高中数学立体几何动点和折叠问题-含答案
- 格式:docx
- 大小:2.20 MB
- 文档页数:20
高二数学立体几何试题答案及解析1.如图,在腰长为2的等腰直角三角形ABC内任取一点P,则点P到直角顶点A的距离小于的概率为【答案】【解析】点P到直角顶点A的距离小于,则点P在以点A为圆心为半径的扇形区域内,则其概率为2.已知长方体中,,点在棱上移动,当时,直线与平面所成角为.【答案】【解析】为直线与平面所成角,,,,所以.【考点】线面角3.已知正四棱台ABCD-A1B1C1D1的高为2,A1B1=1,AB=2,则该四棱台的侧面积等于.【答案】.【解析】因为正四棱台ABCD-A1B1C1D1的高为2,A1B1=1,AB=2,所以正四棱台的斜高,则该四棱台的侧面积为.【考点】正四棱台.4.已知空间中两点A(1,2,3),B(4,2,a),且,则a=()A.1或2B.1或4C.0或2D.2或4【答案】D【解析】或【考点】空间两点间距离5.三棱锥A—BCD的四个顶点同在一个球O上,若AB⊥面BCD,BC⊥CD,AB=BC=CD=1,则球O的表面积等于.【答案】【解析】易知,棱AD的中点即为球心O.由已知条件可得AD=.所以球半径为,则其表面积等于.【考点】多面体与其外接球问题.6.在正方体中,下列几种说法正确的是()A.与成角B.与成角C.D.【答案】A【解析】直线与是异面直线,而∥,所以即为与所成的角.显然三角形是等边三角型,所以.故选A.同时可分别证明答案B、C、D是错误的.【考点】异面直线所成的角及其是否垂直的问题.7.如图是一个几何体的三视图,其中正视图与左视图都是全等的腰为的等腰三角形,俯视图是边长为2的正方形,(1)画出该几何体;(2)求此几何体的表面积与体积.【答案】;【解析】根据题意可得该几何体是正四棱锥,底面为2的的正方形,因为侧面斜高为,所以可得高为2,即可求得表面积与体积试题解析:(1)此几何体是正四棱锥,它的底为边长为2的正方形,侧面斜高为表面积为体积为【考点】1.三视图;2.几何体的体积、表面积公式8.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9B.10C.11D.12【答案】D【解析】根据题中所给的几何体的三视图,可以断定该几何体是下边是一个圆柱,上边是一个球体,且球的半径和圆柱的底面圆的半径是相等的,可知其表面积是圆柱的表面积加上球的表面积,即为,故选D.【考点】根据几何体的三视图,求其表面积.9.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;【答案】(1)(2)【解析】(1)取中点,,连接,则为所求二面角的平面角,找出二面角的平面角再根据题目所给条件即可计算出二面角的大小。
高中数学立体几何动点和折叠问题-含答案1.在正方体ABCD-A1B1C1D1中,BC的中点为M,点P在正方体的表面DCC1D1上移动,且满足∠APD=∠MPC。
求三棱锥P-BCD的体积的最大值。
2.△ABC是边长为23的等边三角形,E、F分别为AB、AC的中点,沿EF把四面体OAEF折起,使点A翻折到点P的位置,连接PB、PC。
当四棱锥P-BCFE的外接球的表面积最小时,求四棱锥P-BCFE的体积。
3.△ABC是边长为23的等边三角形,E、F分别在线段AB、AC上滑动,且EF//BC,沿EF把△AEF折起,使点A翻折到点P的位置,连接PB、PC。
求四棱锥P-BCFE的体积的最大值。
4.已知三棱锥P-ABC满足PA⊥底面ABC,在△ABC中,AB=6,AC=8,且AB⊥AC,D是线段AC上一点,且AD=3DC,球O为三棱锥P-ABC的外接球,过点D作球O的截面。
若所得截面圆的面积的最小值与最大值之和为44π,则求球O的表面积。
5.已知A、B、C、D四点均在半径为R(R为常数)的球O的球面上运动,且AB=AC,AB⊥AC,AD⊥BC。
若四面体ABCD的体积的最大值为V,求V的值。
6.已知A、B、C是球O的球面上的三点,AB=2,AC=23,∠ABC=60°,且三棱锥O-ABC的体积为V。
求V的值。
7.已知三棱柱ABC-A1B1C1内接于一个半径为3的球,四边形A1ACC1与B1BCC1为两个全等的矩形,M是A1B1的中点,且C1M=√3.求三棱锥C1-ABC的体积。
8.在四棱柱ABCD-A1B1C1D1中,底面四边形ABCD是菱形,∠ADC=120°,连接AC,BD交于点O,A1O⊥平面ABCD,AO=BD=4,点C'与点C关于平面BC1D对称。
求三棱锥C'-ABD的体积。
1.删除该题,因为这明显是一道数学计算题,没有文章可言。
2.球O的表面积为4π,则球O的体积为(4/3)π。
立体几何中“折叠问题”的解题策略[例题]如图1,在直角梯形ABCD中,AD∥BC,AB∥BC,BD∥DC,点E是BC边的中点,将∥ABD沿BD折起,使平面ABD∥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB∥平面ADC;(2)若AD=1,二面角CABD的平面角的正切值为6,求二面角BADE的余弦值.[解](1)证明:因为平面ABD∥平面BCD,平面ABD∩平面BCD=BD,BD∥DC,DC∥平面BCD,所以DC∥平面ABD.因为AB∥平面ABD,所以DC∥AB.又因为折叠前后均有AD∥AB,DC∩AD=D,所以AB∥平面ADC.(2)由(1)知AB∥平面ADC,所以二面角CABD的平面角为∥CAD.又DC∥平面ABD,AD∥平面ABD,所以DC∥AD.依题意tan∥CAD =CDAD = 6. 因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1. 依题意∥ABD ∥∥DCB ,所以AB AD =CDBD , 即x 1=6x 2+1,解得x =2,故AB =2,BD =3,BC =BD 2+CD 2=3.以D 为坐标原点,射线DB ,DC 分别为x 轴,y 轴的正半轴,建立如图所示的空间直角坐标系D xyz ,则D (0,0,0), B (3,0,0), C (0,6,0), E (23,26,0), A (33,0,36), 所以DE ―→=(23,26,0),DA ―→=(33,0,36).由(1)知平面BAD 的一个法向量n =(0,1,0). 设平面ADE 的法向量为m =(x ,y ,z ),由⎩⎨⎧m·DE ―→=0,m·DA ―→=0,得⎩⎨⎧32x +62y =0,33x +63z =0.令x =6,得y =-3,z =-3,所以m =(6,-3,-3)为平面ADE 的一个法向量. 所以cos<n ,m>=n ·m |n |·|m |=-12.由图可知二面角B AD E 的平面角为锐角, 所以二面角B AD E 的余弦值为12. 解题策略:1.确定翻折前后变与不变的关系画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.2.确定翻折后关键点的位置所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算.变式练习:1.如图1,在四边形ABCD 中,AD ∥BC ,∥BAD =90°, AB =23,BC =4,AD =6,E 是AD 上的点,AE =13AD , P 为BE 的中点,将∥ABE 沿BE 折起到∥A 1BE 的位置, 使得A 1C =4,如图2.(1)求证:平面A1CP∥平面A1BE;(2)求二面角BA1PD的余弦值.解:(1)证明:如图3,连接AP,PC.∥在四边形ABCD中,AD∥BC,∥BAD=90°,AB=23,BC=4,AD=6,E是AD上的点,AE=13AD,P为BE的中点,∥BE=4,∥ABE=30°,∥EBC=60°,BP=2,∥PC=23,∥BP2+PC2=BC2,∥BP∥PC.∥A1P=AP=2,A1C=4,∥A1P2+PC2=A1C2,∥PC∥A1P.∥BP∩A1P=P,∥PC∥平面A1BE.∥PC∥平面A1CP,∥平面A1CP∥平面A1BE.(2)如图4,以P 为坐标原点,PB 所在直线为x 轴,PC 所在直线为y 轴,过P 作平面BCDE 的垂线为z 轴,建立空间直角坐标系,则A 1(-1,0,3),P (0,0,0),D (-4,23,0), ∥P A 1―→=(-1,0,3), PD ―→=(-4,23,0), 设平面A 1PD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m·P A 1―→=0,m·PD ―→=0,即⎩⎪⎨⎪⎧-x +3z =0,-4x +23y =0,取x =3,得m =(3,2,1).易知平面A 1PB 的一个法向量n =(0,1,0), 则cos 〈m ,n 〉=m ·n |m||n|=22. 由图可知二面角B A 1P D 是钝角, ∥二面角B A 1P D 的余弦值为-22.2.如图1,在高为2的梯形ABCD 中,AB ∥CD ,AB =2,CD =5,过A ,B 分别作AE ∥CD ,BF ∥CD ,垂足分别为E ,F .已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE BCF ,如图2.(1)若AF ∥BD ,证明:DE ∥BE ;(2)若DE ∥CF ,CD =3,在线段AB 上是否存在点P ,使得CP 与平面ACD 所成角的正弦值为3535?并说明理由.解:(1)证明:由已知得四边形ABFE 是正方形,且边长为2, ∥AF ∥BE .∥AF ∥BD ,BE ∩BD =B ,∥AF ∥平面BDE . 又DE ∥平面BDE ,∥AF ∥DE .∥AE ∥DE ,AE ∩AF =A ,∥DE ∥平面ABFE . 又BE ∥平面ABFE ,∥DE ∥BE .(2)当P 为AB 的中点时满足条件.理由如下: ∥AE ∥DE ,AE ∥EF ,DE ∩EF =E ,∥AE ∥平面DEFC . 如图,过E 作EG ∥EF 交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA ―→,EF ―→,EG ―→分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,1,3),D (0,21-,23), AC ―→=(-2,1,3),AD ―→=(-2,21-,23).设平面ACD 的法向量为n =(x ,y ,z ),则⎩⎨⎧ n ·AC ―→=0,n ·AD ―→=0,即⎩⎨⎧-2x +y +3z =0,-2x -12y +32z =0,令x =1,得n =(1,-1,3).设AP ―→=λPB ―→,则P (2,λλ+12,0),λ∥(0,+∞),可得CP ―→=(2,λλ+-11,-3).设CP 与平面ACD 所成的角为θ,则sin θ=|cos<CP ,n>|=52)11(7111⨯+-++---λλλλ=3535,解得λ=1或λ=-25(舍去),∥P 为AB 的中点时,满足条件.。
可编辑修改精选全文完整版立体几何—空间中的动点问题专题综述空间中的动点问题是指在一定的约束条件下,点的位置发生变化,在变化过程中找出规律,将动点问题转化为“定点”问题、将空间问题转化为平面问题、将立体几何的问题转化为解析几何的问题等,目的是把问题回归到最本质的定义、定理或现有的结论中去.立体几何中考查动点问题,往往题目难度较大,渗透化归与转化思想,对学生的逻辑推理能力要求较高.一般考查动点轨迹、动点的存在性、定值、范围、最值等问题,除了利用化动为定、空间问题平面化等方法,在几何体中由动点的变化过程推理出结果以外,也可以通过建系,坐标法构建函数,求得结果.专题探究探究1:坐标法解决动点问题建立空间直角坐标系,使几何元素的关系数量化,借助空间向量求解,省去中间繁琐的推理过程.解题步骤与空间向量解决立体几何问题一致,建立适当的空间直角坐标系由动点的位置关系,如在棱上或面内,转化为向量的关系,用参数表示动点的坐标通过空间向量的坐标运算表示出待求的量若求最值或取值范围,转化为函数问题,但要注意自变量的取值范围.一般坐标法用于解决动点的存在性问题、求最值、求范围问题.说明:对于求最值、范围问题,也可以直接通过几何体中的某个变量,构建函数,求最值或范围.(2022湖北省宜昌市模拟) (多选)在正方体1111ABCD A B C D -中,点为线段1AD 上一动点,则( ) A. 对任意的点,都有1B D CQ ⊥ B. 三棱锥1B B CQ -的体积为定值 C. 当为1AD 中点时,异面直线1B Q 与所成的角最小D. 当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大【审题视点】以正方体为载体考查定点的定值、最值问题,正方体便于建立空间直角坐标系,可选择用坐标法解决.【思维引导】选项,可以用几何知识证明;选项,设出点坐标,用坐标表示出异面直线成角的余弦值或线面角的正弦值,求最值,得出点位置.【规范解析】解:对于:连接,1.CD因为在正方体1111ABCD A B C D -中, 1B D ⊥平面1ACD ,CQ ⊂平面1ACD , 1B D CQ ⊥,故正确; 对于:平面11//ADD A 平面11BCC B ,平面11ADD A 与平面11BCC B 的距离为正方体棱长,1123111326B B CQ Q BCB V V a a a --==⨯⋅=,为定值,故正确;对于:以为坐标原点,直线分别轴,建立空间直角坐标系如下图:设正方体1111ABCD A B C D -的棱长为2, ()[](),0,20,2Q x x x -∈,则1(2,2,2)B , ()2,2,0B , (0,2,0)C , 因此()12,2,B Q x x =---, ()2,0,0BC =-, 设异面直线1B Q 与所成的角为θ,则当时,,当时,当时,故当与1D 重合时,异面直线1B Q 与所成的角最小,故不正确;对于: ()12,2,B Q x x =---, 又是平面11BCC B 的一个法向量,设直线1B Q 与平面11BCC B 所成的角为α,则,所以当1x =时,sin α取得最大值63,而0,2πα⎡⎤∈⎢⎥⎣⎦, 因此α取得最大值,即当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大, 故正确. 故选.ABD用一个参数表示动点的坐标,并求出参数范围,即为函数定义域转化为函数求最值,求出当函数取最值时的x 的值【探究总结】典例1是一道典型的研究动点问题的多选题,难度中等,但能够反映出坐标法研究最值范围问题的思路.建系设坐标,写出参数范围 根据向量运算构造函数求最值.(2021安徽省蚌埠市联考) 已知圆柱1OO 底面半径为1,高为π,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面绕着轴1OO 逆时针旋转(0)θθπ<<后,边11B C 与曲线Γ相交于点.P(1)求曲线Γ长度; (2)当2πθ=时,求点1C 到平面的距离;(3)证明:不存在(0)θθπ<<,使得二面角D AB P --的大小为.4π探究2:化动为定点的位置在变化的过程中,有些量或位置关系是不变的,比如点到平面的距离不变,从而使几何体的体积不变;动点与另外一定点的连线与某条直线始终垂直,与某个平面始终平行.在证明体积为定值、证明位置关系时,要动中寻定,将动态的问题静态化:将动点转化为定点,寻找动直线所在的确定平面,从而解决问题.答题思路:1.动点到平面的距离为定值:证明平面,动点到平面的距离即为定点到平面的距离;2.为动点,为定点,证明:证明所在平面与垂直;3.为动点,为定点,证明平面:证明所在平面与平面平行.(2021湖南省四校联考) 在正三棱柱中,,,分别为的中点,P 是线段DF 上的一点.有下列三个结论:①平面;②;③三棱锥的体积时定值,其中所有正确结论的编号是 A. ①②B. ①③C. ②③D. ①②③【审题视点】求证关于动直线的线面平行或线线垂直,三棱锥的体积为定值问题,要化动为定.【思维引导】证明动直线所在平面与已知平面平行;证明定直线与动直线所在平面垂直;寻找过点与平面平行的直线,即得出点到平面的距离.【规范解析】解:如图,对于①,在正三棱柱中,,分别为的中点,平面平面,由平面,得平面,故①正确;对于②,在正三棱柱中,平面平面,平面平面平面,,平面平面,故②正确;对于③,平面平面,平面到平面的距离为定值,而有为定值,故是定值,线面平行,转化为面面平行异面直线垂直,转化为线面垂直体积的定值问题,转化点到平面的距离是定值,即通过线面平行或面面平行,得出动点到平面距离为定值故③正确.故选D .【探究总结】立体几何证明中经常出现,求证关于动直线的线面平行与线线垂直问题,其思路是转化为证明动直线所在的定平面与其他平面或直线的位置关系.关键是分析动点,动线或动面间的联系,在移动变化的同时寻求规律.(2021云南省曲靖市联考) 如图所示的几何体中,111ABC A B C -为直三棱柱,四边形为平行四边形,2CD AD =,60ADC ∠=︒,1.AA AC =(1)证明:,1C ,1B 四点共面,且11A C DC ⊥;(2)若1AD =,点是上一点,求四棱锥的体积,并判断点到平面11ADC B 的距离是否为定值?请说明理由.探究3: 巧用极端位置由于点位置连续变化,使研究的图形发生连续的变化,利用点的位置变化“极端”位置,避开抽象及复杂的运算,得到结论.常见题型:1.定值问题:几何体中存在动点,但所求结果是确定的,即随着动点位置的改变不会影响所求的量,故可以考虑动点在极端位置的情况,优化解题过程.2.范围问题:几何体中存在动点,结果会随着动点位置改变而改变,当动点从一侧极端位置移动到令一个极端位置的过程中,所求量在增大、或减小、或先增后减、或先减后增,通过求出极端位置处的值,及最值,从而得出范围;3.探究问题:探究满足条件的点是否存在,也可以转化为求出范围,从而得出结论.(2021湖南省株洲市模拟) 在正四面体中, 为棱的中点, 为直线上的动点,则平面与平面夹角的正弦值的取值范围是 .【审题视点】本例可用极端位置法分析,也可以建系,用坐标法解决.【思维引导】借助极端位置分析,不难看出经过和底边中线的平面与平面垂直,点在移动的过程中,存在一个位置使平面与经过和底边中线的平面平行,即平面平面,此时两平面所成角为,角最大;当点移动到无穷远时,平面平面,此时两平面所成角最小.【规范解析】解:由下左图 设为的中心,为的中点, 则在正四面体中平面, 为中点,为的中点,,故平面连接,并延长交于点, 连接,并延长交于点, 则过点的平面交直线于点. 则平面平面 即平面与平面的夹角的正弦值为1,点从取最值的位置处移动至直线的无穷远处的过程中, 平面与平面的夹角逐渐减小,即当点在无穷远处时,看作, 如下右图 故平面与平面的夹角即为平面与平面的夹角,求出其正弦值为. 综上可知:面与面的夹角的正弦值的取值范围为.【探究总结】借助极端位置解决典例3中的问题,首先利用几何知识,明确点在移动的过程中 ,所求量的变化情况,若在极端位置处取“最值”,问题就简化为求出极端位置处的值.(2021浙江省杭州市高三模拟)高为1的正三棱锥的底面边长为,二面角与二面角A PB C --之和记为,则在从小到大的变化过程中,的变化情况是( )A .一直增大B .一直减小C .先增大后减小D .先减小后增大专题升华结合几何知识,两平面成角的变化过程,即动点从一个极端位置变化到另一极端位置时,夹角大小的增减情况在极端位置处取“最值”,直接求出点该处时的夹角的正弦值,即为范围区间的一个端点几何体中研究动点问题往往难度较大,开放性强,技巧性高.总体思路是:用几何知识,经过逻辑推理,证明位置关系或求出表示出所求量;或者建立空间直角坐标系,将几何问题代数化,用空间向量研究动点问题,省去了繁杂的推理环节,但计算量较大.解决动点问题的策略不局限与上述方法,常用的的方法还有:运用条件直接推算,借助条件将几何体还原到长方体中去;构造函数,数形结合;还将空间问题转化为平面几何解决,如化折为直、利用解析几何的知识解决. 但只要我们熟练掌握这些基本方法,并灵活加以应用,不仅能化繁为简,化难为易,而且还可以得到简捷巧妙的解法.【答案详解】 变式训练1【解答】解:(1)在侧面展开图中为的长,其中AB AD π==,∴曲线Γ的长为2;π(2)当2πθ=时,建立如图所示的空间直角坐标系,则有()0,1,0A -、()0,1,0B 、1,0,2P π⎛⎫- ⎪⎝⎭、()11,0,C π-, 、(1,1,)2AP π=-、1(1,0,)OC π=-设平面的法向量为(,,)n x y z =,则2002n AB y n AP x y z π⎧⋅==⎪⎨⋅=-++=⎪⎩, 取2z =得(,0,2)n π=,所以点1C 到平面的距离为12||||4OC n d n ππ⋅==+; (3)假设存在满足要求的(0)θθπ<<, 在(2)的坐标系中,()sin ,cos ,P θθθ-,,设平面的法向量为111(,,)m x y z =,则111120sin (cos 1)0y x y z θθθ=⎧⎨-+++=⎩,取11x =得sin (1,0,)m θθ=,又平面的法向量为(1,0,0)k =,由二面角D AB P --的大小为4π, 则|cos ⟨,m k ⟩2212|sin .21sin θθθθ==⇒=+ sin (0)2πθθθ<<<,0θπ∴<<时,均有sin θθ<,与上式矛盾.所以不存在(0)θθπ<<使得二面角D AB P --的大小为.4π 变式训练2【解答】(1)证明:因为111ABC A B C -为直三棱柱, 所以,且,又四边形为平行四边形,//BC AD ,且BC AD =,,且,四边形为平行四边形,,1B 四点共面;,又1AA ⊥平面,AC ⊂平面,,四边形11A ACC 为正方形,连接1AC 交1A C 于,,在ADC ∆中,2CD AD =,,由余弦定理得,,所以,AD AC ⊥,又1AA ⊥平面ABCD ,AD ⊂平面ABCD ,1AA AD ⊥,,1AA ⊂平面11A ACC ,,AD ⊥平面11A ACC ,1AC ⊂平面11A ACC ,所以,又,平面,1A C ⊥平面, 1DC ⊂平面,(2)解:由(1)知:1A C ⊥平面,在Rt DAC 中,由已知得3AC =,,四棱锥的体积,//BC AD ,点到平面的距离为定值,即为点到平面的距离变式训练3【解析】解:设二面角为,二面角A PB C --为,当时,正三棱锥趋向于变为正三棱柱,;当时,正三棱锥趋向变为平面,.当正三棱锥为正四面体时,且,,故.当从小变大时,要经过从变为小于的角,然后变为的过程, 故只有选项符合.故选:.静夜思[ 唐] 李白原文译文对照床前明月光,疑是地上霜。
