ABC ACB ∠+∠=︒,又∵点P 是ABC ∠和ACB ∠的平分线的交点,∴50PBC PCB ∠+∠=︒,∴()180********P PBC PCB ∠=︒-∠+∠=︒-︒=︒;(2)∵外角MBC ∠,NCB ∠的角平分线交于点Q , ∴12QBC MBC ∠=∠,12QCB NCB ∠=∠, ∵180ABC MBC ∠+∠=︒,180ACB NCB ∠+∠=︒,∴180MBC ABC ∠=︒-∠,180NCB ACB ∠=︒-∠, ∴()12QBC QCB MBC NCB ∠+∠=∠+∠ ()13602ABC ACB =︒-∠-∠ ()1360180-2A =︒-︒∠⎡⎤⎣⎦ ()11802A =︒+∠ 1902A =+∠︒, ∴()180Q QBC QCB ∠=︒-∠+∠1180902A ⎛⎫=︒-︒+∠ ⎪⎝⎭ 1902A =︒-∠; (3)延长BC 至F ,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=12∠A,∵∠EBQ=∠EBC+∠CBQ=12∠ABC+12∠MBC=12(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则∠E=30°,解得∠A=2∠E=60°;④∠E=2∠Q,则∠E=60°,解得∠A=2∠E=120°.综上所述,∠A的度数是90°或60°或120°.【点睛】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.22.(1)6cm ;(2)不能求出DC 的长,理由见解析【分析】(1)根据23AC AB =,15AB cm =及ABC 的周长为37cm ,可求得BC ,再根据三角形中线的性质解答即可;(2)利用(1)中的方法,求得BC 的长度,然后根据构成三角形的条件,可判断出△ABC 不存在,进而可知没法求DC 的长.【详解】解:(1)∵23AC AB =,15AB cm =, ∴215103AC cm =⨯=, 又∵ABC 的周长为37cm ,∴37AB AC BC ++=,∴()3737151012BC AB AC cm =--=--=,又∵AD 是BC 边上的中线, ∴()1112622BD BC cm ==⨯=; (2)不能,理由如下: ∵23AC AB =,14AC cm =, ∴()314212AB cm =⨯=, 又∵ABC 的周长为37cm ,∴37AB AC BC ++=,∴()373721142BC AB AC cm =--=--=,∴BC+AC=16<AB=21,∴不能构成三角形,故不能求出DC 的长.【点睛】此题考查三角形的中线、三角形的周长、构成三角形的条件,关键是根据三角形中线的性质解答.。
类型四抛物线形问题【典例1】已知平面直角坐标系xOy (如图1),直线m x y +=的经过点)0,4(-A 和点)3,(n B .(1)求m 、n 的值;(2)如果抛物线c bx x y ++=2经过点A 、B ,该抛物线的顶点为点P ,求ABP ∠sin 的值;(3)设点Q 在直线m x y +=上,且在第一象限内,直线m x y +=与y 轴的交点为点D ,如果DOB AQO ∠=∠,求点Q 的坐标.【答案】:(1)1-=n (2)1010sin =∠ABP (3)(4,8)【解析】:(1) ∵直线m x y +=的经过点)0,4(-A∴04=+-m∴4=m∵直线m x y +=的经过点)3,(n B ∴34=+n∴1-=n(2)由可知点B 的坐标为)3,1(-∵抛物线c bx x y ++=2经过点A 、B ∴⎩⎨⎧=+-=+-310416c b c b∴6=b , 8=c∴抛物线c bx x y ++=2的表达式为862++=x x y∴抛物线862++=x x y 的顶点坐标为)1,3(--P∴23=AB ,2=AP ,52=PB图1∴222PB BP AB =+ ∴︒=∠90PAB∴PB AP ABP =∠sin ∴1010sin =∠ABP(3)过点Q 作x QH ⊥轴,垂足为点H ,则QH ∥y 轴 ∵DOB AQO ∠=∠,QBO OBD ∠=∠∴△OBD ∽△QBO ∴OBDBQB OB = ∵直线4+=x y 与y 轴的交点为点D ∴点D 的坐标为)4,0(,4=OD又10=OB ,2=DB∴25=QB ,24=DQ∵23=AB∴28=AQ ,24=DQ ∵QH ∥y 轴 ∴AQADQH OD = ∴28244=QH ∴8=QH即点Q 的纵坐标是8又点Q 在直线4+=x y 上 点Q 的坐标为)8,4(【典例2】如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.备用图第2题图【答案】(1)(1,-4)(2)3(3))518,56(1-P 或)2,2(2-P 【解析】:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P 综上得)518,56(1-P 或)2,2(2-P 【典例3】已知抛物线经过点(0,3)A 、(4,1)B 、(3,0)C . (1)求抛物线的解析式;(2)联结AC 、BC 、AB ,求BAC ∠的正切值;(3)点P 是该抛物线上一点,且在第一象限内,过点P 作PG AP ⊥交y 轴于点G ,当点G在点A 的上方,且APG △与ABC △相似时,求点P 的坐标.【答案】:(1)解得12523a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩(2)13BC tan BAC AC ===∠ (3)点P 的坐标为(11,36)或1744(,)39【解析】:(1)设所求二次函数的解析式为2(0)y ax bx c a =++≠,将A (0,3)、B (4,)、C (3,0)代入,得 1641,930,3.a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得12523a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩所以,这个二次函数的【解析】式为215322y x x =-+ (2)∵A (0,3)、B (4,)、C (3,0)∴AC =BC =AB =∴222AC BC AB +=∴90ACB =︒∠ ∴21332BC tan BAC AC ===∠ (3)过点P 作PH y ⊥轴,垂足为H设P 215(,3)22x x x -+,则H 215(0,3)22x x -+ ∵A (0,3) ∴21522AH x x =-,PH x = ∵90ACB APG ==︒∠∠∴当△APG 与△ABC 相似时,存在以下两种可能:①PAG CAB =∠∠ 则13tan PAG tan CAB ==∠∠ 即13PH AH = ∴2115322x x x =- 解得11x = ∴点P 的坐标为(11,36)②PAG ABC =∠∠ 则3tan PAG tan ABC ==∠∠即3PH AH = ∴231522x x x =- 解得173x = ∴点P 的坐标为1744(,)39【典例4】平面直角坐标系xOy 中(如图8),已知抛物线2y x bx c =++经过点A (1,0)和B (3,0),与y 轴相交于点C ,顶点为P .(1)求这条抛物线的表达式和顶点P 的坐标; (2)点E 在抛物线的对称轴上,且EA =EC ,求点E 的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN ,点Q 在直线MN 右侧的抛物线图4上,∠MEQ =∠NEB ,求点Q 的坐标.【答案】:(1)P 的坐标是(2,-1)(2)m=2(3)5t =,点E 的坐标为(5,8) 【解析】:(1)∵二次函数2y x bx c =++的图像经过点A (1,0)和B (3,0),∴10930b c b c ++=⎧⎨++=⎩,解得:4b =-,3c =.∴这条抛物线的表达式是243y x x =-+顶点P 的坐标是(2,-1).(2)抛物线243y x x =-+的对称轴是直线2x =,设点E 的坐标是(2,m ).根据题意得:=,解得:m=2, ∴点E 的坐标为(2,2).(3)解法一:设点Q 的坐标为2(,43)t t t -+,记MN 与x 轴相交于点F .作QD ⊥MN ,垂足为D ,则2DQ t =-,2243241DE t t t t =-+-=-+ ∵∠QDE=∠BFE=90°,∠QED=∠BEF ,∴△QDE ∽△BFE ,∴DQ DEBF EF=,∴224112t t t --+=, 解得11t =(不合题意,舍去),25t =.∴5t =,点E 的坐标为(5,8).解法二:记MN 与x 轴相交于点F .联结AE ,延长AE 交抛物线于点Q ,∵AE=BE , EF ⊥AB ,∴∠AEF=∠NEB , 又∵∠AEF=∠MEQ ,∴∠QEM=∠NEB ,点Q 是所求的点,设点Q 的坐标为2(,43)t t t -+, 作QH ⊥x 轴,垂足为H ,则QH =243t t -+,OH =t ,AH =t -1, ∵EF ⊥x 轴,∴EF ∥QH ,∴EF AFQH AH=,∴221431t t t =-+-, 解得11t =(不合题意,舍去),25t =. ∴5t =,点E 的坐标为(5,8).【典例5】在平面直角坐标系xOy 中,已知点B (8,0)和点C (9,3-).抛物线c ax ax y +-=82(a ,c 是常数,a ≠0)经过点B 、C ,且与x 轴的另一交点为A .对称轴上有一点M ,满足MA =MC .(1) 求这条抛物线的表达式; (2) 求四边形ABCM 的面积;(3) 如果坐标系内有一点D ,满足四边形ABCD且AD //BC ,求点D 的坐标. 【答案】:(1)抛物线的表达式:x x y 38312+-=(2)3(3) 点D 的坐标)539,513(-【解析】:(1)由题意得:抛物线对称轴aax 28-=,即4=x . 点B (8,0)关于对称轴的对称点为点A (0,0)∴0=c ,将C (9,-3)代入ax ax y 82-=,得31-=a∴抛物线的表达式:x x y 38312+-=(2)∵点M 在对称轴上,∴可设M (4,y ) 又∵MA =MC ,即22MCMA =∴2222)3(54++=+y y , 解得y =-3, ∴M (4,-3) ∵MC //AB 且MC ≠AB , ∴四边形ABCM 为梯形,,AB =8,MC =5,AB 边上的高h = y M = 3 ∴2393)58(21)(21=⨯+⨯=⨯+=MH MC AB S(3) 将点B (8,0)和点C (9,﹣3)代入b kx y BC += 可得⎩⎨⎧-=+=+3908b k b k ,解得⎩⎨⎧=-=243b k 由题意得,∵AD //BC , 3-=BC k ∴3-=AD k ,xy AD 3-=又∵AD 过(0,0),DC =AB =8,设D (x ,-3x ) 2228)33()9(=+-+-x x , 解得11=x (不合题意,舍去), 5132=x ∴5393-=-=x y ∴点D 的坐标)539,513(-.【典例6】如图,已知在平面直角坐标系xOy 中,抛物线22y ax x c =-+与x 轴交于 点A 和点B (1,0),与y 轴相交于点C (0,3). (1)求抛物线的解析式和顶点D 的坐标; (2)求证:∠DAB=∠ACB ;(3)点Q 在抛物线上,且△ADQ 是以AD 为 底的等腰三角形,求Q 点的坐标.【答案】:(1)顶点坐标D (-1,4).(2)DAB ACB ∠=∠(3)点Q的坐标是⎝⎭,⎝⎭【解析】:(1)把B (1,0)和C (0,3)代入22y ax x c =-+中,得9603a c c ++=⎧⎨=⎩,解得13a c =-⎧⎨=⎩.∴抛物线的解析式是:223y x x =--+. ∴顶点坐标D (-1,4).(2)令0y =,则2230x x --+=,13x =-,21x =,∴A (-3,0)∴3OA OC ==,∴∠CAO =∠OCA .在Rt BOC ∆中,1tan 3OB OCB OC ∠==.∵AC =DC =AD =, ∴2220AC DC +=,220AD =;∴222AC DC AD +=,ACD ∆是直角三角形且90ACD ∠=,∴1tan 3DC DAC AC ∠==,又∵∠DAC 和∠OCB 都是锐角,∴∠DAC =∠OCB . ∴DAC CAO BCO OCA ∠+∠=∠+∠, 即DAB ACB ∠=∠.(3)令(Q x ,)y 且满足223y x x =--+,(3A -,0),(1D -,4)∵ADQ ∆是以AD 为底的等腰三角形,∴22QD QA =,即2222(3)(1)(4)x y x y ++=++-,(第6题图)化简得:220x y -+=. 由222023x y y x x -+=⎧⎨=--+⎩, 解得11341411418x y ⎧-+=⎪⎪⎨-⎪=⎪⎩,22341411418x y ⎧--=⎪⎪⎨+⎪=⎪⎩.