实验单闭环比值控制系统
- 格式:ppt
- 大小:407.00 KB
- 文档页数:15
《单闭环管道流量比值控制系统》过程控制系统课程设计说明书专业班级:11级自动化1班姓名:孙勇李自强周程鲍凯学号:080311009 080311022080311035 080311047指导教师:陈世军设计时间: 2014年6月11日物理与电气工程学院2014年 6 月11 日摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是流量比值过程控制系统。
流量测量是比值控制的基础。
各种流量计都有一定的适用范围(一般正常流量选在满量程的70%左右),必须正确选择使用。
在工程上,具体实施比值控制时,通常有比值器、乘法器或除法器等单元仪表可供选择,相当方便。
若采用计算机控制来实现,只要进行乘法或除法运算即可,我们这次就主要使用计算机及组态王软件进行设计。
关键词:组态王;流量;比值控制系统目录1、引言 (1)1.1主要内容 (1)1.2任务要求 (1)2、设计方案 (2)2.1设计原理 (2)2.2系统原理图 (2)2.3 仿真调试 (3)3、硬件设计 (4)3.1使用仪器 (4)4、软件设计 (7)4.1 程序 (7)4.2 系统组态设计 (11)4.2.1组态图 (11)4.2.2静态画面 (12)4.2.3数字字典 (14)4.2.4系统应用程序 (16)4.2.5动画连接 (17)5、课程设计总结 (17)6、参考文献 (18)1、引言1.1主要内容本课程设计是学完《过程控制系统》课程后的一个应用性实践环节。
通过本课程设计的训练,对过程控制工程设计的概念有完整地了解,同时培养综合应用基础课、专业课所学知识与工程实际知识的能力。
标题:探究基于MCGS的单闭环流量比值控制系统的设计在当今工业自动化控制系统中,流量控制系统是至关重要的一环。
而基于MCGS(多变量控制系统)的单闭环流量比值控制系统的设计,更是一项挑战而又高效的技术。
本文将从深度和广度探讨该主题,帮助读者更好地理解这一概念。
一、流量控制系统概述1.1 什么是流量控制系统在工业生产中,流体的流动是一个普遍存在的过程,而流量控制系统则是用来准确控制流体的流动速度、流量和压力的系统。
它可以应用在化工、石油、制药等领域,对生产过程起着至关重要的作用。
1.2 流量控制系统的主要组成部分基于MCGS的单闭环流量比值控制系统由哪些主要组成部分组成?(这里可以详细介绍各个部分的功能和作用)二、基于MCGS的单闭环流量比值控制系统的设计2.1 MC基于MCGS的单闭环流量比值控制系统的设计,首当其冲的就是MC (多变量控制系统)。
MC是一种先进的控制系统,它采用多个输入、多个输出(MIMO)的控制方法,相比传统的单变量控制系统(SISO),MC能够更准确地控制流量的比值。
2.2 单闭环流量比值控制系统(这里可以详细描述单闭环流量比值控制系统的特点和设计原理,以及与MC的结合)三、个人观点和理解在我看来,基于MCGS的单闭环流量比值控制系统的设计不仅是技术创新的体现,更是工业自动化控制系统发展的必然趋势。
它将有效提高生产过程的稳定性和效率,为工业生产带来巨大的益处。
总结和回顾通过本文的探讨,我们对基于MCGS的单闭环流量比值控制系统的设计有了更深入的了解。
从流量控制系统的概述,到MC和单闭环流量比值控制系统的设计,再到个人观点和理解,我们获得了全面、深刻和灵活的知识体系。
基于MCGS的单闭环流量比值控制系统的设计是一项充满挑战和机遇的工作,它必将推动工业自动化控制系统向更高水平迈进。
希望本文能够帮助读者更好地理解和应用这一技术,为工业生产带来更大的效益。