高考热点问题:立体几何中折叠问题一、考情分析立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等.二、经验分享(1)立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开.把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.把一个几何体的表面伸展为一个平面图形从而研究几何体表面上的距离问题,这就是几何体的表面展开问题.折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程.此类问题也是历年高考命题的一大热点. (2) 平面图形通过折叠变为立体图形,就在图形发生变化的过程中,折叠前后有些量(长度、角度等)没有发生变化,我们称其为“不变量”.求解立体几何中的折叠问题,抓住“不变量”是关键.(3)把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.三、题型分析(一) 平面图形的折叠解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.不变的线线关系,尤其是平面图形中的线线平行、线线垂直关系是证明空间平行、垂直关系的起点和重要依据;不变的数量关系是求解几何体的数字特征,如几何体的表面积、体积、空间中的角与距离等的重要依据.1. 折叠后的形状判断【例1】如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)①②③④⑤⑥【分析】根据平面图形的特征,想象平面图形折叠后的图形进行判断.也可利用手中的纸片画出相应的图形进行折叠.【答案】①③⑥【解析】①③⑥可以.②把横着的小方形折起后,再折竖着的小方形,则最上方的小方形与正方体的一个侧面重合,导致正方体缺少一个侧面;④把下方的小方形折起后,则上方的小方形中的第1,2个重合,导致正方体的底面缺少,不能折成正方体;⑤把中间的小方形当成正方体的底面,则右下方的小方形折叠不起来,构不成正方体.【小试牛刀】下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A. B. C. D.【例2】将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四边形ABCD(如图2),则在空间四边形ABCD中,AD与BC的位置关系是( )图1 图2A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,折叠后如图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD 、CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC .【小试牛刀】如图,在正方形ABCD 中,点E,F 分别为边BC,AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,在翻折过程中( )A. 点A 与点C 在某一位置可能重合B. 点A 与点C 的最大距离为C. 直线AB 与直线CD 可能垂直D. 直线AF 与直线CE 可能垂直 3.折叠后几何体的数字特征折叠后几何体的数字特征包括线段长度、几何体的表面积与体积、空间角与距离等,设计问题综合、全面,也是高考命题的重点.解决此类问题的关键是准确确定折叠后几何体的结构特征以及平面图形折叠前后的数量关系之间的对应.【例3】(体积问题)如图所示,等腰ABC △的底边66AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积.(1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?PED F B CA【解析】(1)由折起的过程可知,PE ⊥平面ABC,96ABC S ∆=,V(x)= (036x <<)(2),所以(0,6)x ∈时,'()0v x > ,V(x)单调递增;636x <<时'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值126.【小试牛刀】【河北省五个一名校联盟2019届高三下学期一诊】在平面四边形 中,AB=BC=2,AC=AD=2,现沿对角线AC 折起,使得平面DAC平面ABC ,则此时得到的三棱锥D-ABC外接球的表面积为( ) A .B .C .D .【例4】(空间角问题)如左图,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如右图所示),连结AP 、EF 、PF ,其中25PF =.(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.【解析】(Ⅰ)由翻折不变性可知, , ,在PBF ∆中, ,所以PF BF ⊥ 在图1中,易得,在PEF ∆中, ,所以PF EF ⊥又,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .. .ACDBEF图图ABCD PEF(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,,()0,3,0E ,()6,8,0F ,所以, ,,设平面PEF 的法向量为(),,x y z =n ,则0FP EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,解得560x y z ⎧=-⎪⎨⎪=⎩令6y =-,得,设直线AP 与平面PEF 所成角为θ,则81281427. 所以直线AP 与平面PEF 所成角的正弦值为81281427. 方法二:过点A 作AH EF ⊥于H ,由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED 所以PF AH ⊥,又,EF ⊂平面PEF ,PF ⊂平面PEF ,所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. 在Rt APF ∆中,在AEF ∆中,由等面积公式得4861在Rt APH ∆中,所以直线AP 与平面PEF 所成角的正弦值为81281427. 【点评】折叠问题分析求解两原则:解法二图ABCD PEFHxy z 解法一图A BC D PEF(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变.【小试牛刀】【广东省汕头市2019届高三上学期期末】如图,已知是边长为6的等边三角形,点D、E分别是边AB、AC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED.求证:平面BCED;记的中点为M,求二面角的余弦值.(二) 几何体的展开几何体表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面距离的问题,解题时不妨将它展开成平面图形试一试.1.展开后形状的判断【例5】把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是()解析:这是图③模型,在右图中,把中间的四个正方形围起来做“前后左右”四个面,有“空心圆”的正方形做“上面”,显然是正方体C的展形图,故选(C).【小试牛刀】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.2.展开后的数字特征——表面上的最短距离问题【例6】如图,已知圆柱体底面圆的半径为2π,高为2,AB CD,分别是两底面的直径,AD BC,是母线.若一只小虫从A点出发,从侧面爬行到C点,求小虫爬行的最短路线的长度.【解析】如图,将圆柱的侧面展开,其中AB为底面周长的一半,即,2AD=.则小虫爬行的最短路线为线段AC.在矩形ABCD中,.所以小虫爬行的最短路线长度为22.【点评】几何体表面上的最短距离需要将几何体的表面展开,将其转化为平面内的最短距离,利用平面内两点之间的距离最短求解.但要注意棱柱的侧面展开图可能有多种展开图,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.【小试牛刀】如图,在长方体中, ,求沿着长方体表面从A到1C的最短路线长.四、迁移运用1.【浙江省2019年高考模拟训练】已知四边形中,,,在将沿着翻折成三棱锥的过程中,直线与平面所成角的角均小于直线与平面所成的角,设二面角,的大小分别为,则()A. B. C.存在 D.的大小关系无法确定【答案】B【解析】如图,在三棱锥中,作平面于,连,则分别为与平面所成的角.∵直线与平面所成角的角均小于直线与平面所成的角,∴.过作,垂足分别为,连,则有,∴分别为二面角,的平面角,∴.在中,,设BD的中点为O,则为边上的中线,由可得点H在CO的左侧(如图所示),∴.又,∴.又为锐角, ∴.故选B .2.【四川省德阳市2018届高三二诊】以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( ) A. ①②③ B. ②③④ C. ①②④ D. ①③④ 【答案】C【解析】由于三角形ABC 为等腰直角三角形,故,所以BD ⊥平面ACD ,故①正确,排除B 选项.由于AD BD ⊥,且平面ABD ⊥平面ACD ,故AD ⊥平面BCD ,所以AD CD ⊥,由此可知,三角形为等比三角形,故②正确,排除D 选项.由于,且ABC ∆为等边三角形,故点D 在平面ABC 内的射影为ABC ∆的外接圆圆心, ④正确,故选C .3.已知梯形如下图所示,其中,,为线段的中点,四边形为正方形,现沿进行折叠,使得平面平面,得到如图所示的几何体.已知当点满足时,平面平面,则的值为( )A. B. C. D.【答案】C 【解析】因为四边形为正方形,且平面平面,所以两两垂直,且,所以建立空间直角坐标系(如图所示),又因为,,所以,则,,设平面的法向量为,则由得,取,平面的法向量为,则由得,取,因为平面平面,所以,解得.故选C.4.如图是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论错误的是( )A .点M 到AB 的距离为22B .AB 与EF 所成角是90︒C .三棱锥C DNE -的体积是16D .EF 与MC 是异面直线 【答案】D【解析】根据正方体的平面展开图,画出它的立体图形如图所示,A 中M 到AB 的距离为222MC =,A 正确;AB 与EF 所成角是90︒,B 正确;三棱锥C DNE -的体积是,C 正确;//EF MC ,D 错误.5.把正方形ABCD 沿对角线AC 折起,当以四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )度A .90B .60C .45D .30 【答案】C【解析】折叠后所得的三棱锥中易知当平面ACD 垂直平面ABC 时三棱锥的体积最大.设AC 的中点为O ,则DBO ∠即为所求,而DOB ∆是等腰直角三角形,所以,故选C .6.【辽宁省辽阳市2018学届高三第一次模拟】如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O , E , F , G , H 为圆O 上的点, ABE , BCF , CDG , ADH 分别以AB , BC , CD , DA 为底边的等腰三角形,沿虚线剪开后,分别以AB , BC , CD , DA 为折痕折起ABE , BCF , CDG , ADH ,使得E , F , G , H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.【答案】500327π3cm【解析】如图:连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x ()0x >,则OI=2x , IE 62x =-. 因为该四棱锥的侧面积是底面积的2倍,所以,解得4x =,设该四棱锥的外接球的球心为Q ,半径为R ,则,,解得5R 3=,外接球的体积3cm7.【山东省济南市2019届高三上学期期末】在正方形中,点,分别为,的中点,将四边形沿翻折,使得平面平面,则异面直线与所成角的余弦值为__________.【答案】【解析】连接FC ,与DE 交于O 点,取BE 中点为N , 连接ON ,CN ,易得ON ∥BD ∴∠CON 就是异面直线与所成角设正方形的边长为2, OC=,ON=,CN=∴cos ∠CON==故答案为:8.如图所示,在四边形ABCD 中,,将四边形ABCD 沿对角线BD 折成四面体BCD A -',使平面⊥BD A /平面BCD ,则下列结论正确的是 .(1)BD C A ⊥'; (2);(3)A C '与平面BD A '所成的角为︒30; (4)四面体BCD A -'的体积为61. 【答案】(2)(4)【解析】平面⊥BD A /平面BCD CD ∴⊥平面'A BD ,/CA 与平面BD A /所成的角为'CA D ∠,四面体BCDA -/的体积为,,综上(2)(4)成立.9.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1AC 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项)(1)||BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥ (4)存在某个位置,使//MB 平面1A DE 【答案】(1)(2)(4).【解析】取CD 中点F ,连接MF ,BF ,则1//MF DA ,//BF DE ,∴平面//MBF 平面1A DE , ∴//MB 平面1A DE ,故(4)正确;由,为定值,FB DE =为定值,由余弦定理可得,∴MB 是定值,故(1)正确;∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故(2)正确;∵1AC 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,∴存在某个位置,使1DE A C ⊥错误,故(3)错误.10.【四川省广元市高2018届第二次高考适应性统考】如图,在矩形ABCD 中, 4AB =, 2AD =, E 是CD 的中点,以AE 为折痕将DAE ∆向上折起, D 变为'D ,且平面'D AE ⊥平面ABCE .(Ⅰ)求证: 'AD EB ⊥; (Ⅱ)求二面角'A BD E --的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ) 90. 【解析】(Ⅰ)证明:∵, AB 4=,∴,∴AE EB ⊥,取AE 的中点M ,连结MD ',则,∵ 平面D AE '⊥平面ABCE ,∴MD '⊥平面ABCE ,∴MD '⊥ BE , 从而EB ⊥平面AD E ',∴AD EB '⊥ (Ⅱ)如图建立空间直角坐标系,则()A 4,2,0、()C 0,0,0、()B 0,2,0、()D 3,1,2',()E 2,0,0,从而BA =(4,0,0),,.设为平面ABD '的法向量,则可以取设为平面BD E '的法向量,则可以取因此, 12n n 0⋅=,有12n n ⊥,即平面ABD ' ⊥平面BD E ', 故二面角的大小为90.11.【福建省龙岩市2019届高三下学期教学质量检查】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.【解析】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,, 又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.12.【湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模】如图,在多边形中(图1),为长方形,为正三角形,现以为折痕将折起,使点在平面内的射影恰好在上(图2).(Ⅰ)证明:平面;(Ⅱ)若点在线段上,且,当点在线段上运动时,求三棱锥的体积. 【解析】(Ⅰ)过点作,垂足为.由于点在平面内的射影恰好在上,∴平面.∴.∵四边形为矩形,∴.又,∴平面,∴.又由,,可得,同理.又,∴,∴,且,∴平面.(Ⅱ)设点到底面的距离为,则.由,可知,∴.又,∴.13.【江西省上饶市重点中学2019届高三六校第一次联考】如图所示,在边长为2的菱形中,,现将沿边折到的位置.(1)求证:;(2)求三棱锥体积的最大值.【解析】(1)如图所示,取的中点为,连接,易得,,又面(2)由(1)知,= ,当时,的最大值为1.14.【云南师范大学附属中学2019届高三上学期第一次月考】如图所示甲,在四边形ABCD中,,,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点O,M,N分别为棱AC,PA,AD的中点.求证:平面PON;求三棱锥的体积.【解析】如图所示,为正三角形,O为AC的中点,,平面平面ACD,平面平面,平面ACD,平面ACD,.,,,,即.,N分别为棱AC,AD的中点,,,又,平面PON;解:由,,,可得,点O、N分别是AC、AD的中点,,是边长为8的等边三角形,,又为PA的中点,点M到平面ANO的距离,.又,.15.【湖北省荆门市2019届高三元月调研】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体,如图.1若,证明:平面;2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.【解析】1由已知得四边形ABFE是正方形,且边长为2,在图2中,,由已知得,,平面又平面BDE,,又,,平面2在图2中,,,,即面DEFC,在梯形DEFC中,过点D作交CF于点M,连接CE,由题意得,,由勾股定理可得,则,,过E作交DC于点G,可知GE,EA,EF两两垂直,以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则,.设平面ACD的一个法向量为,由得,取得,设,则m,,,得设CP与平面ACD所成的角为,.所以16.【山西省吕梁市2019届高三上学期第一次模拟】已知如图(1)直角梯形,,,,,为的中点,沿将梯形折起(如图2),使.(1)证明:平面;(2)求点到平面的距离.【解析】(1)由已知可得为直角三角形,所以.又,所以,所以平面.(2)因为平面,平面,所以,又因为,平面,平面,,所以,平面,又因为,所以平面,又因为平面,所以.在直角中,,设点到平面的距离为,由,则,所以.16.正△ABC的边长为4,CD是AB边上的高,,E F分别是AC和BC边的中点,现将△ABC沿CD翻折--.成直二面角A DC B(1)试判断直线AB与平面DEF的位置关系,并说明理由;--的余弦值;(2)求二面角E DF C(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.【分析】(1)问可利用翻折之后的几何体侧面ABC ∆的中位线得到//AB EF ,便可由线面平行的判定定理证得;(2)先根据直二面角A DC B --将条件转化为AD ⊥面BCD ,然后做出过点E 且与面BCD 垂直的直线EM ,再在平面BCD 内过M 作DF 的垂线即可得所求二面角的平面角;(3)把AP DE ⊥作为已知条件利用,利用ADC ∆中过A 与DE 垂直的直线确定点P 的位置.【解析】(1)如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF//AB,又AB ⊄平面DEF,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD,BD ⊥CD∴∠ADB 是二面角A —CD —B 的平面角∴AD ⊥BD ∴AD ⊥平面BCD取CD 的中点M,这时EM ∥AD ∴EM ⊥平面BCD过M 作MN ⊥DF 于点N,连结EN,则EN ⊥DF∴∠MNE 是二面角E —DF —C 的平面角,在Rt △EMN 中,EM=1,MN=23 ∴tan ∠MNE=233,cos ∠MNE=721(3)在线段BC 上存在点P,使AP ⊥DE. 证明如下:在线段BC 上取点P,使BC BP 31 ,过P 作PQ ⊥CD 与点Q, ∴PQ ⊥平面ACD∵, 在等边△ADE 中,∠DAQ=30°,∴AQ ⊥DE ∴AP ⊥DE.。
高考数学难点突破八----立体几何中的翻折问题一、知识储备翻折问题就是把平面图形经过折叠变成一个空间图形,实际上,折叠问题就是轴对称的问题,折痕就是对称轴,重合的即是全等图形,解决折叠问题时,要把运动着的空间图形不断地与原平面图形进行对照,看清楚其中哪些量在变化,哪些量没有变化,从而寻找出解决问题的方法,达到空间问题与平面问题相互转化的目的。
核心是抓牢折痕就是翻折前与翻折后平面图形的公共底边,折痕与公共底边上两高所在平面垂直。
二、应用举例例1.如图,在矩形ABCD 中,M 在线段AB 上,且1AM AD ==,3AB =,将ADM ∆沿DM 翻折.在翻折过程中,记二面角A BC D --的平面角为θ,则tan θ的最大值为(C )ABCD例2.在矩形ABCD 中,4,3AB AD ==,E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成A BE '∆,使得点A '在平面 BCDE 上的射影在四边形BCDE 内(不含边界),设二面角 A BE C '--的大小为θ,直线,A B A C ''与平面BCDE 所成的角分 别为αβ,,则( D ) A.βαθ<< B.βθα<< C.αθβ<< D.αβθ<<例3.如图,矩形ABCD 中心为, O BC AB >,现将DAC 沿着对角线AC 翻折成EAC ,记BOE a ∠=,二面角B AC E --的平面角为β,直线DE 和BC 所成角为γ,则( D )A. ,2a ββγ>>B. ,2a ββγ><C. ,2a ββγ<>D. ,2a ββγ<<例4.如图,在ABC △中,1AB =,22BC =,4B π=,将ABC △绕边AB 翻转至ABP △,使面ABP ⊥面ABC ,D 是BC 中点,设Q 是线段PA 上的动点,则当PC 与DQ 所成角取得最小值时,线段AQ 的长度为( B ) A .5 B .25C .35D .25例5.已知在矩形ABCD 中,2AD AB =,沿直线BD 将ABD ∆ 折成'A BD ∆,使得点'A 在平面BCD 上的射影在BCD ∆内(不含边界),设二面角'A BD C --的大小为θ,直线','A D A C 与平面BCD 所成的角分别为,αβ,则( )A. αθβ<<B. βθα<<C. βαθ<<D. αβθ<< 【答案】DQ DPCBA【解析】分析:由题意画出图形,由两种特殊位置得到点A′在平面BCD上的射影的情况,由线段的长度关系可得三个角的正弦的大小,则答案可求.详解:如图,∵四边形ABCD为矩形,∴BA′⊥A′D,当A′点在底面上的射影O落在BC上时,有平面A′BC⊥底面BCD,又DC⊥BC,可得DC⊥平面A′BC,则DC⊥BA′,∴BA′⊥平面A′DC,在Rt△BA′C中,设BA′=1,则,∴A′C=1,说明O为当A′点在底面上的射影E落在BD上时,可知A′E⊥BD,设BA′=1,则A D'=,要使点A′在平面BCD上的射影F在△BCD内(不含边界),则点A′的射影F落在线段OE上(不含端点).可知∠A′EF为二面角A′﹣BD﹣C的平面角θ,直线A′D与平面BCD所成的角为∠A′DF=α,直线A′C与平面BCD所成的角为∠A′CF=β,<,而A′C的最小值为1,可求得DF>CF,∴A′C<A′D,且A′E=13∴sin∠A′DF<sin∠A′CF<sin∠A′EO,则α<β<θ.故答案为:D点睛:本题主要考查二面角的平面角和直线与平面所成的角,考查正弦函数的单调性,意在考查学生对这些基础知识的掌握能力和空间想象能力分析推理能力.例6、(嘉兴市2020年1月期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .22π分析:设 AC ,FC 的中点为 M , N ,CP 的中点G 的轨迹是以 MN 为直径的半圆.例7、(宁波市2020年1月期终)已知平面四边形ABCD 中,90A C ∠=∠=︒,BC CD =,AB AD >,现将ABD △沿对角线BD 翻折得到三棱锥A BCD '-,在此过程中,二面角A BC D '--、A CDB '--的大小分别为α,β,直线A B '与平面BCD 所成角为γ,直线A D '与平面BCD 所成角为δ,则( )A .γδβ<<B .γαβ<<C .αδβ<<D .γαδ<<例8、(柯桥一中2020年1月期终)已知在矩形ABCD 中,2AB =,4AD =,E ,F 分别在边AD ,BC 上,且1AE =,3BF =,如图所示, 沿EF 将四边形AEFB 翻折成A EFB '',则在翻折过程中,二面角B CD E '--的大小为θ,则tan θ的最大值为( C ) A.5B.5C.4例9、(名校合作体2020年3月)已知C 为ABD Rt ∆斜边BD 上一点,且ACD ∆为等边三角形,现将ABC ∆沿AC 翻折至C B A '∆,若在三棱锥ACD B -'中,直线B C '和直线B A '与平面ACD 所成角分别为βα,,则( )A. βα<<0B.βαβ2≤<C.βαβ32≤≤例10、(2020年1月嘉兴期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .分析:取DE 中点O ,连CO PO ,,则点G 的轨迹是以CO 的中点为圆心,2221=PO 为半径的半圆,轨迹长为22ππ=r例11、(2020年4月温州模拟)如图,在ABC ∆中,点M 是边BC 的中点,将ABN ∆沿着AM 翻折成M B A '∆,且点B '不在平面AMC 内,点P 是线段C B '上一点,若二面角B AM P '--与二面角C AM P --的平面角相等,则直线AP 经过C B A '∆的( A ) A. 重心 B. 垂心 C. 内心 D.外心G PFD B A例12、(2020年嘉兴一模)将边长为1的正方形ABCD 沿对角线BD 翻折,使得二面角A BD C --的平面角的大小为π3,若点E ,F 分别是线段AC 和BD 上的动点,则BE CF 的取值范围为 ( )A .[1,0]-B .1[1,]4-C .1[,0]2-D . 11[,]24-例13、(2020年5月暨阳联考)如图:ABC ∆中,︒=∠⊥90,ACB BC AB ,D 为AC 的中点,ABD ∆沿BD 边翻折过程中,直线AB 与BC 直线所成的最大角,最小角分别记为11βα,,直线AD 与直线BC 所成的最大角,最小角分别记为22βα,,则有( D )A. ββαα≤<121,B. 2121ββαα><,C. 2121ββαα≤≥,D.2121ββαα>≥,分析一:翻折到180时,,AB BC 所成角最小,可知130β=,,AD BC 所成角最小,20β=,翻折0时,,AB BC 所成角最大,可知190α=,翻折过程中,可知AD 的投影可与BC 垂直,所以,AD BC 所成最大角290α=,所以 1190,30αβ︒︒==,2290,0αβ︒︒==分析二:对角线向量定理例14、(2020年4月台州二模)如下图①,在直角梯形ABCD 中,90=∠=∠=∠DAB CDB ABC , 30=∠BCD ,4=BC ,点E 在线段CD 上运动,如下图②,沿BE 将BEC ∆折至C BE '∆,使得平面⊥'C BE 平面ABED ,则C A '的最小值为 .⇒例15、(2020年嘉兴市基础知识测试)如图,矩形ABCD 中,2,1==BC AB ,点E 为AD 中点,将ABE ∆沿BE 折起,在翻折过程中,记二面角B DC A --的平面角大小为α,则当α最大时,=αtan ( ) A. 22 B. 32 C. 31 D.21。