∴点Q 的坐标是3411141,48⎛⎫-+- ⎪ ⎪⎝⎭,3411141,48⎛⎫---+ ⎪ ⎪⎝⎭. 【典例7】如图7,在平面直角坐标系xOy 中,直线3y kx =+与x 轴、y 轴分别相交于点A 、B ,并与抛物线21742y x bx =-++的对称轴交于点()2,2C ,抛物线的顶点是点D .(1)求k 和b 的值;(2)点G 是y 轴上一点,且以点B 、C 、G 为顶点的三角形与△BCD 相似,求点G 的坐标;(3)在抛物线上是否存在点E :它关于直线AB 的对称点F 恰好在y 轴上.如果存在,直接写出点E 的坐标,如果不存在,试说明理由.【答案】:(1)b=1(2)点G 有两个,其坐标分别是()0,1和10,2⎛⎫ ⎪⎝⎭ (3)点E 的坐标是91,4⎛⎫- ⎪⎝⎭或92,2⎛⎫ ⎪⎝⎭【解析】:(1) 由直线3y kx =+经过点()2,2C ,可得12k =-.由抛物线21742y x bx =-++的对称轴是直线2x =,可得1b =. (2) ∵直线132y x =-+与x 轴、y 轴分别相交于点A 、B ,∴点A 的坐标是()6,0,点B 的坐标是()0,3.图7xy 11 O∵抛物线的顶点是点D ,∴点D 的坐标是92,2⎛⎫ ⎪⎝⎭. ∵点G 是y 轴上一点,∴设点G 的坐标是()0,m . ∵△BCG 与△BCD 相似,又由题意知,GBC BCD ∠=∠, ∴△BCG 与△BCD 相似有两种可能情况: ①如果BG BC CB CD =52,解得1m =,∴点G 的坐标是()0,1. ②如果BG BC CD CB =,那么352m -,解得12m =,∴点G 的坐标是10,2⎛⎫ ⎪⎝⎭. 综上所述,符合要求的点G 有两个,其坐标分别是()0,1和10,2⎛⎫ ⎪⎝⎭.(3)点E 的坐标是91,4⎛⎫- ⎪⎝⎭或92,2⎛⎫ ⎪⎝⎭.【典例8】已知:如图8,在平面直角坐标系xOy 中,抛物线23y ax bx =++的图像与x 轴交于点A (3,0),与y 轴交于点B ,顶点C 在直线2x =上,将抛物线沿射线AC 的方向平移,当顶点C 恰好落在y 轴上的点D 处时,点B 落在点E 处. (1)求这个抛物线的解析式;(2)求平移过程中线段BC 所扫过的面积;(3)已知点F 在x 轴上,点G 在坐标平面内,且以点C 、E 、F 、G 为顶点的四边形是矩形,求点F 的坐标. .【答案】:(1)抛物线的解析式为243=-+y x x(2)12(3)有152F (,0),252F (-,0),3F )),4F ().【解析】:(1)∵顶点C 在直线2x =上,∴22=-=b x a ,∴4=-b a . 将A (3,0)代入23y ax bx =++,得933=0++a b ,解得1=a ,4=-b .∴抛物线的解析式为243=-+y x x .(2)过点C 作CM ⊥x 轴,CN ⊥y 轴,垂足分别为M 、N .∵243=-+y x x =()221=--x ,∴C (2,1-)∵1==CM MA ,∴∠MAC =45°,∴∠ODA =45°,∴3==OD OA .∵抛物线243=-+y x x 与y 轴交于点B ,∴B (0,3),∴6=BD .∵抛物线在平移的过程中,线段BC 所扫过的面积为平行四边形BCDE 的面积, ∴12262122==⨯⨯⋅=⨯=BCDE BCD S S BD CN . (3)联结CE .∵四边形BCDE 是平行四边形,∴点O 是对角线CE 与BD 的交点,即 OE OC ==(i )当CE 为矩形的一边时,过点C 作1CF CE ⊥,交x 轴于点1F ,设点1F a (,0),在1Rt OCF 中,22211=OF OC CF +, 即 22(2)5a a =-+,解得 52a =,∴点152F (,0) 同理,得点252F (-,0) (ii )当CE 为矩形的对角线时,以点O 为圆心,OC 长为半径画弧分别交x 轴于点3F 、4F ,可得 34=OF OF OC ==3F )、4F ()综上所述:满足条件的点有152F (,0),252F (-,0),3F )),4F ().。
专题43 整体思想运用1.整体思想的含义整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
2.整体思想方法具体应用范围(1)在代数式求值中的应用(2)在因式分解中的应用(3)在解方程及其方程组中的应用(4)在解决几何问题中的应用(5)在解决函数问题中的应用【例题1】(2020•成都)已知a=7﹣3b,则代数式a2+6ab+9b2的值为.【答案】49.【解析】先根据完全平方公式变形,再代入,即可求出答案.∵a=7﹣3b,∴a+3b=7,∴a2+6ab+9b2=(a+3b)2=72=49【对点练习】(2019内蒙古呼和浩特)若x1,x2是一元二次方程x2+x﹣3=0的两个实数根,则x22﹣4x12+17的值为( )A.﹣2 B.6 C.﹣4 D.4【答案】D.【解析】∵x1,x2是一元二次方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1,x1•x2=﹣3,x12+x1=3,∴x22﹣4x12+17=x12+x22﹣5x12+17=(x1+x2)2﹣2x1x2﹣5x12+17=(﹣1)2﹣2×(﹣3)﹣5x12+17=24﹣5x22=24﹣5(﹣1﹣x1)2=24﹣5(x12+x1+1)=24﹣5(3+1)=4【例题2】(2020•衢州)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为.【答案】x2﹣1.【解析】根据规定的运算,直接代值后再根据平方差公式计算即可.根据题意得:(x﹣1)※x=(x﹣1)(x+1)=x2﹣1.【对点练习】分解因式:a2﹣2a(b+c)+(b+c)2【答案】(a﹣b﹣c)2.【解析】分解因式:a 2﹣2a (b +c )+(b +c )2=[a ﹣(b +c )]2=(a ﹣b ﹣c )2.【例题3】(2020•天水)已知a +2b =103,3a +4b =163,则a +b 的值为 .【答案】1【分析】用方程3a +4b =163减去a +2b =103,即可得出2a +2b =2,进而得出a +b =1. 【解析】a +2b =103①,3a +4b =163②,②﹣①得2a +2b =2,解得a +b =1.【对点练习】(2019辽宁本溪)先化简,再求值(﹣)÷,其中a 满足a 2+3a ﹣2=0. 【答案】见解析。
一元二次方程及其应用一、选择题1. 一元二次方程(x+1)(x-1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根2. 一元二次方程x2-4x-1=0配方后可化为()A.(x+2)2=3 B.(x+2)2=5C.(x-2)2=3 D.(x-2)2=53. 一元二次方程x2+2x-3=0的根是()A.x1=1,x2=-3 B.x1=-1,x2=-3C.x1=-1,x2=3 D.x1=1,x2=34. 关于x的一元二次方程x2-2x+sinα=0有两个相等的实数根,则锐角α等于()A. 15°B. 30°C. 45°D. 60°5. 有5人患了流感,经过两轮传染后共有605人患了流感,假设每轮传染中一个人传染相同数量的人,则第一轮传染后患流感的人数为()A.10 B.50 C.55 D.456. 若关于x的一元二次方程x2-2x+m=0无实数根,则实数m的取值范围是() A.m<1 B.m≥1C.m≤1 D.m>17. 关于x的一元二次方程x2+kx-2=0(k为实数)根的情况是()A.有两个不相等的实数根C.没有实数根B.有两个相等的实数根D.不能确定8. 某市2018年GDP比2017年增长了11.5%,由于受到国际因素的影响,2019年的GDP 比2018年增长了7%.若这两年GDP的年平均增长率为x,则x满足的关系式是() A.11.5%+7%=xB.(1+11.5%)×(1+7%)=2(1+x)C.11.5%+7%=2xD.(1+11.5%)×(1+7%)=(1+x)29. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施.调查发现,每件衬衫每降价1元,平均每天可多售出2件,若商场每天要盈利1200元,则每件衬衫应降价()A.5元B.10元C.20元D.10元或20元10. 某专卖店销售一种机床,三月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,每个月就会少售出1台.四月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为()A.3万元B.5万元C.8万元D.3万元或5万元二、填空题11. 一元二次方程2x2-4=-5x的根的判别式Δ=________.12. 一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为.13. 某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡每张的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,设每张贺年卡应降低x个0.1元,则所列方程为__________________________________.14. 相邻的两个自然数,若它们的平方和比这两数中较小数的2倍大51,则这两个自然数分别为________.15. 2018·内江已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为________.16. 某校课外生物小组的试验园地是长32 m,宽20 m的矩形,为了便于管理,现要在试验园地开辟宽度均为x m的小道(图中的阴影部分).(1)如图①,在试验园地开辟一条纵向小道,则剩余部分的面积为________m2(用含x的代数式表示);(2)如图②,在试验园地开辟三条宽度相等的小道,其中一条是横向的,另两条互相平行.若使剩余部分的面积为570 m2,则小道的宽度为________m.三、解答题17. 解方程:(y+2)2=(2y+1)2.18. 解方程:(1)3x 2-4x =2;(2)(x -6)2=2(6-x );(3)x 2-1=4x (用配方法);(4)4(x -3)2=(3x +5)2.19. 2019·北京 若关于x 的方程x 2-2x +2m -1=0有实数根,且m 为正整数,求m 的值及此时方程的根.20. 某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加0.5万元,就会少租出商铺1间(假设年租金的增加额均为0.5万元的整数倍).该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用0.5万元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?21. 古希腊数学家丢番图在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x 2+ax =b 2(a >0,b >0)的方程的图解法是:如图,以a 2和b 为两直角边作Rt△ABC ,再在斜边上截取BD =a 2,则AD 的长就是所求方程的解. (1)请用含字母a ,b 的代数式表示AD 的长;(2)请利用公式法说明该图解法的正确性,并说说这种解法的遗憾之处.答案一、选择题1. 【答案】A2. 【答案】D3. 【答案】A4. 【答案】B 【解析】△方程有两个相等的实数根,∴b 2-4ac =2-4sin α=0,∴sin α=12,又△α为锐角,∴α=30°. 5. 【答案】C6. 【答案】D [解析] △方程无实数根,△Δ=b 2-4ac =(-2)2-4×1·m =4-4m <0,解得m >1.故选D.7. 【答案】A [解析] △a =1,b =k ,c =-2,△Δ=b 2-4ac =k 2-4×1×(-2)=k 2+8>0,△方程有两个不相等的实数根.故选A.8. 【答案】D [解析] 设2017年的GDP 为1,∵2018年的GDP 比2017年增长了11.5%,∴2018年的GDP 为1+11.5%.∵2019年的GDP 比2018年增长了7%,∴2019年的GDP 为(1+11.5%)×(1+7%).∵这两年GDP 的年平均增长率为x ,∴2019年的GDP 也可表示为(1+x )2,∴可列方程为(1+11.5%)×(1+7%)=(1+x )2.9. 【答案】C [解析] 设每件衬衫降价x 元,则每天可售出(20+2x )件,根据题意,得(40-x )(20+2x )=1200,解得x 1=10,x 2=20.∵要扩大销售,减少库存,∴x =20.10. 【答案】D [解析] 设这种机床每台的售价定为x 万元,则x ⎝⎛⎭⎫60-x -20.1=2×60×(1+25%), 解得x 1=3,x 2=5.二、填空题11. 【答案】57 [解析] 原方程移项得2x 2+5x -4=0.