新课标高一数学必修1第一章集合与函数概念单元测试题 5
- 格式:doc
- 大小:273.16 KB
- 文档页数:4
高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。
数学必修一单元测试题集合与函数概念一、选择题1.集合},{b a 的子集有 ( )A .2个B .3个C .4个D .5个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A B = ( )A .(4,3)-B .(4,2]-C .(,2]-∞D .(,3)-∞3.已知()5412-+=-x x x f ,则()x f 的表达式是( )A .x x 62+B .782++x xC .322-+x xD .1062-+x x4.下列对应关系:( )①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根②,,A R B R ==f :x x →的倒数③,,A R B R ==f :22x x →-④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方其中是A 到B 的映射的是A .①③B .②④C .③④D .②③5.下列四个函数:①3y x =-;②211y x =+;③2210y x x =+-;④(0)1(0)xx y x x⎧-≤⎪=⎨->⎪⎩.其中值域为R 的函数有 ( )A .1个B .2个C .3个D .4个6. 已知函数212x y x ⎧+=⎨-⎩ (0)(0)x x ≤>,使函数值为5的x 的值是()A .-2B .2或52- C . 2或-2 D .2或-2或52-7.下列函数中,定义域为[0,∞)的函数是 ( )A .x y =B .22x y -=C .13+=x yD .2)1(-=x y8.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x f ( )A . 0)0(=f 且)(x f 为奇函数B .0)0(=f 且)(x f 为偶函数C .)(x f 为增函数且为奇函数D .)(x f 为增函数且为偶函数9(A ) (B) (C ) (D)10.若*,x R n N ∈∈,规定:(1)(2)(1)n x x x x x n H =++⋅⋅⋅⋅⋅+-,例如:( ) 44(4)(3)(2)(1)24H -=-⋅-⋅-⋅-=,则52()x f x x H -=⋅的奇偶性为A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数二、填空题11.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB = .12.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = .13.函数()1,3,x f x x +⎧=⎨-+⎩1,1,x x ≤>则()()4f f = .14.某班50名学生参加跳远、铅球两项测试,成绩及格人数分别为40人和31人,两项测试均不及格的人数是4人,两项测试都及格的有 人.15.已知函数f(x)满足f(xy)=f(x)+f(y),且f(2)=p,f(3)=q ,那么f(36)= .三、解答题16.已知集合A={}71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R .(Ⅰ)求A ∪B ,(C R A)∩B ;(Ⅱ)如果A ∩C ≠φ,求a 的取值范围.17.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(Ⅰ)若A =B,求a 的值;(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值. x y 0 x y 0 x y 0 x y 018.已知方程02=++q px x 的两个不相等实根为βα,.集合},{βα=A , =B {2,4,5,6},=C {1,2,3,4},A ∩C =A ,A ∩B =φ,求q p ,的值?19.已知函数2()21f x x =-.(Ⅰ)用定义证明()f x 是偶函数;(Ⅱ)用定义证明()f x 在(,0]-∞上是减函数;(Ⅲ)作出函数()f x 的图像,并写出函数()f x 当[1,2]x ∈-时的最大值与最小值.yox20.设函数1)(2++=bx ax x f (0≠a 、R b ∈),若0)1(=-f ,且对任意实数x (R x ∈)不等式)(x f ≥0恒成立.(Ⅰ)求实数a 、b 的值;(Ⅱ)当∈x [-2,2]时,kx x f x g -=)()(是单调函数,求实数k 的取值范围.20XX 级高一数学必修一单元测试题(一)参考答案一、选择题 CBACB AAACB二、填空题 11. {}0,3 12. {(3,-1)} 13. 0 14. 25 15. 2()p q +三、解答题16.解:(Ⅰ)A ∪B={x|1≤x<10}(C R A)∩B={x|x<1或x ≥7}∩{x|2<x<10}={x|7≤x<10}(Ⅱ)当a >1时满足A ∩C ≠φ17.解: 由已知,得B ={2,3},C ={2,-4}(Ⅰ)∵A =B 于是2,3是一元二次方程x 2-ax +a 2-19=0的两个根,由韦达定理知:⎩⎨⎧-=⨯=+1932322a a 解之得a =5. (Ⅱ)由A ∩B ∅A ⇒∩≠B Φ,又A ∩C =∅,得3∈A ,2∉A ,-4∉A ,由3∈A ,得32-3a +a 2-19=0,解得a =5或a =-2当a =5时,A ={x |x 2-5x +6=0}={2,3},与2∉A 矛盾;当a =-2时,A ={x |x 2+2x -15=0}={3,-5},符合题意.∴a =-2.18.解:由A ∩C=A 知A ⊆C又},{βα=A ,则C ∈α,C ∈β. 而A ∩B =φ,故B ∉α,B ∉β显然即属于C 又不属于B 的元素只有1和3.不仿设α=1,β=3. 对于方程02=++q px x的两根βα, 应用韦达定理可得3,4=-=q p .19.(Ⅰ)证明:函数()f x 的定义域为R ,对于任意的x R ∈,都有22()2()121()f x x x f x -=--=-=,∴()f x 是偶函数.(Ⅱ)证明:在区间(,0]-∞上任取12,x x ,且12x x <,则有22221212121212()()(21)(21)2()2()()f x f x x x x x x x x x -=---=-=-⋅+,∵12,(,0]x x ∈-∞,12x x <,∴12120,x x x x -<0,+<即1212()()0x x x x -⋅+>∴12()()0f x f x ->,即()f x 在(,0]-∞上是减函数.(Ⅲ)解:最大值为(2)7f =,最小值为(0)1f =-.20.解:(Ⅰ)∵0)1(=-f ∴01=+-b a∵任意实数x 均有)(x f ≥0成立∴⎩⎨⎧≤-=∆>0402a b a 解得:1=a ,2=b(Ⅱ)由(1)知12)(2++=x x x f ∴1)2()()(2+-+=-=x k x kx x f x g 的对称轴为22-=k x ∵当∈x [-2,2]时,)(x g 是单调函数 ∴222-≤-k 或222≥-k ∴实数k 的取值范围是),6[]2,(+∞--∞ .21.解:(Ⅰ)令1==n m 得 )1()1()1(f f f +=所以0)1(=f0)21(1)21()2()212()1(=+-=+=⨯=f f f f f 所以1)21(=f (Ⅱ)证明:任取210x x <<,则112>x x 因为当1>x 时,0)(<x f ,所以0)(12<x x f 所以)()()()()(11211212x f x x f x f x x x f x f <+=⋅= 所以)(x f 在()+∞,0上是减函数.2.3 函数的单调性学法导引1.熟练掌握增减性的概念.要注意定义中对区间内,的任意性,而不是某两个特殊值,.2.掌握好证明函数单调性的方法(用定义):取值——作差——定号——判断.3.熟悉几种基本函数的单调性.4.掌握好利用函数的单调性来比较数的大小的方法.知识要点精讲1.增函数、减函数、单调性、单调区间的概念(1)函数的单调性是函数在定义域内某一区间内的局部性质,而不是整体性质.一是同属于一个单调区间,二是任意性,切不可用两个特殊值代替,三是规定了大小关系.要证明函数f(x)在区间[a,b]上是单调递增(递减)的,而要证f(x)在区间[a,b]上不是递增(递减)的,则只需举出反例即可.2.判断函数单调性的方法最基本的方法是依据函数单调性的定义来证明,其步骤如下:并通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变化;第三步:定号,即确定差的符号,当符号不确定时,可进行分区间讨论;第四步:判断,即根据定义确定是增函数还是减函数.也可根据函数简单的运算性质和复合函数的性质来确定函数的单调性.3.函数单调性的应用单调性是函数的重要性质,它在研究函数时具有重要的作用.具体表现在:(1)利用函数的单调性,可以把比较函数值的大小问题,转化为比较自变量的大小问题,也是我们解不等式的依据.(2)确定函数的值域或求函数的最值.对于函数f(x),如果它在区间[a,b]上是增函数,那么它的值域是[f(a),f(b)],如果它在区间[a,b]上是减函数,那么它的值域是[f(b),f(a)],如果它在区间[a,c]上是增(减)函数,在[c,b]上是减(增)函数,那么它的最大(小)值是f(c).4.常用函数的单调性(1)一次函数y=kx+b,当k>0时,函数在R上为单调递增函数;当k<0时,函数在R上为单调递减函数.思维整合【重点】本节重点是函数单调性的概念以及函数单调性的判定、函数单调性的应用.【难点】利用函数单调性的概念来证明或判断函数的单调性.【易错点】1.复合函数的单调性只注意复合关系,不注意范围;精典例题再现【解析重点】例求下列函数的单调区间.[解析]求函数单调区间有多种方法,可以利用定义法,可以利用基本的初等函数的单调性,也可以用图象的直观性.作出函数的图象,如图2-3-1所示:在(-∞,-1]和[0,1]上,函数f(x)是增函数,在[-1,0]和[1,+∞)上,函数是减函数.故其单调递增区间为(-∞,-1]和[0,1];其单调递减区间为[-1,0]和[1,+∞).点拨对于(2)中求复合函数单调区间的问题,一般有以下结论:设y=f(u),u=g(x),x∈[a,b],u∈[m,n],若f(u)是[m,n]上的增函数,则f[g(x)]的增减性与g(x)的增减性相同;如果f(u)是[m,n]上的减函数,则f[g(x)]的增减性与g(x)的增减性相反,此种问题特别要注意考虑函数的定义域.。