在文章中,我尽力多次提及了指定的主题文字“基于MCGS的单闭环流量比值控制系统的设计”,并按照知识的文章格式进行撰写,保证了文章内容的丰富和深度。
实验⼆⼗实验⼆⼗⽐值控制系统实验第⼀节单闭环流量⽐值控制系统⼀、实验⽬的1、了解单闭环⽐值控制系统的原理与结构组成。
2、掌握⽐值系数的计算。
3、掌握⽐值控制系统的参数整定与投运。
⼆、实验设备1、THJ-2型⾼级过程控制实验装置2、计算机、上位机MCGS组态软件、RS232-485转换器1只、串⼝线1根3、万⽤表 1只三、系统结构框图图6-1单闭环流量⽐值控制系统结构图四、实验原理在⼯业⽣产过程中,往往需要⼏种物料以⼀定的⽐例混合参加化学反应。
如果⽐例失调,则会导致产品质量的降低、原料的浪费,严重时还发⽣事故。
例如在造纸⼯业⽣产过程中,为了保证纸浆的浓度,必须⾃动地控制纸浆量和⽔量按⼀定的⽐例混合。
这种⽤来实现两个或两个以上参数之间保持⼀定⽐值关系的过程控制系统,均称为⽐值控制系统。
本实验是流量⽐值控制系统。
其实验系统结构图如图6-1所⽰。
该系统中有两条⽀路,⼀路是来⾃于电动阀⽀路的流量Q1,它是⼀个主动量;另⼀路是来⾃于变频器—磁⼒泵⽀路的流量Q2,它是系统的从动量。
要求从动量Q2能跟随主动量Q1的变化⽽变化,⽽且两者间保持⼀个定值的⽐例关系,即Q2/Q1=K。
图6-2 单闭环流量⽐值控制系统⽅框图图6-2为单闭环流量⽐值控制系统的⽅框图。
由图可知,主控流量Q1经流量变送器后为I1(实际中已转化为电压值,若⽤电压值除以250Ω则为电流值,其它算法⼀样),如设⽐值器的⽐值为K,则流量单闭环系统的给定量为KI1。
如果系统采⽤PI调节器,则在稳态时,从动流量Q2经变送器的输出为I2,不难看出,KI1=I2。
五、⽐值系数的计算设流量变送器的输出电流与输⼊流量间成线性关系,当流量Q由0→Qmax变化时,相应变送器的输出电流为4→20mA。
由此可知,任⼀瞬时主动流量Q1和从动流量Q2所对应变送器的输出电流分别为I1= (1)I2= (2)式中Q1max和Q2max分别为Q1和Q2 最⼤流量值。
设⼯艺要求Q2/Q1=K,则式(1)可改写为Q1= Q1max (3)同理式(2)也可改写为Q2= Q2max (4)于是求得= (5)折算成仪表的⽐值系数K′为:K′ = K (6)六、实验内容与步骤1、按图6-1所⽰的实验结构图组成⼀个为图6-2所要求的单闭环流量⽐值控制系统。
开封大学毕业论文单闭环流量定值控制系统专业:[电气自动化]班级:[2班]学生姓名:[毕士杰]指导教师:[曹红英]完成时间:2018年10月13日目录第1章实验装置介绍 (1)1.1对象系统组成 (1)1.2 对象系统主要特点 (2)第2章系统的方案设计 (3)2.1硬件设计 (5)2.2软件设计 (6)第3章组态王软件设计 (10)3.1组态王软件介绍 (10)3.2使用组态王 (11)3. 3 创建组态画面 (14)3. 4 动画连接 (18)第4章系统中的问题和解决方案 (22)4.1控制规律的确定 (22)4.2调节器参数的整定方法 (23)总结 (27)参考文献 (28)第1章实验装置介绍1.1 对象系统组成(1)过程控制实验对象系统实验对象系统包含有:不锈钢储水箱;上、中、下三个串接有机玻璃圆筒型水箱;三相4.5kw电加热锅炉(由不锈钢锅炉内胆加热筒和封闭式外循环不锈钢冷却锅炉夹套构成)和铝塑盘管组成。
系统动力系统两套:一套由三相(380V交流)不锈钢磁力驱动泵、电动调节阀、交流电磁阀、涡轮流量计等组成;另一套由日本三菱变频器、三相不锈钢磁力驱动泵(220V变频)、涡轮流量计等组成。
整套对象系统完全由不锈钢材料制造,包括对象框架、管道、底板、甚至小到每一颗紧固螺钉。