这里a =2,b =5,c =-4,△Δ=52-4×2×(-4)=25+32=57.12. 【答案】16[解析]解方程x2-10x+21=0,得x1=3,x2=7,因为已知两边长为3和6,所以第三边长x的范围为:6-3<x<6+3,即3<x<9,所以三角形的第三边长为7,则三角形的周长为3+6+7=16.13. 【答案】(0.3-0.1x)(500+100x)=12014. 【答案】5,6[解析] 设较小的自然数为x,则较大的自然数为(x+1).根据题意,得x2+(x+1)2=2x+51,解得x1=5,x2=-5(舍去).则这两个自然数分别为5,6.15. 【答案】1[解析] 设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0.由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3,∴x3+x4=1.16. 【答案】(1)20(32-x)(2)1[解析] (1)根据题意,得剩余部分的面积为20(32-x)m2.(2)根据题意,得(32-2x)(20-x)=570,解得x1=1,x2=35(不合题意,舍去).即小道的宽度为1 m.三、解答题17. 【答案】解:∵(y+2)2=(2y+1)2,∴(y+2)2-(2y+1)2=0,∴(y+2+2y+1)(y+2-2y-1)=0,∴3y+3=0或-y+1=0,∴y1=-1,y2=1.18. 【答案】解:(1)3x2-4x-2=0,Δ=b2-4ac=(-4)2-4×3×(-2)=40,x =4±402×3=2±103, 所以x 1=2+103,x 2=2-103. (2)(x -6)2+2(x -6)=0,(x -6)(x -6+2)=0,(x -6)(x -4)=0,x -6=0或x -4=0,所以x 1=6,x 2=4.(3)x 2-4x =1,x 2-4x +4=5,(x -2)2=5,x =2±5, 所以x 1=2+5,x 2=2- 5.(4)4(x -3)2-(3x +5)2=0,(2x -6+3x +5)(2x -6-3x -5)=0,(5x -1)(-x -11)=0,5x -1=0或-x -11=0,所以x 1=15,x 2=-11.19. 【答案】解:∵关于x 的方程x 2-2x +2m -1=0有实数根,∴b 2-4ac =4-4(2m -1)≥0,解得m ≤1.∵m 为正整数,∴m =1,∴原方程为x 2-2x +1=0,则(x -1)2=0,解得x 1=x 2=1.20. 【答案】 解:(1)30-13-100.5×1=24(间), ∴当每间商铺的年租金定为13万元时,能租出24间.(2)设每间商铺的年租金增加x 万元,则每间商铺的年租金为(10+x )万元,依题意有(30-x 0.5×1)×(10+x )-(30-x 0.5×1)×1-x 0.5×1×0.5=275, 即2x 2-11x +5=0,解得x 1=5,x 2=0.5.∴当每间商铺的年租金定为10.5万元或15万元时,该公司的年收益为275万元.21. 【答案】12解:(1)△△ACB =90°,BC =a 2,AC =b , △AB =b 2+a 24, △AD =b 2+a 24-a 2=-a +4b 2+a 22. (2)方程x 2+ax =b 2整理,得x 2+ax -b 2=0.Δ=a 2-4×1×(-b 2)=a 2+4b 2>0, △x =-a±a 2+4b 22, 即x 1=-a +4b 2+a 22,x 2=-a -4b 2+a 22. 正确性:AD 的长就是方程的正根.遗憾之处:图解法不能表示方程的负根.二次函数的图象及其性质一、选择题1. 二次函数y=(x -1)2+3的图象的顶点坐标是 ( )A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)2. 若二次函数y =x2+bx +5配方后为y =(x -2)2+k ,则b ,k 的值分别为( )A. 0,5B. 0,1C. -4,5D. -4,13. 已知抛物线y =ax2+bx +c 经过(1,0),(2,0),(3,4)三点,则该抛物线的解析式为( )A .y =x2-3x +2B .y =2x2-6x +4C .y =2x2+6x -4D .y =x2-3x -24. 二次函数y=ax2+bx+c 的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m 为实数).其中结论正确的个数为 ( )A.1个B.2个C.3个D.4个5. 将抛物线y =-3x2平移,得到抛物线y =-3(x -1)2-2,下列平移方式中,正确的是( )A .先向左平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向下平移2个单位长度C .先向右平移1个单位长度,再向上平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度6. 海滨广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的水的最大高度为3米,此时喷水的水平距离为12米.在如图所示的平面直角坐标系中,这( )A .y =-⎝⎛⎭⎫x -122+3 B .y =3⎝⎛⎭⎫x -122+1 C .y =-8⎝⎛⎭⎫x -122+3 D .y =-8⎝⎛⎭⎫x +122+3 7. (2019•成都)如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =8. (2019•咸宁)已知点()()()()1,,1,,2,0A m B m C m n n -->在同一个函数的图象上,这个函数可能是A .y x =B .2y x =-C .2y x =D .2y x =﹣9. 已知函数y =ax2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A. 当a =1时,函数图象过点(-1,1)B. 当a =-2时,函数图象与x 轴没有交点C. 若a >0,则当x≥1时,y 随x 的增大而减小D. 若a <0,则当x≤1时,y 随x 的增大而增大10. 点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y =-x2+2x +c 的图象上,则y1,y2,y3的大小关系是( )A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D. y1=y2>y3二、填空题11. 如果二次函数y =a(x -h)2+k 的图象的顶点坐标为(-1,-3),那么它的对称轴为直线x =________,k 的值为________.12. (2019•株洲)若二次函数2y ax bx =+的图象开口向下,则__________0(填“=”或“>”或“<”).13. 某学习小组为了探究函数y =x2-|x|的图象与性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =________.14. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.15. 已知函数y =ax2+c 的图象与函数y =-3x2-2的图象关于x 轴对称,则a =________,c =________.16. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)三、解答题17. 如图,足球场上守门员徐杨在O处抛出一高球,球从离地面1 m处的点A飞出,其飞行的最大高度是4 m,最高处距离飞出点的水平距离是6 m,且飞行的路线是抛物线的一部分.以点O为坐标原点,竖直向上的方向为y轴的正方向,球飞行的水平方向为x轴的正方向建立坐标系,并把球看成一个点.(参考数据:4 3≈7)(1)求足球的飞行高度y(m)与飞行的水平距离x(m)之间的函数关系式;(不必写出自变量的取值范围)(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(精确到1 m)(3)若对方一名1.7 m的队员在距落地点C 3 m的点H处跃起0.3 m进行拦截,则这名队员能拦到球吗?18. (2019•云南)已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值:(2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标.19. 如图,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x=-1.(1)求此抛物线的解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△PAB的面积的最大值,并求出此时点P的坐标.20. 如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE.求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M ,使得△BDM 的周长为最小,并求△BDM 周长的最小值及此时点M 的坐标.21. 如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S ,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S 的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图22021中考数学 专题训练:二次函数的图象及其性质-答案 一、选择题1. 【答案】A2. 【答案】D 【解析】由y =(x -2)2+k 知此二次函数的顶点坐标为(2,k),对称轴为x=2,由y =x2+bx +5知其对称轴为x =-b 2,得-b2=2,所以b =-4;于是可以得到函数的解析式是y =x2-4x +5,把(2,k)代入其中即得k =1.3. 【答案】B [解析] 把(1,0),(2,0),(3,4)分别代入y =ax2+bx +c ,得⎩⎪⎨⎪⎧a +b +c =0,4a +2b +c =0,9a +3b +c =4,解得⎩⎪⎨⎪⎧a =2,b =-6,c =4,所以y =2x2-6x +4.故选B.4. 【答案】C [解析]①∵抛物线开口向上,∴a>0. ∵抛物线的对称轴在y 轴右侧,∴->0, ∴b<0.∵抛物线与y 轴交于负半轴,∴c<0,∴abc>0,∴①错误; ②当x=-1时,y>0,∴a -b+c>0.∵-=1,∴b=-2a.把b=-2a 代入a -b+c>0中得3a+c>0,∴②正确; ③当x=1时,y<0,∴a+b+c<0,∴a+c<-b.∵a+c>b ,∴|a+c|<|b|,即(a+c)2-b2<0, ∴③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c , ∴a+b+c≤am2+mb+c ,即a+b≤m(am+b),∴④正确.故选C.5. 【答案】D [解析] ∵抛物线y =-3x2的顶点坐标为(0,0),抛物线y =-3(x -1)2-2的顶点坐标为(1,-2),∴将抛物线y =-3x2向右平移1个单位长度,再向下平移2个单位长度,可得到抛物线y =-3(x -1)2-2.6. 【答案】C7. 【答案】D【解析】由图象可知图象与y 轴交点位于y 轴正半轴,故c>0,A 选项错误; 函数图象与x 轴有两个交点,所以24b ac ->0,B 选项错误; 观察图象可知x=-1时y=a -b+c>0,所以a -b+c>0,C 选项错误;根据图象与x 轴交点可知,对称轴是(1,0),(5,0)两点的中垂线,1532x +==,即x=3为函数对称轴,D 选项正确, 故选D .8. 【答案】D【解析】()()1,,1,A m B m -,∴点A 与点B 关于y 轴对称;由于2y x y x ==-,的图象关于原点对称,因此选项A ,B 错误; ∵0n >,∴m n m -<,由()()1,,2,B m C m n -可知,在对称轴的右侧,y 随x 的增大而减小,对于二次函数只有0a <时,在对称轴的右侧,y 随x 的增大而减小, ∴D 选项正确,故选D .9. 【答案】D 【解析】当a =1时,函数为y =x2-2x -1,当x =-1时,y =1+2-1=2,其图象经过点(-1,2),不过点(-1,1),所以A 选项错误;当a =-2时,函数为y =-2x2+4x -1,b2-4ac =16-4×(-2)×(-1)=8>0,抛物线与x 轴有两个交点,故选项B错误;当a>0时,抛物线的开口向上,它的对称轴是直线x =--2a2a=1,当x ≥1,在对称轴的右侧,y 随x 的增大而增大,所以C 选项错误;当a<0时,抛物线的开口向下,它的对称轴是直线x =--2a2a=1,当x ≤1,在对称轴的左侧,y 随x 的增大而增大,所以D 选项正确.10. 