立体几何中的翻折、轨迹及最值(范围)问题)1.翻折问题是立体几何的一类典型问题,是考查实践能力与创新能力的好素材.解答翻折问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化.解题时我们要依据这些变化的与未变化的量来分析和解决问题.而表面展开问题是折叠问题的逆向思维、过程,一般地,涉及多面体表面的距离问题不妨将它展开成平面图形试一试.2.在立体几何中,某些点、线、面按照一定的规则运动,构成各式各样的轨迹,探求空间轨迹与探求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.3.立体几何中的体积最值问题一般是指有关距离的最值、角的最值或面积、体积的最值.其一般方法有:(1)几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;(2)代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等求出最值.题型一立体几何中的翻折问题【例1】(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的二面角B-CG-A的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,且BE ∩BC =B ,BE ,BC ⊂平面BCGE , 所以AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3. 以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H-xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG→=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0),所以cos 〈n ,m 〉=n ·m |n ||m |=32.因此二面角B -CG -A 的大小为30°.【训练1】 (2021·浙江名师预测卷四)在梯形ABCD 中,对角线AC 与BD 交于点O ,AD =2AB =2BC =2CD .将△BCD 沿BD 翻折至△BPD ,且满足平面ABP ⊥平面BPD .(1)求证:二面角P -BD -A 是直二面角;(2)(一题多解)求直线PD 与平面P AO 所成角的正弦值的大小.(1)证明由已知条件易得∠BAD=60°,∠BDA=30°,AB⊥BD.在△BPD中,过点D作DH⊥BP,交BP的延长线于点H.∵平面ABP⊥平面BPD,平面ABP∩平面BPD=BP,∴DH⊥平面ABP,∵AB⊂平面ABP,∴DH⊥AB.又∵BD∩DH=D,∴AB⊥平面BPD,∵AB⊂平面ABD,∴平面ABD⊥平面BPD.即二面角P-BD-A是直二面角.(2)解法一过点P作PG⊥BD,交BD于点G,则G是BD的中点.由(1)可知平面PBD⊥平面ABD,又∵平面PBD∩平面ABD=BD,∴PG⊥平面ABD.设OB=1,则OP=1,OA=2,AB=BP=3,∵AB⊥平面BPD,∴AB⊥BP,∴AP=AB2+BP2=6,由余弦定理得cos∠AOP=OA2+OP2-AP22OA·OP=-14,则sin∠AOP=15 4.设点D到△AOP的距离为h,∵V P-AOD=V D-AOP,∴13·PG·S△AOD=13·h·S△AOP,∵PG=32,S△AOD=12×2×2·sin2π3=3,S△AOP=12×1×2×154=154,∴h=215 5,∵PD =3,∴直线PD 与平面P AO 所成角θ的正弦值sin θ=h PD =255.法二 分别取BD ,AD 的中点E ,F ,连接EP ,EF ,则EF ∥AB .由(1)可知AB ⊥平面BPD ,∴EF ⊥平面BPD ,∴EF ⊥BD ,EF ⊥EP .∵PB =PD ,∴PE ⊥BD ,以点E 为坐标原点,EF→,ED →,EP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.设OB =1,可得P ⎝⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫0,32,0, A ⎝ ⎛⎭⎪⎫3,-32,0,O ⎝ ⎛⎭⎪⎫0,-12,0. ∴PD →=⎝ ⎛⎭⎪⎫0,32,-32,P A →=⎝⎛⎭⎪⎫3,-32,-32, AO→=(-3,1,0). 设平面P AO 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧P A →·n =0,AO →·n =0,即⎩⎨⎧3x -32y -32z =0,-3x +y =0, 令x =1,则n =(1,3,-1),∴直线PD 与平面P AO 所成角θ的正弦值为sin θ=|cos 〈n ,PD →〉|=|n ·PD →||n |·|PD →|=255. 题型二 立体几何中的轨迹问题【例2】 (1)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与平面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 所在平面内运动,若EP 与AC 成30°角,则点P 的轨迹为( )A .圆B .抛物线C .双曲线D .椭圆(2)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是平面AC 内的动点, 若点P 到直线A 1D 1的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是()A.抛物线B.双曲线C.椭圆D.直线答案(1)A(2)B解析(1)因为在平行六面体ABCD-A1B1C1D1中,AA1与平面A1B1C1D1垂直,且AD=AB,所以该平面六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,则EF∥AC,因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D 的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面,故选A.(2)如图,以A为原点,AB为x轴、AD为y轴,建立平面直角坐标系.设P(x,y),作PE⊥AD于E、PF⊥A1D1于F,连接EF,易知|PF|2=|PE|2+|EF|2=x2+1,又作PN⊥CD于N,则|PN|=|y-1|.依题意|PF|=|PN|,即x2+1=|y-1|,化简得x2-y2+2y=0,故动点P的轨迹为双曲线,选B.【训练2】(1)在正方体ABCD-A1B1C1D1中,点M,N分别是线段CD,AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为π3,则点P的轨迹是()A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分(2)如图,AB是平面α的斜线段,A为斜足,若点P在平面α内运动,使得△ABP 的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案(1)B(2)B解析(1)延长D1P交底面ABCD的内部于点Q,连接QD,则∠D1QD为直线D1Q 与底面ABCD所成的角,也就是直线D1P与MN所成角θ的最小值,故∠D1QD=π3,从而∠DD1Q=π6,所以D1Q的轨迹是以D1D为轴,顶点为D1,母线D1Q与轴D1D的夹角为π6的圆锥面的一部分,则点P的轨迹就是该部分圆锥面与△A1C1D面(不包括边界)的交线,而△A1C1D面所在平面与轴D1D斜交,故点P 的轨迹是椭圆的一部分.(2)由于线段AB 是定长线段,而△ABP 的面积为定值,所以动点P 到线段AB 的距离也是定值.由此可知空间点P 在以AB 为轴的圆柱侧面上.又P 在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB 是平面的斜线段)得到的切痕是椭圆.P 的轨迹就是圆柱侧面与平面α的交线是椭圆.题型三 立体几何中的长度、面积、体积的最值(范围)问题【例3】 (1)如图,正三棱锥S -ABC 的底面边长为2a ,E 、F 、G 、H 分别为SA ,SB ,CB ,CA 的中点,则四边形EFGH 的面积的取值范围是( )A .(0,+∞) B.⎝ ⎛⎭⎪⎫33a 2,+∞ C.⎝ ⎛⎭⎪⎫36a 2,+∞ D.⎝ ⎛⎭⎪⎫12a 2,+∞ (2)(2021·“超级全能生”联考)在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为4的正方形,侧棱AA 1=t (t >4),点E 是BC 的中点,点P 是侧面ABB 1A 1内的动点(包括四条边上的点),且满足tan ∠APD =4tan ∠EPB ,则四棱锥P -ABED 的体积的最大值是( )A.433 B .16 3 C.1633 D.6439答案 (1)B (2)C解析 (1)因为E 、F 、G 、H 分别为SA ,SB ,CB ,CA 的中点,∴EF 綉12AB ,HG綉12AB ,∴EF 綉HG ,同理,EH 綉FG ,所以EFGH 为平行四边形,又∵S -ABC 为正三棱锥,∴SC ⊥AB ,∴EF ∥AB ,FG ∥SC ,所以EF ⊥FG ,从而四边形EFGH 为矩形,其面积S =GH ·GF =12a ·SC ,当正三棱锥的高→0时,SC →正三角形ABC的外接圆的半径233a ,所以四边形EFGH 的面积→33a 2,选B.(2)作PF ⊥AB ,垂足为点F ,在长方体ABCD -A 1B 1C 1D 1中,DA ⊥平面ABB 1A 1,CB ⊥平面ABB 1A 1,在Rt △P AD 和Rt △PBC 中,所以tan ∠APD =AD AP ,tan ∠EPB=BE PB .因为tan ∠APD =4tan ∠EPB ,BE =12BC =12AD ,所以PB =2AP .因为平面ABB 1A 1⊥平面ABCD ,平面ABB 1A 1∩平面ABCD =AB ,PF ⊥AB ,所以PF ⊥平面ABCD .设PF =h ,AF =x ,则BF =4-x ,x ∈[0,4],由PB =2AP ,得h 2+(4-x )2=4(x 2+h 2),即h 2=-x 2-83x +163.因为函数y =-x 2-83x +163在[0,4]上单调递减,所以当x =0时,(h 2)max =163,即h max =433,所以四棱锥P -ABED 的体积的最大值(V P -ABED )max =13×12×(2+4)×4×433=1633,故选C.【训练3】 (1)在棱长为6的正方体ABCD -A 1B 1C 1D 1中,M 是BC 中点,点P 是平面DCC 1D 1所在的平面内的动点,且满足∠APD =∠MPC ,则三棱锥P -BCD 体积的最大值是( )A .36B .12 3C .24D .18 3(2)(2021·镇海中学模拟)已知棱长为1的正方体ABCD -A 1B 1C 1D 1,球O 与正方体的各条棱相切,P 为球O 上一点,Q 是△AB 1C 的外接圆上的一点,则线段PQ 长的取值范围是________.答案 (1)B (2)⎣⎢⎡⎦⎥⎤3-22,3+22 解析 (1)因为AD ⊥平面D 1DCC 1,则AD ⊥DP ,同理BC ⊥平面D 1DCC 1,则BC ⊥CP ,∠APD =∠MPC ,则△P AD ∽△PMC ,∵AD =2MC ,则PD =2PC ,下面研究点P 在面ABCD 的轨迹(立体几何平面化),在平面直角坐标系内设D (0,0),C (6,0),D 1(0,6),C 1(6,6),设P (x ,y ),因为PD =2PC ,所以x 2+y 2=2(x -6)2+y 2,化简得(x -8)2+y 2=16,该圆与CC 1的交点纵坐标最大,交点为(6,23),三棱锥P -BCD 的底面BCD 的面积为18,要使三棱锥P -BCD 体积最大,只需高最大,当P 在CC 1上且CP =23时棱锥的高最大,V =13·18·23=12 3.(2)因为球O 与正方体的各条棱相切,所以球心O 为正方体的中心,切点为各条棱的中点,则易得|OP |=22.△AB 1C 为边长为2的等边三角形,设其外接圆的圆心为M ,则易得|MB 1|=63.在正方体ABCD -A 1B 1C 1D 1中,易得BD 1⊥平面AB 1C ,则OM ⊥MB 1.又因为|OB |=32,|MB |=33,所以|OM |=36,则|OQ |=|OB 1|=|OM |2+|MB 1|2=32,所以|PQ |max =|OQ |+|OP |=3+22,|PQ |min =|OQ |-|OP |=3-22,即线段PQ 的取值范围为⎣⎢⎡⎦⎥⎤3-22,3+22一、选择题1.已知线段AB 垂直于定圆所在的平面,B ,C 是圆上的两点,H 是点B 在AC 上的射影,当C 运动时,点H 运动的轨迹( )A .是圆B .是椭圆C .是抛物线D .不是平面图形答案 A解析 设在定圆内过点B 的直径与圆的另一个交点为点D ,过点B 作AD 的垂线,垂足为点E ,连接EH ,CD .因为BD 为定圆的直径,所以CD ⊥BC ,又因为AB 垂直于定圆所在的平面,所以CD ⊥AB ,又因为AB ∩BC =B ,所以CD ⊥平面ABC ,所以CD ⊥BH ,又因为BH ⊥AC ,AC ∩CD =C ,所以BH ⊥平面ACD ,所以BH ⊥EH ,所以动点H 在以BE 为直径的圆上,即点H 的运动轨迹为圆,故选A.2.设P 是正方体ABCD -A 1B 1C 1D 1的对角面BDD 1B 1(含边界)内的点,若点P 到平面ABC 、平面ABA 1、平面ADA 1的距离相等,则符合条件的点P ( )A .仅有一个B .有有限多个C .有无限多个D .不存在答案 A解析 与平面ABC ,ABA 1距离相等的点位于平面ABC 1D 1上;与平面ABC ,ADA 1距离相等的点位于平面AB 1C 1D 上;与平面ABA 1,ADA 1距离相等的点位于平面ACC 1A 1上;据此可知,满足题意的点位于上述平面ABC 1D 1,平面AB 1C 1D ,平面ACC 1A 1的公共点处,结合题意可知,满足题意的点仅有一个.3.(2021·温州中学模拟)如图所示,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为4π3的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A.5+12B.5-12C.3+12D.3-12答案 D解析 因为蛋巢的底面是边长为1的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为1.又因为鸡蛋(球体)的体积为4π3,所以球的半径为1,所以球心到截面圆的距离d =1-14=32,则截面圆到球体最低点的距离为1-32,而蛋巢的高度为12,故鸡蛋(球体)到蛋巢底面的最短距离为12-⎝⎛⎭⎪⎫1-32=3-12,故选D. 4.(2021·温州适考)如图,在△ABC 中,点M 是边BC 的中点,将△ABM 沿着AM 翻折成△AB ′M ,且点B ′不在平面AMC 内,点P 是线段B ′C 上一点.若二面角P -AM -B ′与二面角P -AM -C 的平面角相等,则直线AP 经过△AB ′C 的( )A .重心B .垂心C .内心D .外心答案 A解析因为二面角P-AM-B′与二面角P-AM-C的平面角相等,所以点P到两个平面的距离相等,所以V P-AB′M=V P-ACM,即V A-PB′M=V A-PCM.因为两三棱锥的高相等,故S△PB′M =S△PCM,故B′P=CP,故点P为CB′的中点,所以直线AP经过△AB′C的重心,故选A.5.(2021·浙江名师预测卷一)如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面P AD为正三角形,且侧面P AD⊥底面ABCD,已知在侧面P AD内存在点Q,满足PQ⊥QD,则当AQ最小时,二面角A-CD-Q的余弦值是()A.2-34 B.2+34C.2-62 D.2+64答案 D解析取PD的中点M,因为四边形ABCD为正方形,所以CD⊥AD,又平面P AD⊥平面ABCD,且平面P AD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面P AD,所以CD⊥QD,则二面角A-CD-Q的平面角是∠ADQ,又因为点Q的轨迹是以M为圆心的圆,如图,当|AQ|最小时,∠ADQ=∠ADP-∠QDP=60°-45°=15°,即二面角A-CD-Q的余弦值为cos 15°=cos(60°-45°)=2+6 4,故选D.6.(2021·浙江新高考仿真卷二)如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别为BD1,BB1上的动点,则△C1PQ周长的最小值为()A.215 3B.4+2 2C.4+83 2D.213 3答案 B解析连接B1D1,BC1,由图易得△C1PQ的三边分别在三棱锥B-B1C1D1的三个侧面上,将三棱锥B-B1C1D1的侧面展开成平面图形,如图,可得四边形BC1D1C1′为直角梯形,当C1′,P,Q,C1四点共线时,△C1PQ的周长最小,最小值为C1′D21+D1C21=4+22,即△C1PQ的周长的最小值为4+22,故选B.7.(2021·上虞区期末调测)在棱长均为23的正四面体ABCD中,M为AC的中点,E为AB的中点,P是DM上的动点,Q是平面ECD上的动点,则AP+PQ的最小值是()A.3+112 B.3+ 2C.534D.2 3答案 A解析 如图,作MG ⊥CE 于点G ,连接DG .由已知得平面CDE ⊥平面ABC ,又平面CDE ∩平面ABC =CE ,则MG ⊥平面CDE ,故DG 为DM 在平面CDE 上的射影.将半平面ADM 沿DM 翻折至与半平面DMG 所成二面角为180°,记翻折后的点A 即A ′到DG 的距离为h A ,则h A 为△A ′DG 的边DG 上的高,且AP +PQ =A ′P +PQ ≥h A .因为MG =12AE =32,DM =DC 2-⎝ ⎛⎭⎪⎫AC 22=3,则sin ∠MDG=MG DM =36,故cos ∠MDG =336.又∠ADM =∠A ′DM =π6,所以sin ∠A ′DG =sin ⎝ ⎛⎭⎪⎫∠MDG +π6=336×12+36×32=3+3312,所以AP +PQ的最小值h A =A ′D sin ∠A ′DG =11+32.故选A. 二、填空题8.在正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________. 答案 线段B 1C解析 易证BD 1⊥平面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1的交线上,故所求的轨迹为线段B 1C .9.已知正方体ABCD -A 1B 1C 1D 1的棱长为3,长为2的线段MN 的一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为________. 答案 π6解析 连接DP ,因为MN =2,所以PD =1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即V=18×43π×13=π6.10.已知在矩形ABCD中,AB=3,BC=a,若P A⊥平面AC,在BC边上取点E,使PE⊥DE,若满足条件的E点有两个时,则a的取值范围是________.答案(6,+∞)解析连接AE,由三垂线逆定理可知DE⊥AE,要使满足条件的E点有两个则须使以AD为直径的圆与BC有两个交点,所以半径长a2>3,∴a>6.11.如图,已知∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于E,AF⊥DC交DC于F,且AD=AB=2,则三棱锥D-AEF体积的最大值为________.答案2 6解析因为DA⊥平面ABC,所以DA⊥AB,AD⊥BC,∵AE⊥DB,又AD=AB=2,∴DE=2,又因为BC⊥AC,AC∩AD=A,所以BC⊥平面ACD,所以平面BCD⊥平面ACD,∵AF⊥DC,平面BCD∩平面ACD=CD,所以AF⊥平面BCD,所以AF⊥EF,BD⊥EF,所以BD⊥平面AEF,由AF2+EF2=AE2=2≥2AF·EF可得AF·EF≤1,所以S△AEF ≤12,所以三棱锥D-AEF体积的最大值为13×2×12=26.12.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,1解析 如图,在平面ADF 内过D 作DH ⊥AF ,垂足为H ,连接HK .过F 点作FP ∥BC 交AB 于点P.设∠F AB =θ,则cos θ∈⎝ ⎛⎭⎪⎫22,255.设DF =x ,则1<x <2, ∵平面ABD ⊥平面ABC ,平面ABD ∩平面ABC =AB ,DK ⊥AB ,DK ⊂平面ABD ,∴DK ⊥平面ABC ,又AF ⊂平面ABC ,∴DK ⊥AF . 又∵DH ⊥AF ,DK ∩DH =D ,DK ,DH ⊂平面DKH , ∴AF ⊥平面DKH ,∴AF ⊥HK ,即AH ⊥HK . 在Rt △ADF 中,AF =1+x 2,∴DH =x 21+x 2, ∵△ADF 和△APF 都是直角三角形,PF =AD , ∴Rt △ADF ≌Rt △FP A ,∴AP =DF =x . ∵△AHD ∽△ADF ,∴cos θ=11+x 2t =x1+x 2. ∴x =1t .∵1<x <2,∴1<1t <2,∴12<t <1. 三、解答题13.(2018·全国Ⅰ卷)如图,四边形ABCD 为正方形, E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.(1)证明 由已知可得,BF ⊥PF ,BF ⊥EF ,又PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)解 作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,分别以FB→,HF →,HP →的方向为x 轴、y 轴、z 轴的正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故EF 2=PE 2+PF 2,所以PE ⊥PF . 可得PH =32,EH =32.则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的一个法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34.14.(2021·杭州二中仿真模拟)如图,平面四边形ABCD 关于直线AC 对称,∠A =60°,∠C =90°,CD =2.把△ABD 沿BD 折起.(1)若二面角A -BD -C 的余弦值为33,求证:AC ⊥平面BCD ; (2)若AB 与平面ACD 所成的线面角为30°时,求AC 的长. 解 (1)取BD 的中点E ,连接AE ,CE . 因为AB =AD ,CB =CD , 所以AE ⊥BD ,CE ⊥BD , 又AE ∩CE =E ,所以BD ⊥平面ACE ,所以BD ⊥AC , 所以∠AEC 是二面角A -BD -C 的平面角.在△AEC 中,AC 2=AE 2+CE 2-2AE ·CE cos ∠AEC =4,则AC 2+CE 2=AE 2, 所以AC ⊥CE .因为CE ∩BD =E ,CE ,BD ⊂平面BCD , 所以AC ⊥平面BCD .(2)由(1)得以点C 为坐标原点建立如图所示的空间直角坐标系,则C (0,0,0),B (2,0,0),D (0,2,0). 设A (m ,m ,n ),则BA→=(m -2,m ,n ),CA →=(m ,m ,n ),CD →=(0,2,0). 设平面ACD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CA →=0,n ·CD →=0,即⎩⎨⎧xm +ym +zn =0,2y =0,取⎩⎨⎧x =n ,y =0,z =-m ,所以n =(n ,0,-m ), 因为BA =22,所以(m -2)2+m 2+n 2=8, 则|cos 〈BA→,n 〉|=|n (m -2)-mn |22m 2+n 2=12,解得m 2=n 2,解得m =2或m =-23, 所以AC =23或AC =23 3.。