如图1-1(2)对象系统中的各类检测变送及执行装置扩散硅压力变送器三只:分别检测上水箱、中水箱、下水箱液位;涡轮流量计三只:分别检测两条动力支路及盘管出水口的流量;Pt100热电阻温度传感器六只:分别用来检测锅炉内胆、锅炉夹套、盘管(三只)及上水箱出水口水温;控制模块:包括电磁阀、电动调节阀各一个;三相380V不锈钢磁力驱动泵、三相220V不锈钢磁力驱动泵;1.2 对象系统主要特点(1)被调参数囊括了流量、压力、液位、温度四大热工参数;(2)执行器中既有电动调节阀仪表类执行机构,又有变频器等电力拖动类执行器;(3)系统除了能改变调节器的设定值作阶跃扰动外,还可在对象中通过电磁阀和手操作阀制造各种扰动;(4)一个被调参数可用不同的动力源、不同的执行器和不同的工艺线路下可演变成多种调节回路,以利于讨论、比较各种调节方案的优劣;(5)能进行多变量控制系统及特定的过程控制系统实验。
举例说明单闭环比值控制系统的工作过程
单闭环比值控制系统是一种常见的自动控制系统,它通过测量被控对象(如温度、压力等)与给定参考值之间的误差,并利用控制器对输出信号进行调整,从而实现对被控对象的控制。
下面以温度控制系统为例来说明单闭环比值控制系统的工作过程:
1. 设置参考值:首先,我们需要设置一个目标温度作为参考值。
2. 测量过程变量:通过传感器实时测量被控对象(如温度)的当前值。
3. 计算误差:将测量到的当前值与设置的参考值进行比较,计算出误差(即偏差)。
4. 控制器调整输出:控制器根据误差信号来决定需要进行的调整动作。
比如,如果当前温度低于目标温度,则控制器会通过增加供热设备的输出来达到升温的目的。
5. 反馈控制:控制器对输出信号进行调整后,被控对象的状态会发生变化。
系统通过反馈机制重新测量被控对象的状态,并将新的测量值与参考值进行比较,重新计算误差。
6. 循环控制:系统会不断地重复上述步骤,通过不断调整输出信号来使误差逐渐减小,直到被控对象的状态稳定在设定值附近。
需要注意的是,单闭环比值控制系统只考虑当前的误差和输出调整,对于系统动态特性的影响较小。
有些情况下,可能需要更为复杂的控制方式,如采用多闭环控制系统来改善系统响应速度和稳定性。
以上就是单闭环比值控制系统的简要工作过程。
第二节单闭环流量定值控制系统一.实验目的:1.了解单闭环流量控制系统的结构组成与原理。
2.掌握单闭环流量控制系统调节器参数的整定方法。
3.研究P、PI、PD和PID四种控制分别对流量系统的控制作用。
二.实验原理:离心泵恒流量控制系统图如图5.3-1所示,控制系统方框图如图5.3-2所示。
图5.3-1 离心泵恒流量控制系统图图5.3-2 离心泵恒流量控制系统方框图离心泵恒流量控制系统为单回路简单控制系统,安装在离心泵出口管路上涡轮流量传感器TT将离心泵出口流量转换成脉冲信号,其脉冲频率经频率/电压转换器转换成电压信号后输出至流量调节器TC,TC将流量信号与流量给定值比较后,按PID调节规律输出4—20mA信号,驱动电动调节阀改变调节阀的开度,达到恒定离心泵出口流量的目的。
离心泵恒流量控制系统方框图如图十三所示。
控制参数如下:1.控变量y:离心泵出口流量Q。
2.定值(或设定值)ys:对应于被控变量所需保持的工艺参数值3.测量值ym:由传感器检测到的被控变量的实际值4.操纵变量(或控制变量):实现控制作用的变量,在本实验中为离心泵出口流量。
使用电动调节阀作为执行器对离心泵出口流量进行控制。
电动调节阀的输入信号范围:4—20mA。
5.干扰(或外界扰动)f:干扰来自于外界因素,将引起被控变量偏离给定值。
在本实验中采用突然改变离心泵转速的方法,改变离心泵出口压力,人为模拟外界扰动给控制变量造成干扰。
6.偏差信号e:被控变量的实际值与给定值之差, e=ys-ym 。