【答案】D 【解析】此类题利用图象法比较大小更直观简单.容易求出二次函数y =-x2+2x +c 图象的对称轴为直线x =1,可画草图如解图:由解图知,P1(-1,y1),P2(3,y2)关于直线x =1对称,P3(5,y3)在图象的右下方部分上,因此,y1=y2>y3.二、填空题11. 【答案】-1 -312. 【答案】<【解析】∵二次函数2y ax bx =+的图象开口向下, ∴0a <.故答案为:<.13. 【答案】0.75 【解析】根据表格可得该图象关于y 轴对称,故当x =1.5和x =-1.5时,y 的值相等.∴m =0.75.14. 【答案】21(4)2y x =-【解析】设原来的抛物线解析式为:2y ax =(0)a ≠, 把(2,2)P 代入,得24a =,解得12a =,故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-,把(2,2)P 代入,得212(2)2b =-,解得0b =(舍去)或4b =,所以平移后抛物线的解析式是:21(4)2y x =-,故答案为:21(4)2y x =-.15. 【答案】3 216. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<,即M N <, 故答案为:<.三、解答题 17. 【答案】解:(1)由题意,设y =a(x -6)2+4. △A(0,1)在抛物线上, △1=a(0-6)2+4,解得a =-112,△y =-112(x -6)2+4.(2)令y =0,则0=-112(x -6)2+4,解得x1=4 3+6≈13,x2=-4 3+6<0(舍去),△在没有队员干扰的情况下,球飞行的最远水平距离约是13 m.(3)当x =13-3=10时,y =83>1.7+0.3=2,△这名队员不能拦到球.18. 【答案】(1)∵抛物线y=x2+(k2+k -6)x+3k 的对称轴是y 轴,∴26022b k k x a +-=-=-=,即k2+k -6=0,解得k=-3或k=2, 当k=2时,二次函数解析式为y=x2+6,它的图象与x 轴无交点,不满足题意,舍去,当k=-3时,二次函数解析式为y=x2-9,它的图象与x 轴有两个交点,满足题意, ∴k=-3.(2)∵P 到y 轴的距离为2, ∴点P 的横坐标为-2或2, 当x=2时,y=-5; 当x=-2时,y=-5,∴点P 的坐标为(2,-5)或(-2,-5).19. 【答案】解:(1)设抛物线的解析式为y =ax2+bx +c. 根据题意,得⎩⎪⎨⎪⎧9a -3b +c =0,c =3,-b 2a =-1,解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3.所以抛物线的解析式为y =-x2-2x +3.(2)易知直线AB 的表达式为y =x +3,设P(m ,-m2-2m +3),过点P 作PC ∥y 轴交AB 于点C ,则C(m ,m +3),PC =(-m2-2m +3)-(m +3)=-m2-3m ,所以S△PAB =12×(-m2-3m)×3=-32(m2+3m)=-32(m +32)2+278,所以当m =-32时,S△PAB 有最大值278,此时点P 的坐标为(-32,154).20. 【答案】(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得,0394⎩⎨⎧=+=+b a b a解得,62⎩⎨⎧=-=b a∴抛物线的解析式为y =-2x2+6x ; (2)∵BD ⊥DE , ∴∠BDE =90°,∴∠BDC +∠EDO =90°,又∵∠ODE +∠DEO =90°, ∴∠BDC =∠DEO , 在△BDC 和△DEO 中, ⎩⎪⎨⎪⎧∠BCD =∠DOE =90°∠BDC =∠DEO BD =DE,∴△BDC ≌△DEO(AAS), ∴OD =BC =1,∴D(0,1);(3)如解图,作点B 关于抛物线的对称轴的对称点B ′,连接D B '交抛物线的对称轴于点M.解图∵抛物线对称轴为直线x =a b2-=32,∴点B ′的坐标为(2,4),∵点B 与点B ′关于x =32对称,∴MB =M B ',∴DM +MB =DM +MB ′,∴当点D 、M 、B ′在同一条直线上时,MD +MB 有最小值(即△BMD 的周长有最小值), ∵DC =OC -OD =3,CB ′=2,CB =1,∴D B '=2'2CB DC +=13,BD =22BC DC +=10,∴△BDM 周长的最小值=10+13,设直线D B '的解析式为y =kx +t ,将点D 、B ′的坐标代入得⎩⎪⎨⎪⎧t =12k +t =4,解得⎩⎪⎨⎪⎧k =32t =1,∴直线DB ′的解析式为y =32x +1,将x =32代入得y =134,∴M(32,134).21. 【答案】(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-).(2) 梯形O1A1B1C1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S=36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G . 在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD .由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图4。
专题25 尺规作图☞解读考点知识点名师点晴尺规作图尺规作图概念了解什么是尺规作图五种根本作图1.画一条线段等于线段会用尺规作图法完成五种根本作图,了解五种根本作图的理由,会使用精练、准确的作图语言表达画图过程.2.画一个角等于角3.画线段的垂直平分线4.过点画直线的垂线5.画角平分线会利用根本作图画较简单的图形.1.画三角形会利用根本作图画三角形较简单的图形.2.画圆会利用根本作图画圆.☞2年中考【2021年题组】1.〔2021深圳〕如图,△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,那么以下选项正确的选项是〔〕A.B.C.D.【答案】D.考点:作图—复杂作图.2.〔2021三明〕如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长〔大于12AB〕为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,以下结论错误的选项是〔〕A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC【答案】D.【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.应选D.考点:1.作图—根本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线.3.〔2021福州〕如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为〔〕A.80°B.90°C.100°D.105°【答案】B.【解析】试题分析:如图,AB是以点C为圆心,BC长为半径的圆的直径,因为直径对的圆周角是90°,所以∠AMB=90°,所以测量∠AMB的度数,结果为90°.应选B.考点:1.等腰三角形的性质;2.作图—根本作图.4.〔2021潍坊〕如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.假设BD=6,AF=4,CD=3,那么BE的长是〔〕A.2 B.4 C.6 D.8【答案】D.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—根本作图.5.〔2021嘉兴〕数学活动课上,四位同学围绕作图问题:“如图,直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.〞分别作出了以下四个图形.其中作法错误的选项是〔〕A.B.C.D.【答案】A.考点:作图—根本作图. 6.〔2021衢州〕数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB=c ,一条直角边BC=a .小明的作法如下图,你认为这种作法中判断∠ACB 是直角的依据是〔 〕A .勾股定理B .直径所对的圆心角是直角C .勾股定理的逆定理D .90°的圆周角所对的弦是直径 【答案】B . 【解析】试题分析:由作图痕迹可以看出O 为AB 的中点,以O 为圆心,AB 为半径作圆,然后以B 为圆心BC=a 为半径花弧与圆O 交于一点C ,故∠ACB 是直径所对的圆周角,所以这种作法中判断∠ACB 是直角的依据是:直径所对的圆心角是直角.应选B . 考点:1.作图—复杂作图;2.勾股定理的逆定理;3.圆周 角定理. 7.〔2021自贡〕如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP=3172,并保存作图痕迹.〔备注:此题只是找点不是证明,∴只需连接一对角线就行〕【答案】作图见试题解析.考点:作图—应用与设计作图.8.〔2021北京市〕阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.〞请答复:小芸的作图依据是.【答案】到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线.考点:1.作图—根本作图;2.作图题.9.〔2021百色〕⊙O为△ABC的外接圆,圆心O在AB上.〔1〕在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D〔保存作图痕迹,不写作法与证明〕;〔2〕如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC 于F.①求证:OD⊥BC;②求EF的长.【答案】〔1〕作图见试题解析;〔2〕①证明见试题解析;②321 7.【解析】试题分析:〔1〕按照作角平分线的方法作出即可;〔2〕①由AD是∠BAC的平分线,得到CD BD=,再由垂径定理推论可得到结论;②由勾股定理求得CF的长,然后根据平行线分线段成比例定理求得34EF FDCE AC==,即可求得37EFCF=,继而求得EF的长.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周角定理;5.作图—复杂作图;6.压轴题.10.〔2021南京〕如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.〔要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3〕【答案】答案见试题解析.【解析】试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取试题解析:满足条件的所有图形如下图:考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质;5.综合题;6.压轴题.11.〔2021镇江〕图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.〔1〕如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH〔不写作法,保存作图痕迹〕;〔2〕在〔1〕的前提下,连接OD ,OA=5,假设扇形OAD 〔∠AOD <180°〕是一个圆锥的侧面,那么这个圆锥底面圆的半径等于 .【答案】〔1〕作图见试题解析;〔2〕158.【解析】 试题分析:〔1〕作AE 的垂直平分线交⊙O 于C ,G ,作∠AOG ,∠EOG 的角平分线,分别交⊙O 于H ,F ,反向延长 FO ,HO ,分别交⊙O 于D ,B 顺次连接A ,B ,C ,D ,E ,F ,G ,H ,八边形ABCDEFGH 即为所求;〔2〕由八边形ABCDEFGH 是正八边形,求得∠AOD 的度数,得到AD 的长,设这个圆锥底面圆的半径为R ,根据圆的周长的公式即可求得结论. 试题解析:〔1〕如下图,八边形ABCDEFGH 即为所求;〔2〕∵八边形ABCDEFGH 是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD 的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R ,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图. 12.