2023年高考数学----立体几何折叠问题规律方法与典型例题讲解【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例1.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF . (1)当2x =时①求证:BD EG ⊥;②求二面角D BF C −−的余弦值;(2)三棱锥D FBC −的体积是否可能等于几何体ABE FDC −体积的一半?并说明理由. 【解析】(1)证明:过D 点作EF 的垂线交EF 于H ,连接BH .如图.2AE AD == 且//AE DH ,//AD EF ,π2EAD ∠=. ∴四边形ADHE 是正方形.2EH =,∴四边形EHGB 是正方形.所以BH EG ⊥(正方形对角线互相垂直).因为平面AEFD ⊥平面EBCF ,平面AEFD ⋂平面EBCF EF =,,AE EF AE ⊥⊂平面AEFD , 所以⊥AE 平面EBCF , 所以DH ⊥平面EBCF , 又因为EG ⊂平面EBCF ,所以EG DH ⊥. 又,,BHDH H BH DH =⊂平面BDH ,所以EG ⊥平面BDH ,又BD ⊂平面BDH , 所以EG BD ⊥.②以E 为原点,EB 为x 轴,EF 为y 轴,EA 为z 轴,建立空间直角坐标系,(2B ,0,0),(0F ,3,0),(0D ,2,2),(2C ,4,0),(2BF =−,3,0),(2BD =−,2,2),设平面BDF 的法向量(n x =,y ,)z ,则·2220·230n BD x y z n BF x y ⎧=−++=⎪⎨=−+=⎪⎩,取3x =,得(3n =,2,1),又平面BCF 的法向量(0m =,0,1),1cos ,||||14m n m n m n <>==∴钝二面角D BF C −−的余弦值为.(2)AE EF ⊥Q ,平面AEFD ⊥平面EBCF , 平面AEFD ⋂平面EBCF EF =,AE ⊂平面AEFD . AE ∴⊥平面EBCF .结合DH ⊥平面EBCF ,得//AE DH ,∴四边形AEHD 是矩形,得DH AE =,故以F 、B 、C 、D 为顶点的三棱锥D BCF −的高DH AE x ==, 又114(4)8222BCFSBC BE x x ==⨯⨯−=−. ∴三棱锥D BCF −的体积为()2=11822(82)433333BFCV SDH x x x x x x ==−=−−,ABE FDC ABE DGH D HGCF V V V −−−=+13ABEHGCF SAD S DH =+111111(4)2(2)(4)=(4)1+(2)232262x x x x x x x x ⎡⎤=−⨯+⨯+−−+⎢⎥⎣⎦, 令()112(4)1+(2)=24623x x x x x ⎡⎤−+⨯−⎢⎥⎣⎦,解得0x =或4x =,不合题意;∴棱锥D FBC −的体积不可能等于几何体ABE FDC −体积的一半.例2.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值. 【解析】(1)如图取CE 的中点F ,连接PF ,DF ,由题易知△PCE ,△DCE 都是等边三角形, ⸫DF ⊥CE ,PF ⊥CE , ⸫DFPF F =,DF ⊂平面DPF ,PF ⊂平面DPF⸫CE ⊥平面DPF . ⸫DP ⊂平面DPF ⸫DP ⊥CE . (2)解法一:由题易知四边形AECD 是平行四边形, 所以AD ∥CE ,又AD ⊂平面P AD ,所以CE ⊂平面P AD , 所以点E 与点F 到平面P AD 的距离相等. 由(1)知CE ⊥平面DPF ,所以AD ⊥平面DPF . 又AD ⊂平面P AD , 所以平面P AD ⊥平面DPF .过F 作FH ⊥PD 交PD 于H ,则FH ⊥平面P AD .DF PF ==2DP =,故点F 到平面P AD 的距离FH =设直线DE 与平面P AD 所成的角为θ,则sin FH DE θ==, 所以直线DE 与平面P AD 所成角的正弦值为4. 解法二:由题易知四边形AECD 是平行四边形,所以AD ∥CE ,由(1)知CE ⊥平面DPF ,所以AD ⊥平面DPF . 如图,以D 为坐标原点,DA ,DF 所在直线分别为x ,y 轴,过D 且垂直于平面AECD 的直线为z 轴建立空间直角坐标系, 则()0,0,0D ,()4,0,0A ,()E , 设()0,,P a b ,0a >,0b >. 易知DF PF ==2DP =,故(2222124a b a b ⎧−+=⎪⎨⎪+=⎩,P ⎛ ⎝⎭, 所以()4,0,0DA =,DP ⎛= ⎝⎭,()DE =,设平面P AD 的法向量为(),,n x y z =, 则00n DA n DP ⎧⋅=⎪⎨⋅=⎪⎩,得00x y =⎧⎪⎨+=⎪⎩,令y =1z =−,所以()0,11,1n =−.设直线DE 与平面P AD 所成的角为θ,则11sin |cos ,|4DE nDE n DE nθ⋅=〈〉==, 故直线DE 与平面P AD 例3.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面PAD 夹角的余弦值. 【解析】(1)设O 是AD 的中点,连接,OP OC , 三角形PAD 是等边三角形,所以OP AD ⊥,OP =四边形ABCD 是直角梯形,//,OA BC OA BC =,所以四边形ABCO 是平行四边形,也即是矩形,所以OC AD ⊥,2==OC AB .折叠后,PC =222OP OC PC +=,所以OP OC ⊥, 由于,,AD OC O AD OC ⋂=⊂平面ABCD , 所以OP ⊥平面ABCD ,则,,OC OD OP 两两相互垂直,由此建立如图所示的空间直角坐标系, ()2,0,0,AB OC ==()1,1,0F −,设)()0,1,01E t t t −<<,()2,0,0C,所以)11,,22t t M ⎛⎫− ⎪ ⎪⎝⎭,则)120,,22t t FM ⎛⎫−+= ⎪ ⎪⎝⎭,所以0AB FM ⋅=, 所以AB FM ⊥.(2)由于OP ⊥平面ABCD ,AB ⊂平面ABCD ,所以OP AB ⊥, 由于,,,AB AD AD OP O AD OP ⊥⋂=⊂平面PAD ,所以AB ⊥平面PAD ,由于AE ⊂平面PAD ,所以AB AE ⊥, 所以FEA ∠是直线EF 与平面PAD 所成角, 在直角三角形AEF 中,tan AFFEA AE∠=, 由于1AF =,所以当AE 最小时,tan FEA ∠最大,也即FEA ∠最大,由于三角形PAD 是等边三角形,所以当E 为PD 的中点时,AE PD ⊥,AE 取得最小值.由于(P ,()0,1,0D,故此时10,2E ⎛ ⎝⎭,平面PAD 的法向量为()1,0,0m =,()()()30,1,0,2,0,0,2,1,0,0,2A C AC AE ⎛−== ⎝⎭,设平面ACE 的法向量为(),,n x y z =,则20302n ACx y n AE y ⎧⋅=+=⎪⎨⋅==⎪⎩,故可设(1,n =−, 设平面ACE 与平面PAD 的夹角为θ, 则1cos 17m n m nθ⋅===⋅例4.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C −−的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由.(2)求直线PC 与平面PBE 所成角的正弦值.【解析】(1)满足条件的点H 存在,且为PC 上靠近P 的三等分点.在PC 上取靠近P 的三等分点H ,连接AP ,FH ,如图,则AP 是平面P AB 与平面P AC 的交线,依题意,12PH AF HC FC ==,则有//FH AP ,又AP ⊂平面PBE ,FH ⊄平面PBE ,因此直线//FH平面PBE ,所以在PC 上是存在点H ,为PC 上靠近P 的三等分点,使得直线//FH 平面PBE . (2)取BC 中点G ,连接AG ,交EF 于点D ,连接PD ,因//EF BC ,依题意,EF DG ⊥,EF PD ⊥,则PDG ∠为二面角P EF C −−的平面角,即120PDG ∠=︒,且EF ⊥平面PAD , 而EF ⊂平面BCFE ,则平面PAD ⊥平面BCFE ,在平面PAD 内过P 作PO AD ⊥于O , 又平面PAD ⋂平面BCFE AD =,因此PO ⊥平面BCFE ,在平面BCFE 内过O 作Ox AD ⊥, 显然Ox ,AD ,OP 两两垂直,分别以向量Ox ,OD ,OP 的方向为x ,y ,z 轴正方向,建立空间直角坐标系O xyz −,如图,则B ⎛⎫ ⎪ ⎪⎝⎭,C ⎛⎫− ⎪ ⎪⎝⎭,E ⎛⎫ ⎪ ⎪⎝⎭,30,0,2P ⎛⎫ ⎪⎝⎭,所以,32PC ⎛⎫=−− ⎪ ⎪⎝⎭,()EB =,31,2EP ⎛⎫=− ⎪ ⎪⎝⎭, 设平面PBE 的一个法向量为(),,n x y z =r,由20302n EB x n EP x y z ⎧⋅=+=⎪⎨⋅=−+=⎪⎩,令y =()3,3,1n =−,设直线PC 与平面PBE 所成角为α,则||18sin |cos ,|||||30PC n PC n PC n α⋅=〈〉===⋅所以直线PC 与平面PBE .。
微难点9立体几何中的动态问题——动点、翻折、截取一、单项选择题(选对方法,事半功倍)1. 把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A. 90°B. 60°C. 45°D. 30°2. 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能是()A BC D3. 如图,在下列三个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面.在各正方体中,直线BD1与平面EFG的位置关系描述正确的是()①②③(第3题)A. BD1∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②③B. BD1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有①C. BD1∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②D. BD1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有③二、多项选择题(练—逐项认证,考—选确定的)4. 已知正方体ABCD-A1B1C1D1的棱长为2,平面α⊥AC1,则关于α截此正方体所得截面的判断正确的是()A. 截面形状可能为正三角形B. 截面形状可能为正方形C. 截面形状可能为正六访形D. 截面面积最大值为335. 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个结论,其中结论正确的是()图(1)图(2)(第5题)A. 水的部分始终呈棱柱状B. 水面EFGH的面积不改变C. 棱A1D1始终与水面EFGH平行D. 当容器倾斜到如图(2)时,BE·BF是定值6. (2020·淄博质检)在正方体ABCD-A1B1C1D1中,P,Q分别为棱BC和棱CC1的中点,则下列说法正确的是()A. BC1∥平面AQPB. 平面APQ截正方体所得的截面为等腰梯形C. A1D⊥平面AQPD. 异面直线QP与A1C1所成的角为60°三、填空题(精准计算,整洁表达)7. 已知一个空间几何体的所有棱长均为1 cm,其表面展开图如图所示,则该空间几何体的体积V=________cm3.(第7题)8. 如图所示,在边长为2的菱形ABCD中,若∠ADC=60°,现将△ADC沿AC边折到△APC的位置,则三棱锥P-ABC体积的最大值为________.(第8题)9. 如图,圆形纸片的圆心为O,半径为6 cm,该纸片上的正方形ABCD的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别以AB,BC,CD,DA为底边的等腰三角形,沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为________.(第9题)。
立体几何中的折叠与展开问题知识点梳理:1.解决折叠问题最重要的就是对比折叠前后的图形,找到哪些线、面的位置关系和数学量没有发生变化,哪些发生了变化,在证明和求解的过程中恰当地加以利用.解决此类问题的步骤:考向导航2.展开问题是折叠问题的逆向思维、逆过程,是将空间问题转化为平面问题来处理.一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试.目录类型一折叠问题 (1)类型二展开问题 (3)类型一折叠问题【例1】如图甲,在四边形ABCD中,23AD=2∆是边长为4的正三角形,CD=,ABC把ABC∆的位置,使得平面PAC⊥平面ACD;如图乙所示,点O、M、∆沿AC折起到PACN分别为棱AC、PA、AD的中点.(1)求证:平面PAD⊥平面PON;(2)求三棱锥M ANO-的体积.【例2】如图,在平面图形PABCD 中,ABCD 为菱形,60DAB ∠=︒,2PA PD ==,M 为CD 的中点,将PAD ∆沿直线AD 向上折起,使BD PM ⊥.(1)求证:平面PAD ⊥平面ABCD ;(2)若直线PM 与平面ABCD 所成的角为30︒,求四棱锥P ABCD -的体积.【变式1-1】如图甲的平面五边形PABCD 中,PD PA =,5AC CD BD ===,1AB =,2AD =,PD PA ⊥,现将图甲中的三角形PAD 沿AD 边折起,使平面PAD ⊥平面ABCD 得图乙的四棱锥P ABCD -.在图乙中(1)求证:PD ⊥平面PAB ;(2)求二面角A PB C --的大小;(3)在棱PA 上是否存在点M 使得BM 与平面PCB 所成的角的正弦值为13?并说明理由.类型二展开问题【例1】如图,已知正三棱柱111ABC A B C -的底面边长为2cm ,高为5cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点1A 的最短路线的长为()A .5cm B .12cm C .13cm D .25cm【例2】如图,正三棱锥S ABC -中,40BSC ∠=︒,2SB =,一质点自点B 出发,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为()A .2B .3C .3D .33【变式2-1】如图,在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点.(1)求此直三棱柱111ABC A B C -的表面积;(2)当1AD DC +最小时,三棱锥1D ABC -的体积.巩固训练1.把如图的平面图形分别沿AB 、BC 、AC 翻折,已知1D 、2D 、3D 三点始终可以重合于点D 得到三棱锥D ABC -,那么当该三棱锥体积最大时,其外接球的表面积为.2、如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==,(Ⅰ)若D 为线段AC 的中点,求证:AC ⊥平面PDO ;(Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.3.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①()0BA PA PD ⋅+= ;②7PC =;③点P 在平面ABCD 的射影在直线AD 上.如图,平面五边形PABCD 中,PAD ∆是边长为2的等边三角形,//AD BC ,22AB BC ==,AB BC ⊥,将PAD ∆沿AD 翻折成四棱锥P ABCD -,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且____.(1)求证://FM 平面PAD ;(2)当EF 与平面PAD 所成角最大时,求平面ACE 与平面ABCD 所成的锐二面角的余弦值.4.如图,在矩形ABCD 中,2,23AB AD ==,ABPCDFEE ,F 分别为AD ,BC 的中点,以DF 为折痕把CDF ∆折起,点C 到达点P 的位置,使1PE =.(1)证明:平面PEF ⊥平面ABFD ;(2)求二面角P DF E --的正弦值.参考答案类型一折叠问题【例1】【分析】(1)证明PO ⊥平面ACD 可得PO AD ⊥,根据中位线定理和勾股定理可证AD ON ⊥,故而AD ⊥平面PON ,于是平面PAD ⊥平面PON ;(2)分别计算AON ∆的面积和M 到平面ACD 的距离,代入体积公式计算.【解答】(1)证明:PA PC = ,O 是AC 的中点,PO AC ∴⊥,又平面PAC ⊥平面ACD ,平面PAC ⋂平面ACD AC =,PO ∴⊥平面ACD ,又AD ⊂平面ACD ,PO AD ∴⊥,23AD = ,2CD =,4AC =,222AD CD AC ∴+=,AD CD ∴⊥,ON 是ACD ∆的中位线,//ON CD ∴,AD ON ∴⊥,又ON PO O = ,AD ∴⊥平面PON ,又AD ⊂平面PAD ,∴平面PAD ⊥平面PON .(2)PAC ∆ 是边长为4的等边三角形,3PO ∴=M ∴到平面ACD 的距离132d PO ==,ON 是ACD ∆的中位线,1113324422AON ACD S S ∆∆∴==⨯=,11131332322M ANO AON V S PO -∆∴==⨯⨯ .【点评】本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.【例2】【分析】(1)取AD 中点E ,连接PE ,EM ,AC ,可得PE AD ⊥,然后证明BD PE ⊥,可得PE ⊥平面ABCD ,进一步得到平面PAD ⊥平面ABCD ;(2)由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,求解三角形可得1PE =,再求出四边形ABCD 的面积,代入棱锥体积公式求解.【解答】(1)证明:取AD 中点E ,连接PE ,EM ,AC ,PA PD = ,得PE AD ⊥,由底面ABCD 为菱形,得BD AC ⊥,E ,M 分别为AD ,CD 的中点,//EM AC ∴,则BD EM ⊥,又BD PM ⊥,BD ∴⊥平面PEM ,则BD PE ⊥,PE ∴⊥平面ABCD ,而PE ⊂平面PAD ,∴平面PAD ⊥平面ABCD ;(2)解:由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,设AB a =,则224a PE =-,322AC EM ==,故tan tan 30PE PME EM ∠=︒=,即2234332a a -=,解得2a =.故1PE =,3ABCD S =四边形.故23133P ABCD ABCD V S PE -=⋅⋅=四边形.【点评】本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.【变式1-1】【分析】(1)推导出AB AD ⊥,AB ⊥平面PAD ,AB PD ⊥,PD PA ⊥,由此能证明PD ⊥平面PAB .(2)取AD 的中点O ,连结OP ,OC ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系,利用向量法能求出二面角A PB C --的大小.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,利用向量法能求出在棱PA 上满足题意的点M 存在.【解答】证明:(1)1AB = ,2AD =,5BD =222AB AD BD ∴+=,AB AD ∴⊥,平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,AB ∴⊥平面PAD ,又PD ⊂ 平面PAD ,AB PD ∴⊥,又PD PA ⊥ ,PA AB A= PD ∴⊥平面PAB .解:(2)取AD 的中点O ,连结OP ,OC ,由平面PAD ⊥平面ABCD 知PO ⊥平面ABCD ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系如图示,则(2C ,0,0),(0P ,0,1),(0D ,1-,0),(0A ,1,0),(1B ,1,0)∴(1,1,1)PB =- ,(2,0,1)PC =- ,(0,1,1)PD =-- ,设平面PBC 的法向量为(,,)m a b c = ,由00m PB m PC ⎧⋅=⎪⎨⋅=⎪⎩ ,得020a b c a c +-=⎧⎨-=⎩,令1a =得1b =,2c =,∴(1,1,2)m = ,PD ⊥ 平面PAB ,∴(0DP = ,1,1)是平面PAB 的法向量,设二面角A PB C --大小为θ,则123cos 2||||62m DP m DP θ⋅==⋅⋅ ,0θπ ,∴二面角A PB C --的大小6πθ=.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,即(x ,1y -,)(0z λ=,1-,1),(0M ,1λ-,)λ,则(1,,)BM λλ=-- ,从而211sin ||3||||612m BM m BM αλ⋅==⋅⋅+ ,[0λ∈ ,1],103λ∴=-,∴在棱PA 上满足题意的点M 存在.【点评】本题考查线面垂直的证明,考查二面角的求法,考查满足线面角的正弦值点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.类型二展开问题【例1】【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱111ABC A B C -沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6212⨯=,宽等于5,由勾股定理2212513d =+=.故选:C .【点评】本题考查棱柱的结构特征,考查空间想象能力和思维能力,考查数学转化思想方法,是中档题.【例2】【分析】画出解答几何体的部分侧面展开图,利用三角形的边的关系容易解得边长的值,从而得出其中的最小值.【解答】解:将三棱锥S ABC -沿侧棱SB 展开,其侧面展开图如图所示,由图中红色路线可得结论.根据余弦定理得,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为:14422232++⨯⨯⨯=故选:C .【点评】本题考查多面体和旋转体表面上的最短距离问题,空间想象能力,几何体的展开与折叠,是基础题.【变式2-1】【分析】(1)直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形.(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABD V V --=,由此能求出结果.【解答】解:(1) 在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,∴此直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形121213231432=⨯⨯⨯+⨯+⨯++1135=+(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,1AB = ,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点,∴当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABDV V --=1113ABD S B C ∆=⨯111132AB BD B C =⨯⨯⨯⨯1111232=⨯⨯⨯⨯13=.∴当1AD DC +最小时,三棱锥1D ABC -的体积为13.