ym---离心泵出口流量值Q 。
ys---离心泵出口流量设定值。
7.控制信号u :工业调节器将偏差按一定规律计算得到的量。
离心泵恒流量控制系统采用比例积分微分控制规律(PID)对离心泵流量进行控制。
比例积分微分控制规律是比例、积分与微分三种控制规律的组合,理想的PID 调节规律的数学表达式为:01()()()()tP D I de t u t K e t e t dt T T dt ⎡⎤∆=++⎢⎥⎣⎦⎰ 三.实验方法:1.向V103中注入2/3以上清水 2.打开设备总电源,检查各仪表,执行器是否正常3.打开阀门VA110或VA111,A112,A117,其余阀门关闭4.松动离心泵放气螺丝,直到有水流出,拧紧螺丝5.将离心泵出口压力测量表(PI-03)设为手动输出且输出值为100,变频器的频率即设为50.00Hz6.打开实验软件,进入流量曲线界面点击菜单栏中的“曲线 流量控制曲线”开始记录液位变化7.将流量测量表(FI-01)设为自动输出且SV 值为4.00,P=3,I=5,D=1.5 FILE=58.打开立式离心泵向观察曲线变化情况,待流量稳定后,点击菜单栏中的“曲线 流量控制曲线”重新记录液位变化9.大约10秒钟后通过以下几种方式加干扰:(1)突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,下面方法仅供参考)。
单闭环流量比值控制系统matlab在控制系统工程中,单闭环流量比值控制系统是一种常见的控制系统结构,它可以实现对给定流量比值的精准控制。
在本文中,我们将探讨这一主题,并结合Matlab的实际应用来深入理解。
1. 单闭环流量比值控制系统概述单闭环流量比值控制系统是指在控制过程中,通过检测两个流量变量的比值,从而实现对流量比值的控制。
这种控制系统结构通常包括传感器、控制器和执行器等组成部分,它能够在一定程度上解决流量控制中的非线性和耦合问题。
2. 控制系统参数评估在设计单闭环流量比值控制系统时,需要对系统参数进行评估。
我们需要确定传感器的精度和灵敏度,以确保能够准确地检测流量比值。
控制器的参数也需要进行调整,包括比例、积分和微分参数的设定,以实现对流量比值的精准控制。
在Matlab中,可以通过仿真和参数优化的方法来进行参数评估,从而实现系统控制的优化。
3. Matlab在单闭环流量比值控制系统中的应用Matlab作为一种功能强大的工具,可以用于建立单闭环流量比值控制系统的数学模型,并进行仿真分析。
通过Matlab/Simulink工具箱,可以方便地搭建系统模型,并对控制器参数和系统结构进行优化。
Matlab还提供了丰富的数据可视化和分析工具,可以帮助工程师更直观地理解控制系统的性能,并进行系统设计与优化。
4. 个人观点和理解在实际工程应用中,单闭环流量比值控制系统具有广泛的应用价值,尤其是在化工、环保和生物工程等领域。
通过Matlab对控制系统进行建模和仿真分析,可以帮助工程师更加深入地理解系统动态特性和稳定性,从而实现系统设计的优化。
在实际工程中,需要综合考虑系统的稳定性、鲁棒性和实时性等因素,进一步优化单闭环流量比值控制系统的性能和可靠性。
总结回顾通过本文对单闭环流量比值控制系统的深入探讨,我们更深入地理解了控制系统工程中的关键概念和方法。
Matlab作为一种功能强大的工具,为工程师提供了便利的系统设计与优化评台,可以帮助实现对单闭环流量比值控制系统的高效建模和仿真分析。
单闭环流量⽐值控制系统实验单闭环流量⽐值控制系统实验⼀、实验⽬的1、学习⽐例控制的原理。
2、了解⽐例控制的特点。
3、掌握闭环⽐例单回路控制的设计。
⼆、实验设备A3000-FS/FBS现场系统,任意控制系统。