〔2021广安〕手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在以下四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积〔注:不同的分法,面积可以相等〕【答案】答案见试题解析.〔2〕正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;〔3〕正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;〔4〕正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.试题解析:根据分析,可得:.考点:1.作图—应用与设计作图;2.操作型.13.〔2021孝感〕如图,一条公路的转弯处是一段圆弧〔AB〕.〔1〕用直尺和圆规作出AB所在圆的圆心O;〔要求保存作图痕迹,不写作法〕〔2〕假设AB的中点C到弦AB的距离为20m,AB=80m,求AB所在圆的半径.【答案】〔1〕作图见试题解析;〔2〕50m .试题解析:〔1〕如图1,点O 为所求;〔2〕连接OA ,OC ,OC 交AB 于D ,如图2,∵C 为AB 的中点,∴OC ⊥AB ,∴AD=BD=12AB=40,设⊙O 的半径为r ,那么OA=r ,OD=OD ﹣CD=r ﹣20,在Rt △OAD 中,∵222OA OD BD =+,∴222(20)40r r =-+,解得r=50,即AB 所在圆的半径是50m .考点:1.作图—复杂作图;2.勾股定理;3.垂径定理的应用;4.作图题.14.〔2021宜昌〕如图,一块余料ABCD ,AD ∥BC ,现进行如下操作:以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点G ,H ;再分别以点G ,H 为圆心,大于12GH 的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.〔1〕求证:AB=AE;〔2〕假设∠A=100°,求∠EBC的度数.【答案】〔1〕证明见试题解析;〔2〕40°.考点:1.作图—根本作图;2.等腰三角形的判定与性质.15.〔2021随州〕如图,射线PA切⊙O于点A,连接PO.〔1〕在PO的上方作射线PC,使∠OPC=∠OPA〔用尺规在原图中作,保存痕迹,不写作法〕,并证明PC是⊙O的切线;〔2〕在〔1〕的条件下,假设PC切⊙O于点B,AB=AP=4,求AB的长.【答案】〔1〕作图见试题解析,证明见试题解析;〔2839.【解析】试题分析:〔1〕按照作一个角等于角的作图方法作图即可,连接OA,作OB⊥PC,由角平分线的性质证明OA=OB即可证明PC是⊙O的切线;〔2〕先证明△PAB是等边三角形,那么∠APB=60°,进而∠POA=60°,在Rt△AOP中求出OA,用弧长公式计算即可.试题解析:〔1〕作图如右图,连接OA,过O作OB⊥PC,∵PA切⊙O于点A,∴OA⊥PA,又∵∠OPC=∠OPA ,OB ⊥PC ,∴OA=OB ,即d=r ,∴PC 是⊙O 的切线;〔2〕∵PA 、PC 是⊙O 的切线,∴PA=PB ,又∵AB=AP=4,∴△PAB 是等边三角形,∴∠APB=60°,∴∠AOB=120°,∠POA=60°,在Rt △AOP 中,tan60°=4OA ,∴OA=433,∴431203180AB l π⨯⨯==839π.考点:1.切线的判定与性质;2.弧长的计算;3.作图—根本作图.16.〔2021广州〕如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB=30°.〔1〕利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D ,连接CD 〔保存作图痕迹,不写作法〕;〔2〕在〔1〕所作的图形中,求△ABE 与△CDE 的面积之比.【答案】〔1〕作图见试题解析;〔2〕12.试题解析:〔1〕如下图;考点:1.作图—复杂作图;2.圆周角定理.17.〔2021吉林省〕图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按以下要求画图:〔1〕在图①中,以格点为顶点,AB为一边画一个等腰三角形;〔2〕在图②中,以格点为顶点,AB为一边画一个正方形;〔3〕在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.【答案】〔1〕作图见试题解析;〔2〕作图见试题解析;〔3〕作图见试题解析.【解析】试题分析:〔1〕根据勾股定理,结合网格结构,作出两边分别为5的等腰三角形即可;〔2〕根据勾股定理逆定理,结合网格结构,作出边长为5的正方形;〔3〕根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.试题解析:〔1〕如图①,符合条件的C点有5个:;〔3〕如图③,边长为10的正方形ABCD的面积最大..考点:作图—应用与设计作图.18.〔2021哈尔滨〕图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.〔1〕在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;〔2〕在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于〔1〕中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余〔画出一种即可〕.【答案】〔1〕答案见试题解析;〔2〕答案见试题解析.试题解析:〔1〕如图1所示;〔2〕如图2、3所示;考点:作图—应用与设计作图.19.〔2021六盘水〕如图,Rt △ACB 中,∠C =90°,∠BAC =45°.〔1〕〔4分〕用尺规作图,在CA 的延长线上截取AD =AB ,并连接BD 〔不写作法,保存作图痕迹〕;〔2〕〔4分〕求∠BDC 的度数;〔3〕〔4分〕定义:在直角三角形中,一个锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ,根据定义,利用图形求cot22.5°的值.【答案】〔1〕答案见试题解析;〔2〕22.5°;〔321+.试题解析:〔1〕如图,〔2〕∵AD=AB ,∴∠ADB=∠ABD ,而∠BAC=∠ADB+∠ABD ,∴∠ADB=12∠BAC=12×45°=22.5°,即∠BDC 的度数为22.5°;〔3〕设AC=x ,∵∠C=90°,∠BAC=45°,∴△ACB 为等腰直角三角形,∴BC=AC=x ,AB=2AC=2x ,∴AD=AB=2x ,∴CD=2x x +=(21)x +,在Rt △BCD 中,cot∠BDC=DC BC =(21)xx +=21+,即cot22.5°=21+.考点:1.作图—复杂作图;2.解直角三角形;3.新定义;4.综合题.20.〔2021山西省〕如图,△ABC 是直角三角形,∠ACB=90°.〔1〕尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保存作图痕迹,不写作法,请标明字母;〔2〕在你按〔1〕中要求所作的图中,假设BC=3,∠A=30°,求DE 的长.【答案】〔1〕作图见试题解析;〔232.试题解析:〔1〕如图,⊙C为所求;〔2〕∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt△BCD中,∵cos∠BCD=CDBC ,∴CD=3cos30°=332,∴DE的长=33602180π⋅=32π.考点:1.作图—复杂作图;2.切线的性质;3.弧长的计算;4.作图题.21.〔2021济宁〕如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母〔保存作图痕迹,不写作法〕〔1〕作∠DAC的平分线AM;〔2〕作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜测并判断四边形AECF的形状并加以证明.【答案】〔1〕作图见试题解析;〔2〕作图见试题解析,四边形AECF的形状为菱形.【解析】考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质;4.作图题;5.探究型;6.菱形的判定.22.〔2021宁波〕在边长为1的小正方形组成的方格纸中,假设多边形的各顶点都在方格纸的格点〔横竖格子线的交错点〕上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为b ,那么格点多边形的面积可表示为1-+=nb ma S ,其中m ,n 为常数.〔1〕在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形〔非菱形〕、菱形;〔2〕利用〔1〕中的格点多边形确定m ,n 的值.【答案】〔1〕答案见试题解析;〔2〕112m n =⎧⎪⎨=⎪⎩.〔2〕∵格点多边形内的格点数为a ,边界上的格点数为b ,那么格点多边形的面积可表示为:1-+=nb ma S ,其中m , n 为常数,∴三角形:3816S m n =+-=,平行四边形:3816S m n =+-=,菱形:5416S m n =+-=,那么38165416m n m n +-=⎧⎨+-=⎩,解得:112m n =⎧⎪⎨=⎪⎩.考点:作图—应用与设计作图.23.〔2021杭州〕“综合与实践〞学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.〔1〕用记号〔a ,b ,c 〕〔a≤b≤c 〕表示一个满足条件的三角形,如〔2,3,3〕表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.〔2〕用直尺和圆规作出三边满足a <b <c 的三角形〔用给定的单位长度,不写作法,保存作图痕迹〕.【答案】〔1〕共9种:〔2,2,2〕,〔2,2,3〕,〔2,3,3〕,〔2,3,4〕,〔2,4,4〕,〔3,3,3〕,〔3,3,4〕,〔3,4,4〕,〔4,4,4〕;〔2〕答案见试题解析.【解析】试题分析:〔1〕应用列举法,根据三角形三边关系列举出所有满足条件的三角形;〔2〕首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB ,且取AB=4;②以点A 为圆心,3为半径画弧;以点B 为圆心,2为半径画弧,两弧交于点C ; ③连接AC 、BC .那么△ABC 即为满足条件的三角形.考点:1.作图—应用与设计作图;2.三角形三边关系.24.〔2021温州〕各顶点都在方格纸格点〔横竖格子线的交错点〕上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克〔G•Pick ,1859~1942年〕证明了格点多边形的面积公式121-+=b a S ,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图,4=a ,6=b ,616214=-⨯+=S . 〔1〕请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.〔2〕请在图乙中画一个格点三角形,使它的面积为27,且每条边上除顶点外无其它格点.〔注:图甲、图乙在答题纸上〕【答案】.【解析】试题分析:〔1〕根据皮克公式画图计算即可;〔2〕根据题意可知a=3,b=3,画出满足题意的图形即可.试题解析:〔1〕方法不唯一,如图①或图②所示:〔2〕方法不唯一,如图③或图④所示:考点:作图—应用与设计作图.25.〔2021青岛〕【问题提出】用n根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】〔1〕用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.〔2〕用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.〔3〕用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?假设分成1根木棒、1根木棒和3根木棒,那么不能搭成三角形.假设分成2根木棒、2根木棒和1根木棒,那么能搭成一种等腰三角形.所以,当n=5时,m=1.〔4〕用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?假设分成1根木棒、1根木棒和4根木棒,那么不能搭成三角形.假设分成2根木棒、2根木棒和2根木棒,那么能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①n 3 4 5 6m 1 0 1 1【探究二】〔1〕用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?〔仿照上述探究方法,写出解答过程,并将结果填在表②中〕〔2〕用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?