高一数学第一章集合与函数概念单元检测试题一、选择题:共12题每题5分共60分1.已知函数的图象如下图所示,则函数的图象为2.下列各组函数为相等函数的是A. B.C. D.==3.函数的定义域为若对于任意的当时,都有则称函数在上为非减函数.设函数的上为非减函数,且满足以下三个条件:①②③=则等于A. B. C. D.4.设函数,则的最小值为A. B. C. D.5.函数f(x)=x2-4x+6(x∈[1,5))的值域是A.(3,11]B.[2,11)C.[3,11)D.(2,11]6.若函数在区间上单调,则实数的取值范围为A. B.C. D.7.定义运算:a*b=,如1*2=1,则函数f(x)=2x*2-x的值域为A.RB.(0,+∞)C.(0,1]D.[1,+∞)8.已知集合E={x|2-x≥0},若F⊆E,则集合F可以是A.{x|x<1}B.{x|x>2}C.{x|x>3}D.{x|1<x<3}9.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f()的x的取值范围是() A.(,) B.[,) C.(,) D.[,)10.某部队练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢?A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知集合和集合,则两个集合间的关系是A. B. C. D.M,P互不包含试卷第2页,总4页二、填空题:共4题每题5分共20分13.已知函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,则实数的取值范围是A. C.14.设集合M={x|0≤x≤2},N={y|0≤y≤2}.给出下列四个图,其中能构成从集合M到集合N 的函数关系的是.15.给出下列二次函数,将其图象画在同一平面直角坐标系中,则图象的开口按从小到大的顺序排列为.(1)f(x)=-x2;(2)f(x)=(x+5)2;(3)f(x)=x2-6;(4)f(x)=-5(x-8)2+9.16.若函数的图像关于y轴对称,则的单调减区间为 .三、解答题:共6题共70分17.(本题10分)如果对函数f(x)定义域内任意的x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,就称函数f(x)是定义域上的“平缓函数”.(1)判断函数f(x)=x2-x,x∈[0,1]是否为“平缓函数”;(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1),证明:对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.(注:可参考绝对值的基本性质①|ab|≤|a||b|,②|a+b|≤|a|+|b|)18.(本题12分)记函数的定义域为集合,集合.(1)求和;(2) 若,求实数的取值范围.19.(本题12分)设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:(1)S∩T;(2).20.(本题12分)已知函数f(x)=.(1)用定义证明f(x)在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.21.(本题12分)定义在非零实数集上的函数对任意非零实数满足:,且当时.(Ⅰ)求及的值;(Ⅱ)求证:是偶函数;(Ⅲ)解不等式:.22.(本题12分)(1)证明:函数f(x )=在(-∞,0)上是减函数;(2)证明:函数f(x)=x3+x在R上是增函数.试卷第4页,总4页参考答案1.B【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在y 轴右侧图象在x 轴上方,在y轴左侧的图象在x轴的下方,而函数在x>0时图象保持不变,因此排除C,D,对于选项A,由于在时偶函数,故在y轴左侧的图象与y轴右侧的图象关于y轴对称,故选B.【备注】无2.C【解析】本题主要考查相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不同,所以这两个函数不是相等函数;B.这两个函数的定义域不同,所以这两个函数不是相等函数;C.这两个函数的定义域、值域与对应关系均相同,所以这两个函数为相等函数;D.这两个函数的定义域不同,所以这两个函数不是相等函数.【备注】无3.D【解析】本题主要考查新定义问题、函数的性质及其综合应用.由题意,令x=0,由=可得由可得令则=同理=====令则==同理====. 非减函数的性质:当时,都有.因为所以所以=.【备注】无4.A【解析】本题主要考查分段函数的最值问题.由题意,函数的图象如图所示:红色图象即为所求解的函数的图象,可知最小值为0.【备注】无5.B【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线x=2,∴f(x)在[1,2]上单调递减,在(2,5)上单调递增,∴f(x)的值域是[2,11).故选B.【备注】无6.C【解析】本题主要考查二次函数.依题意,函数在区间上单调,则函数的对称轴或,得或,故选C.【备注】无7.C【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知f(x)=2x*2-x=,结合图象知其值域为(0,1].故选C.【备注】无8.A【解析】由题意知E={x|2-x≥0}={x|x≤2},F⊆E,观察选项知应选A.【备注】无9.A【解析】偶函数f(x)在区间[0,+∞)上单调递增,所以函数f(x)在区间(-∞,0]上单调递减.由于f(x)是偶函数,所以f(-x)=f(x),则f(-)= f().由f(2x-1)<f()得①或②,解①得≤x<,解②得<x<.综上可得<x<,故x的取值范围是(,).【备注】无10.C【解析】本题主要考查二次函数.依题意,根据二次函数得性质,函数的开口向下,对称轴为,故炮弹在发射后最高,故选C.【备注】无11.B【解析】本题主要考查函数的解析式与求值.因为,设,则,所以,因为,所以,解得,故选B.【备注】无12.D【解析】无【备注】无13.D【解析】本题主要考查二次函数的图像与性质,考查了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1≤x ≤2)与的图象上存在关于轴对称的点,所以函数f(x)=a﹣x2(1≤x≤2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为D.【备注】无14.④【解析】图①中函数的定义域是[0,1];图②中函数的定义域是[-1,2];图③中对任意的x∈(0,2],其对应的y值不唯一.故①②③均不能构成从集合M到集合N 的函数,图④满足题意.【备注】无15.(4)(3)(2)(1)【解析】因为二次函数y=ax2+bx+c(a≠0)的图象在同一平面直角坐标系中|a|越小,图象开口越大,又|-|<||<||<|-5|,所以图象开口按从小到大的顺序排列为(4)(3)(2)(1).【备注】无16.【解析】本题考查函数的图象. 若函数的图像关于y轴对称,则a=0,,所以f(x)的单调减区间为.【备注】无17.(1)对任意的x1,x2∈[0,1],有-1≤x1+x2-1≤1,即|x1+x2-1|≤1.从而|f(x1)-f(x2)|=|(-x 1)-(-x2)|=|x1-x2||x1+x2-1|≤|x1-x2|,所以函数f(x )=x2-x,x∈[0,1]是“平缓函数”.(2)当|x1-x2|<时,由已知,得|f(x1)-f(x2)|≤|x1-x2|<;当|x1-x2|≥时,因为x1,x2∈[0,1],不妨设0≤x1<x2≤1,所以x2-x1≥.因为f(0)=f(1),所以|f(x1)-f(x2)|=|f(x 1)-f(0)+f(1)-f(x2)|≤|f(x1)-f(0)|+|f(1)-f (x2)|≤|x1-0|+|1-x2|=x1-x2+1≤-+1=.所以对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.【解析】无 【备注】无18.由条件可得{|2}A x x =>, (1)={|23}x x <≤,{|3}A B x x ⋃=≥-;(2) {|}C x x p =>,由可得2p ≥.【解析】本题考查函数的定义域与集合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行分析即可得出结论.【备注】与不等式有关的集合运算或集合之间的关系问题通常可以借助数轴进行求解.19.U ={1,2,3,4,5,6,7,8} (1)S ∩T ={3} (2)S ∪T ={1,3,5,6}={2,4,7,8}【解析】本题主要考查集合的基本运算.(1)由交集的定义求解;(2)由并集与补集的定义求解. 【备注】无20.(1)任取x 1,x 2∈[1,+∞),且x 1<x 2,则f(x 1)-f(x 2)=-=.∵1≤x 1<x 2,∴x 1-x 2<0,(x 1+1)(x 2+1)>0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数f(x)在区间[1,+∞)上是增函数. (2)由(1)知函数f(x)在区间[2,4]上是增函数, ∴f(x)max =f(4)==, f(x)min =f(2)==.【解析】无 【备注】无21.(1)f (1)=0,f (-1)=0;(2)f (-x )=f (x )+f (-1)=f (x )∴f (-x )=f (x ),所以函数是偶函数;(3)据题意可知,f(2)+f(x2-1/2)=f(2x2-1)≤0∴-1≤2x2-1<0或0<2x2-1≤1∴0≤x2<1/2或<x2≤1,所以不等式的解集为【解析】本题主要考查特殊函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令x=1与x=—1即可求出结果;(2)利用函数奇偶性的定义即可证明;(3)根据题意与f(1)=0,f(-1)=0,原不等式可化为-1≤2x2-1<0或0<2x2-1≤1然后求解即可.【备注】无22.(1)设x1,x2是(-∞,0)上的任意两个实数,且x1<x2,则f (x1)-f(x2)=-.因为x1,x2∈(-∞,0),所以x1x2>0,又因为x1<x2,所以x2-x1>0,则>0.于是f(x1)-f(x2)>0,即f(x1)>f(x2).因此函数f(x )=在(-∞,0)上是减函数.(2)设x1,x2是R上的任意两个实数,且x1<x2,则x2-x1>0,而f(x2)-f(x1)=(+x2)-(+x1)=(x 2-x1)(+x2x1+)+(x2-x 1)=(x2-x1)(+x2x1++1)=(x2-x1)[(x2+)2++1].因为(x2+)2++1>0,x2-x1>0,所以f(x2)-f(x1)>0,即f(x2)>f(x1).因此函数f(x)=x3+x在R上是增函数.【解析】用定义证明函数f(x)在给定区间D上的单调性的一般步骤:①取值——任取x1,x2∈D,且x1<x2;②作差——f(x1)-f(x2);③变形——通过因式分解、配方、通分、有理化等方法,向有利于判断差值的符号的方向变形;④定号——判断f(x1)-f(x2)的正负;⑤下结论——指出函数f(x)在给定区间D上的单调性.【备注】无。