三、实验原理1、控制原理电磁流量计流量与涡轮流量计⽐值控制实验,可以与“随动系统”和“串级系统”进⾏⽐较。
如图6-10所⽰。
若⽀路2安装的是涡轮流量计,则是两个涡轮流量计进⾏⽐值控制。
被调量为调节阀开度,控制⽬标是⽔流量,通过两个流量不同⽐例下的⽐较,然后输出控制值到调节阀。
实⾏PID控制,看控制效果,进⾏⽐较。
如图6-10所⽰。
图6-10 ⽐值控制系统原理图如果进⾏常规PID仪表实验,⽐值器通过内给定智能PID调节器实现。
把微分,积分调节取消。
就是⼀个⽐值器。
注意调节器⽐例带是P调节中的⽐例系数P K 求反,即P=PK 1*100%。
AI0为第⼀个内给定调节仪输⼊。
显⽰范围可以是4-20mA ,则给定值4 mA ;也可以是(⼯程量)0-1.2,也可以是0-100百分⽐,那个给定值就是0。
在第⼀个调节仪作为⽐值器使⽤之前,请切换到⼿动,设置输出为4 mA ,然后切换到⾃动状态,并且把SP 值设为4 mA 。
如果把P K 简单看成⽐例,那么可以控制两个流量的百分⽐相等。
(注意⽔泵提供的流量占电磁流量计最⼤的50%,所以电磁流量计不能超过该数值)。
如果要准确到流量成⽐例,只需要在原来的P K 值修正两个流量计的最⼤值之⽐就⾏。
例如:涡轮流量计百分⽐:电磁流量计百分⽐=1:P K ,那么实际流量⽐就是1.2:3P K 。
外给定的调节仪输⼊为FT102,给定值为第⼀个调节仪(作为⽐值器)的输出。
输出控制电动调节阀。
2、测量与控制端连接表3、参考结果常规智能仪表控制P=30、I=100S 、D=2S ,控制曲线如图6-11所⽰:图6-11 ⽐值控制实验四、实验要求1、设计串级控制器。
2、经过参数调整,获得最佳的控制效果,并通过⼲扰来验证。
概述:
比值控制系统
实现两个或两个以上参数符合一定的比例关系的控制系统。
比值K=F2/F1。
住动量(主流量)F1:
需要保持比值关系的两种物料中,处于主导地位的物料。
从动量(副流量)F2:
按主物量进行配比变化的材料,在控制过程中随主物料的变化而变化。
常用比值控制系统的分类及优缺点:
1.开环比值控制系统:最简单的比值控制系统,是一个开环控制系统。
2.单闭环比值控制系统:克服开花比值控制系统,增进一个副流量的控制系统,实现
副流量跟随主流量的变化而变化,克服副流量本身干扰对比值的影响。
该系统存在问题:
①由于主流量不受控制,所以种物料不固定,不适合负荷变化幅度大的场合;
⑵无法保证动态比值。
3.双闭环控制系统:⑴克服单闭环控制系统主流量不受控,生产负荷在较大范围内波动
的不足;
⑵实现精准的流量比值关系(动态比值);
⑶需要防止共振的产生。
4.其他类型的比值控制系统。
⑴变比值控制系统:按一定的工艺指标自行修正比值系数的变比值控制系统,也称为串级比值控制系统。
⑵串级与比值控制组合的系统:要求主流量随另一个参数的需求而改变,两流量的比值保持不变整个系统属于定比值控制。
摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否则将使燃烧反应不能正常进行,而煤气和空气比例超过一定的极限将会引起爆炸。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是单闭环流量比值过程控制系统。
在实际的生产过程控制中,比值控制系统除了实现一定比例的混合外,还能起到在扰动影响到被控过程质量指标之前及时控制的作用.而且当最终质量指标难于测量,变送时,可以采用比值控制系统,使生产过程在最终质量达到预期指标下安全正常地进行,因为比值控制具有前馈控制的实质。