〔只需把结果填在表②中〕表②n 7 8 9 10m你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?〔设n 分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中〕表③n 4k﹣1 4k 4k+1 4k+2m【问题应用】:用2021根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?〔写出解答过程〕,其中面积最大的等腰三角形每腰用了根木棒.〔只填结果〕【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.试题解析:〔1〕用7根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,能搭成二种等腰三角形,即分成2根木棒、2根木棒和3根木棒,那么能搭成一种等腰三角形用10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?分成3根木棒、3根木棒和4根木棒,那么能搭成一种等腰三角形分成4根木棒、4根木棒和2根木棒,那么能搭成一种等腰三角形所以,当n=10时,m=2.故答案为:2;1;2;2.问题解决:由规律可知,答案为:k;k﹣1;k;k.问题应用:2021÷4=504,504﹣1=503,当三角形是等边三角形时,面积最大,2021÷3=672,∴用2021根相同的木棒搭一个三角形,能搭成503种不同的等腰三角形,其中面积最大的等腰三角形每腰用672根木棒.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型;5.综合题;6.压轴题.【2021年题组】1.〔2021·安顺〕用直尺和圆规作一个角等于角,如图,能得出∠A′O′B′=∠AOB的依据是〔〕A.SAS B.SSS C.ASA D.AAS【答案】B.考点:作图—根本作图;全等三角形的判定与性质.2.〔2021涉县一模〕如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:甲:①作OD的垂直平分线,交⊙O于B,C两点.②连接AB,AC.△ABC即为所求作的三角形.乙:①以D为圆心,OD的长为半径作圆弧,交⊙O于B,C两点.②连接AB,BC,CA.△ABC即为所求作的三角形.对于甲、乙两人的作法,可判断〔〕A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确【答案】A.【解析】试题分析:根据甲的思路,作出图形如下:连接OB,BD,∵OD=BD,OD=OB,∴OD=BD=OB,∴△BOD为等边三角形,∴∠OBD=∠BOD=60°,又BC垂直平分OD,∴OM=DM,∴BM为∠OBD的平分线,∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,∴∠BAO=∠ABO=30°,∴∠ABC=∠ABO+∠OBM=60°,同理∠ACB=60°,∴∠BAC=60°,∴∠ABC=∠ACB=∠BAC,∴△ABC 为等边三角形,故乙作法正确,应选A考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.3.〔2021·玉林〕如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O〔保存作图痕迹,不写作法,注意最后用墨水笔加黑〕,并直接写出旋转角度是.【答案】90°.【解析】试题分析:如下图:旋转角度是90°.考点:作图-旋转变换.4.〔2021•河南〕如图,在△ABC中,按以下步骤作图:①分别以B,C 为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,假设CD=AC,∠B=25°,那么∠ACB的度数为【答案】105°.考点:作图—根本作图;线段垂直平分线的性质.5.〔2021•梅州〕如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE,那么:〔1〕∠ADE= ;〔2〕AE EC;〔填“=〞“>〞或“<〞〕〔3〕当AB=3,AC=5时,△ABE的周长=【答案】〔1〕90°;〔2〕=;〔3〕7.考点:线段垂直平分线的性质;勾股定理的应用.☞考点归纳归纳1:作三角形根底知识归纳:利用根本作图作三角形〔1〕三边作三角形;〔2〕两边及其夹角作三角形;〔3〕两角及其夹边作三角形;〔4〕底边及底边上的高作等腰三角形;〔5〕一直角边和斜边作直角三角形.注意问题归纳:用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.【例1】:线段a、c和∠β〔如图〕,利用直尺和圆规作△ABC,使BC=a,AB=c,∠ABC=∠β.〔不写作法,保存作图痕迹〕.【答案】作图见解析.考点:作图—根本作图.归纳2:用角平分线、线段的垂直平分线性质画图根底知识归纳:角平分线的性质:角的平分线上的点到角的两边的距离相等.线段垂直平分线的性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.根本做图如图:【例2】两个城镇A,B与两条公路ME,MF位置如下图,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.【答案】作图见解析.考点:作图—应用与设计作图.归纳3:与圆有关的尺规作图根底知识归纳:〔1〕过不在同一直线上的三点作圆〔即三角形的外接圆〕;〔2〕作三角形的内切圆;〔3〕作圆的内接正方形和正六边形.注意问题归纳:关键是找准圆周心作出圆.【例3】如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A,D两点作⊙O〔用尺规作图,不写作法,保存作图痕迹,并把作图痕迹用黑色签字笔加黑〕【答案】考点:作图—复杂作图.☞1年模拟1.〔2021届山东省胶南市校级模拟〕:用直尺和圆规作图,〔不写作法,保存作图痕迹,〕如图,在∠AOB内,求作点P,使P点到OA,OB的距离相等,并且P点到M,N的距离也相等.【答案】作图见解析.【解析】试题分析:点P到M、N两点的距离相等即作MN的垂直平分线;点P到OA、OB的距离也相等.即作角平分线,两线的交点就是点P的位置.试题解析:如下图:考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质.2.〔2021届广东省黄冈中学校级模拟〕△ABC中,∠C=90°,请利用尺规作出△ABC的内切圆O〔不写作法,请保存作图痕迹〕【答案】作图见解析.考点:1.三角形的内切圆与内心;2.作图—复杂作图.3.〔2021届湖北省宜昌市兴山县模拟考试〕如图:在△ABC中,AD⊥BC,垂足是D.〔1〕作△ABC的外接圆O,作直径AE〔尺规作图〕;〔2〕假设AB=8,AC=6,AD=5,求△ABC的外接圆直径AE的长.【答案】〔1〕作图见解析;〔2〕9.6.试题解析:〔1〕如图:〔2〕证明:由作图可知AE为⊙O的直径,∴∠ABE=90°,〔直径所对的圆周角是直角〕∵AD⊥BC,∴∠ADC=90°,∴∠ABE=∠ADC,∵AB AB=∴∠E=∠C,∴△ABE∽△ADC,∴AC ADAE AB=,即658AB=,∴AE=9.6.考点:1.三角形的外接圆与外心;2.作图—复杂作图.4.〔2021届江苏省盐城模拟考试〕实践操作:如图,在Rt△ABC中,∠ABC=90°,利用直尺和圆规按以下要求作图,并在图中标明相应的字母〔保存作图痕迹,不写作法〕〔1〕作∠BCA的角平分线,交AB于点O;〔2〕以O为圆心,OB为半径作圆.综合运用:在你所作的图中,〔1〕AC与⊙O的位置关系是〔直接写出答案〕〔2〕假设BC=6,AB=8,求⊙O的半径.【答案】实践操作:画图见解析;综合运用:〔1〕相切;〔2〕3.试题解析:实践操作:〔1〕如下图:CO即为所求;〔2〕如下图:⊙O即为所求;综合运用:〔1〕AC与⊙O的位置关系是:相切;考点:1.作图—复杂作图;2.直线与圆的位置关系.。
2021中考数学复习专题【一元二次方程】专项提升训练一.选择题1.方程4x2=5x+81化成一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是()A.4、5、81B.4、﹣5、81C.4、﹣5、﹣81D.﹣4、﹣5、﹣812.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有()A.6人B.7人C.8人D.9人3.关于x的方程3x2﹣2mx=15,有一个根为3,则m的值等于()A.2B.﹣C.﹣2D.4.用配方法将二次三项式x2+4x﹣96变形,结果正确的是()A.(x+2)2﹣100B.(x﹣2)2﹣100C.(x+2)2﹣92D.(x﹣2)2﹣925.对于实数a、b,定义运算“★”如下:a★b=a2﹣ab,如3★2=32﹣3×2,则方程(x+1)★3=2的根的情况是()A.没有实数根B.只有一个实数根C.有两个不相等的实数根D.有两个相等的实数根6.一元二次方程kx2﹣2x﹣2=0有实数根,则k的取值范围是()A.k≥﹣且k≠0B.k≥﹣1C.k≤﹣1且k≠0D.k≥﹣1或k≠07.关于x的一元二次方程x2+(k﹣1)x﹣3=0的一个根是1,则另一根和k的值分别为()A.x=﹣3,k=﹣3B.x=3,k=﹣3C.x=3,k=3D.x=﹣3,k=38.已知x=m是一元二次方程x2+2x+n﹣3=0的一个根,则m+n的最大值等于()A.B.4C.D.9.已知关于x的方程x2﹣kx+9=0可以配方成(x﹣m)2=0的形式,则k的值为()A.3B.6C.﹣6D.±610.如果x=4是关于x的方程(x﹣3)(x﹣2)﹣p2=0的一个根,则另一个根是()A.x=2B.x=3C.x=1D.与p有关,不能确定二.填空题11.方程(2x﹣3)x=3(2x﹣3)的根是.12.某商店今年7月份的销售额是5万元,9月份的销售额是7.2万元,从7月份到9月份,该店销售额平均每月的增长率是.13.一元二次方程y2﹣y﹣=0配方后可化为.14.已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1,x2满足,则m=.15.若一元二次方程x2﹣6x+1=0可以配方成(x+p)2=q的形式,则代数式p+q的值为.三.解答题16.按照要求解方程(1)x2+2x﹣2=0(公式法);(2)(x+2)2﹣4(x﹣3)2=0(因式分解法).17.已知关于x的方程x2﹣6x+k+1=0有两个实数根x1,x2.(1)求实数k的取值范围:(2)若方程的两个实数根x1,x2,=x1x2﹣2,求k的值.18.如图,依靠一面长18米的墙,用34米长的篱笆围成一个矩形场地ABCD,AB边上留2米宽的小门EF(不用篱笆),设AD长为x米,AB长为y米.(1)求y关于x的函数表达式,并直接写出x的取值范围;(2)当矩形场地的面积为160平方米时,求AD的长.19.“阳光玫瑰”葡萄品种是广受各地消费者的青睐的优质新品种,在我国西部区域广泛种植,某葡萄种植基地2018年种植“阳光玫瑰”100亩,到2020年“阳光玫瑰”的种植面积达到256亩.(1)求该基地这两年“阳光玫瑰”种植面积的平均年增长率.(2)市场调查发现,当“阳光玫瑰”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出45千克.①若降价x(0≤x≤20)元,每天能售出多少千克?(用x的代数式表示)②为了推广宣传,基地决定降价促销,同时尽量减少库存,已知该基地“阳光玫瑰”的平均成本价为10元/千克,若要销售“阳光玫瑰”每天获利2125元,则售价应降低多少元?20.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…;x2+2nx﹣8n2=0.小静同学解第1个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从第几步骤开始出现错误的?请把以后正确步骤完成.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)参考答案一.选择题1.解:方程4x2=5x+81,整理得:4x2﹣5x﹣81=0,则二次项系数为4,一次项系数为﹣5,常数项为﹣81.故选:C.2.解:设参加活动的同学有x人,则每人送出(x﹣1)张贺卡,依题意得:x(x﹣1)=42,整理得:x2﹣x﹣42=0,解得:x1=7,x2=﹣6(不合题意,舍去).故选:B.3.解:∵关于x的方程3x2﹣2mx=15的一个根是3,∴3×32﹣6m=15,解得m=2.故选:A.4.解:x2+4x﹣96=x2+4x+4﹣4﹣96=(x+2)2﹣100,故选:A.5.