人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |x -12≥1},则上图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}2.设2a =5b =m ,且a 1+b 1=2,则m 等于( )A. B .10C .20D .1003.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是( )A .f (-1)>f (2)B .f (-1)<f (2)C .f (-1)=f (2)D .无法确定4.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( )A .A ⊆B B .A BC .A =BD .A ∩B =∅5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p %为( )A .10%B .12%C .25%D .40% 6.设则f (f (2))的值为( ) A .0B .1C .2D .37.定义运算:a *b =如1*2=1,则函数f(x)的值域为( ) A .RB .(0,+∞)C .(0,1]D .[1,+∞)8.若2lg(x -2y )=lg x +lg y ,则log 2y x 等于( )A .2B .2或0C .0D .-2或09.设函数,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4B .3C .2D .110.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(a b )x 的图象只可为( )11.已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (31)<f (2)<f (21)B .f (21)<f (2)<f (31)C .f (21)<f (31)<f (2)D .f (2)<f (21)<f (31)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x x2+(a +1x +a 为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{x ∈R |x ≠0};③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10},(1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分)函数f (x )=x +12x -1,x ∈3,5].(1)判断单调性并证明;(2)求最大值和最小值.20.(本小题满分12分)已知二次函数f(x)=-x2+2ax-a在区间0,1]上有最大值2,求实数a的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f (x )在(0,+∞)上的单调性,并给出证明;(3)若a ≥0且f (a +1)≤93,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+x a(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.参考答案与解析1.C [题图中阴影部分可表示为(∁U M )∩N ,集合M ={x |x >2或x <-2},集合N ={x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.]2.A [由2a =5b =m 得a =log 2m ,b =log 5m ,∴a 1+b 1=log m 2+log m 5=log m 10.∵a 1+b 1=2,∴log m 10=2,∴m 2=10,m =.]3.A [由y =f (x +1)是偶函数,得到y =f (x )的图象关于直线x =1对称,∴f (-1)=f (3). 又f (x )在[1,+∞)上为单调增函数,∴f (3)>f (2),即f (-1)>f (2).]4.A [∵x ∈R ,∴y =2x >0,即A ={y |y >0}.又B ={y |y =x 2,x ∈R }={y |y ≥0},∴A ⊆B .]5.C [利润300万元,纳税300·p %万元,年广告费超出年销售收入2%的部分为200-1000×2%=180(万元),纳税180·p %万元,共纳税300·p %+180·p %=120(万元),∴p %=25%.]6.C [∵f (2)=log 3(22-1)=log 33=1,∴f (f (2))=f (1)=2e 1-1=2.]7.C[由题意可知f (x )=2-x ,x>0.2x x ≤0,作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1].]8.A [方法一 排除法.由题意可知x >0,y >0,x -2y >0,∴x >2y ,y x >2,∴log 2y x >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0,∴(x -y )(x -4y )=0,∴x =y 或x =4y ,∵x -2y >0,x >0,y >0,∴x >2y ,∴x =y (舍去),∴y x =4,∴log 2y x =2.]9.B [当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.]10.C [∵a b >0,∴a ,b 同号.若a ,b 为正,则从A 、B 中选.又由y =ax 2+bx 知对称轴x =-2a b <0,∴B 错,但又∵y =ax 2+bx 过原点,∴A 、D 错.若a ,b 为负,则C 正确.]11.B [据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x -2的图象是把y =a x 的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.]12.C [由f (2-x )=f (x )知f (x )的图象关于直线x =22-x +x =1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|31-1|>|21-1|,∴f (21)<f (31)<f (2).]13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2.14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A ,∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即-x x2-(a +1x +a =-x x2+(a +1x +a ,∴(a +1)x =0对x ≠0恒成立,∴a +1=0,a =-1.16.y =x 2或y =1+x ,x<01-x ,x>0,或y =-x 2(答案不唯一)解析:可结合条件来列举,如:y =x 2或y =1+x ,x<01-x ,x>0或y =-x 2.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}.当a =1时,B =(-∞,1].∴A ∩B =.(2)∵A ⊆B ,∴2a -1≤0,-4a -1≤0,∴-41≤a ≤21,即实数a 的取值范围是21.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10},(∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴a -4≤3,a +4≥7,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下:任取x 1,x 2∈3,5]且x 1<x 2.∵ f (x )=x +12x -1=x +12(x +1-3=2-x +13,∴ f (x 1)-f (x 2)=x1+13-x2+13=x2+13-x1+13=(x1+1(x2+13(x1-x2,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在3,5]上为增函数.(2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=23,f (x )]最小值=f (3)=45.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减,∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾.综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x2x1<1,f (x 1)=f ·x2x1=f x2x1·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f x2x1f (x 2)=f (x 2)x2x1.∵0<f x2x1<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3,∴9=f (3)]3,∴f (3)=93,∵f (a +1)≤93,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+x a (x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+x 1.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x11-x21=(x 1+x 2)(x 1-x 2)+x1x2x2-x1=(x 1-x 2)x1x21, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>x1x21,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.。
第一章 集合与函数概念习题检测、选择题(5*12=60分) 1、 下列四个集合中, 是空集的是( ) A . {x | x 3=3} B .{(x, y) | y 2 - -x 2,x,y R} C . {x|x 2 岂 0} D .{x |x 2 —x 1 = 0, x R} 2、 若集合 A ={ -1,1} , B ={x | mx =1},且 A B = A ,则 m 的值为( )A . 1B .-1 C . 1 或-1 D . 1 或-1 或 0'x + y = 13、 方程组」22 的解集是( )X -y =9A .5,4 B . 5,4 C . f -5,4? D . f 5,-4 二4、 若全集U J 0,1,2,3?且C u A ,则集合A 的真子集共有( )A.3个 B . 5个 C . 7个 D . 8个5、 设集合 M ={x | x 仝」,k :二 Z},N ={x| x =色 丄,k 三 Z},则()2 4 4 2 A . M =N B . M-N C . N * M D .俯 N =:226、 已知函数f (x )=(m-1)x ・(m-2)x ・(m -7m 12)为偶函数,则m 的值是( )A . 1B .2 C .3 D . 47、若偶函数f (X )在-::,-1上是增函数,则下列关系式中成立的是()9、下列函数中,在区间0,1上是增函数的是( ) A . y = x B . y=3_x C .D . y__x 24x3A . f(—;) ::: f(—1) ::: f (2)C . f(2)::: f(— 3B . f (一1) :: f (一;厂:f (2)D . f(2) ::: f (-弓::&如果奇函数 f (x )在区间[3,7] 上是增函数且最大值为5,那么f (x )在区间〔- 7,-3】上是A .增函数且最小值是 - 5 B. 增函数且最大值是 -5C. 减函数且最大值是 -5 D .减函数且最小值是 -5x 2(x 乞-1)I 2 10、已知 f (x) = x (-1 ::: x :::2),若 f (x) = 3,则 x 的值是( ) 2x(x>2) C . 1, 3或-.3 2 11、为了得到函数 y =:f (-2x)的图象,可以把函数 y =f(1_2x)的图象适当平移,这个平移是 ( ) A .沿x 轴向右平移 1 C .沿x 轴向左平移 1 1个单位 B •沿x 轴向右平移个单位2 1 个单位 D •沿x 轴向左平移个单位212、设 f (x) x — 2,20)则f(5)的值为 〔f[f(x+6)],(x<10) ' 丿 A . 10 B . 11 C . 12 D . 13 二、填空题(5*4=20分) 13、某班有学生55人,其中体育爱好者 43人,音乐爱好者34人,还有4人既不爱好体育也不 爱好音乐,则该班既爱好体育又爱好音乐的人数为 __________________ 人。