关键词:流量;比值控制;PID控制;可编程控制器目录1设计背景 (1)2比值控制系统概述 (2)2.1 比值控制系统定义 (2)2.2 比值控制原理 (2)2.3 比值控制系统特点 (2)2.4 比值控制系统的类型 (3)2.4.1 开环比值控制系统 (3)2.4.2 单闭环比值控制系统 (4)3单闭环流量比值控制系统方案设计 (7)3.1 系统方案设计 (7)3.2 系统硬件设计 (7)4上位机组态与程序设计 (10)4.1 组态软件WinCC (10)4.1.1 WinCC简介 (10)4.1.2 WinCC的发展及应用 (10)4.2 上位机组态设计 (11)4.3 PLC程序设计 (12)5 PID参数整定及系统调试 (17)5.1 PID控制器 (17)5.1.1 PID控制器的优点 (18)5.1.2 控制规律的选择 (18)5.2 PID控制器参数的调节及其对控制性能的影响 (19)5.2.1 比例控制对控制性能的影响 (19)5.2.2 积分控制对控制性能的影响 (20)5.2.3 微分控制对控制性能的影响 (22)5.3 控制系统的整定 (23)5.3.1 控制系统整定的基本要求 (23)5.3.2 调节器参数的整定方法 (23)5.4 调节器参数的整定及调试 (25)总结 (28)参考文献 (29)1设计背景石油炼制生产过程中,把两种或两种以上基础组分油与各种添加剂按一定比例均匀混合,从而成为一种新产品的过程称为调和。
单闭环比值控制课程设计一、课程目标知识目标:1. 理解单闭环比值控制的基本概念,掌握其数学模型和物理意义;2. 掌握单闭环比值控制系统的参数设计方法,能够分析系统性能;3. 了解单闭环比值控制在实际工程中的应用,如电机转速控制、温度控制等。
技能目标:1. 能够运用数学工具对单闭环比值控制系统进行建模和分析;2. 学会使用仿真软件进行单闭环比值控制系统的模拟和调试;3. 能够独立设计简单的单闭环比值控制系统,并进行性能评估。
情感态度价值观目标:1. 培养学生对自动控制技术的兴趣,激发其探索精神;2. 培养学生严谨的科学态度,使其认识到理论与实践相结合的重要性;3. 增强学生的团队合作意识,培养其沟通交流和协作解决问题的能力。
课程性质:本课程属于自动控制原理的一部分,以理论教学和实践操作相结合的方式进行。
学生特点:学生已具备一定的数学基础和物理知识,具有一定的分析问题和解决问题的能力。
教学要求:结合理论教学和实际操作,注重培养学生的实际应用能力和创新思维。
在教学过程中,将课程目标分解为具体的学习成果,以便于后续的教学设计和评估。
二、教学内容1. 单闭环比值控制基本概念:介绍单闭环比值控制系统的定义、组成及其在自动控制中的应用。
- 教材章节:第三章第二节- 内容:控制系统概述、单闭环比值控制系统的结构及原理。
2. 单闭环比值控制数学模型:分析单闭环比值控制系统的数学建模方法,包括传递函数、状态空间方程等。
- 教材章节:第三章第三节- 内容:数学模型建立、传递函数求解、状态空间方程描述。
3. 单闭环比值控制系统参数设计:讲解单闭环比值控制系统的参数设计方法,分析系统性能指标。
- 教材章节:第三章第四节- 内容:PID控制器设计、系统稳定性分析、性能指标优化。
4. 单闭环比值控制系统仿真与实验:运用仿真软件(如MATLAB)进行单闭环比值控制系统模拟和调试,开展实验操作。
- 教材章节:第三章第五节- 内容:仿真软件应用、模拟调试方法、实验操作步骤。
摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否则将使燃烧反应不能正常进行,而煤气和空气比例超过一定的极限将会引起爆炸。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是单闭环流量比值过程控制系统。