解:∵(x+1)★3=2,∴(x+1)2﹣3(x+1)=2,即x2﹣x﹣4=0,∴△=(﹣1)2﹣4×1×(﹣4)=17>0,∴方程(x+1)★3=2有两个不相等的实数根.6.解:∵一元二次方程kx2﹣2x﹣2=0有实数根,∴△=b2﹣4ac=(﹣2)2﹣4k×(﹣2)=4+8k≥0,k≠0,解得:k≥﹣且k≠0,故选:A.7.解:当x=1时,1+k﹣1﹣3=0,解得:k=3,则x2+2x﹣3=0,设方程x2+2x﹣3=0的解为x1、x2,则有:x1+x2=﹣2,∵x1=1,∴x2=﹣3.∴另一根和k的值分别为x=﹣3,k=3.故选:D.8.解:∵x=m是一元二次方程x2+2x+n﹣3=0的一个根,∴x=m满足一元二次方程x2+2x+n﹣3=0,∴m2+2m+n﹣3=0,∴n=﹣m2﹣2m+3,∴m+n=m﹣m2﹣2m+3=﹣(m﹣)2+≤,∴m+n的最大值为,9.解:∵(x﹣m)2=0,∴x2﹣2mx+m2=0,∵x2﹣kx+9=0可以配方成(x﹣m)2=0的形式,∴m2=9,则m=±3,∴k=2m=±6,故选:D.10.解:(x﹣3)(x﹣2)﹣p2=0,x2﹣5x+6﹣p2=0,设方程的另一个解为x=t,根据题意得4+t=5,解得t=1,∴另一个根是x=1.故选:C.二.填空题11.解:移项得,(2x﹣3)x﹣3(2x﹣3)=0,分解因式得:(2x﹣3)(x﹣3)=0,解得:x1=,x2=3.故答案为:x1=,x2=3.12.解:设该店销售额平均每月的增长率为x,依题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣1.2(不合题意,舍去).故答案是:20%.13.解:∵y2﹣y﹣=0,∴y2﹣y+=1,∴(y﹣)2=1,故答案为(y﹣)2=1.14.解:∵关于x的一元二次方程x2﹣mx+2m﹣1=0的两根是x1、x2,∴x1+x2=m,x1x2=2m﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=m2﹣2(2m﹣1),∵x12+x22=14,∴m2﹣2(2m﹣1)=14,解得m=6或m=﹣2,当m=6时,方程为x2﹣6x+11=0,此时△=(﹣6)2﹣4×11=36﹣44=﹣8<0,不合题意,舍去,∴m=﹣2,故答案为:﹣2.15.解:∵x2﹣6x+1=0,∴x2﹣6x=﹣1,∴x2﹣6x+9=﹣1+9,即(x﹣3)2=8,∴p=﹣3,q=8,则p+q=﹣3+8=5,故答案为:5.三.解答题16.解:(1)∵a=1,b=2,c=﹣2,∴△=22﹣4×1×(﹣2)=12>0,则x===﹣1,即x1=﹣1+,x2=﹣1﹣;(2)∵(x+2)2﹣4(x﹣3)2=0,∴[(x+2)+2(x﹣3)][(x+2)﹣2(x﹣3)]=0,即(3x﹣4)(﹣x+8)=0,则3x﹣4=0或﹣x+8=0,解得x1=,x2=8.17.解:(1)∵关于x的方程x2﹣6x+k+1=0有两个实数根x1,x2.∴△≥0,即62﹣4×(k+1)≥0,解得k≤8,∴k的取值范围为k≤8;(2)∵方程x2﹣6x+k+1=0有两个实数根x1,x2.∴x1+x2=6,x1x2=k+1,∵=x1x2﹣2,∴=x1x2﹣2,∴=k+1﹣2,即(k+1)2﹣2(k+1)﹣120=0,∴k1=11,k2=﹣11,∵k≤8,∴k=﹣11.18.解:(1)∵AD=BC=x米,AB+AD+BC=34+2=36(米),∴AB=(36﹣2x)米.∵,∴9≤x≤17.(2)依题意,得:x(36﹣2x)=160,整理,得:x2﹣18x+80=0,解得:x1=8(不合题意,舍去),x2=10.答:AD的长为10米.19.解:(1)设该基地这两年“阳光玫瑰”种植面积的平均增长率为x,依题意,得:100(1+x)2=256,解得:x1=0.6=60%,x2=﹣2.6(不合题意,舍去).答:该基地这两年“阳光玫瑰”种植面积的平均增长率为60%.(2)①设售价应降低y元,则每天可售出(200+45y)千克;②依题意,得:(20﹣10﹣y)(200+45y)=2125,整理,得:9y2﹣50y+25=0,解得:y1=5,y2=.∵要尽量减少库存,∴y=5.答:售价应降低5元.20.解:(1)小静的解法是从第⑤步骤开始出现错误,正确解法如下:∵x2+2x﹣8=0,∴x2+2x=8,∴x2+2x+1=8+1,即(x+1)2=9,则x+1=±3,∴x=﹣1±3,∴x1=2,x2=﹣4;(2)∵x2+2nx﹣8n2=0,∴x2+2nx=8n2,∴x2+2nx+n2=8n2+n2,∴(x+n)2=9n2,∴x+n=±3n,∴x1=2n x2=﹣4n.。
专题33 中考几何折叠翻折类问题1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。
3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。
(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。
这对解决问题有很大帮助。
(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。
(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。
一般试题考查点圆最值问题。
(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。
【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为( )A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。
2021年中考数学专题复习:三角形的面积1.如图,长方形ABCD中,AB=4cm,BC=3cm,Q为CD的中点.动点P从A点出发,以每秒1cm的速度沿A﹣B﹣C﹣Q运动,最终到达点Q.若点P运动的时间为x 秒,则当x=时,△APQ的面积等于5cm2.2.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于cm2.3.如图,将△ABC沿BC方向平移得到△A'B'C',△ABC与△A'B'C'重叠部分(即图中阴影部分)的面积是△ABC面积的,若,则△ABC平移的距离BB'是.4.在Rt△ABC中,∠C=90°,tan A=,周长为18,则S△ABC=.5.如图,AB∥CD,点P为直线CD上的任意一点,三角形PAB的面积为6,AB=4,则直线AB与CD的距离为.6.如图,AD、CE、BF是△ABC的高,AB=5,BC=4,AD=3,则CE=.7.如图,△ABC的面积为S,BD=BC,AE=AC,连接AD和BE交于点O,连接CO,则△ABO的面积为.若BD=BC,AE=AC,则△ABO的面积为.8.如图,已知直线a∥b,点A、B在直线a上,点C、D在直线b上,且AB:CD=1:2,如果△ABC的面积为3,那么△BCD的面积等于.9.已知点A(﹣4,0),B(2,0),点C在y轴上,且△ABC的面积等于12,则点C 的坐标为.10.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE中点,且S△ABC=4平方厘米,则S△BEF的值为.11.如图,在△ABC中,AD、AE分别是边BC上的中线与高,AE=4,△ABC的面积为12,则CD的长为.12.如图:已知AB∥CD,AB:CD=2:3,△ABC的面积是8,则四边形ABDC的面积是.13.如图,以OA为边的△OAB面积为2,其中点B的横、纵坐标均不超过4,且都不小于0,在下列叙述中,正确的是:.(请写出所有正确的选项)①若点B的横坐标是4,则满足条件的点B有且只有1个;②若点B是整点(即横、纵坐标都是整数),则满足条件的点B有4个;③在坐标系内,对于任意满足题意的点B,一定存在一点C,使得△CAB、△COA、△COB面积相等;④在坐标系内,存在一个定点D,使得对于任意满足条件的点B,△DBA、△DBO面积相等.14.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD 于点O,且∠EOD+∠OBF=180°,∠AFB=∠DGB.则下列结论:①∠CBF=∠AFB;②DG∥BF;③∠DBC=∠DCE;④S△DBC=S△GCF中,一定成立的是(填序号)15.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=18,则S△ADF﹣S△=.BEF16.如图,网格中的小正方形的边长是1,那么阴影部分的面积是.17.在直角坐标系中,如图所示,把∠BAO放在直角坐标系中,使射线AO与x轴重合,已知∠BAO=30°,OA=OB=1,过点B作BA1⊥OB交x轴于A1,过A1做B1A1⊥BA1交直线AB于点B1,过点B1做B1A2⊥B1A1交x轴于点A2,再过A2依次作垂线…,则△A1B1A2的面积为,△A n B n A n+1的面积为.18.如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A 1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C 2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,第n次操作后,得到△A n B n∁n,要使△A n B n∁n的面积超过2020,则至少需要操作次.19.如图,已知AD分别是Rt△ABC的高,AB=9cm,AC=12cm,BC=15cm,则AD的长度是.20.如图,将△ABC沿BC方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的一半,已知BC=2,△ABC平移的距离为.参考答案1.解:①如图1,当P在AB上时,∵△APQ的面积等于5,∴x•3=5,x=;②当P在BC上时,∵△APQ的面积等于5,∴S长方形ABCD﹣S△CPQ﹣S△ADQ﹣S△ABP=5,∴3×4﹣(3+4﹣x)×2﹣×2×3﹣×4×(x﹣4)=5,x=5;③当P在CD上时,∴(4+3+2﹣x)×3=5,x=<3+4,此时不符合;故答案为:或5.2.解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=4cm2,∴S△BEF=1cm2,即阴影部分的面积为1cm2.故答案为1.3.解:如图,设AC与A′B′相交于点D,根据平移的性质,AB∥A′B′,∴△DB′C∽△ABC,∵重叠部分(图中阴影部分)的面积是△ABC的,∴()2=,∵BC=,∴B′C=1,∴BB′=BC﹣B′C=﹣1.故答案为:﹣1.4.解:设Rt△ABC中,两直角边为a、b,斜边为c,由tan A=,得a=5x,b=12x.由勾股定理,得c==13x.由三角形的周长,得5x+12x+13x=18,解得x=,则a=3,b=.S=ab=×3×=,△ABC故答案为.5.解:作PM⊥AB于M,∵AB∥CD,∴PM的长就是两平行线间的距离,∵三角形PAB的面积为6,AB=4,∴=6,即,∴PM=3,故答案为3.6.解:∵,∴,故答案为:.7.解:∵BD=BC,AE=AC,∴S△ABD=S△ACD,S△OBD=S△OCD,∴S△ABO=S△ACO,同理:S△ABO=S△BCO,∴S△ABO=S△ACO=S△BCO,∵S△ABO+S△ACO+S△BCO=S△ABC,∴S△ABO=;若BD=BC,AE=AC,∴S△ABO+S BDO=S,S△ABO+S△AEO=,S△BCO=3S△BDO,S△ACO=3S△AEO,∴S△AEO=﹣S△ABO,S△BDO=S△AEO,∴S△ABO+6S△AEO=S,即S△ABO+6(﹣S△ABO)=S,∴S△ABO=,故答案为,.8.解:∵a∥b,∴△BCD的面积:△ABC的面积=CD:AB=2:1,∴△BCD的面积=3×2=6.故答案为:6.9.解:如右图所示,设C点的坐标是(0,x),∵S△ABC=12,∴×AB×OC=×6•|x|=12,∴|x|=4,故点C的坐标是(0,4)或(0,﹣4).故答案为(0,4)或(0,﹣4).10.解:∵D是BC的中点,∴S△ABD=S△ACD=S△ABC=×4=2cm2,∵E是AD的中点,∴S△BDE=S△CDE=×2=1cm2,∴S△BEF=(S△BDE+S△CDE)=×(1+1)=1cm2.故答案为:1cm2.11.解:∵AE⊥BC,AE=4,△ABC的面积为12,∴×BC×AE=12,∴×BC×4=12,∴BC=6,∵AD是△ABC的中线,∴CD=BC=3,故答案为3.12.解:∵AB:CD=2:3,∴设AB=2a,CD=3a,∵△ABC的面积是8,∴AB边上的高为,∵AB∥CD,∴AB边上的高=CD边上的高=,∴S△BCD=×3a×=12,∴四边形ABDC的面积=8+12=20,故答案为:20.13.解:如图,画出以OA为边的△OAB面积为2的格点B,故①错误,②正确;当点C是三角形OAB的重心时,则△CAB、△COA、△COB面积相等,故③正确;当点D为AO的中点时,则△DBA、△DBO面积相等;故答案为:②③④.14.