集合与函数概念单元测试题一、选择题(40)1.集合{,,}a b c 的真子集有 ( )A .6个B .7个C .8个D .9个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A ∩B= ( )A .(4,3)-B .(4,2]-C .(,2]-∞D .(,3)-∞3.已知()5412-+=-x x x f ,则()x f 的表达式是( )A .x x 62+B .782++x xC .322-+x xD .1062-+x x 4.下列四个函数:①3y x =-;②211y x =+;③2210y x x =+-;④(0)1(0)x x y x x⎧-≤⎪=⎨->⎪⎩. 其中值域为R 的函数有 ( )A .1个B .2个C .3个D .4个5、已知函数212x y x ⎧+=⎨-⎩(0)(0)x x ≤>,使函数值为5的x 的值是( ) A .-2 B .2或52- C . 2或-2 D .2或-2或52- 6.下列函数中,定义域为[0,+∞)的函数是 ( )A .x y =B .22x y -=C .13+=x yD .2)1(-=x y7.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x f ( )A . 0)0(=f 且)(x f 为奇函数B .0)0(=f 且)(x f 为偶函数C .)(x f 为增函数且为奇函数D .)(x f 为增函数且为偶函数8(A ) (B) (C ) (D)二、填空题(30)9.若函数 f (x )=(k-2)x 2+(k-1)x +3是偶函数,则f (x )的递减区间是10.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A ∪B= .11.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = .12.函数()1,3,x f x x +⎧=⎨-+⎩ 1,1,x x ≤>则()()4f f = . 13.已知函数f(x)满足f(xy)=f(x)+f(y),且f(2)=p,f(3)=q ,那么f(36)= .14.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .三、解答题15.(14)已知集合A={}71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R .(Ⅰ)求A ∪B ,(C R A)∩B ;(Ⅱ)如果A ∩C ≠φ,求a 的取值范围.16.(16)已知函数2()21f x x =-.(Ⅰ)用定义证明()f x 是偶函数;(Ⅱ)用定义证明()f x 在(,0]-∞上是减函数;(Ⅲ)作出函数()f x 的图像,并写出函数()f x 当[1,2]x ∈-时的最大值与最小值.。
班级高一第一章集合与函数试卷座号姓名一、选择题(本大题共 12小题,每小题 且只有一个答案是正确的.)1. 下列各组对象中,不能形成集合的是 A .连江五中全体学生 C .连江五中2012级2. 下列从集合M 到集合 第I 卷(选择题共60分) 5分,共60分.在每小题所给的四个答案中有 高一学生) B .连江五中的必修课 D .连江五中全体高个子学生N 的对应f 是映射的是().VC2D3 .下列关系正确的是 A . 0 N ) B . 1- RD . —3 ’ Z4.下列各组函数是同一函数的是( 心与y=1 xC . y =x | -|x -1 与 y =2x -1 5 .已知 x 2 4~1 x v1 f x 二 ,"J 则f 2的值为 ~2 x 3, x A 1, I 彳匕 』X —hx 〉1, y "与 y「_x,x :::1x 3 xC .D . 5-7 A . 6.下列哪个是偶函数的图像(B . 2系的Venn 图如图所示,则阴影部分所示的集合的元素共有()B . 2个 D •无穷多个&已知函数f X =X 21,^0,-的最值情况是( )L29 •某学生离家去学校,由于怕迟到,所以一开始就匀速跑步,等跑累了再匀速走余下的 路程.在下图中纵轴表示该生离学校的距离d ,横轴表示出发后的时间 t ,则下图中的四10 .已知集合A ^{2,3,9}且A 中至少有一个奇数,则这样的集合有()。
A . 6个B . 5个C . 4个D . 3个11.设偶函数f x 的定义域为R ,当x ・[0,;时f x 是增函数,则f -2 , f 二,f 七 的大小关系是()A . 3个 C . 1个 A .有最大值-,但无最小值4 B .有最小值3,有最大值4C .有最小值 1,有最大值19D •无最大值,也无最小值A . f (二)::f (―3) :: f(-2)B . f (二)f (-2) f (-3)C . f (二)f (-3)f ( -2)D . f (二):::f (―2) :: f (-3)12 .已知函数 x 2 亠 ax, x -1f x : 、ax 2 +x, x>1在R 上单调递减,则实数 a 的取值范围是(B . 一2 ::: a -1C . a ■ ~2第n卷(非选择题共90分)、填空题(本大题共4小题,每小题4分,共16分,将答案填在题后的横线上.)13 .右图是定义在区间丨22 ]的函数y=f x,贝U f x的减区间是★★★14 .函数f(x) = —1的定义域为★★★(用区间表x示).15 .已知定义在R上的减函数f x满足f 2m-1 ■ f 1-m,则实数m的取值范围是★★★ .16 .已知集合M -3 < x < 4>N =「x2a -1 < x < a 1),若M 二N,则实数a 的取值范围是★★★.三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算过程. )17 .(本小题满分12分)判断并证明下列函数的奇偶性:(I)f x =x3 2x ;(n)g x =x°.18.(本小题满分12分)已知集合A={x3^xc6} B = tx -1或,求:(I) e R A UB ;(n) A「| G R B .19 .(本小题满分12分)设函数f x]=2 .x(I)判断函数f x在0,;上的单调性并用定义加以证明;(n)求函数f x在区间2,5 1上的最大值与最小值.20 .(本小题满分12分)设函数f(x)=—.1 +x1(I)若fa ,求实数a的值;3、 A \(n)求证:f f x ( x = 0 且x^ -1);\x j(川)求f 诺f鼎川f1 f1f2川f2011 f 2012的值.21.(本小题满分12分)已知函数f(x)是定义在R上的奇函数,当X-0时,f x]=x2-6x (1)画出f(x)的图象;(2)根据图象直接写出其单调增区间;(3)写出f(x)的解析式.22 .(本小题满分14分)已知函数f(x) --x2 ax - 2,^ 1-5,5 1.(I)若函数f x不是单调函数,求实数a的取值范围;(n)记函数f x的最小值为g a,求g a表达式.连江五中2014级高一第一章集合与函数试卷参考答案及评分标准一、选择题1-5QCADC6-10:ABCDA 11-12:CA、填空题13. 1-1,1]x —1^0 x 占1 ( 1 - t114 •解:j 二I 二{xx K1h疋义域为乩范)或{xx31}x式0 x式015. 解:f x在R上的减函数且f 2m-1 j > f 1 —m—2,l或2m -1 :::1 -m= m ,实数m的取值范围是316. 解:M 二N①N - 一时2a -1 a 1二a 2②N =.一由右图得工2a -1 < a 1 J a < 2I I彳2a—13—3 n估色一1二一1兰a兰2a +1 < 4 a < 3综上所述a _ -1或丨-1,三、解答题17. ........................................................................................................................................... 解:(I)函数f x的定义域为R,关于原点对称. .......................................... 2分f O )=( f 3+2(F )=-x3-2x =-(X3+x )=-f (x ), ....................................... 5分函数f x为奇函数.(n)函数g x的定义域为-::,0 U 0,:;3[,关于原点对称.g x 1 , (4)xg -x^4 =g x . ................................................................................................ 5分(-x4 x函数g x为偶函数.18 .解:(I)TA J.x3 <x:::6?, -Ap|B 」.x5 乞x:::6?, ............................................................................................... 3分- C R (AljB)」xx :::5或x _6f. .................................................................................. 6分 (n)vB J..XX 乞—1或x _5?,C R B ={x 一1 e x , ................................................................................................ 9分 (C R B )|J A =观 一1 <x ^6} . ................................................................................... 12 分 19 .解:(I )函数f x 在0,; 上为增函数,下证之. 设 X 1,X 2是(0,范J 上的任意两个实数,有 X 1 CX 2,则•…3 3 _3 石—X 2 f 石-f x 2 = 0 :: x ::: X 2 , 2工 X 1 x^2 x 1 -x 2 :: 0,x 1x 2 0 , ............................................ 二 f X 1 -f X 2::0,即 f X ::: f X 2 , .................................. 函数f x 在0,亠「]上为增函数. ............. (n)由(I)可知函数 f x 在12,5 ]上为增函数. 7 」 」 1f X max 二 f 5 , f X min = f 2•…… 5 2…■ 1 —a 1f a , .................. ''1+a 3 20 •解:(I ):a =2.1 xf(x):1 +x 11 — r x_x-1_ —x,X 1 1 X 1 1 X 'X f * L_f (X ) .................................fx.(川)由(n )可知1f ; f x -0 ............. ..............................’f 1 )f 2012 =0,f 茹 f 2011 =0,|l|,f又•••丄2012f 1 =0 ,「•原式=0 .1 f2 =0 .12分10分11分 12分2—2,其对称轴为x =◎4 2函数f x 不是单调函数,-5 畀::5 , .............................. 2 (说明:本步若取等号,扣 1分)—10ca£10,•实数a 的取值范围为 -10,10 .(n)①当a < 0,即卩a < 0时, ...............................2f (x m i ri =f (5 )=—25+5a +2 =5a —23,即 g(a ) = 5a —23 .5a -23,a < 0, J 5a -'23,a - 0.2 -6x •••当 x 一0 时,f (x) =x 2 2二 f(-x) =(-x) _6(-x) =x 6x - •••函数f (x )为R 上的奇函数, • •• f (-x) = - f (x)................................. f (「x)二- f (x) = x 26x 2f (x) - -x -6x, x :: 0 ............................!x 2 -6x, x X 0, •- f(x)=2j —x -6x, x c0.10分 12分②当a0,即a 0时, 2f Xmin10分 =f -5 = 25 —5a 2 - _5a —23,即 g a - _5a — 23 .12分 22 .解:(I) f x — x —|综上所述,g a =14分。