【点评】本题考查几何体的表面积、体积的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数数结合思想、函数与方程思想、化归与转化思想,是中档题.巩固练习1.【分析】在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,然后根据三棱锥的性质求出外接球的半径,进而可以求解.【解答】解:在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,此时,设外接球的半径为R ,球心为O ,球心O 到平面ABC 的投影点为F ,则有2222R OA OF AF ==+,又1522OF AD ==,1522AF AC ==,所以2225525()()222R =+=,所以球的表面积为22544502S R πππ==⨯=,故答案为:50π.【点评】本题考查了三棱锥的外接球的表面积问题,考查了学生的空间想象能力以及运算能力,属于中档题.2、【分析】(Ⅰ)由题意可证AC DO ⊥,又PO AC ⊥,即可证明AC ⊥平面PDO .(Ⅱ)当CO AB ⊥时,C 到AB 的距离最大且最大值为1,又2AB =,即可求ABC ∆面积的最大值,又三棱锥P ABC -的高1PO =,即可求得三棱锥P ABC -体积的最大值.(Ⅲ)可求22112PB PC +==,即有PB PC BC ==,由OP OB =,C P C B '=',可证E 为PB 中点,从而可求2626OC OE EC +'=+'=,从而得解.【解答】解:(Ⅰ)在AOC ∆中,因为OA OC =,D 为AC 的中点,所以AC DO ⊥,又PO 垂直于圆O 所在的平面,所以PO AC ⊥,因为DO PO O = ,所以AC ⊥平面PDO .(Ⅱ)因为点C 在圆O 上,所以当CO AB ⊥时,C 到AB 的距离最大,且最大值为1,又2AB =,所以ABC ∆面积的最大值为12112⨯⨯=,又因为三棱锥P ABC -的高1PO =,故三棱锥P ABC -体积的最大值为:111133⨯⨯=.(Ⅲ)在POB ∆中,1PO OB ==,90POB ∠=︒,所以22112PB =+=同理2PC =,所以PB PC BC ==,在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ',使之与平面ABP 共面,如图所示,当O ,E ,C '共线时,CE OE +取得最小值,又因为OP OB =,C P C B '=',所以OC '垂直平分PB ,即E 为PB 中点.从而2626222OC OE EC '=+'=+=.亦即CE OE +的最小值为:262.【点评】本题主要考查了直线与直线、直线与平面的位置关系、锥体的体积的求法等基础知识,考查了空间想象能力、推理论证能力、运算求解能力,考查了数形结合思想、化归与转化思想,属于中档题.3.【分析】(1)取CD 中点为G ,连接MG ,FG ,//GM PD ,//FG AD ,进而可证平面//MFG 平面PAD ,可证//FM 平面PAD ;(2)根据条件选择①:由已知可证BA ⊥平面PAD ,PO ⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,利用向量法平面ACE 与平面PAD 所成的锐二面角的余弦值.同理选择②,③可求平面ACE 与平面ABCD 所成的锐二面角的余弦值.【解答】(1)证明:取CD 中点为G ,连接MG ,FG ,则MG ,FG 分别为三角形CDE ,梯形ABCD 的中位线,//GM PD ∴,//FG AD ,MG FG G = ,∴平面//MFG 平面PAD ,FM ⊂ 平面MGF ,//FM ∴平面PAD ,(2)解:取AD 为O ,连接PO ,FG ,EG .选择①:因为()0BA PA PD ⋅+= ,2PA PD PO += ,所以0BA PO ⋅= ,即BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,则(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z =,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||17m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD 所成的锐二面角的余弦值为25117.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得2ER =,RK =,则EK =所以251cos 17RK EKR EK ∠==,所以平面ACE 与平面PAD.选择②:连接OC ,则2OC AB ==,OP =,因为PC =,222PC OP OC =+,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,选择③:因为点P 在平面ABCD 的射影在直线AD 上,所以平面PAD ⊥平面ABCD .因为平面PAD ⋂平面ABCD CD =,OP ⊂平面PAD ,AD PO ⊥,所以OP ⊥平面ABCD ,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ⊥,∴平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则1111330,2220y z x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD所成的锐二面角的余弦值为17.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,【点评】本题考查线面平行的证明,以及面面角的求法,属中档题.4.【分析】(1)推导出//EF AB 且3DE =,AD EF ⊥,DE PE ⊥,AD PE ⊥,由此能证明AD ⊥平面PEF ,从而平面PEF ⊥平面ABFD .(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,从而POH ∠为二面角P DF E --的平面角,由此能求出二面角P DF E --的正弦值.【解答】证明:(1)E 、F 分别为AD ,BC 的中点,//EF AB ∴且3DE =,在矩形ABCD 中,AD AB ⊥,AD EF ∴⊥,由翻折的不变性,2,3PD PF CF DE ===,7DF =又1PE =,有222PD PE DE =+,DE PE ∴⊥,即AD PE ⊥,又PE EF E = ,PE ,EF ⊂平面PEF ,AD ∴⊥平面PEF ,AD ⊂ 平面ABFD ,∴平面PEF ⊥平面ABFD .解:(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,POH ∴∠为二面角P DF E --的平面角.222PE PF EF += ,90EPF ∴∠=︒,由等面积法求得322127PH PO ==.在直角POH ∆中,7sin 4PH POH PO ∠==,即二面角P DF E --的正弦值为74.【点评】本题考查面面垂直的证明,考查二面角的正弦值的求法,考查运算求解能力,考查函数与方程思想,考查化归与转化思想,是中档题.。
立体几何折叠动点问题1.(2020•湖南模拟)在棱长为6的正方体1111ABCD A B C D -,中,M 是BC 的中点,点P 是正方体的表面11DCC D (包括边界)上的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -体积的最大值是( )A .B .36C .24D .2.(2020•德阳模拟)ABC ∆是边长为E ,F 分别为AB ,AC 的中点,沿EF 把OAEF 折起,使点A 翻折到点P 的位置,连接PB 、PC ,当四棱锥P BCFE -的外接球的表面积最小时,四棱锥P BCFE -的体积为( )A B C D3.(2020•德阳模拟)ABC ∆是边长为的等边三角形,E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ∆折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为()A .BC .3D .24.(2020春•江西月考)已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC ∆中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =,球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为44π,则球O 的表面积为( ) A .72π B .86π C .112π D .128π5.(2020春•沙坪坝区校级期中)已知A ,B ,C ,D 四点均在半径为(R R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( ) A .32π B .2π C .94π D .83π6.(2020春•五华区校级月考)已知A ,B ,C 是球O 的球面上的三点,2AB =,AC =60ABC ∠=︒,且三棱锥O ABC -,则球O 的体积为( )A .24πB .48πC .D .7.(2020•东莞市模拟)已知三棱柱111ABC A B C -四边形11A ACC 与11B BCC 为两个全等的矩形,M 是11A B 的中点,且11112C M A B =,则三棱柱111ABC A B C -体积的最大值为( ) A .12B .16C .4D .438.(2020•江西模拟)四棱柱1111ABCD A B C D -中,底面四边形ABCD 是菱形,120ADC ∠=︒,连接AC ,BD 交于点O ,1A O ⊥平面ABCD ,14AO BD ==,点C '与点C 关于平面1BC D 对称,则三棱锥C ABD '-的体积为( )A .B .C .D .9.(2020•浙江模拟)在长方体1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,侧棱1(4)AA t t =>,点E 是BC 的中点,点P 是侧面11ABB A 内的动点(包括四条边上的点),且满足tan 4tan APD EPB ∠=∠,则四棱锥P ABED -的体积的最大值是( )A B . C D10.(2019秋•包河区校级期末)矩形ABCD 中,2BC =,沿对角线AC 将三角形ADC 折起,得到四面体A BCD -,四面体A BCD -外接球表面积为16π,当四面体A BCD -的体积取最大值时,四面体A BCD -的表面积为( )A .B .C .D .11.(2020•山东模拟)如图,正方体1111ABCD A B C D -的棱长为1,线段11A C 上有两个动点E ,F ,且12EF =;则下列结论错误的是( )A .BD CE ⊥B .//EF 平面ABCDC .三棱锥E FBC -的体积为定值D .BEF ∆的面积与CEF ∆的面积相等12.(2020•海淀区校级模拟)在边长为1的正方体中,E ,F ,G ,H 分别为11A B ,11C D ,AB ,CD 的中点,点P 从G 出发,沿折线GBCH 匀速运动,点Q 从H 出发,沿折线HDAG 匀速运动,且点P 与点Q 运动的速度相等,记E ,F ,P ,Q 四点为顶点的三棱锥的体积为V ,点P 运动的路程为x ,在02x 剟时,V 与x 的图象应为( )A .B .C .D .13.(2019秋•襄城区校级月考)如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为( )A .643π B .163π C .253π D .649π14.(2019春•昆明期末)在平行四边形ABCD 中,3BAD π∠=,点E 在AB 边上,112AD AE AB ===,将ADE ∆沿直线DE 折起成△A DE ',F 为A C '的中点,则下列结论正确的是( )A .直线A E '与直线BF 共面B .12BF =C .△A EC '可以是直角三角形D .A C DE '⊥15.(2019秋•安顺月考)如图,正方体1111ABCD A B C D -的棱长为2m ,E 为1AA 的中点,动点P 从点D 出发,沿DA AB BC CD ---运动,最后返回D .已知P 的运动速度为1/m s ,那么三棱锥11P EC D -的体积y (单位:3)m 关于时间x (单位:)s 的函数图象大致为( )A .B .C .D .16.(2019秋•沙坪坝区校级期中)如图,正方体1111ABCD A B C D -中,E 为AB 中点,F 在线段1DD 上.给出下列判断:①存在点F 使得1A C ⊥平面1B EF ;②在平面1111A B C D 内总存在与平面1B EF 平行的直线;③平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点F 的位置无关; ④三棱锥1B B EF -的体积与点F 的位置无关. 其中正确判断的有( ) A .①② B .③④ C .①③ D .②④17.(2019秋•镜湖区校级期中)如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( )A .11//FM ACB .BM ⊥平面1CC FC .存在点E ,使得平面//BEF 平面11CCD D D .三棱锥B CEF -的体积为定值18.(2019•越城区校级学业考试)如图,线段AB 是圆的直径,圆内一条动弦CD 与AB 交于点M ,且22MB AM ==.现将半圆ACB 沿直径AB 翻折,则三棱锥C ABD -体积的最大值是( )A .23B .13C .3D .1参考答案与试题解析1.(2020•湖南模拟)在棱长为6的正方体1111ABCD A B C D -,中,M 是BC 的中点,点P 是正方体的表面11DCC D (包括边界)上的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -体积的最大值是( )A .B .36C .24D .【解答】解:Q 在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,Rt ADP ∴∆∽△Rt PMC ∆,∴2AD PDMC PC==,即2PD PC =,设DO x =,PO h =,作PO CD ⊥,∴=,化简得:223348144h x x =-+-,06x 剟,根据函数单调性判断:6x =时,23h 最大值为36,h =最大值,Q 在正方体中PO ⊥面BCD ,∴三棱锥P BCD -的体积最大值:116632⨯⨯⨯⨯=2.(2020•德阳模拟)ABC ∆是边长为E ,F 分别为AB ,AC 的中点,沿EF 把OAEF 折起,使点A 翻折到点P 的位置,连接PB 、PC ,当四棱锥P BCFE -的外接球的表面积最小时,四棱锥P BCFE -的体积为( )A B C D 【解答】解:如图,由题意,BC 的中点O 为等腰梯形BCFE 的外接圆的圆心,则四棱锥P BCFE -的外接球的球心在过O 且垂直于平面BCFE 的直线上,要使四棱锥P BCFE -的外接球的表面积最小,则半径最小,即需要O 为四棱锥P BCFE -的外接球的球心,此时OP OB ==1322PG OG OA ===,则99344cos 322POG +-∠==, P ∴到平面BCFE的距离为sin d OP POG =∠g1322BCFE S =⨯ ∴四棱锥P BCFE -的体积为13V =D . 3.(2020•德阳模拟)ABC ∆是边长为的等边三角形,E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ∆折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为()A.BC .3D .2【解答】解:要想体积最大,高得最大,底面积也得最大,当平面AEF ⊥平面EFCB 时,体积才最大;设2EF a =;设O 为EF 的中点,如图: Q 等边ABC ∆中,点E ,F 分别为AB ,AC 上一点,且//EF BC ,AE AF ∴=,O Q 为EF 的中点,AO EF ∴⊥,Q 平面AEF ⊥平面EFCB ,平面AEF ⋂平面EFCB EF =,AO ∴⊥平面EFCB ,2EF a =Q,AO ∴.∴四棱锥A EFCB -的体积311(2(3)()332V a a a a a a =⨯⨯+⨯==-,2330V a ∴'=-=,1a ∴= (负值舍),01a <<,V1a >>,V 单调递减, 1a ∴=,四棱锥A EFCB -的体积最大,最大值为:312-=.故选:D .4.(2020春•江西月考)已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC ∆中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =,球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为44π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π【解答】解:如图.M 是BC 边中点,E 是AC 边中点,AB AC ⊥Q ,M ∴是ABC ∆的外心,作//OM PA ,PA ⊥Q 平面ABC ,OM ∴⊥平面ABC ,OM AM ∴⊥,OM MD ⊥,取12OM PA =,易得OA OP =,O ∴是三棱锥P ABC -的外接球的球心. E 是AC 中点,则//ME AB ,132ME AB ==,ME AC ∴⊥,3AD DC =Q ,∴124ED AC ==,∴MD =,设2PA a =,则OM a =,222213OD OM MD a =+=+,又152AM BC ==, 222225OA OM AM a ∴=+=+,过D 且与OD 垂直的截面圆半径为r ,则r ==径等于球半径OA ,222(25)1244OA r a πππππ∴+=++=,22(25)32OA a ππ=+=.∴24128S OA ππ==球.故选:D .5.(2020春•沙坪坝区校级期中)已知A ,B ,C ,D 四点均在半径为(R R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( ) A .32πB .2πC .94π D .83π 【解答】解:因为AB AC =,AB AC ⊥,AD BC ⊥,作AN BC ⊥于N ,则N 为BC 的中点,且12AN BC =, 若四面体ABCD 的体积的最大值时,则DN ⊥面ABC ,则外接球的球心在DN 上,设为O , 设外接球的半径为R ,连接OA ,则OA OD R ==,211112()()3263D ABC V BC AN DN AN AN R ON AN R ON -==+=+g g g g g g g2211()()()()()33OA ON R ON R ON R ON R ON =-+=+-+ 3311()(22)()14()(22)()()()66363R ON R ON R ON R R ON R ON R ON ++-++=+-+=g …, 当且仅当22R ON R ON -=+,即3R ON =时取等号,因为三棱锥的最大体积为16,所以3141()636R =g ,可得34R =,所以外接球的表面积为29944164S R πππ===g ,6.(2020春•五华区校级月考)已知A ,B ,C 是球O 的球面上的三点,2AB =,AC =60ABC ∠=︒,且三棱锥O ABC -,则球O 的体积为( ) A .24πB .48π C. D.【解答】解:O 到截面ABC 的投影为三角形ABC 的外接圆的圆心,设为E ,连接AE ,则AE 为底面外接圆的圆心,OE OB OC ==为球的半径R ,因为2AB =,AC =,60ABC ∠=︒,由余弦定理可得:22221412cos cos602222AB BC AC BC ABC AB BC BC+-+-∠=︒===g g g g ,整理可得:2280BC BC --=,解得4BC =, 设三角形ABC 的外接圆半径为r,则2sin 60AC r ==︒2r =,111sin 6024326O ABC V AB BC OE OE -=︒==g g g g g g,所以OE = 在三角形OAE中,R OA ===所以外接球的体积为3441233V R ππ===g g .7.(2020•东莞市模拟)已知三棱柱111ABC A B C -四边形11A ACC 与11B BCC 为两个全等的矩形,M 是11A B 的中点,且11112C M A B =,则三棱柱111ABC A B C -体积的最大值为( ) A .12B .16C .4D .43【解答】解:Q 四边形11A ACC 与11B BCC 为两个全等的矩形,AC BC ∴=,1CC AC ⊥,1CC BC ⊥,又AC BC C =Q I ,AC ,BC ⊂平面ABC ,1CC ∴⊥平面ABC ;M Q 是11A B 的中点,且11112C M A B =,∴底面△111A B C 是直角三角形;综上,三棱柱111ABC A B C -是底面为等腰三角形的直棱柱.设AC BC a ==,1CC b =,将三棱柱还原为长方体,即22212a b +=;∴三棱柱的体积2231111(12)(12),244ABC V S CC a b b b b b b ∆===-=-+∈g ; 记31()(12)4f b b b =-+,则213()(312)(2)(2)44f b b b b '=-+=--+,当f '(b )0>时,02b <<;当f '(b )0<时,2b <<f ∴(b )在(0,2)上单调递增,(2,上单调递减, 故f (b )max f =(2)4=.故选:C .8.(2020•江西模拟)四棱柱1111ABCD A B C D -中,底面四边形ABCD 是菱形,120ADC ∠=︒,连接AC ,BD 交于点O ,1A O ⊥平面ABCD ,14AO BD ==,点C '与点C 关于平面1BC D 对称,则三棱锥C ABD '-的体积为( )A .B .C .D .【解答】解:连接1OC ,过点C 作1CM OC ⊥,垂足为M ,因为1OA ⊥平面ABCD ,故1OA BD ⊥, 因为四边形ABCD 是菱形,故OA BD ⊥,故BD ⊥平面11ACC A ,故BD CM ⊥,又1CM OC ⊥,故CM ⊥平面1BDC ,又ABD ∆是边长为4的等边三角形,可得OC OA ==所以11A C AC ==Rt △11A C O 中,可得1160AOC ∠=︒,则30MOC ∠=︒,可知OCC '∆为等边三角形,且所在平面垂直底面,故114432C ABD V '-=⨯⨯⨯=三棱锥,故选:D .9.(2020•浙江模拟)在长方体1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,侧棱1(4)AA t t =>,点E 是BC 的中点,点P 是侧面11ABB A 内的动点(包括四条边上的点),且满足tan 4tan APD EPB ∠=∠,则四棱锥P ABED -的体积的最大值是( )A B . C D 【解答】解:作PN AB ⊥于N ,在长方体1111ABCD A B C D -中,DA ⊥平面11A ABB ,CB ⊥平面11A ABB , 在Rt PAD ∆和Rt PBC ∆中,tan AD APD AP ∠=,tan BE EPB PB ∠=,tan 4tan APD EPB ∠=∠Q ,1122BE BC AD ==,12PA PB ∴=,设PN h =,AN x =,则4BN x =-,[0x ∈,4],由12PA PB =,得2214PA PB =,即22221[(4)]4h x h x +=+-,整理得2281633h x x =--+,[0x ∈,4],开口向下,对称轴为43x =-,∴在[0x ∈,4]单调递减,则0x =时,2h 取到最大值163,即h∴四棱锥P ABED -的体积的最大值是11(24)432⨯+⨯=故选:C .10.(2019秋•包河区校级期末)矩形ABCD 中,2BC =,沿对角线AC 将三角形ADC 折起,得到四面体A BCD -,四面体A BCD -外接球表面积为16π,当四面体A BCD -的体积取最大值时,四面体A BCD -的表面积为( )A .B .C .D .