在实际的生产过程控制中,比值控制系统除了实现一定比例的混合外,还能起到在扰动影响到被控过程质量指标之前及时控制的作用.而且当最终质量指标难于测量,变送时,可以采用比值控制系统,使生产过程在最终质量达到预期指标下安全正常地进行,因为比值控制具有前馈控制的实质。
关键词:流量;比值控制;PID控制;可编程控制器目录1设计背景 (1)2比值控制系统概述 (5)2.1 比值控制系统定义 (5)2.2 比值控制原理 (5)2.3 比值控制系统特点 (5)2.4 比值控制系统的类型 (6)2.4.1 开环比值控制系统 (6)2.4.2 单闭环比值控制系统 (7)3单闭环流量比值控制系统方案设计 (10)3.1 系统方案设计 (10)3.2 系统硬件设计 (10)4上位机组态与程序设计 (13)4.1 组态软件WinCC (10)4.1.1 WinCC简介 (10)4.1.2 WinCC的发展及应用 (10)4.2 上位机组态设计 (11)4.3 PLC程序设计 (12)5 PID参数整定及系统调试 (20)5.1 PID控制器 (20)5.1.1 PID控制器的优点 (21)5.1.2 控制规律的选择 (21)5.2 PID控制器参数的调节及其对控制性能的影响 (22)5.2.1 比例控制对控制性能的影响 (19)5.2.2 积分控制对控制性能的影响 (20)5.2.3 微分控制对控制性能的影响 (22)5.3 控制系统的整定 (23)5.3.1 控制系统整定的基本要求 (23)5.3.2 调节器参数的整定方法 (23)5.4 调节器参数的整定及调试 (28)总结 (31)参考文献 (32)1设计背景石油炼制生产过程中,把两种或两种以上基础组分油与各种添加剂按一定比例均匀混合,从而成为一种新产品的过程称为调和。
单闭环⽐值控制系统3⽐值控制系统⼀、⽐值控制原理基本概念与原理⽐值控制中,需要保持⽐例的两种物料:处于主导地位的称为主动量,通常⽤FM表⽰,如燃烧中的燃料量。
另⼀种物料称为从动量,⽤FS表⽰,如燃烧⽐值系统中的空⽓(氧⽓)量。
⽐值控制系统要实现:FS/FM=kk为从动量与主动量的⽐值。
图9-12 燃烧过程⽐值控制系统在⽯化、制药等⽣产过程中,经常要两种或两种以上的物料保持⼀定的⽐例关系。
燃烧过程:燃料与空⽓要保持⼀定⽐例,才能满⾜⽣产和环保要求。
造纸过程:浓纸浆与⽔要以⼀定⽐例混合,才能制造出合格的纸浆。
不少化学反应过程,多个进料要保持⼀定的⽐例。
⽐值系数计算流量⽐值与设置于仪表的⽐值系数是两个不同的概念,它们都为⽆量纲系数,但两者的数值是不等的。
流量⽐值k是流量的⽐值,它们可以同为质量流量、体积流量或折算为标准情况下的流量。
⽐值系数K是设置于⽐值函数模块或⽐值控制器中的参数。
1、采⽤线性流量检测单元的情况在正常⼯况下,主动量与从动量的输出值(⽆量纲)分别为F1/F1MAX,F2/F2MAX。
所以单元组合仪表的⽐值系数为:该⽐值系数只与变送器的量程和所要求从动量与主动量的对应⽐例关系有关,与变送器的电⽓零点⽆关。
2、采⽤差压法未经开⽅流量检测单元的情况此时,主动量与从动量的输出值(⽆量纲)分别为(F1/F1MAX)2,(F1/F1MAX)2 。
所以⽐值系数为:该⽐值系数只与变送器的量程和所要求从动量与主动量的对应⽐例关系有关,与变送器的电⽓零点⽆关。
3、⼏点说明(1)采⽤线性流量检测⽅法时,只有在F1MAX=F2MAX的场合,k=K;在采⽤差压法未经开⽅流量检测时,在时,k=K (2)采⽤相乘或相除的⽅案中,⽐值函数部件可以改接在F2⼀侧,即实现。
此时,K’=1/K。
(3)在同样的⽐值k下,通过调整F1MAX,F2MAX也可以改变⽐值系数。