高一数学第一章集合与函数概念单元检测试题一、选择题:共12题每题5分共60分1.已知函数的图象如下图所示,则函数的图象为2.下列各组函数为相等函数的是A. B.C. D.==3.函数的定义域为若对于任意的当时,都有则称函数在上为非减函数.设函数的上为非减函数,且满足以下三个条件:①②③=则等于A. B. C. D.4.设函数,则的最小值为A. B.C. D.5.函数f(x)=x2-4x+6(x∈[1,5))的值域是A.(3,11]B.[2,11)C.[3,11)D.(2,11]6.若函数在区间上单调,则实数的取值范围为A. B.C. D.7.定义运算:a*b=,如1*2=1,则函数f(x)=2x*2-x的值域为A.RB.(0,+∞)C.(0,1]D.[1,+∞)8.已知集合E={x|2-x≥0},若F?E,则集合F可以是A.{x|x<1}B.{x|x>2}C.{x|x>3}D.{x|1<x<3}9.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f()的x的取值范围是() A.(,) B.[,) C.(,) D.[,)10.某部队练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢?A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知集合和集合,则两个集合间的关系是A. B. C. D.M,P互不包含二、填空题:共4题每题5分共20分13.已知函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,则实数的取值范围是A. C.14.设集合M={x|0≤x≤2},N={y|0≤y≤2}.给出下列四个图,其中能构成从集合M到集合N 的函数关系的是.?15.给出下列二次函数,将其图象画在同一平面直角坐标系中,则图象的开口按从小到大的顺序排列为.?(1)f(x)=-x2;(2)f(x)=(x+5)2;(3)f(x)=x2-6;(4)f(x)=-5(x-8)2+9.16.若函数的图像关于y轴对称,则的单调减区间为.三、解答题:共6题共70分17.(本题10分)如果对函数f(x)定义域内任意的x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,就称函数f(x)是定义域上的“平缓函数”.(1)判断函数f(x)=x2-x,x∈[0,1]是否为“平缓函数”;(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1),证明:对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.(注:可参考绝对值的基本性质①|ab|≤|a||b|,②|a+b|≤|a|+|b|)18.(本题12分)记函数的定义域为集合,集合.(1)求和;(2)若,求实数的取值范围. 19.(本题12分)设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:(1)S∩T;(2).20.(本题12分)已知函数f(x)=.(1)用定义证明f(x)在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.21.(本题12分)定义在非零实数集上的函数对任意非零实数满足:,且当时.(Ⅰ)求及的值;(Ⅱ)求证:是偶函数;(Ⅲ)解不等式:.22.(本题12分)(1)证明:函数f(x)=在(-∞,0)上是减函数;(2)证明:函数f(x)=x3+x在R上是增函数.参考答案1.B【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在y轴右侧图象在x 轴上方,在y轴左侧的图象在x轴的下方,而函数在x>0时图象保持不变,因此排除C,D,对于选项A,由于在时偶函数,故在y轴左侧的图象与y轴右侧的图象关于y轴对称,故选B.【备注】无2.C【解析】本题主要考查相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不同,所以这两个函数不是相等函数;B.这两个函数的定义域不同,所以这两个函数不是相等函数;C.这两个函数的定义域、值域与对应关系均相同,所以这两个函数为相等函数;D.这两个函数的定义域不同,所以这两个函数不是相等函数.【备注】无3.D【解析】本题主要考查新定义问题、函数的性质及其综合应用.由题意,令x=0,由=可得由可得令则=同理=====令则==同理====.非减函数的性质:当时,都有.因为所以所以=. 【备注】无4.A【解析】本题主要考查分段函数的最值问题.由题意,函数的图象如图所示:红色图象即为所求解的函数的图象,可知最小值为0.【备注】无5.B【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线x=2,∴f(x)在[1,2]上单调递减,在(2,5)上单调递增,∴f(x)的值域是[2,11).故选B.【备注】无6.C【解析】本题主要考查二次函数.依题意,函数在区间上单调,则函数的对称轴或,得或,故选C.【备注】无7.C【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知f(x)=2x*2-x=,结合图象知其值域为(0,1].故选C.【备注】无8.A【解析】由题意知E={x|2-x≥0}={x|x≤2},F?E,观察选项知应选A.【备注】无9.A【解析】偶函数f(x)在区间[0,+∞)上单调递增,所以函数f(x)在区间(-∞,0]上单调递减.由于f(x)是偶函数,所以f(-x)=f(x),则f(-)=f().由f(2x-1)<f()得①或②,解①得≤x<,解②得<x<.综上可得<x<,故x的取值范围是(,).【备注】无10.C【解析】本题主要考查二次函数.依题意,根据二次函数得性质,函数的开口向下,对称轴为,故炮弹在发射后最高,故选C.【备注】无11.B【解析】本题主要考查函数的解析式与求值.因为,设,则,所以,因为,所以,解得,故选B.【备注】无12.D【解析】无【备注】无13.D【解析】本题主要考查二次函数的图像与性质,考查了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,所以函数f(x)=a﹣x2(1≤x≤2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为D. 【备注】无14.④【解析】图①中函数的定义域是[0,1];图②中函数的定义域是[-1,2];图③中对任意的x∈(0,2],其对应的y值不唯一.故①②③均不能构成从集合M到集合N的函数,图④满足题意.【备注】无15.(4)(3)(2)(1)【解析】因为二次函数y=ax2+bx+c(a≠0)的图象在同一平面直角坐标系中|a|越小,图象开口越大,又|-|<||<||<|-5|,所以图象开口按从小到大的顺序排列为(4)(3)(2)(1).【备注】无16.【解析】本题考查函数的图象.若函数的图像关于y轴对称,则a=0,,所以f(x)的单调减区间为.【备注】无17.(1)对任意的x1,x2∈[0,1],有-1≤x1+x2-1≤1,即|x1+x2-1|≤1.从而|f(x1)-f(x2)|=|(-x1)-(-x2)|=|x1-x2||x1+x2-1|≤|x1-x2|,所以函数f(x)=x2-x,x∈[0,1]是“平缓函数”.(2)当|x1-x2|<时,由已知,得|f(x1)-f(x2)|≤|x1-x2|<;当|x1-x2|≥时,因为x1,x2∈[0,1],不妨设0≤x1<x2≤1,所以x2-x1≥.因为f(0)=f(1),所以|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)|≤|f(x1)-f(0)|+|f(1)-f(x2)|≤|x1-0|+|1-x2|=x1-x2+1≤-+1=.所以对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.【解析】无【备注】无18.由条件可得{|2}A x x =>, (1)={|23}x x <≤,{|3}A B x x ⋃=≥-;(2){|}C x x p =>,由可得2p ≥.【解析】本题考查函数的定义域与集合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行分析即可得出结论.【备注】与不等式有关的集合运算或集合之间的关系问题通常可以借助数轴进行求解. 19.U ={1,2,3,4,5,6,7,8} (1)S ∩T ={3} (2)S ∪T ={1,3,5,6}={2,4,7,8}【解析】本题主要考查集合的基本运算.(1)由交集的定义求解;(2)由并集与补集的定义求解. 【备注】无20.(1)任取x 1,x 2∈[1,+∞),且x 1<x 2,则 f(x 1)-f(x 2)=-=.∵1≤x 1<x 2,∴x 1-x 2<0,(x 1+1)(x 2+1)>0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数f(x)在区间[1,+∞)上是增函数. (2)由(1)知函数f(x)在区间[2,4]上是增函数, ∴f(x)max =f(4)==, f(x)min =f(2)==.【解析】无 【备注】无 21.(1)f (1)=0,f (-1)=0;(2)f (-x )=f (x )+f (-1)=f (x )∴f (-x )=f (x ),所以函数是偶函数;(3)据题意可知,f (2)+f (x 2-1/2)=f (2x 2-1)≤0∴-1≤2x 2-1<0或0<2x 2-1≤1∴0≤x 2<1/2或<x 2≤1,所以不等式的解集为【解析】本题主要考查特殊函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令x =1与x=—1即可求出结果;(2)利用函数奇偶性的定义即可证明;(3)根据题意与f (1)=0,f (-1)=0,原不等式可化为-1≤2x 2-1<0或0<2x 2-1≤1然后求解即可. 【备注】无22.(1)设x 1,x 2是(-∞,0)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=-.因为x1,x2∈(-∞,0),所以x1x2>0,又因为x1<x2,所以x2-x1>0,则>0.于是f(x1)-f(x2)>0,即f(x1)>f(x2).因此函数f(x)=在(-∞,0)上是减函数.(2)设x1,x2是R上的任意两个实数,且x1<x2,则x2-x1>0,而f(x2)-f(x1)=(+x2)-(+x1)=(x2-x1)(+x2x1+)+(x2-x1)=(x2-x1)(+x2x1++1)=(x2-x1)[(x2+)2++1].因为(x2+)2++1>0,x2-x1>0,所以f(x2)-f(x1)>0,即f(x2)>f(x1).因此函数f(x)=x3+x在R上是增函数.【解析】用定义证明函数f(x)在给定区间D上的单调性的一般步骤:①取值——任取x1,x2∈D,且x1<x2;②作差——f(x1)-f(x2);③变形——通过因式分解、配方、通分、有理化等方法,向有利于判断差值的符号的方向变形;④定号——判断f(x1)-f(x2)的正负;⑤下结论——指出函数f(x)在给定区间D上的单调性.【备注】无。