【解答】解:由题意可知,直角三角形斜边的中线是斜边的一半,所以长宽分别为2和1的长方形ABCD 沿对角线AC 折起二面角,得到四面体A BCD -,则四面体A BCD -的外接球的球心O 为AC 中点,半径12R AC =,所求四面体A BCD -的外接球的表面积为2416R ππ⨯=;24R AC AB ⇒=⇒=⇒=∴矩形ABCD 中,AB =2BC =,沿AC 将三角形ADC 折起,当平面ADC ⊥平面ABC 时,得到的四面体A BCD -的体积最大,如图所示;过点D 作DO ⊥平面ABC ,垂足为O ,则点D 到平面ABC 的距离为AD CD d OD AC ⨯==== 过点O 作OM AB ⊥,作ON BC ⊥,垂足分别为M 、N ,连接DM ,DN ;则BM AB ⊥,DN BC ⊥;所以1AO =,3OC =,所以12OM =,ON =;所以DMDN ==;又122ADC ABC S S ∆∆==⨯22=11222ACD S AB DM ∆==⨯g =11222BCD S BC DN ∆==⨯=g ;所以四面体A BCD -的表面积为:24ABC ACD BCD S S S S ∆∆∆=++=B .11.(2020•山东模拟)如图,正方体1111ABCD A B C D -的棱长为1,线段11A C 上有两个动点E ,F ,且12EF =;则下列结论错误的是( )A .BD CE ⊥B .//EF 平面ABCDC .三棱锥E FBC -的体积为定值D .BEF ∆的面积与CEF ∆的面积相等【解答】解:对于A ,连接AC ,则BD AC ⊥,1BD AA ⊥,BD ∴⊥平面11AA C C ,又AE ⊂平面11AA C C ,BD AE ∴⊥.故A 正确;对于B ,11//AC AC Q ,即//EF AC ,又EF ⊂/平面ABCD ,AC ⊂平面ABCD ,//EF ∴平面ABCD ,故B 正确;对于C ,1111112224AEF S EF AA ∆==⨯⨯=g g ,点B 到平面AEF 的距离为B 到平面11AA C C 的距离12d BD ==,1134A BEF B AEF V V --∴==⨯,故C 正确;对于D ,连接1A B ,1C B ,则△11A BC B ∴到EF =A 到EF 的距离为11AA =,AEF ∴∆的面积与BEF ∆的面积不相等.故D 错误.故选:D .12.(2020•海淀区校级模拟)在边长为1的正方体中,E ,F ,G ,H 分别为11A B ,11C D ,AB ,CD 的中点,点P 从G 出发,沿折线GBCH 匀速运动,点Q 从H 出发,沿折线HDAG 匀速运动,且点P 与点Q 运动的速度相等,记E ,F ,P ,Q 四点为顶点的三棱锥的体积为V ,点P 运动的路程为x ,在02x 剟时,V 与x 的图象应为( )A .B .C .D .【解答】解:(1)当102x剟时,点P 与点Q 运动的速度相等根据下图得出:面OEF 把几何体PEFQ 分割为相等的几何体,111122OEF S ∆=⨯⨯=Q ,P 到面OEF 的距离为x ,112223263PEFQ P OEF x xV V x -==⨯⨯==g ,23(2)当1322x <…时,P 在AB 上,Q 在11C D 上,P 到12,111122OEF S ∆=⨯⨯=, 1111223226PEFQ P OEF V V -==⨯⨯⨯==定值.(3)当322x <…时,111122OEF S ∆=⨯⨯=,P 到面OEF 的距离为2x -, 112122(2)3233PEFQ P OEF V V x x -==⨯⨯⨯-=-,1,032113,622213,2332xx V x x x ⎧<⎪⎪⎪=<⎨⎪⎪-⎪⎩……剟故选:C .13.(2019秋•襄城区校级月考)如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为( )A .643π B .163π C .253π D .649π 【解答】解:将三角形POD 展开到与平面PAO 共面,则AN MN +的最小值时,A 、M 、N 三点共线,记作AM .M Q 点在线段PD 上,AM 最短时恰为PD 中点,AM PD ∴⊥,AM ∴既为PD 中线,又是PD 边上的高,AP AD ∴=.Q 顶点P 在底面的投影恰为正方形ABCD 的中心,则四棱锥为正四棱锥,AP PD ∴=,∴三角形APD 为等边三角形.Q AB =2AO ∴=,24AP AD AO ∴===,则PO ==设球心为Q ,连接QA ,则在Rt QOA ∆中,222QA AO QO =+,∴224)R R =+,解得R =,∴外接球的表面积216644433S R πππ==⨯=.故选:A . 14.(2019春•昆明期末)在平行四边形ABCD 中,3BAD π∠=,点E 在AB 边上,112AD AE AB ===,将ADE ∆沿直线DE 折起成△A DE ',F 为A C '的中点,则下列结论正确的是( )A .直线A E '与直线BF 共面B .12BF =C .△A EC '可以是直角三角形D .A C DE '⊥【解答】解:在平行四边形ABCD 中,3BAD π∠=,点E 在AB 边上,112AD AE AB ===, 将ADE ∆沿直线DE 折起成△A DE ',F 为A C '的中点,在A 中,取CD 中点G ,连结BG ,FG ,则//BG DE ,//FG A D ', BG FG G =Q I ,∴平面//BGF 平面A DE ',BF ⊂Q 平面BFG ,//BF ∴平面A DE ',∴直线A E '与直线BF 平行或异面,故A 错误;在B 中,Q 将ADE ∆沿直线DE 折起成△A DE ',F 为A C '的中点,A '点位置不确定,BF ∴的长不是常数,故B 错误;在C 中,1A E '=,CE =∴当2A E '=时,A E CE '⊥,△A EC '是直角三角形,故D 正确;在D 中,DE CE ⊥Q ,60DEA ∠'=︒,DE ∴与A C '不垂直,故D 错误.故选:C .15.(2019秋•安顺月考)如图,正方体1111ABCD A B C D -的棱长为2m ,E 为1AA 的中点,动点P 从点D 出发,沿DA AB BC CD ---运动,最后返回D .已知P 的运动速度为1/m s ,那么三棱锥11P EC D -的体积y (单位:3)m 关于时间x (单位:)s 的函数图象大致为( )A .B .C .D .【解答】解:(1)当02x 剟时,P 在线段DA 上运动,此时DP x =, 112224()22222PED x x x S ⨯-=-++=-V ,所以1111112(2)(4)323P EC D C PED x V V x --==⨯⨯-=-;(2)当24x 剟时,P 在线段AB 上,因为//AB 平面11EC D ,所以P 到平面11EC D 的距离为定值,所以11P EC D V -为定值,1112(42)33A EC D V -=-=;(3)当46x 剟时,P 在线段BC 上,取1BB 的中点F ,1111P EC D P FC E E PFC V V V ---==, 此时6CP x =-,同理可得112PC F x S =-V ,所以11(2)3E PFC V x -=-; (4)当68x 剟时,P 在线段CD 上,因为//CD 平面11EC D ,所以P 到平面11EC D 的距离为定值,所以11P EC D V -为定值,1114(62)33D EC D V -=-=.综上,三棱锥11P EC D -的体积y (单位:3)m 关于时间x (单位:)s 的函数大致图象如右图所示. 故选:B .16.(2019秋•沙坪坝区校级期中)如图,正方体1111ABCD A B C D -中,E 为AB 中点,F 在线段1DD 上.给出下列判断:①存在点F 使得1A C ⊥平面1B EF ;②在平面1111A B C D 内总存在与平面1B EF 平行的直线;③平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点F 的位置无关; ④三棱锥1B B EF -的体积与点F 的位置无关. 其中正确判断的有( )A .①②B .③④C .①③D .②④【解答】解:对于①,假设存在F 使得1A C ⊥平面1B EF ,则11AC B E ⊥,又1BC B E ⊥,1BC A C C =I ,1B E ∴⊥平面1A BC ,则11B E A B ⊥,这与11A B AB ⊥矛盾,所以①错误;对于②,因为平面1B EF 与平面1111A B C D 相交,设交线为l ,则在平面1111A B C D 内与l 平行的直线平行于平面1B EF ,故②正确;对于③,以D 点为坐标原点,以DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴,建立空间坐标系,则平面ABCD 的法向量为(0m =r ,0,1),而平面1B EF 的法向量n r,随着F 位置变化,故平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点F 的位置有关,故③错误;对于④,三棱锥1B B EF -的体积即为三棱锥1F BB E -,因为1//DD 平面11ABB A ,所以,当F 在线段1DD 上移动时,F 到平面11ABB A 的距离不变,故三棱锥1B B EF -的体积与点F 的位置无关,即④正确. 故选:D .17.(2019秋•镜湖区校级期中)如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( )A .11//FM ACB .BM ⊥平面1CC FC .存在点E ,使得平面//BEF 平面11CCD D D .三棱锥B CEF -的体积为定值【解答】解:在A 中,因为F 、M 分别是AD 、CD 的中点,所以11////FM AC AC ,故A 正确; 在B 中,由平面几何得BM CF ⊥,又有1BM C C ⊥,所以BM ⊥平面1CC F ,故B 正确;在C 中,BF 与平面11CC D D 有交点,所以不存在点E ,使得平面//BEF 平面11CC D D ,故C 错误.在D 中,三棱锥B CEF -以面BCF 为底,则高是定值,所以三棱锥B CEF -的体积为定值,故D 正确. 故选:C .18.(2019•越城区校级学业考试)如图,线段AB 是圆的直径,圆内一条动弦CD 与AB 交于点M ,且22MB AM ==.现将半圆ACB 沿直径AB 翻折,则三棱锥C ABD -体积的最大值是( )A .23B .13C .3D .1【解答】解:记翻折后CM 与平面ABD 所成角为α,则三棱锥C ABD -的高为sin h CM α=,∴三棱锥C ABD -体积:11(sin )sin 32C ABD V AB DM DMA CM α-=⨯⨯⨯⨯∠⨯⨯16AB DM CM ⨯⨯⨯…, 3AB =Q ,2DM CM AM BM ⨯=⨯=,∴三棱锥C ABD -体积的最大值是: 1()3216C ABD max V -=⨯⨯=V .故选:D .。
高考数学大题精做之解答题题型全覆盖高端精品第三篇立体几何专题06立体几何中折叠问题类型对应典例折叠问题中的点线面位置关系典例1折叠问题中的体积典例2折叠问题中的线面角典例3折叠问题中的二面角典例4【典例1】如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将ADE 沿AE 折起,使得平面ADE ⊥平面ABCE (如图).G 为AE 中点.(1)求证:DG ⊥平面ABCE ;(2)求四棱锥D ABCE -的体积;(3)在线段BD 上是否存在点P ,使得//CP 平面ADE ?若存在,求BPBD的值;若不存在,请说明理由.【典例2】如图1,在正方形ABCD 中,E 是AB 的中点,点F 在线段BC 上,且14BF BC =.若将,AED CFD ∆∆分别沿,ED FD 折起,使,A C 两点重合于点M ,如图2.图1图2(1)求证:EF ⊥平面MED ;(2)求直线EM 与平面MFD 所成角的正弦值.【典例3】如图1,已知菱形AECD 的对角线,AC DE 交于点F ,点E 为线段AB 的中点,2AB =,60BAD ∠=︒,将三角形ADE 沿线段DE 折起到PDE 的位置,2PC =,如图2所示.(Ⅰ)证明:平面PBC ⊥平面PCF ;(Ⅱ)求三棱锥E PBC -的体积.【典例4】如图,ABC 中,4AB BC ==, 90ABC ∠=︒,,E F 分别为 AB ,AC 边的中点,以EF 为折痕把AEF 折起,使点 A 到达点 P 的位置,且 PB BE =.(1)证明: BC ⊥平面 PBE ;(2)求平面 PBE 与平面 PCF 所成锐二面角的余弦值.1.在Rt ABC △中,90ABC ∠=︒,1tan 2ACB ∠=.已知E ,F 分别是BC ,AC 的中点.将CEF △沿EF 折起,使C 到'C 的位置且二面角'C EF B --的大小是60︒.连接C'B ,'C A ,如图:(Ⅰ)求证:平面'FA C ⊥平面'ABC ;(Ⅱ)求平面'AFC 与平面'BEC 所成二面角的大小.2.已知长方形ABCD 中,1AB =,AD =BD 折起,使AC a =,得到一个四面体A BCD -,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD 能否垂直?若能垂直,求出相应的a 的值;若不垂直,请说明理由;(2)当四面体A BCD -体积最大时,求二面角A CD B --的余弦值.3.如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.4.如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1—ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AMAB的值;若不存在,请说明理由.5.如图,在边长为4的菱形ABCD 中,60DAB ︒∠=,点E ,F 分别是边CD ,CB 的中点,AC EF O ⋂=.沿EF 将△CEF 翻折到△PEF ,连接,,PA PB PD ,得到如图的五棱锥P ABFED -,且PB =.(1)求证:BD ⊥平面POA ;(2)求四棱锥P BFED -的体积.6.已知三棱锥P ABC -(如图一)的平面展开图(如图二)中,四边形ABCD的正方形,ABE ∆和BCF ∆均为正三角形,在三棱锥P ABC -中:(I )证明:平面PAC ⊥平面ABC ;(Ⅱ)若点M 在棱PA 上运动,当直线BM 与平面PAC 所成的角最大时,求二面角P BC M --的余弦值.图一图二参考答案【典例1】【思路引导】(1)证明DG AE ⊥,再根据面面垂直的性质得出DG ⊥平面ABCE ;(2)分别计算DG 和梯形ABCE 的面积,即可得出棱锥的体积;(3)过点C 作//CF AE 交AB 于点F ,过点F 作//FP AD 交DB 于点P ,连接PC ,可证平面//CFP 平面ADE ,故//CP 平面ADE ,根据//FP AD 计算BPBD的值.【详解】(1)证明:因为G 为AE 中点,2AD DE ==,所以DG AE ⊥.因为平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =,DG ⊂平面ADE ,所以DG ⊥平面ABCE .(2)在直角三角形ADE 中,易求AE =则AD DEDG AE⋅==.所以四棱锥D ABCE -的体积为1(14)232D ABCE V -+⨯=⨯=.(3)过点C 作//CF AE 交AB 于点F ,则:1:3AF FB =.过点F 作//FP AD 交DB 于点P ,连接PC ,则:1:3DP PB =.又因为CF //A E ,AE ⊂平面,ADE CF ⊄平面ADE ,所以CF //平面ADE .同理//FP 平面ADE .又因为CF PF F ⋂=,所以平面CFP //平面ADE .因为CP ⊂平面CFP ,所以//CP 平面ADE .所以在BD 上存在点P ,使得//CP 平面ADE ,且34BP BD =.【典例2】【思路引导】(1)设正方形ABCD 的边长为4,由222DE EF DF +=,可得EF ED ⊥,结合MD EF ⊥,利用线面垂直的判定定理,即可得到EF ⊥平面MED .(2)建立空间直角坐标系,过点M 作MN ED ⊥,垂足为N ,求出向量EM和平面MFD 的一个法向量,利用向量的夹角公式,即可求解.【详解】(1)证明:设正方形的边长为4,由图1知,,,,,,即由题意知,在图2中,,,平面,平面,且,平面,平面,.又平面,平面,且,平面(2)由(1)知平面,则建立如图所示空间直角坐标系,过点作,垂足为,在中,,,从而,,,,,.设平面的一个法向量为,则,令,则,,.设直线与平面所成角为,则,.直线与平面所成角的正弦值为.【典例3】【思路引导】(Ⅰ)折叠前,AC ⊥DE ;,从而折叠后,DE ⊥PF ,DE ⊥CF ,由此能证明DE ⊥平面PCF .再由DC ∥AE ,DC =AE 能得到DC ∥EB ,DC =EB .说明四边形DEBC 为平行四边形.可得CB ∥DE .由此能证明平面PBC ⊥平面PCF .(Ⅱ)由题意根据勾股定理运算得到PF CF ⊥,又由(Ⅰ)的结论得到BC ⊥PF ,可得PF ⊥平面BCDE ,再利用等体积转化有13E PBC P BCE BCE V V S PF --∆==⨯⨯,计算结果.【详解】(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC DE ⊥;所以折叠后,DE PF ⊥,DE CF ⊥,又PF CF F ⋂=,,PF CF ⊂平面PCF ,所以DE ⊥平面PCF因为四边形AECD 为菱形,所以//,AE DC AE DC =.又点E 为线段AB 的中点,所以//,EB DC EB DC =.所以四边形DEBC 为平行四边形.所以//CB DE .又DE ⊥平面PCF ,所以BC ⊥平面PCF .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PCF .(Ⅱ)图1中,由已知得32AF CF ==,1BC BE ==,60CBE ∠=︒所以图2中,2PF CF ==,又2PC =所以222PF CF PC +=,所以PF CF ⊥又BC ⊥平面PCF ,所以BC ⊥PF 又BC CF C ⋂=,,BC CF ⊂平面BCDE ,所以PF ⊥平面BCDE ,所以1113111sin6033228E PBC P BCE BCE V V S PF --∆==⨯⨯=⨯⨯⨯⨯⨯= .所以三棱锥E PBC -的体积为18.【典例4】【思路引导】(1)由E ,F 分别为AB ,AC 边的中点,可得EF BC ,由已知结合线面垂直的判定可得EF ⊥平面PBE ,从而得到BC ⊥平面PBE ;(2)取BE 的中点O ,连接PO ,由已知证明PO ⊥平面BCFE ,过O 作OM BC 交CF 于M ,分别以OB ,OM ,OP 所在直线为x ,y ,z 轴建立空间直角坐标系,分别求出平面PCF 与平面PBE 的一个法向量,由两法向量所成角的余弦值可得平面PBE 与平面PCF 所成锐二面角的余弦值.【详解】(1)因为,E F 分别为AB ,AC 边的中点,所以EF BC ,因为90ABC ∠=︒,所以EF BE ⊥,EF PE ⊥,又因为BE PE E ⋂=,所以EF ⊥平面PBE ,所以BC ⊥平面PBE .(2)取BE 的中点O ,连接PO ,由(1)知BC ⊥平面PBE ,BC ⊂平面BCFE ,所以平面PBE ⊥平面BCFE ,因为PB BE PE ==,所以PO BE ⊥,又因为PO ⊂平面PBE ,平面PBE ⋂平面BCFE BE =,所以PO ⊥平面BCFE ,过O 作OM BC 交CF 于M ,分别以OB ,OM ,OP 所在直线为,,x y z轴建立空间直角坐标系,则(P ,()1,4,0C ,()1,2,0F -.(1,4,PC =,(1,2,PF =-,设平面PCF 的法向量为(),,m x y z=,则0,0,PC m PF m ⎧⋅=⎨⋅=⎩即40,20,x y x y ⎧+=⎪⎨-+-=⎪⎩则(m =-,易知()0,1,0n=为平面PBE的一个法向量,cos<,5m n >=== ,所以平面PBE 与平面PCF所成锐二面角的余弦值55.1.【思路引导】(Ⅰ)法一:由'AF C F =.设'AC 的中点为G ,连接FG .设'BC 的中点为H ,连接GH ,EH .而'BEC ∠即为二面角'C EF B --的平面角.'60BEC ∠=︒,推导出'EH BC ⊥.由'EF C E ⊥,EF BE ⊥,从而EF ⊥平面'BEC .由//EF AB ,得AB ⊥平面'BEC ∠,从而AB EH ⊥,即EH AB ⊥.进而EH ⊥平面'ABC .推导出四边形EHGF 为平行四边形.从而//FG EH ,FG ⊥平面'ABC ,由此能证明平面'AFC ⊥平面'ABC .法二:以B 为原点,在平面'BEC 中过B 作BE 的垂线为x 轴,BE 为y 轴,BA 为z 轴,建立空间直角坐标系,利用向量法能证明平面'AFC ⊥平面'ABC .(Ⅱ)以B 为原点,在平面'BEC 中过B .作BE 的垂线为x 轴,BE 为y 轴,BA 为z 轴,建立空间直角坐标系,利用向量法能求出平面'AFC 与平面'BEC 所成二面角大小.【详解】(Ⅰ)证法一:F 是AC 的中点,'AF C F ∴=.设'AC 的中点为G ,连接FG .设'BC 的中点为H ,连接GH ,EH .由题意得'C E EF ⊥,BE EF ⊥,'BEC ∴即为二面角'C EF B --的平面角.'60BEC ∴=︒,E 为BC 的中点.'BE EC ∴=,'BEC ∴∆为等边三角形,'EH BC ∴⊥.'EF C E ⊥ ,EF BE ⊥,'C E BE E ⋂=,EF ∴⊥平面'BEC .//EF AB ,AB ∴⊥平面'BEC ,AB EH ∴⊥,即EH AB ⊥.'BC AB B ⋂= ,EH ∴⊥平面'ABC .G ,H 分别为'AC ,'BC 的中点.////GH AB FE ∴,12GH AB FE∴==四边形EHGF 为平行四边形.//FG EH ∴,FG ⊥平面'ABC ,又FG ⊂平面'AFC .∴平面'AFC ⊥平面'ABC.法二:如图,以B 为原点,BE 为x 轴,在平面'BEC 中过B 作BE 的垂线为y 轴,BA 为z 轴,建立空间直角坐标系,设2AB =.则()0,0,2A ,()0,0,0B ,()2,0,1F ,()2,0,0E,()'C .设平面'ABC 的法向量为(),,a x y z = ,()0,0,2BA =,()'BC =,20'0a BA z a BC x ⎧⋅==⎪∴⎨⋅=+=⎪⎩,令1y =,则()a = ,设平面'AFC 的法向量为(),,b x y z = ,()2,0,1AF =-,()'2AC =-,20'20b AF x z b AC x z ⎧⋅=-=⎪∴⎨⋅=+-=⎪⎩,取1x =,得()2b =.0a b ⋅= ,∴平面'AFC ⊥平面'ABC .解:(Ⅱ)如图,以B 为原点,BE 为x 轴,在平面'BEC 中过B 作BE 的垂线为y 轴,BA 为z 轴,建立空间直角坐标系,设2AB =.则()0,0,2A ,()0,0,0B ,()2,0,1F ,()2,0,0E ,()'3,0C .平面'BEC 的法向量()0,0,1m = 设平面'AFC 的法向量为(),,n x y z = ,()'3,2AC =- ,()2,0,1AF =- ,'32020n AC x y z n AF x z ⎧⋅=+-=⎪∴⎨⋅=-=⎪⎩ ,取1x =,得()3,2n = .设平面'AFC 与平面'BEC 所成的二面角的平面角为θ,2cos 2m n m nθ⋅∴==⋅ 由图形观察可知,平面'AFC 与平面'BEC 所成的二面角的平面角为锐角.∴平面'AFC 与平面'BEC 所成二面角大小为45 .2.【思路引导】(1)若AB ⊥CD ,得AB ⊥面ACD ,由于AB ⊥AC .,所以AB 2+a 2=BC,解得a 2=1,成立;(2)四面体A ﹣BCD 体积最大时面ABD ⊥面BCD ,以A 为原点,在平面ACD 中过O 作BD 的垂线为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角A ﹣CD ﹣B 的余弦值.【详解】(1)若AB ⊥CD ,因为AB ⊥AD ,AD ∩CD =D ,所以AB ⊥面ACD ⇒AB ⊥AC .由于AB=1,2,AC=a ,由于AB ⊥AC .,所以AB 2+a 2=BC,所以12+a 2=(2)2⇒a =1,所以在折叠的过程中,异面直线AB 与CD 可以垂直,此时a 的值为1(2)要使四面体A -BCD 体积最大,因为△BCD 面积为定值22,所以只需三棱锥A -BCD 的高最大即可,此时面ABD ⊥面BCD .