解:∵∠EOD=∠BOC,∠EOD+∠OBF=180°,∴∠BOC+∠OBF=180°,∴OC∥BF,∴∠ECB=∠ACE=∠AFB,∵CE平分∠ACB,∴∠ECB=∠ACB,∴∠CBF=∠AFB,故①正确,∵∠DCG=∠BCF,∠DGC=∠BFC,∴∠CDG=∠CBF,∴∠CGD=∠CDG=∠CBF=∠CFB,∴DG∥BF,故②正确,∴S△BFD=S△BFG,∴S△BDC=S△GCF,故④正确,无法判断∠DBC=∠ECB,故③错误,故答案为①②④.15.解:∵EC=2BE,∴S△AEC=S△ABC=×18=12,∵点D是AC的中点,∴S△BCD=S△ABC=×18=9,∴S△AEC﹣S△BCD=3,即S△ADF+S四边形CEFD﹣(S△BEF﹣S四边形CEFD)=3,∴S△ADF﹣S△BEF=3.故答案为:3.16.解:如图所示:S=S正方形ABCD﹣S梯形ABEF﹣S△EFH﹣S△HCK﹣S△BDK 四边形形BEHK=3×3﹣﹣﹣﹣=9﹣2﹣﹣1﹣=4故答案为4.17.解:∵OB=OA=1,∴∠BAC=∠ABO=30°,∴∠BOC=60°,∴∠BA1O=30°,∴BA1=,同理∠BB1A1=30°,∴B1A1=()2,同理:B1A2=()3,A2B2=()4,…A nB n=()2n,∴△A1B1A2的面积=×3×3=,△A n B n A n+1的面积=•()2n•()2n×=•32n.18.解:连接A1C,∵AB=A1B,∴△ABC与△A1BC的面积相等,∵△ABC面积为1,∴S△A1BC=1.∵BB1=2BC,∴S△A1B1B=2S△A1BC=2,同理可得,S△C1B1C=2,S△AA1C=2,∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;同理可证△A2B2C2的面积=7×△A1B1C1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2020,最少经过4次操作.故答案为4.19.解:∵AB2+AC2=92+122=225=152=BC2,∴∠BAC=90°,∵AD是边BC上的高,∴S△ACB=AB•AC=BC•AD,∴AB•AC=BC•AD,∵AB=9cm,AC=12cm,BC=15cm,∴AD===(cm),即AD的长度为cm;故答案为:cm.20.解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥EG,∴△ABC∽△GEC,∴=()2=,∴BC:EC=:1,∵BC=2,∴EC=,∴△ABC平移的距离为:BE=2﹣,故答案为2﹣.。
中考复习应用题专题一、列方程解应用题的一般步骤:1.认真审题;找出已知量和未知量;以及它们之间的关系;2.设未知数;可以直接设未知数;也可以间接设未知数;3.列出方程中的有关的代数式;4.根据题中的相等关系列出方程;5.解方程;6.答题。
注:列方程解应用题的关键是找出题中的等量关系二、常见的应用题类型行程问题:1)追及问题:a、两个物体在同一地点不同时间同向出发最后在同一地点的行程问题等量关系:甲路程=乙路程甲速度×甲时间=乙速度×(甲时间+乙先走的时间)b、两个物体从不同地点同时同向出发最后在同一地点的行程问题等量关系:甲路程-乙路程=原相距路程2)相遇问题:两个物体同时从不同地点出发相向而行最后相遇的行程问题等量关系:甲路程+乙路程=相遇路程甲速度×相遇时间+乙速度×相遇时间=原两地的路程3)一般行程问题:等量关系:速度×时间=路程4)航行问题:等量关系:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度练习:1、一队学生去校外进行军事野营训练;他们以5千米/时的速度行进;走了18分钟的时候;学校要将一个紧急通知传给队长;通讯员骑自行车以14千米/时的速度按原路追上去;通讯员用多少时间可以追上学生队伍?2、甲、乙两地相距500 km;新修的高速公路开通后;在甲、乙两地问行驶的长途客运车平均速度提高了40%;而从甲地到乙地的时间缩短了2.5 h;求长途客运车原来的平均车速。
(结果精确到1 km/h)3、客车和货车分别在两条平行的铁轨上行驶;客车长150米;货车长250米.如果两车相向而行;那么从两车车头相遇到车尾离开共需10秒钟;如果客车从后面追货车;那么从客车车头追上货车车尾到客车车尾离开货车车头共需要1分40秒.求两车的速度.4、轮船顺流航行100km和逆流航行60km所用时间相等;已知轮船在静水中航行的速度为21km/h;求水流速度。
2021年中考数学复习专题-【等腰三角形的性质】考点解答题专练(三)1.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.2.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.2.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.4.数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.5.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.6.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE 中AE边上的高,试证明:AE=2CM+BN.7.求证:等腰三角形的两个底角相等(请根据图用符号表示已知和求证,并写出证明过程)已知:求证:证明:8.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.9.如图,在△ABC中,AB=AC,AD是角平分线,点E在AD上,请写出图中两对全等三角形,并选择其中的一对加以证明.10.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.参考答案1.解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=(180°﹣∠B)=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.2.(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.3.解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.4.解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.5.解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)连接AF.∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.6.(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.∵AD=BE,AE=AD+DE,∴AE=BE+DE=BN+2CM.7.解:已知:△ABC中,AB=AC,求证:∠B=∠C;证明:如图,过D作BC⊥AD,垂足为点D,∵AB=AC,AD=AD,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C.8.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠BEC=∠BDC=90°∴△BEC≌△CDB∴∠DBC=∠ECB,BE=CD在△BOE和△COD中∵∠BOE=∠COD,BE=CD,∠BEC=∠BDE=90°∴△BOE≌△COD,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠DOE+∠A=180°∴∠BOC=∠DOE=180°﹣80°=100°.9.解:△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明如下:∵AD平分∠BAC,∴∠BAE=∠CAE.在△ABE和△ACE中,,∴△ABE≌△ACE(SAS).10.证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.。
中考数学专题复习-----有理数
说明:1.考试用时60分钟,满分为100分. 2.考试内容:有理数 评分:
一、选择题(每小题3分,共54分)
1.2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是( ) A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106
2.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元 D .117.2610⨯元
3.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )
A .0ab >
B .0a b +<
C .1a
b <
D .0a b -<
a b 0
4.3
(3)-等于( ) A .-9 B .9 C .-27 D .27 5.计算2)3(-的结果是( ).A .-6 B .9 C .-9 D .6
6.在数轴上表示2-的点离开原点的距离等于( )A .2 B .2- C .2± D .4
7.已知实数a
在数轴上的位置如图所示,则化简|1|a -的结果为
( )
A .1
B .1-
C .12a -
D .21a -
8.2
1-的倒数是 ( ) A .2 B .-2 C .2
1 D .2
1-
9.下面的几个有理数中,最大的数是( ).A .2 B .13
C .-3
D .1
5
-
10.2009)1(-的相反数是( )A .1 B .1- C .2009 D .2009- 11.如果ab<0,那么下列判断正确的是( ).
A .a<0,b<0
B . a>0,b>0
C . a ≥0,b ≤0
D . a<0,b>0或a>0,b<0
12.一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( )
A .1a +
B .21a +
D
1
13. 3(1)-等于( )A.-1 B .1 C .-3 D .3
14.计算2009(1)-的结果是( )A .1- B .1 C .2009- D .2009 15.如果a 与1互为相反数,则|2|a +等于( )A .2 B .2
- C .1 D .1-
16.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( ) A.-10℃ B.-6℃ C.6℃ D.10℃
17.若3)2(⨯-=x ,则x 的倒数是( )A .61- B .6
1 C .6-
D .6
18.实数x ,y 在数轴上的位置如图所示,则( ) A .0>>y x B .0>>x y C .0<<y x D .0<<x y 二、填空题(每小题3分,共30分)
19.三江源实业公司为治理环境污染,8年来共投入23940000元,那么23940000元用科学记数法表示为 元(保留两个有效数字).
20.计算:3
120092-0
⎛⎫+= ⎪⎝⎭
;
21.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 _____元.
22.13
-=_________
;0(=_________;14
-的相反数是_________. 23.黄金分割比是
=
1
0.618033982
=…,将这个分割比用四舍五入法精确到0.001的近似数是 .
24
.若()2
240a c --=,则=+-c b a .
25.用四舍五入法,精确到0.1,对5.649取近似值的结果是 26.若523m x y +与3n x y 的和是单项式,则m n = . 27.若m n
n m -=-,且4m =,3n =,则2()m n += .
28.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子|5|a +在数轴
…
……………………密………………封………………线………………内………………请………………勿………………答………………题……………………
上的意义是 . 三、解答题(每小题3分,共30分)
29.(2009年绵阳市)计算:(-1)2009 + 3(tan 60︒)-1-︱1-3︱+(3.14-π)0.
30.(2009年黄石市)求值1
012|20093tan 303-⎛⎫+--+ ⎪⎝⎭
°
31.(2009年黄石市)求值1
12|20093tan 303-⎛⎫
+--+ ⎪⎝⎭
°
32.(2009河池)计算:)
2
34sin3021-+-+。