新课标人教 A 版会集单元测试题一、选择题:〔每题〔时间4 分,共计80 分钟,总分值40 分〕100 分〕1、若是会集U1,2,3,4,5,6,7,8, A2,5,8, B1,3,5,7,那么 (U A)B等于〔〕(A)5(B)1,3,4,5,6,7,8(C)2,8(D)1,3,72、若是 U是全集, M,P,S 是U 的三个子集,那么阴影局部所表示的会集为〔〕〔A〕〔 M∩P〕∩ S;〔B〕〔 M∩P〕∪ S;〔C〕〔M∩P〕∩〔 C U S〕〔D〕〔M∩P〕∪〔 C U S〕3、会集M {( x, y) | x y2},N{( x, y) | x y 4} ,那么会集M I N 为〔〕A、x3, y1B、(3,1)C、 {3,1}D、 {(3,1)}4.A{4, 2a1, a2} ,B= { a5,1a,9},且 A B {9} ,那么 a 的值是()A. a 3B.a3C.a3D. a 5或 a35.假设会集A{ x kx24x 40, x R} 中只有一个元素 , 那么实数 k 的值为 ()B. 1C. 0或 1D.k16.会集 A{ y y x24, x N , y N} 的真子集的个数为()A. 9B. 8C. 7D. 67.符号 { a}P { a,b,c} 的会集P的个数是()A. 2B. 3C. 4D. 58. M{ y y x21, x R}, P{ x x a 1, a R} , 那么会集 M与 P 的关系是()A. M=PB.P R C .M P D.M P9.设 U为全集 , 会集 A、B、C满足条件 A B A C ,那么以下各式中必然成立的是(〕A.A B A CB.B CC.A(C U B)A(C U C)D.(C U A) B (C U A) C10.A{ x x 2x60}, B{ x mx10} ,且A B A ,那么的取值范围是( )mA.{ 1,1} B.{0, 1 ,1} C.{0,1,1} D.{1,1}323232 3 2二、选择题:〔每题 4 分,总分值 20 分〕11.设会集 M { 小于5的质数 } ,那么M的真子集的个数为.12. 设U{1,2,3,4,5,6,7,8} , A {3,4,5}, B {4,7,8}. 那么: (C U A) (C U B) ,(C U A)(C U B) .13 . 某班有学生 55 人, 其中音乐爱好者34 人 , 体育爱好者 43 人, 还有 4 人既不爱好体育也不爱好音乐 , 那么班级中即爱好体育又爱好音乐的有人.14.A{ x x1或x 5}, B{ x a x a4} ,假设A B, 那么实数a 的取值范围是.15.会集P{ x x m23m1}, T{ x x n23n1} , 有以下判断:① P T { y y 5}②P4T { y y5}③P4T④ P T其中正确的选项是 .三、解答题16. 〔此题总分值 10 分〕含有三个元素的会集 { a, b,1}{ a2 , a b,0}, 求a2007b 2021 a的值 .17.〔此题总分值 10 分〕假设会集S {小于10的正整数},A S,B S ,且 (C S A) B {1,9}, A B { 2}, (C S A) (C S B) {4,6,8} ,求A和B。
人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2D .42.设函数f (x )=,则f (f(31)的值为( )A.128127B .-128127C.81D.1613.若函数y =f (x )的定义域是[0,2],则函数g (x )=x -1f(2x的定义域是( ) A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)4.已知f (x )=(m -1)x 2+3mx +3为偶函数,则f (x )在区间(-4,2)上为( ) A .增函数B .减函数C .先递增再递减D .先递减再递增5.三个数a =0.32,b =log 20.3,c =20.3之间的大小关系是( ) A .a <c <b B .a <b <c C .b <a <cD .b <c <a6.若函数f (x )唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(0,1)或(1,2)内有零点C .函数f (x )在区间[2,16)内无零点D .函数f (x )在区间(1,16)内无零点7.已知0<a <1,则方程a |x |=|log a x |的实根个数是( ) A .2 B .3C .4D .与a 值有关8.函数y =1+ln(x -1)(x >1)的反函数是( ) A .y =e x +1-1(x >0)B .y =e x -1+1(x >0)C .y =e x +1-1(x ∈R )D .y =e x -1+1(x ∈R )9.函数f (x )=x 2-2ax +1有两个零点,且分别在(0,1)与(1,2)内,则实数a 的取值范围是( )A .-1<a <1B .a <-1或a >1C .1<a <45D .-45<a <-110.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数y =x 2,x ∈[1,2]与函数y =x 2,x ∈[-2,-1]即为“同族函数”.请你找出下面函数解析式中能够被用来构造“同族函数”的是( )A .y =xB .y =|x -3|C .y =2xD .y =11.下列4个函数中: ①y =2008x -1;②y =log a 2 009+x 2 009-x(a >0且a ≠1); ③y =x +1x2 009+x2 008;④y =x (a -x -11+21)(a >0且a ≠1). 其中既不是奇函数,又不是偶函数的是( ) A .①B .②③C .①③D .①④12.设函数的集合P ={f (x )=log 2(x +a )+b |a =-21,0,21,1;b =-1,0,1},平面上点的集合Q ={(x ,y )|x =-21,0,21,1;y =-1,0,1},则在同一直角坐标系中,P 中函数f (x )的图象恰好经过Q 中两个点的函数的个数是( )A .4B .6C .8D .10第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知函数f (x ),g (x )分别由下表给出:x 1 2 3 f (x )131x 1 2 3 g (x )321则不等式f [g (x )]>g [f (x )]的解为________. 14.已知log a 21>0,若≤a 1,则实数x 的取值范围为______________.15.直线y =1与曲线y =x 2-+a 有四个交点,则a 的取值范围为________________.16.已知下表中的对数值有且只有一个是错误的.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设全集为R,A={x|3≤x<7},B={x|2<x<10}.求:A∪B,∁R(A∩B),(∁R A)∩B.18.(本小题满分12分)(1)已知全集U=R,集合M={x|≤0},N={x|x2=x+12},求(∁U M)∩N;(2)已知全集U=R,集合A={x|x<-1或x>1},B={x|-1≤x<0},求A∪(∁U B).19.(本小题满分12分)已知集合A={x|-2<x<-1或x>1},B={x|a≤x<b},A∪B={x|x>-2},A ∩B={x|1<x<3},求实数a,b的值.20.(本小题满分12分)已知集合A={x|x≤a+3},B={x|x<-1或x>5}.(1)若a=-2,求A∩∁R B;(2)若A⊆B,求a的取值范围.21.(本小题满分12分)设集合A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=51,判断集合A与B的关系;(2)若A∩B=B,求实数a组成的集合C.22.(本小题满分12分)已知集合A={x|(a-1)x2+3x-2=0},B={x|x2-3x+2=0}.(1)若A≠∅,求实数a的取值范围;(2)若A∩B=A,求实数a的取值范围.参考答案与解析1.D [∵A ∪B ={0,1,2,a ,a 2}, 又∵A ∪B ={0,1,2,4,16}, ∴a2=16,a =4,即a =4. 否则有a2=4a =16矛盾.]2.A [∵f (3)=32+3×3-2=16, ∴f(31=161,∴f (f(31)=f (161)=1-2×(161)2=1-2562=128127.] 3.B [由题意得:x ≠10≤2x ≤2,∴0≤x <1.] 4.C [∵f (x )=(m -1)x 2+3mx +3是偶函数,∴m =0,f (x )=-x 2+3,函数图象是开口向下的抛物线,顶点坐标为(0,3),f (x )在(-4,2)上先增后减.]5.C [20.3>20=1=0.30>0.32>0=log 21>log 20.3.]6.C [函数f (x )唯一的一个零点在区间(0,2)内,故函数f (x )在区间[2,16)内无零点.] 7.A [分别画出函数y =a |x |与y =|log a x |的图象,通过数形结合法,可知交点个数为2.]8.D [∵函数y =1+ln(x -1)(x >1),∴ln(x -1)=y -1,x -1=e y -1,y =e x -1+1(x ∈R ).] 9.C [∵f (x )=x 2-2ax +1, ∴f (x )的图象是开口向上的抛物线.由题意得:f(2>0.f(1<0,即4-4a +1>0,1-2a +1<0,解得1<a <45.] 10.B11.C [其中①不过原点,则不可能为奇函数,而且也不可能为偶函数;③中定义域不关于原点对称,则既不是奇函数,又不是偶函数.] 12.B [当a =-21,f (x )=log 2(x -21)+b , ∵x >21,∴此时至多经过Q 中的一个点;当a =0时,f (x )=log 2x 经过(21,-1),(1,0), f (x )=log 2x +1经过(21,0),(1,1);当a =1时,f (x )=log 2(x +1)+1经过(-21,0),(0,1), f (x )=log 2(x +1)-1经过(0,-1),(1,0); 当a =21时,f (x )=log 2(x +21)经过(0,-1),(21,0) f (x )=log 2(x +21)+1经过(0,0),(21,1).]13.x =2解析 ∵f (x )、g (x )的定义域都是{1,2,3},∴当x =1时,f [g (1)]=f (3)=1,g [f (1)]=g (1)=3,不等式不成立; 当x =2时,f [g (2)]=f (2)=3,g [f (2)]=g (3)=1,此时不等式成立; 当x =3时,f [g (3)]=f (1)=1,g [f (3)]=g (1)=3, 此时,不等式不成立. 