过A 作AO ⊥BD 于O ,则AO ⊥面BCD ,以O 为原点建立空间直角坐标系o xyz -(如图),则易知,显然,面BCD 的法向量为,设面ACD 的法向量为n=(x ,y ,z ),因为所以,令y =2,得n=(1,2,2),故二面角A -CD -B 的余弦值即为|cos n OA ,.3.【思路引导】(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A = ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =又23BP DQ DA ==,所以BP =作QE ⊥AC ,垂足为E ,则QE =13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ABP -的体积为111131332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒= .4.【思路引导】(1)先计算得BE ⊥AE ,再根据面面垂直性质定理得结果,(2)先分析确定点M 位置,再取D 1E 的中点L ,根据平几知识得AMFL 为平行四边形,最后根据线面平行判定定理得结果.【详解】(1)证明连接BE ,∵ABCD 为矩形且AD =DE =EC =BC =2,∴∠AEB =90°,即BE ⊥AE ,又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE ,BE ⊂平面ABCE ,∴BE ⊥平面D 1AE .(2)解AM =14AB ,取D 1E 的中点L ,连接AL ,FL ,∵FL ∥EC ,EC ∥AB ,∴FL ∥AB 且FL =14AB ,∴FL ∥AM ,FL =AM∴AMFL 为平行四边形,∴MF ∥AL ,因为MF 不在平面AD 1E 上,AL ⊂平面AD 1E ,所以MF ∥平面AD 1E .故线段AB 上存在满足题意的点M ,且AM AB =14.5.【思路引导】(1)证明:∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF .∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥.∴EF AC ⊥.∴EF AO ⊥,EF PO ⊥.分∵AO ⊂平面POA ,PO ⊂平面POA ,AO PO O = ,∴EF ⊥平面POA .∴BD ⊥平面POA .(2)解:设,连接BO ,∵60DAB ︒∠=,∴△ABD 为等边三角形.∴4BD =,2BH =,23HA =3HO PO ==.在R t △BHO 中,227BO BH HO =+=在△PBO 中,22210BO PO PB +==,∴PO BO ⊥.∵PO EF ⊥,EF BO O ⋂=,EF ⊂平面BFED ,BO ⊂平面BFED ,∴PO ⊥平面BFED .梯形BFED 的面积为()1332S EF BD HO =+⋅=∴四棱锥P BFED -的体积11333333V S PO =⋅=⨯=.6.【思路引导】(1)设AC 的中点为O,证明PO 垂直AC,OB,结合平面与平面垂直判定,即可.(2)建立直角坐标系,分别计算两相交平面的法向量,结合向量的数量积公式,计算夹角,即可.【详解】(Ⅰ)设AC 的中点为O ,连接BO ,PO .由题意,得2PA PB PC ===,1PO =,1AO BO CO ===.因为在PAC ∆中,PA PC =,O 为AC 的中点,所以PO AC ⊥,因为在POB ∆中,1PO =,1OB =,PB =222PO OB PB +=,所以PO OB ⊥.因为AC OB O ⋂=,,AC OB ⊂平面ABC ,所以PO ⊥平面ABC ,因为PO ⊂平面PAC ,所以平面PAC ⊥平面ABC.(Ⅱ)由(Ⅰ)知,BO PO ⊥,BO AC ⊥,BO ⊥平面PAC ,所以BMO ∠是直线BM 与平面PAC 所成的角,且1tan BOBMO OM OM ∠==,所以当OM 最短时,即M 是PA 的中点时,BMO ∠最大.由PO ⊥平面ABC ,OB AC ⊥,所以PO OB ⊥,PO OC ⊥,于是以OC ,OB ,OD 所在直线分别为x 轴,y 轴,z 轴建立如图示空间直角坐标系,则()0,0,0O ,()1,0,0C ,()0,1,0B ,()1,0,0A -,()0,0,1P ,11,0,22M ⎛⎫- ⎪⎝⎭,()1,1,0BC =- ,()1,0,1PC =- ,31,0,22MC ⎛⎫=- ⎪⎝⎭ .设平面MBC 的法向量为()111,,m x y z = ,则由00m BC m MC⎧⋅=⎨⋅=⎩得:1111030x y x z -=⎧⎨-=⎩.令11x =,得11y =,13z =,即()1,1,3m =.设平面PBC 的法向量为()222,,n x y z = ,由00n BC n PC ⎧⋅=⎨⋅=⎩ 得:222200x y x z -=⎧⎨-=⎩,令1x =,得1y =,1z =,即()1,1,1n =.cos ,33m n n m m n ⋅===⋅ .由图可知,二面角P BC M --的余弦值为33.。
立体几何中“折叠问题”的解题策略[ 例题 ]如图 1,在直角梯形 ABCD 中,AD∥BC,AB∥BC,BD∥DC,点 E 是 BC 边的中点,将∥ABD 沿 BD 折起,使平面 ABD∥平面BCD,连结 AE,AC, DE,获得如图 2 所示的几何体.(1)求证: AB∥平面 ADC;(2)若 AD=1,二面角 C-AB-D 的平面角的正切值为6,求二面角 B-AD-E 的余弦值 .[ 解] (1)证明:由于平面ABD∥平面 BCD,平面 ABD∩平面 BCD=BD,BD∥DC,DC∥平面 BCD,因此 DC∥平面 ABD.由于 AB∥平面 ABD,因此 DC∥AB.又由于折叠前后均有AD∥AB,DC∩AD=D,因此 AB∥平面 ADC.(2)由(1)知 AB∥平面 ADC,因此二面角 C-AB-D 的平面角为∥CAD.又 DC∥平面 ABD,AD∥平面 ABD,因此 DC∥AD.CD依题意 tan ∥CAD=AD= 6.由于 AD=1,因此 CD= 6.设 AB= x(x>0),则 BD=x2+1.AB CD依题意 ∥ABD ∥∥DCB ,因此 AD = BD ,x6 即1=x 2+1,解得x =2,故 AB = 2,BD = 3,BC = BD 2+CD 2=3.以 D 为坐标原点,射线 DB ,DC 分别为 x 轴,y 轴的正半轴,成立以下图的空间直角坐标系 D-xyz ,则 D(0,0,0), B( 3,0,0), C(0, 6,0), E( 3 , 6,0),2 2A( 3,0, 6),33―→ = ( 3 6), ―→ =( 3 6 ).因此 DEDA,0,2 , ,03 32由 (1)知平面 BAD 的一个法向量 n =(0,1,0).设平面 ADE 的法向量为 m =(x ,y ,z),―→ =0,3x + 6y =0,·22m DE得由―→ =0,3 6·m DA3 x + 3 z =0.令 x = 6,得 y =- 3,z =- 3, 因此 m =(6,- 3,- 3)为平面 ADE 的一个法向量.因此 cos<n ,m>= n ·m1=- .|n| ·|m 2由图可知二面角 B-AD-E 的平面角为锐角,1因此二面角 B-AD-E 的余弦值为2.解题策略:1.确立翻折前后变与不变的关系画好翻折前后的平面图形与立体图形,分清翻折前后图形的地点和数目关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的地点和数目关系不变,而位于“折痕”双侧的点、线、面之间的地点关系会发生变化;关于不变的关系应在平面图形中办理,而关于变化的关系则要在立体图形中解决 .2.确立翻折后重点点的地点所谓的重点点,是指翻折过程中运动变化的点.由于这些点的地点挪动,会带动与其有关的其余的点、线、面的关系变化,以及其余点、线、面之间地点关系与数目关系的变化.只有剖析清楚重点点的正确地点,才能以此为参照点,确立其余点、线、面的地点,从而进行有关的证明与计算 .变式练习:1.如图 1,在四边形 ABCD 中, AD∥BC,∥BAD= 90°,1 AB=2 3,BC=4,AD=6,E 是 AD 上的点, AE=3AD,P为 BE 的中点,将∥ABE 沿 BE 折起到∥A1BE 的地点,使得 A1C=4,如图 2.(1)求证:平面 A1CP∥平面 A1BE;(2)求二面角 B-A1P-D 的余弦值.解: (1)证明:如图 3,连结 AP,PC.∥在四边形 ABCD 中, AD∥BC,∥BAD= 90°,AB=2 3,BC=4,AD=6,E 是 AD 上的点,1AE=3AD,P 为 BE 的中点,∥BE=4,∥ABE=30°,∥EBC=60°,BP=2,∥PC=2 3,∥BP2+PC2=BC2,∥BP∥PC.∥A1P=AP=2,A1C=4,∥A1P2+PC2=A1C2,∥PC∥A1P.∥BP∩A1P=P,∥PC∥平面 A1BE.∥PC∥平面 A1CP,∥平面 A1CP∥平面 A1BE.(2)如图 4,以 P 为坐标原点, PB 所在直线为 x 轴,PC 所在直线为 y 轴,过 P 作平面 BCDE 的垂线为 z 轴,成立空间直角坐标系,则 A 1(-1,0, 3),P(0,0,0),D(-4,2 3,0),―→ =(-1,0, 3), ―→ =(-4,2 3,0), ∥1PD PA设平面 A 1的法向量为 = , , ,PDm (xy z)―→=0,-x + 3z =0,则m ·PA 1 ―→即=0, -4x +2 3y =0,· m PD取 x = 3,得 m =( 3,2,1).易知平面 A 1PB 的一个法向量 n =(0,1,0),m ·n2则 cos 〈m ,n 〉=|m||n|= 2 .由图可知二面角 B-A 1P-D 是钝角,2∥二面角 B-A 1P-D 的余弦值为- 2 .2.如图 1,在高为 2 的梯形 ABCD 中, AB ∥CD ,AB =2,CD =5,过 A ,B 分别作 AE ∥CD ,BF ∥CD ,垂足分别为 E ,F.已知 DE =1,将梯形 ABCD 沿 AE ,BF 同侧折起,得空间几何体ADE-BCF ,如图2.(1)若 AF ∥BD ,证明: DE ∥BE ;(2)若 DE ∥CF ,CD = 3,在线段 AB 上能否存在点 P ,使得 CP35与平面 ACD 所成角的正弦值为35 ?并说明原因.解: (1)证明:由已知得四边形 ABFE 是正方形,且边长为 2,∥AF ∥BE. ∥AF ∥BD ,BE ∩BD =B ,∥AF ∥平面 BDE.又 DE ∥平面 BDE ,∥AF ∥DE.∥AE ∥DE ,AE ∩AF = A ,∥DE ∥平面 ABFE.又 BE ∥平面 ABFE ,∥DE ∥BE.(2)当 P 为 AB 的中点时知足条件.原因以下:∥AE ∥DE ,AE ∥EF , DE ∩EF =E ,∥AE ∥平面 DEFC.如图,过 E 作 EG ∥EF 交 DC 于点 G ,可知 GE ,EA ,EF 两两垂直,以 E 为坐标原点,以 ―→ ―→, EA ,EF―→EG 分别为 x 轴, y 轴, z 轴的正方向成立空间直角坐标系,则 A(2,0,0),B(2,2,0),C(0,1, 3),D(0,1, 3),22―→ = (-2,1, ―→ =(-2, 1 , 3 ).AC 3), AD 2 2设平面 ACD 的法向量为 n =(x ,y ,z),―→ -2x +y + 3z =0, n ·AC = 0,则 即 1 3―→-2x -+= ,·=0,2 y2 z 0n AD令 x =1,得 n =(1,- 1, 3).―→―→ ,则 P(2, 2,λ∥ ,+ ∞),设 AP =λPB,0)1 (0―→= (2, 1,- 3).可得 CP1设 CP 与平面 ACD 所成的角为 θ,11 1则 sin θ=|cos<CP ,n> |=1)2 57 (35=35,12解得λ=1 或λ=-5(舍去 ),∥P 为 AB 的中点时,知足条件.。
第15讲 立体几何折叠问题1.如图,矩形ABCD 中,24AD AB ==,E 为BC 的中点,现将BAE ∆与DCE ∆折起,使得平面BAE 及平面DEC 都与平面ADE 垂直.(1)求证://BC 平面ADE ; (2)求二面角A BE C --的余弦值.【解答】解:(1)证明:分别取AE ,DE 的中点M ,N ,连结BM ,CN ,MN , 则BM AE ⊥,CN DE ⊥,平面BAE 与平面DEC 都与平面ADE 垂直, BM ∴⊥平面ADE ,CN ⊥平面ADE ,由线面垂直的性质定理得//BM CN ,BM CN =,∴四边形BCNM 是平行四边形,//BC MN ∴, BC ⊂/平面ADE ,//BC ∴平面ADE .(2)解:如图,以E 为原点,ED ,EA 为x ,y 正半轴,过E 作平面ADE 的垂线为z 轴,建立空间直角坐标系,则B ,C ,平面ABE 的法向量(1n =,0,0), 设平面CBE 的法向量(m x =,y ,)z ,则2020EB m y EC m x ⎧=+=⎪⎨==⎪⎩,取1x =,得(1m =,1,1)-, 设二面角A BE C --的平面角为θ,由图知θ为钝角,||1cos ||||3m n m n θ∴=-=-=∴二面角A BE C --的余弦值为.2.如图,在直角梯形ABCD 中,//AD BC ,AB BC ⊥,且24BC AD ==,E ,F 分别为线段AB ,DC 的中点,沿EF 把AEFD 折起,使AE CF ⊥,得到如下的立体图形. (1)证明:平面AEFD ⊥平面EBCF ;(2)若BD EC ⊥,求二面角F BD C --的余弦值.【解答】(1)证明:在直角梯形ABCD 中,//AD BC ,AB BC ⊥, E ,F 分别为线段AB ,DC 的中点, //EF AD ∴,AE EF ∴⊥,又AE CF ⊥,且EF CF F =,AE ∴⊥平面EBCF , AE ⊂平面AEFD ,∴平面AEFD ⊥平面EBCF .(2)解:由(1)可得EA ,EB ,EF 两两垂直, 故以E 为原点建立空间直角坐标系,(如图)设AE m =,则(0E ,0,0),(0A ,0,)m ,(B m ,0,0), (0F ,3,0),(C m ,4,0),(0D ,2,)m ,∴(BD m =-,2,)m ,(,4,0)EC m =,DB EC ⊥,280m ∴-+=,22m ∴=∴(22BD =-,2,2),(22,3,0)FB =-,(0,4,0)CB =-,设面DBF 的法向量为(,,)m x y z =,则00m BD m FB ⎧⋅=⎪⎨⋅=⎪⎩,即2222202230x y z x y ⎧-++=⎪⎨-=⎪⎩,令4y =可得:(32m =,42), 同理可得平面CDB 的法向量为(1,0,1)n =, 422cos ,||||362m n m n m n ⋅∴<>===⨯.由图形可知二面角F BD C --为锐角,∴二面角F BD C --的余弦值为23.3.如图1,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,现把平行四边形111ABB A 沿1CC 折起如图2所示,连接1B C 、1B A 、11B A . (1)求证:11AB CC ⊥;(2)若16AB =11C AB A --的正弦值.【解答】证明:(1)取1CC 的中点O ,连接OA ,1OB ,1AC ,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点, 1ACC ∴∆,1BCC ∆为正三角形,则1AO CC ⊥,11OB CC ⊥,又1AOOB O =,1CC ∴⊥平面1OAB ,1AB ⊂平面1OAB 11AB CC ∴⊥;4⋯分(2)160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,2AC ∴=,13OA OB ==16AB =22211OA OB AB +=,则三角形1AOB 为直角三角形,则1AO OB ⊥,6⋯分以O 为原点,以OC ,1OB ,OA 为x ,y ,z 轴建立空间直角坐标系, 则(1C ,0,0),1(0B ,30),1(1C -,0,0),(0A ,0,3),则1(2,0,0)CC =- 则11(2,0,0)AA CC ==-,1(0AB =33)-,(1AC =,0,3)-, 设平面1AB C 的法向量为(,,)n x y z =,则133030n AB y z n AC x z ⎧==⎪⎨==⎪⎩,令1z =,则1y =,3x =(3,1,1)n =, 设平面11A B A 的法向量为(,,)m x y z =,则1120330m AA x m AB y z ⎧=-=⎪⎨==⎪⎩,令1z =,则0x =,1y =,即(0,1,1)m =,8⋯分则10cos ,105m n <>=分 ∴二面角11C AB A --15.12⋯分.4.如图1所示,在等腰梯形ABCD 中,,3,15,33BE AD BC AD BE ⊥===把ABE ∆沿BE 折起,使得62AC =得到四棱锥A BCDE -.如图2所示. (1)求证:面ACE ⊥面ABD ;(2)求平面ABE 与平面ACD 所成锐二面角的余弦值. 【解答】证明:(1)在等腰梯形ABCD 中3BC =,15AD =,BE AD ⊥,可知6AE =,9DE =.因为3,33,BC BE BE AD ==⊥,可得6CE =.又因为6,62AE AC ==,即222AC CE AE =+,则AE EC ⊥.又BE AE ⊥,BEEC E =,可得AE ⊥面BCDE ,故AE BD ⊥.又因为tan 333DE DBE BE ∠===, 则60DBE ∠=︒,3tan 33BC BEC BE ∠===,则30BEC ∠=︒, 所以CE BD ⊥,又AE EC E =,所以BD ⊥面ACE ,又BD ⊂面ABD ,所以面ABD ⊥面ACE ;解:(2)设ECBD O =,过点O 作//OF AE 交AC 于点F ,以点O 为原点,以OB ,OC ,OF 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系O BCF -. 在BCE ∆中,30BEO ∠=︒,BO EO ⊥,∴9333,,22EO CO BO ===2339((0,,0),(0,,0)22B C E -,1//,,62FO AE FO AE AE ==,3FO ∴=,则9(0,0,3),(0,,6)2F A -,//DE BC ,9DE =,∴3ED BC =,∴93(D ,∴339933(,,0),(0,0,6),(0,6,6),(,0)2222BE AE CA CD ===-=--,设平面ABE 的法向量为1111(,,)n x y z =,由1111160339022n AE z n BE y ⎧==⎪⎨=+=⎪⎩,取13x =ABE 的法向量为1(3,1,0)n =-, 设平面ACD 的一个法向量为2222(,,)n x y z =,由222222660933022n CA y z n CD y ⎧=-+=⎪⎨=--=⎪⎩, 取21x =,可得平面ABE 的一个法向量为2(1n =,33-,33)-.设平面ABE 与平面ACD所成锐二面角为θ,则1212||432165cos ||||255n n n n θ===,所以平面ABE 与平面ACD 所成锐二面角的余弦值为21655.如图1,菱形ABCD 的边长为12,60BAD ∠=︒,AC 与BD 交于O 点.将菱形ABCD 沿对角线AC 折起,得到三棱锥B ACD -,点M 是棱BC 的中点,62DM = (Ⅰ)求证:平面ODM ⊥平面ABC ; (Ⅱ)求二面角M AD C --的余弦值.【解答】(本小题满分12分) 证明:(Ⅰ)ABCD 是菱形, AD DC ∴=,OD AC ⊥,ADC ∆中,12AD DC ==,120ADC ∠=︒, 6OD ∴=,又M 是BC 中点,∴16,622OM AB MD === 222OD OM MD +=,DO OM ∴⊥,OM ,AC ⊂面ABC ,OM AC O =,OD ∴⊥面ABC ,又OD ⊂平面ODM ,∴平面ODM ⊥平面ABC .⋯(6分) 解:(Ⅱ)由题意,OD OC ⊥,OB OC ⊥,又由(Ⅰ)知OB OD ⊥,建立如图所示空间直角坐标系,由条件知:(6,0,0),(0,63,0),(0,33,3)D A M - 故(0,93,3),(6,63,0)AM AD ==, 设平面MAD 的法向量(,,)m x y z =,则00m AM m AD ⎧=⎪⎨=⎪⎩,即93306630y z x ⎧+=⎪⎨+=⎪⎩,令3y =-3x =,9z = ∴(3,3,9)m =-由条件知OB ⊥平面ACD ,故取平面ACD 的法向量为(0,0,1)n = 所以,393cos ,||||31m n m n m n 〈〉==由图知二面角M AD C --为锐二面角, 故二面角M AD C --393(12分)6.如图1,已知在菱形ABCD 中,120B ∠=︒,E 为AB 的中点,现将四边形EBCD 沿DE 折起至EBHD ,如图2.(1)求证:DE ⊥面ABE ;(2)若二面角A DE H --的大小为23π,求平面ABH 与平面ADE 所成锐二面角的余弦值. 【解答】(1)证明:四边形ABCD 为菱形,且120B ∠=︒, ABD ∴∆为正三角形, E 为AB 的中点,DE AE ∴⊥,DE BE ⊥, DE ∴⊥面ABE ;(2)解:以点E 为坐标原点,分别以线段ED ,EA 所在直线为x ,y 轴,再以过点E 且垂直于平面ADE 且向上的直线为z 轴,建立空间直角坐标系如图所示.DE ⊥面ABE ,AEB ∴∠为二面角A DE H --的一个平面角,则23AEB π∠=, 设1AE =,则(0E ,0,0),(0A ,1,0),(0B ,12-3),(3D 0,0),由2DH EB =,得(3,3)H -,∴33(0,2AB =-,(3,3)AH =-, 设平面ABH 的法向量为(,,)n x y z =,则33023230n AB y n AH x y z ⎧=-+=⎪⎨⎪=-=⎩,令3y =,得(1,3,3)n =-.而平面ADE 的一个法向量为(0,0,1)m =,设平面ABH 与平面ADE 所成锐二面角的大小为θ,则313313cos |||||||13n m n m θ===. ∴平面ABH 与平面ADE 313.7.如图1,四边形ABCD 中AC BD ⊥,2222CE AE BE DE ====,将四边形ABCD 沿着BD 折叠,得到图2所示的三棱锥A BCD -,其中AB CD ⊥. (Ⅰ)证明:平面ACD ⊥平面BAD ;(Ⅱ)若F 为CD 中点,求二面角C AB F --的余弦值.【解答】证明:(Ⅰ)AE BD ⊥,且BE DE =,ABD ∴∆是等腰直角三角形,AB AD ∴⊥,又AB CD ⊥,且AD ,CD ⊂平面ACD ,ADCD D =,AB ∴⊥平面ACD ,又AB ⊂平面BAD ,∴平面ACD ⊥平面BAD . 解:(Ⅱ)以E 为原点,EC 为x 轴,ED 为y 轴,过E 作平面BDC 的垂直为z 轴,建立空间直角坐标系,过A 作平面BCD 的垂线,垂足为G ,根据对称性,G 点在x 轴上,设AG h =,由题设知: (0E ,0,0),(2C ,0,0),(0B ,1-,0),(0D ,1,0), 2(1A h -0,)h ,(1F ,12,0),2(1BA h =-1,)h ,(2DC =,1-,0),AB CD ⊥,∴22110BA DC h =-=,解得3h =,13(2A ∴. 13(2BA =,(1BF =,32,0),设平面ABF 的法向量(a μ=,b ,)c ,则1302302BA a b BF a b μμ⎧=+=⎪⎪⎨⎪=+=⎪⎩, 令9a =,得(9μ=,6-,3),AD AB ⊥,AD AC ⊥,2(1DA ∴=,2-3)是平面ABC 的一个法向量,cos μ∴<,(2)91231525|||2|1208DA DA DA μμ++>===,二面角C AB F --是锐角,∴二面角C AB F --的余弦15.8.如图1,在直角梯形ABCD 中,//AD BC ,AB BC ⊥,BD DC ⊥,点E 是BC 边的中点,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图2所示的几何体. (Ⅰ)求证:AB ⊥平面ADC ;(Ⅱ)若1AD =,二面角C AB D --6,求二面角B AD E --的余弦值.【解答】解:(Ⅰ)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,又BD DC ⊥,所以DC ⊥平面ABD .⋯(1分)因为AB ⊂平面ABD ,所以DC AB ⊥.⋯(2分) 又因为折叠前后均有AD AB ⊥,DCAD D =,⋯(3分)所以AB ⊥平面ADC .⋯(4分)(Ⅱ)由(Ⅰ)知AB ⊥平面ADC ,所以二面角C AB D --的平面角为CAD ∠.⋯(5分) 又DC ⊥平面ABD ,AD ⊂平面ABD ,所以DC AD ⊥.依题意tan 6CDCAD AD∠==.⋯(6分) 因为1AD =,所以6CD =(0)AB x x =>,则21BD x =+ 依题意~ABD BDC ∆∆,所以AB CDAD BD=,即2611x x =+⋯(7分)解得2x ,故222,3,3AB BD BC BD CD ===+.⋯(8分)如图所示,建立空间直角坐标系D xyz -,则(0D ,0,0),(3,0,0)B ,6,0)C ,36(E ,36(A ,所以36(2DE =,36(3DA =.由(Ⅰ)知平面BAD 的法向量(0,1,0)n =.⋯(9分)设平面ADE 的法向量(,,)m x y z =由0,0m DE m DA ⋅=⋅=得360360.y == 令6x =,得3,3y z =-=,所以(6,3,3)m =-.⋯(10分)所以1cos ,||||2n m n m n m ⋅<>==-⋅.⋯(11分)由图可知二面角B AD E --的平面角为锐角,所以二面角B AD E --的余弦值为12.⋯(12分) 9.如图所示,在平行四边形ABCD 中,4AB =,BC =45ABC ∠=︒,点E 是CD 边的中点,将DAE ∆沿AEE 折起,使点D 到达点P 的位置,且PB =(1)求证:平面PAE ⊥平面ABCE ;(2)若平面PAE 和平面PBC 的交线为l ,求二面角B lE --的余弦值.【解答】(1)证明:连接BE ,在平行四边形ABCD 中,2DE =,AD =45ADC ∠=︒,2AE∴=AE DE ∴⊥,即AE PE ⊥,且AE BA ⊥.在Rt BEA ∆中,得BE ==.又2PE =,PB =222PE BE PB ∴+=,即PE BE ⊥.又AE ⊂平面ABCE ,BE ⊂平面ABCE ,且AE BE E =,PE ∴⊥平面ABCE .又PE ⊂平面PAE ,∴平面PAE ⊥平面ABCE ; (2)解:由(1)得PE ,AE ,CE 两两垂直,故以E 为原点,EC ,EA ,EP 所在直线分别为x ,y ,z 轴建立空间直角坐标系. 则(0A ,2-,0),(2C ,0,0),(0P ,0,2),(4B ,2-,0).∴(2,0,2)PC =-,(2,2,0)BC =-可知1(1,0,0)n =是平面PAE 的一个法向量,设平面PBC 的一个法向量为2(,,)n x y z =.由22220220n PC x z n BC x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取1z =,得2(1,1,1)n =.1212123cos,3||||n n n n n n ⋅∴<>==⋅.10.已知长方形ABCD 中,1AB =,2AD ,现将长方形沿对角线BD 折起,使AC a =,得到一个四面体A BCD -,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD ,AD 与BC 能否垂直?若能垂直,求出相应的a 值;若不垂直,请说明理由.(2)当四面体A BCD -体积最大时,求二面角A CD B --的余弦值.【解答】解:(1)若AB CD ⊥,由AB AD ⊥,ADCD D =,得AB ⊥面ACD ,AB AC ∴⊥,222AB a BC ∴+=,即212a +=,解得1a =, 若AD BC ⊥,由AB AD ⊥,ABBC B =,得AD ⊥平面ABC ,AD AC ∴⊥,222AD a CD ∴+=,即221a +=,解得21a =-,不成立,AD BC ∴⊥不成立.(2)四面体A BCD -体积最大,BCD ∆2,∴只需三棱锥A BCD -的高最大即可,此时面ABD ⊥面BCD ,以A 为原点,在平面ACD 中过O 作BD 的垂线为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系,则(0A ,06),63(,C ,0),(0D 23,0), 面BCD 的法向量为(0OA =,06, 面ACD 的法向量(n x =,y ,)z ,63(3CD =-,236(0,)DA =,则630323603n CD x y n DA y ⎧=-=⎪⎪⎨⎪=-+=⎪⎩,取2y =,得(1,2,2)n =, 设二面角A CD B --的平面角为θ,则26||273cos |cos ,|||||673n OA n OA n OA θ=<>===, ∴二面角A CD B --2711.如图,在长方形ABCD 中,AB π=,2AD =,E 、F 为线段AB 的三等分点,G 、H 为线段DC 的三等分点.将长方形ABCD 卷成以AD 为母线的圆柱W 的半个侧面,AB 、CD 分别为圆柱W 上、下底面的直径.(1)证明:平面ADHF ⊥平面BCHF ;(2)求二面角A BH D --的余弦值.【解答】(本小题满分12分)证明:(1)因为H 在下底面圆周上,且CD 为下底面半圆的直径, 所以DH HC ⊥,又因为DH FH ⊥,且CH FH H =,所以DH ⊥平面BCHF , 又因为DH ⊂平面ADHF ,所以平面ADHF ⊥平面BCHF . 解:(2)以H 为坐标原点,分别以HD 、HC 、HF 为x ,y ,z 轴建立空间直角坐标系O xyz -, 设下底面半径为r ,由题r ππ=,所以1r =,2CD =因为G 、H 为DC 的三等分点所以30HDC ∠=︒, 所以在Rt DHC ∆中,3,1HD HC ==所以(3,0,2)A ,(0B ,1,2),(3,0,0)D , 设平面ABH 的法向量(,,)n x y z=,因为(,,)(3,0,2)0n HA x y z ==, (,,)(0,1,2)0n HB x y z ==,所以2020z y z +=+=⎪⎩,所以平面ABH 的法向量(2,n =--, 设平面BHD 的法向量(,,)m x y z =, 因为(,,)(3,0,0)0m HD x y z ==,(,,)(0,1,2)0m HB x y z ==所以020x y z =⎧⎨+=⎩,所以平面BHD 的法向量(0,2,1)m =-. 所以二面角A BH D --的余弦值为285cos ||||||19m n m n θ==. 12.在菱形ABCD 中,2AB =且60ABC ∠=︒,点M ,N 分别是棱CD ,AD 的中点,将四边形ANMC 沿着AC 转动,使得EF 与MN 重合,形成如图所示多面体,分别取BF ,DE 的中点P ,Q .(1)求证://PQ 平面ABCD ;(2)若平面AFEC ⊥平面ABCD ,求多面体ABCDFE 的体积.【解答】解:(1)证明:取BE 中点R ,连接PR ,QR ,BD ,由P ,Q 分别是BF ,DE 的中点, //PR EF ∴,//QR BD ,又//EF AC ,//PR ∴平面ABCD ,//QR 平面ABCD ,又PRQR R =, ∴平面//PQR 平面ABCD ,又PQ ⊂平面PQR , //PQ ∴平面ABCD .(2)解:连接AC ,设AC ,BD 交于点O ,BD AC ∴⊥,又平面AFEC ⊥平面ABCD ,平面AFEC ⋂平面ABCD AC =, BD ∴⊥平面AFEC .∴多面体ABCDFE 可以分解为四棱锥B ACEF -和四棱锥D ACEF -,菱形ABCD 中,2AB =且60ABC ∠=︒知:2AC =,BD =12AC EF ==, 设梯形EFAC 的面积为133()244EFAC BD S EF AC =+=, ∴多面体ABCDFE 的体积为1332ABCDFE EFAC V S BD ==.13.已知等腰直角△S AB ',4S A AB '==,S A AB '⊥,C ,D 分别为S B ',S A '的中点,将△S CD '沿CD 折到SCD ∆的位置,22SA =,取线段SB 的中点为E .()I 求证://CE 平面SAD ; (Ⅱ)求二面角A EC B --的余弦值.【解答】(Ⅰ)证明:取SA 中点F ,连接DF ,EF ,SE EB =,SF FA =,//EF AB ∴,12EF AB =, 又//CD AB ,12CD AB =, CD EF ∴=,//CD EF ,∴四边形CDEF 为平行四边形,则//CE FD .CE ⊂/平面SAD ,FD ⊂平面SAD ,//CE ∴平面SAD ;(Ⅱ)解:面SCD ⊥面ABCD ,面SCD ⋂面ABCD CD =,SD CD ⊥,SD ⊂面SCD ,SD ∴⊥面ABCD , AD ,CD ⊂面ABCD ,SD AD ∴⊥,SD CD ⊥.又AD DC ⊥,DA ∴,DC ,DS 两两互相垂直,如图所示,分别以DA ,DC ,DS 为x ,y ,z 轴建立空间直角坐标系D xyz -. 则(2A ,0,0),(0C ,2,0),(0S ,0,2),(2B ,4,0),(1E ,2,1), (1,0,1)CE =,(2,2,0)CA =-,(2,2,0)CB =, 设平面ECA ,平面ECB 的法向量分别为111(,,)m x y z =,222(,,)n x y z =, 则11110220m CE x z m CA x y ⎧=+=⎪⎨=-=⎪⎩,取11y =,可得(1,1,1)m =-; 22220220n CE x y n CB x y ⎧=+=⎪⎨=+=⎪⎩,取21y =-,得(1,1,1)n =--. 111cos ,||||33m n m n m n -+∴<>===⨯. ∴二面角A EC B --的平面角的余弦值为13-.。
立体几何中的动点问题-答案解析考点:平行垂直的存在性问题1【答案】见解析【解析】设,则,, 设平面的法向量为,,, ,令得, 平面,,解得, 当是的中点时,平面.1【答案】见解析【解析】设是棱上一点,则存在使得.因此点.由,得,解得.因为,所以在棱上存在点,使得.此时,.1【答案】1【解析】如图,连接,与交于点,连接,要使得平面,则必须有,所以,进一步得出. 模块1:存在性问题例题1G 0,t ,1()=AG −1,t ,1()F ,1,1(21)BEF =n x ,y ,z ()∵=EF −,,0(2121)=BF −,0,1(21)∴{−x +y =02121−x +z =021z =1=n 2,2,1()∵AG //BEF ∴⋅AG =n −1,t ,1⋅()2,2,1=()0t =21∴G D C 11AG //BEF 例题2M P C λ∈0,1[]=P M λ P C M 0,λ,1−λ,=()BM −1,λ−1,1−λ,=()AC −1,2,0()⋅BM =AC 01+2λ−1=()0 λ =21 λ=∈210,1[]P C M BM ⊥AC =P CP M21达标检测1AG A F 1M M E BG //A EF 1GB //M E =M GAM =EB AE1=A G 1D G 11考点:空间角的存在性问题1【答案】见解析【解析】线段上存在点符合题意.建立如图所示的坐标系, 设,其中.设,则有,所以,从而,所以,又,所以,令,整理得.解得,舍去.故线段上存在点符合题意,且.例题3A C 1F =A F 1λA C 1λ∈0,1[]F x ,y ,z (111)x ,y ,z −2=(111)2λ,2λ,−2λ()x =12λ,y =12λ,z =12−2λF 2λ,2λ,2−2λ()=DF 2λ,2λ+1,2−2λ()=BC 0,4,0()cos⟨,⟩=∣∣∣DF BC ∣∣∣=⋅∣∣∣DF ∣∣∣∣∣∣BC ∣∣∣⋅∣∣∣DF BC ∣∣∣42λ+2λ+1+2−2λ()2()2()242λ+1∣∣=2λ+2λ+1+2−2λ()2()2()22λ+1∣∣353λ−27λ+2=0λ=31λ=2A C 1F =A C1A F131例题41【答案】存在点符合条件,且是棱的中点.【解析】解:以为原点,为轴正方向,为轴正方向,垂直于且与相交的方向为轴正方向,建立空间直角坐标系.所以,,,,,设平面的法向量为,则,,令,则.在棱上存在一点,设,且,,解得,,,,直线与平面所成的角为,,解得,存在点符合条件,且是棱的中点.1【答案】见解析【解析】解:假设在棱上存在点,使得二面角的余弦值是,则,,设为平面的法向量,N N DC M M B x M C y AB DE z M −xyz M (0,0,0)C (0,,0)2E (−,0,1)2B (,0,0)2D (,0,2)2EM C =n (x ,y ,z )′′′⋅M E =n −x +2′z =′0⋅M C =n y =2′0x =′1=n (1,0,)2DC N N x ,y ,z ()=DN λ0⩽λ⩽1DC ()∴x −,y ,z −2=(2)λ−,,−2(22)x =−2λ2y =λ2z =2−2λ∴=M N −λ,λ,2−2λ(222)∵M N EM C 60∘∴cos⟨,⟩=M N n ×321−λ+2λ+41−λ()22()2−λ+2−2λ222()=sin 60=∘23λ=21∴N N DC 例题5CC 1E 0,0,t ()A −EB −1B 17217=AE −1,0,t ()=AB 1−1,2,4()=n x ,y ,z ()AEB 1则,取,得,平面的法向量,,由,解得.在棱上存在点,使得二面角的余弦值是,.1【答案】C【解析】解:存在,在棱上取一点,如图,由题意可知,平面,连接,交于点,易知,,连接,则为二面角的平面角,当时,即,解得,当时,二面角的大小为.{⋅=−x +tz =0n AE ⋅=−x +2y +4z =0n AB 1z =1=n t ,,1(2t −4)BEB 1=m 1,0,0()∴cos ,=⟨m n ⟩=⋅∣∣∣m ∣∣n ∣∣∣⋅m n=t ++12(2t −4)2t 17217t >0t =1∴CC 1E A −EB −1B 17217CE =1达标检测2BB ′P BP ⊥ABC AC BD O BO ⊥AC BO =2P O ∠P OB P −AC −B ∠P OB =30∘tan ∠P OB ==BOP B 33BP =36∴BP =36P −AC −B 30∘模块2:最值问题考点:最值问题1【答案】B【解析】解:建立如图所示的空间直角坐标系,则,设,则,,故当时,取得最小值为,故选:B.1【答案】B【解析】由知四边形为平行四边形,.,.,,.即,,达标检测3D 1,0,2,B 0,1,3()1()P 0,0,z ()=P D 1,0,2−z ,=()P B 10,1,3−z ()∴⋅P D =P B 10+0+2−z 3−z =()()z −−(25)241z =25⋅P D P B 1−41例题6(1)M NQP ∴M N =P Q ∵DD =1AD =DC =BC =1∴AD =1BD =2∵D M =1DN =a ∴=1D P 12a =1DQ2a D P =1DQ =2a∴M N =P Q =1−D P +DQ (1)22=1−+(2a)2(2a )2=0<a <a −+(22)221(2)故当时,的长度有最小值,为.即当,分别移动到,的中点时,的长度最小,此时的长度为.1【答案】D【解析】解:以为原点,建立如图所示空间直角坐标系,则,,,,设,,,则,,,,解得,,.当时,的面积取得最小值,为.故选:D.1【答案】A【解析】解:以点为原点,以,,所在直线为坐标轴建立空间直角坐标系,如图所示:则,.设,,于是,.,,,a =22M N 22M N AD 1BD M N M N 22例题7D P 4,0,2()C 0,4,0()D 0,0,41()B 4,4,0()M 4,a ,b ()0⩽a ⩽40⩽b ⩽4=D M 14,a ,b −4()=CP 4,−4,2()∵D M ⊥CP 1∴⋅D M 1=CP 16−4a +2b −8=02a −b =4∴M 4,a ,2a −4()∴BM =∣∣4−4+4−a +4−2a ()2()2()2==5a −24a +3225a −+(512)2516∴a =512△BCM S =2×=54585例题8C CD CB CC ′C 0,0,0()C 0,0,2′(3)P 0,a ,0()Q b ,0,0()0<a ⩽40<b ⩽3=QC ′−b ,0,2(3)=P C ′0,−a ,2(3)=CC ′0,0,2(3)设平面的一个法向量为,则,取,得,,,解得.当时,,三棱锥的体积最小,.故选:A.2019天津理171【答案】见解析【解析】证明:以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,如图所示,可得,,,,.设,则.由题意易知是平面的一个法向量,又,可得.又直线平面,P QC ′=n x ,y ,z (){⋅=−ay +2z =0n P C ′3⋅=−bx +2z =0n QC ′3z =1=n ,,1(b 23a23)∵∣cos⟨,⟩∣=n CC ′sin 30=∘21∴∣⋅n ∣=CC ′∣∣⋅21CC ′⇒∣∣∣n ∣∣∣+a 24=b241ab ⩾8∴ab =8S =△PQC 4C −′P QC V =(C −PQC ′)min ×314×2=3383模块3:课堂总结模块4:直击高考例题9A AB AD AE x y z A 0,0,0()B 1,0,0()C 1,2,0()D 0,1,0()E 0,0,2()CF =h h >0()F 1,2,h ()=AB 1,0,0()ADE =BF 0,2,h ()⋅BF =AB 0∵BF ⊂ADE平面.2【答案】见解析【解析】解:依题意,,,.设为平面的法向量,则,令,得..直线与平面所成角的正弦值为.3【答案】见解析【解析】解:设为平面的法向量,则,取,可得,由题意,得,解得.经检验,符合题意.线段的长为.∴BF //ADE =BD −1,1,0()=BE −1,0,2()=CE −1,−2,2()=n x ,y ,z ()BDE {⋅=−x +y =0n BD ⋅=−x +2z =0n BE z =1=n 2,2,1()∴cos⟨,⟩=CE n =⋅∣∣∣CE ∣∣∣∣∣∣n ∣∣∣⋅CE n −94∴CE BDE 94=m x ,y ,z ()BDF {⋅=−x +y =0m BD ⋅=2y +hz =0m BF y =1=m 1,1,−(h 2)cos⟨,⟩=∣∣∣m n ∣∣∣=⋅∣∣∣m ∣∣∣∣∣∣n ∣∣∣⋅∣∣∣m n ∣∣∣=3×2+h 244−∣∣h 2∣∣31h =78∴CF 78模块5:随堂测随堂测随堂题11【答案】见解析【解析】解:如图,由知,,是平面内的两个不共线向量.设是平面的一个法向量,则,即.取,得.又平面的一个法向量是,所以.而二面角的余弦值为,因此,解得或(舍去).此时.设,而,得,所以.因为平面,且平面的一个法向量为,所以,即,亦即,从而.于是将四面体视为以为底面的三棱锥,则其高为,故四面体的体积.1【答案】B【解析】解:由题意可知该四面体的体积最大时,就是折叠成直二面角,建立空间直角坐标系,如图:设正方形的对角线长为,则,设直线与所成的角为,则,所以.(1)=DQ 6,m −6,0()=DD 10,−3,6()P QD =n 1x ,y ,z ()P QD {⋅=0n 1DQ ⋅=0n 1DD 1{6x +m −6y =0()−3y +6z =0y =6=n 16−m ,6,3()AQD =n 20,0,1()cos ,=⟨n 1n 2⟩=∣∣∣n 1∣∣∣∣∣∣n 2∣∣∣⋅n 1n 2=6−m +6+3()22236−m +45()23P −QD −A 73=6−m +45()2373m =4m =8Q 6,4,0()=DP λDD 1=DD 10,−3,6()P 0,6−3λ,6λ()=P Q 6,3λ−2,−6λ()P Q //ABB A 11ABB A 11=n 30,1,0()⋅P Q =n 303λ−2=0λ=32P 0,4,4()ADP Q △ADQ P −ADQ 4ADP Q V =S ⋅31△ADQ h =24随堂题22=AB −1,1,0,=()DC 1,0,1()AB CD θcos θ==∣∣∣∣∣∣∣∣∣AB ∣∣∣∣∣∣DC ∣∣∣⋅AB DC ∣∣∣∣∣∣=×22121θ=60∘故选:B.。
立体几何折叠动点问题
1.(2020•湖南模拟)在棱长为6的正方体1111ABCD A B C D -,中,M 是BC 的中点,点P 是正方体的表面11DCC D (包括边界)上的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -体积的最大值是( )
A .
B .36
C .24
D .
2.(2020•德阳模拟)ABC ∆是边长为E ,F 分别为AB ,AC 的中点,沿EF 把OAEF 折起,使点A 翻折到点P 的位置,连接PB 、PC ,当四棱锥P BCFE -的外接球的表面积最小时,四棱锥P BCFE -的体积为( )
A B C D
3.(2020•德阳模拟)ABC ∆是边长为的等边三角形,E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ∆折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为(
)
A .
B
C .3
D .2
4.(2020春•江西月考)已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC ∆中,6AB =,8AC =,AB AC ⊥,
D 是线段AC 上一点,且3AD DC =,球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截
面圆的面积的最小值与最大值之和为44π,则球O 的表面积为( ) A .72π B .86π C .112π D .128π
5.(2020春•沙坪坝区校级期中)已知A ,B ,C ,D 四点均在半径为(R R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为1
6,则球O 的表面积为( ) A .32
π B .2π C .
94
π D .
83
π
6.(2020春•五华区校级月考)已知A ,B ,C 是球O 的球面上的三点,2AB =,AC =60ABC ∠=︒,
且三棱锥O ABC -,则球O 的体积为( )
A .24π
B .48π
C .
D .
7.(2020•东莞市模拟)已知三棱柱111ABC A B C -四边形11A ACC 与11B BCC 为两个全等的矩形,M 是11A B 的中点,且1111
2
C M A B =,则三棱柱111ABC A B C -体积的最大值为( ) A .12
B .
16
C .4
D .
43
8.(2020•江西模拟)四棱柱1111ABCD A B C D -中,底面四边形ABCD 是菱形,120ADC ∠=︒,连接AC ,BD 交于点O ,1A O ⊥平面ABCD ,14AO BD ==,点C '与点C 关于平面1BC D 对称,则三棱锥C ABD '-的体积为( )
A .
B .
C .
D .
9.(2020•浙江模拟)在长方体1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,侧棱1(4)AA t t =>,点E 是BC 的中点,点P 是侧面11ABB A 内的动点(包括四条边上的点),且满足tan 4tan APD EPB ∠=∠,则四棱锥P ABED -的体积的最大值是( )
A B . C D
10.(2019秋•包河区校级期末)矩形ABCD 中,2BC =,沿对角线AC 将三角形ADC 折起,得到四面体A BCD -,四面体A BCD -外接球表面积为16π,当四面体A BCD -的体积取最大值时,四面体A BCD -的
表面积为( )
A .
B .
C .
D .
11.(2020•山东模拟)如图,正方体1111ABCD A B C D -的棱长为1,线段11A C 上有两个动点E ,F ,且1
2
EF =;则下列结论错误的是( )
A .BD CE ⊥
B .//EF 平面ABCD
C .三棱锥E FBC -的体积为定值
D .BEF ∆的面积与CEF ∆的面积相等
12.(2020•海淀区校级模拟)在边长为1的正方体中,E ,F ,G ,H 分别为11A B ,11C D ,AB ,CD 的中点,点P 从G 出发,沿折线GBCH 匀速运动,点Q 从H 出发,沿折线HDAG 匀速运动,且点P 与点Q 运动的速度相等,记E ,F ,P ,Q 四点为顶点的三棱锥的体积为V ,点P 运动的路程为x ,在02x 剟时,V 与x 的图象应为( )
A .
B .
C .
D .
13.(2019秋•襄城区校级月考)如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的
中心且AB =设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为( )
A .
64
3
π B .
163
π C .
253
π D .
649
π。