因此不等式的解为x =2. 14.(-∞,-3]∪[1,+∞) 解析 由log a 21>0得0<a <1. 由≤a 1得≤a -1,∴x 2+2x -4≥-1,解得x ≤-3或x ≥1. 15.1<a <45解析 y =x2+x +a ,x <0,x2-x +a ,x ≥0,作出图象,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -41,要使y =1与其有四个交点,只需a -41<1<a ,∴1<a <45. 16.lg1.5解析 ∵lg9=2lg3,适合,故二者不可能错误,同理:lg8=3lg2=3(1-lg5),∴lg8,lg5正确.lg6=lg2+lg3=(1-lg5)+lg3=1-(a +c )+(2a -b )=1+a -b -c ,故lg6也正确.17.解:∵全集为R ,A ={x |3≤x <7},B ={x |2<x <10}, ∴A ∪B ={x |2<x <10},A ∩B ={x |3≤x <7}, ∴∁R (A ∩B )={x |x ≥7或x <3}. ∵∁R A ={x |x ≥7或x <3},∴(∁R A )∩B ={x |2<x <3或7≤x <10}.18.解:(1)M ={x |x +3=0}={-3},N ={x |x 2=x +12}={-3,4}, ∴(∁U M )∩N ={4}.(2)∵A ={x |x <-1或x >1},B ={x |-1≤x <0}, ∴∁U B ={x |x <-1或x ≥0}. ∴A ∪(∁U B )={x |x <-1或x ≥0}. 19.解:∵A ∩B ={x |1<x <3},∴b =3,又A∪B={x|x>-2},∴-2<a≤-1,又A∩B={x|1<x<3},∴-1≤a<1,∴a=-1.20.解:(1)当a=-2时,集合A={x|x≤1},∁R B={x|-1≤x≤5},∴A∩∁R B={x|-1≤x≤1}.(2)∵A={x|x≤a+3},B={x|x<-1或x>5},A⊆B,∴a+3<-1,∴a<-4.解题技巧:本题主要考查了描述法表示的集合的运算,集合间的关系,解决本题的关键是借助于数轴求出符合题意的值.在解决(2)时,特别注意参数a是否取到不等式的端点值.21.解:A={x|x2-8x+15=0}={3,5}.(1)若a=51,则B={5},所以B A.(2)若A∩B=B,则B⊆A.当a=0时,B=∅,满足B⊆A;当a≠0时,B=a1,因为B⊆A,所以a1=3或a1=5,即a=31或a=51;综上所述,实数a组成的集合C为51.22.解:(1)①当a=1时,A=32≠∅;②当a≠1时,Δ≥0,即a≥-81且a≠1,综上,a≥-81;(2)∵B={1,2},A∩B=A,∴A=∅或{1}或{2}或{1,2}.①A=∅,Δ<0,即a<-81;②当A={1}或{2}时,Δ=0,即a=0且a=-81,不存在这样的实数;③当A={1,2},Δ>0,即a>-81且a≠1,解得a=0.综上,a<-81或a=0.11。
高中数学必修一第一章《集合与函数概念》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,0,1A =-,{}2,0,2B =-,则集合A B =( )A .0B .∅C .{}0D .{}12.设全集U =R ,集合22{|}M y y x x U ∈==+,,集合3{|}N y y x x U ∈==,,则M N 等于( )A .{1,3,2,6}B .{(1,3),(2,6)}C .MD .{3,6}3.如图1所示,阴影部分表示的集合是( ) A .()UB AB .()UA BC .()UABD .()UAB图14.设全集U ={x |0<x <10,x ∈Z },A ,B 是U 的两个真子集,()(){}1,9UUA B =,A ∩B ={2},(){}4,6,8UA B =,则( )A .5A ∈,且5∉B B .5∉A ,且5∉BC .5A ∈,且5B ∈D .5∉A ,且5B ∈5.下列各图中,可表示函数y =f (x )的图象的只可能是( )6.函数()132f x x x =+++的定义域是( ) A .[)3,-+∞B .[)3,2--C .[)()3,22,---+∞D .()2,-+∞7.数()f x ,()g x 由下列表格给出,则()3f g =⎡⎤⎣⎦( )A .4B .3C .2D .18.已知函数()2,0,0x x f x x x ≥⎧⎪⎨<⎪⎩=,则2[()]f f -的值是( )A .2B .2-C .4D .4-9.函数223y x x -=+,12x -≤≤的值域是( ) A .RB .[3,6]C .[2,6]D .[2,)+∞10.已知函数f (x )()()00,∞∞-,+上的奇函数,且当x <0时,函数的部分图象如图4所示,则不等式xf (x )<0的解集是( )图4A .()2,112(),--B .()2,10,)(2,(1)--+∞C .()(),21,01(,2)--∞-D .(),21,00,12,()()()∞-+∞--11.定义在R 上的偶函数f (x )在[0,7]上是增函数,在[7,)+∞上是减函数,f (7)=6,则f (x )( ) A .在[]7,0-上是增函数,且最大值是6 B .在[]7,0-上是减函数,且最大值是6 C .在[]7,0-上是增函数,且最小值是6 D .在[]7,0-上是减函数,且最小值是612.定义在R 上的偶函数f (x )满足:对任意12(,]0x x -∈∞, (x 1≠x 2),都有2121>0x x f x f x -()-(),则( ) A .5()f -<f (4)<f (6) B .f (4)<5()f - <f (6) C .f (6)<5()f -<f (4)D .f (6)<f (4)<5()f -二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.设P 和Q 是两个集合,定义集合{|}P Q x x P x Q -=∈∉,且,若P ={1,2,3,4},Q=x ⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭R ,则P Q -=________.14.函数y =的单调递减区间是________.15.若函数()2(12)f x kx k x -=++是偶函数,则f (x )的递减区间是________.16.设函数()1,0221,02x x x x f x x ⎧-<<⎪=⎨--≤≥⎪⎩或,则函数y =f (x ),y =12的图象的交点个数是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R . (1)求A ∪B ,()UA B ;(2)若A C ≠∅,求a 的取值范围.18.(12分)设A ={x |x 2+2(a +1)x +a 2-1=0},{|(02)14B x x x x ⎛⎫ ⎪⎝-⎭=+=,x ∈Z}.若A ∩B =A ,求a 的取值范围.19.(12分)已知函数f (x )=-2x +m ,其中m 为常数. (1)求证:函数f (x )在R 上是减函数; (2)当函数f (x )是奇函数时,求实数m 的值.20.(12分)某公司生产的水笔上年度销售单价为08.元,年销售量为1亿支.本年度计划将销售单价调至055075.~.元(含端点值),经调查,若销售单价调至x 元,则本年度新增销售量y (亿支)与04x -.成反比,且当065x =.时,08y =.. (1)求y 与x 的函数关系式;(2)若每支水笔的成本价为03.元,则水笔销售单价调至多少时,本年度该公司的收益比上年度增加20%?21.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=2, (1)求函数f (x )和g (x );(2)判断函数f (x )+g (x )的奇偶性.(3)求函数f (x )+g (x )在(上的最小值.22.(12分)函数f (x )=21ax bx ++是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求f (x )的解析式;(2)证明f (x )在()1,1-上为增函数; (3)解不等式f (t -1)+f (t )<0.答 案一、选择题 1.【答案】C【解析】因为集合{}1,0,1A =-,{}2,0,2B =-,所以{}0A B =,故选C .2.【答案】C【解析】,[)2M ∞=+,N =R ..故选C . 3.【答案】A【解析】因为阴影部分既在集合UB 中又在集合A 中,所以阴影部分为()UB A ,故选A .4.【答案】A【解析】可借助Venn 图(如图2)解决,数形结合.故选A .图25.【答案】A【解析】根据函数的概念知,只有“一对一”或“多对一”对应才能构成函数关系. 故选A . 6.【答案】C【解析】由题可得:30320x x x ⎧⎨≥≠⎩+⇒≥-+且2x ≠-,故选C . 7.【答案】A【解析】由表可知()32g =,()()324f g f ==⎡⎤⎣⎦,故选A . 8.【答案】C【解析】∵2x =-,而20-<,∴2()(224)f --==. 又4>0,∴()[()244]f f f -==.故选C . 9.【答案】C【解析】画出函数223y x x -=+,12x -≤≤的图象,如图3所示,观察函数的图象可得图象上所有点的纵坐标的取值范围是[2,6],所以值域是[2,6].故选C . 10.【答案】D【解析】xf (x )<0⇔x 与f (x )异号,由函数图象及奇偶性易得结论.故选D . 11.【答案】B【解析】∵f (x )是偶函数,∴f (x )的图象关于y 轴对称. ∴f (x )在[]7,0-上是减函数,且最大值为6.故选B . 12.【答案】C【解析】∵对任意12(,]0x x -∈∞,(x 1≠x 2),都有2121>0x x f x f x -()-(),∴对任意12(,]0x x -∈∞,,若x 1<x 2,总有f (x 1)<f (x 2), ∴f (x )在(]0-∞,上是增函数.∴()()()456f f f --->>. 又∵函数f (x )是偶函数,∴()()66f f -=,()()44f f -=, ∴f (6)<5()f -<f (4).故选C .二、填空题 13.【答案】{4}【解析】因为x Q ∉,所以x Q ∈R,又17Q=x|x<22⎧⎫≤⎨⎬⎩⎭, 故∁17|22Qx x x ⎧⎫=<≥⎨⎬⎩⎭R ,或,故P Q -={4}.14.【答案】(],3-∞-【解析】由2230x x +-≥,得x ≥1或3x ≤-, ∴函数减区间为(],3-∞-. 15.【答案】(]0-∞,【解析】∵f (x )是偶函数,∴()2212()(12)()f x kx k x kx k x f x -+=-+-==-+. ∴1k =.∴f (x )=x 2+2,其递减区间为(]0-∞,. 16.【答案】4【解析】函数y =f (x )的图象如图5所示, 则函数y =f (x )与y =12的图象的交点个数是4.图5三、解答题 17.【答案】(1){}|18AB x x =<≤,()UA B ={x |1<x <2};(2)a <8.【解析】(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}.UA ={x |x <2或x >8}.∴()UA B ={x |1<x <2}.(2)∵A C ≠∅,∴a <8. 18.【答案】1,{}1|a a a ≤-或=.【解析】由{|(02)14B x x x x ⎛⎫ ⎪⎝-⎭=+=,x ∈Z},得,0{}4B =-.由A ∩B =A ,得A ⊆B .于是,A 有四种可能, 即A ∅=,4{-}A =,A ={0},,{}40A -=. 以下对A 分类讨论:(1)若A ∅=,则Δ=4(a +1)2-4a 2+4=8a +8<0,解得a <-1; (2)若4{-}A =,则Δ=8a +8=0,解得a =-1. 此时x 2+2(a +1)x +a 2-1=0可化为x 2=0, 所以x =0,这与x =-4是矛盾的; (3)若A ={0},则由(2)可知,a =-1;(4)若A ={-4,0},则()288021410a a a ∆⎧=+>⎪-+=-⎨⎪-=⎩,解得a =1.综上可知,a 的取值范围1,{}1|a a a ≤-或=. 19.【答案】(1)见解析;(2)0.【解析】(1)证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=(-2x 1+m )-2()2x m -+=2(x 2-x 1), ∵x 1<x 2,∴x 2-x 1>0.∴f (x 1)>f (x 2) ∴函数f (x )在R 上是减函数. (2)∵函数f (x )是奇函数, ∴对任意x ∈R ,有f (-x )=-f (x ). ∴2x +m =-(-2x +m ).∴m =0. 20.【答案】(1)y =152x -00)555(7x ≤≤..;(2)06.元.【解析】(1)设y =0.4kx -,由065x =.,08y =.,得02k =., 所以y =152x -00)555(7x ≤≤... (2)依题意,1()1031()(0)8031202%5x x ⎛⎫+⋅-⨯-⨯ ⎪⎝⎭--.=.., 解得x =06.或x =05.(舍去),所以水笔销售单价应调至06.元.21.【答案】(1)f (x )=x ,g (x )=2x;(2)奇函数;(3) 【解析】(1)设()1f x k x =,g (x )=2k x,其中k 1k 2≠0. ∵f (1)=1,g (1)=2,∴111k ⨯=,221k =. ∴k 1=1,k 2=2.∴f (x )=x ,g (x )=2x. (2)设h (x )=f (x )+g (x ),则()2h x x x+=, ∴函数h (x )的定义域是()()0,,0∞-∞+.∵h (-x )=-x +2x -=-2x x ⎛⎫+ ⎪⎝⎭=-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数. (3)由(2)知()2h x x x+=,设x 1,x 2是(上的任意两个实数,且x 1<x 2,则h (x 1)-h (x 2)=112x x ⎛⎫+ ⎪⎝⎭-222x x ⎛⎫+ ⎪⎝⎭=(x 1-x 2)+1222x x ⎛⎫- ⎪⎝⎭=(x 1-x 2)1221x x ⎛⎫- ⎪⎝⎭=()()1212122x x x x x x --, ∵x 1,x 2∈(,且x 1<x 2, ∴x 1-x 2<0,0<x 1x 2<2.∴x 1x 2-2<0,(x 1-x 2)(x 1x 2-2)>0. ∴h (x 1)>h (x 2).∴函数h (x )在(上是减函数,函数h (x )在(上的最小值是h=即函数f (x )+g (x )在(上的最小值是22.【答案】(1)f (x )=21xx+;(2)见解析;(3)1t|0<t<2⎧⎫⎨⎬⎩⎭. 【解析】(1)由题意得001225f f ()=⎧⎪⎨⎛⎫= ⎪⎪⎝⎭⎩,解得10a b =⎧⎨=⎩,所以f (x )=21x x+. (2)证明:任取两数x 1,x 2,且-1<x 1<x 2<1,则12121212222212121()()=1111x x x x x x f x f x x x x x (-)(-)--=++(+)(+). 因为-1<x 1<x 2<1,所以x 1-x 2<0,x 1x 2<1,故1-x 1x 2>0, 所以f (x 1)-f (x 2)<0,故f (x )在()1,1-上是增函数.(3)因为f (x )是奇函数,所以由f (t -1)+f (t )<0,得f (t -1)<-f (t )=f (-t ). 由(2)知,f (x )在()1,1-上是增函数, 所以-1<t -1<-t <1,解得0<t <12, 所以原不等式的解集为1t|0<t<2⎧⎫⎨⎬⎩⎭.单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{|20}A x x =-<,{}1,2,3B =,则A B =( )A .{}1,2,3B .{}1C .{}3D .∅2.设集合{}=1,2M ,则满足条件{}=1,2,3,4M N 的集合N 的个数是( )A .1B .3C .2D .43.下列函数中,在()0,2上为增函数的是( ) A .32y x =-+B .3y x=C .245y x x -=+D .23810y x x +=-4.若奇函数()f x 在[]3,7上是增函数,且最小值是1,则它在[7,3]--上是( ) A .增函数且最小值是1- B .增函数且最大值是1- C .减函数且最大值是1-D .减函数且最小值是1-5.已知集合{|P x y =,集合{|Q y y =,则P 与Q 的关系是( ) A .P Q = B .P Q ⊆ C .P Q ⊇D .P Q =∅6.设()()()F x f x f x =+-,x ∈R ,若,2π⎡⎤-π-⎢⎥⎣⎦是函数F (x )的单调递增区间,则一定是()F x 单调递减区间的是( ) A .,02π⎡⎤-⎢⎥⎣⎦B .,2π⎡⎤π⎢⎥⎣⎦C .23π⎡⎤π,⎢⎥⎣⎦D .,223π⎡⎤π⎢⎥⎣⎦。
中江中学校集合与函数测试题
一、选择题
1.集合},{b a 的子集有 ( ) A .2个
B .3个
C .4个
D .5个
2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A B = ( ) A .(4,3)- B .(4,2]- C .(,2]-∞ D .(,3)-∞ 3.已知()5412-+=-x x x f ,则()x f 的表达式是( )
A .x x 62+
B .782++x x
C .322-+x x
D .1062-+x x 4.下列对应关系:( )
①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根 ②,,A R B R ==f :x x →的倒数 ③,,A R B R ==f :22x x →-
④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方
其中是A 到B 的映射的是
A .①③
B .②④
C .③④
D .②③
5.下列四个函数:①3y x =-;②21
1y x =+;③2210y x x =+-;④(0)
1
(0)
x x y x x
⎧-≤⎪=⎨-
>⎪⎩.
其中值域为R 的函数有 ( )
A .1个
B .2个
C .3个
D .4个
6. 已知函数212x y x
⎧+=⎨-⎩ (0)
(0)x x ≤>,使函数值为5的x 的值是( )
A .-2
B .2或52
-
C . 2或-2
D .2或-2或52
-
7.下列函数中,定义域为[0,∞)的函数是 ( ) A .x y =
B .2
2x y -= C .13+=x y D .2
)1(-=x y
8.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x f ( ) A . 0)0(=f 且)(x f 为奇函数 B .0)0(=f 且)(x f 为偶函数 C .)(x f 为增函数且为奇函数 D .)(x f 为增函数且为偶函数
9.下列图象中表示函数图象的是 ( )
10.若*,x R n N ∈∈,规定:(1)(2)(1)n x
x x x x n H
=++⋅⋅⋅⋅⋅+-,例如:
( ) 44
(4)(3)(2)(1)24H
-=-⋅-⋅-⋅-=,则52
()x f x x H
-=⋅的奇偶性为
A .是奇函数不是偶函数
B .是偶函数不是奇函数
C .既是奇函数又是偶函数
D .既不是奇函数又不是偶函数
11.已知函数()y f x =是R 上的偶函数,且在(-∞,0]上是减函数,若()(2)f a f ≥,则实数a 的取值范围是( )
A .a ≤2
B .a ≤-2或a ≥2
C .a ≥-2
D .-2≤a ≤2
12.已知奇函数()f x 的定义域为(,0)(0,-∞⋃+∞,且对任意正实数1212,()x x x x ≠,恒有1212
()()
0f x f x x x ->-,则一定有( )
A .(3)(5)f f >-
B .(3)(5)f f -<-
C .(5)(3)f f ->
D .(3)(5)f f ->-
13.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x 1<0,x 2>0,且12
x x <,则
1()
f x 和
2()
f x 的
大小关系是 .
14.定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在[0,+∞ )上图象与f (x )的图象重合.设a >b >0,给出下列不等式,其中成立的是
(1)f (b )-f (-a )>g (a )—g (-b ) (2)f (b )-f (-a )<g (a )-g (-b ) (3)f (a )-f (-b )>g (b )-g (-a ) (4)f (a )-f (-b )<g (b )-g (-a ) A .(1)(2) B .(2)(3) C .(1)(3)
D .(2)(4)
15.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = .
15.已知函数f(x)满足f(xy)=f(x)+f(y),且f(2)=p,f(3)=q ,那么f(36)= . 17.集合A ={x |x 2
-ax +a 2
-19=0},B ={x |x 2
-5x +6=0},
C ={x |x 2+2x -8=0}.
(Ⅰ)若A =B,求a 的值;(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值.
18.已知函数2()21f x x =-.
(Ⅰ)用定义证明()f x 是偶函数;
(Ⅱ)用定义证明()f x 在(,0]-∞上是减函数;
(Ⅲ)作出函数()f x 的图像,并写出函数()f x 当[1,2]x ∈-时的最大值与最小值. y
o
x
19.设函数1)(2++=bx ax x f (0≠a 、R b ∈),若0)1(=-f ,且对任意实数x (R x ∈)不等式)(x f ≥0
恒成立.
(Ⅰ)求实数a 、b 的值;
(Ⅱ)当∈x [-2,2]时,kx x f x g -=)()(是单调函数,求实数k 的取值范围.
20.设f(x)为定义在R+上的增函数,且f(xy)=f(x)+f(y),
(1)求证:f(0)=0,f(1)=0 (2)若有f(3)=1,且f(a) >f(a-1)+1,求a 的取值范围
21.定义在(-1,1)上的函数f (x )满足:对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (
1x y xy
++).
(1)求证:函数f (x )是奇函数;
(2)如果当x ∈(-1,0)时,有f (x )>0,求证:f (x )在(-1,1)上是单调递减函数;
22、设函数R x x f y ∈=)((且)0≠x 对任意非零实数21,x x 恒有)()()(2121x f x f x x f +=,且对任意
1>x ,0)(>x f 。
(1) 求)1(-f 及)1(f 的值; (2) 判断函数)(x f 的奇偶性; (3) 求不等式0)2
3()(≤-+x f x f 的解集。