当前位置:文档之家› buck直流变换器研究现状

buck直流变换器研究现状

buck直流变换器研究现状
buck直流变换器研究现状

buck直流变换器研究现状

(一)直流变换器

当今科学技术日益发展,直流电源系统或直流驱动设备发展迅速,在各种场合中的应用越来越普遍。对直流变换器的需求和对直流变换器的性能、参数指标要求都越来越高。直流变换器的发展趋势是从大体积向小体积发展,功率密度、转换效率是从低到高发展。效率的提高使发热减少,可靠性也就大大提高。

双向直流变换器的提出和应用,实现了上述要求。双向dc-dc变换器是通过对传统的单向直流变换器改进而成,将有源开关代替无源开关,双向基本变换单元代替单向基本变换单元,通常把二极管D和开关管Q反向并联,在把电容分别并联在输出输入两端即能实现。双向dc-dc变换器改进了单向dc-dc变换器,实现能量双向传输,在生产应用中减少了器件数目,降低了成本,提高了效率,提高了性能,是直流变换器发展历程中重要的改进。

上世纪八十年代,美国学者提出双向Buck/Boost直流变换器,主要用来应用于人造卫星。上世纪九十年代,香港大学陈清泉教授进行了电动车用双向dc-dc变换器的研究实验。同年,F.Caricchi教授提出了Buck-Boost级联型双向dc-dc变换器,克服了双向直流变换器因输出输入极性相反而不适合于电动车的问题。98年,美国弗吉尼亚大学的李择元教授开展用于燃料电池的双向dc-dc 变换器的研究和试验工作。综上可见,航天技术和电动车技术对直流变换器的发展应用产生了重要推动作用。

1994年Felix A.Himmelstoss 发表的文章阐述了不隔离双向直流变换器的拓扑结构。主要有已下几种: Buck、Boost、Buck-Boost、Cuk 、Sepic、Zeta 双向直流变换器。隔离式双向dc-dc变换器有:正激、反激、推免和桥式等拓扑结构。在所有结构中,Buck和Boost是最基本的电路。

直流变换器应用很普遍,主要有:远程及数据通讯,计算机,工业仪器仪表,电动汽车,太阳能电池阵,分布式电站,军事航天等方面。舰船上的直流配电区域,也需要用到直流变换器。

(二)三电平直流变换器

在高电压大容量场合,传统的两电平变换器只能采用GTO器件或IGBT串联的方式。但GTO具有很多缺点,如开关频率低,电路复杂,输出电流畸变严重。IGBT串联的方式,又降低了系统可靠性。

1977年,德国Holtz率先将三电平的思想提出,在传统两电平结构上,在每相桥臂进行箝位,构造了三电平变换拓扑。

1981年,日本Akira Nabae教授为了减小变换器输出谐波的影响,提出了中点箝位三电平逆变器的拓扑结构。他在Holtz 的基础上,提出了二极管中点箝位式,用箝位二极管代替辅助开关管,与上下桥臂开关管连接来辅助中点箝位。

为了减小电能变换装置对电网的污染,功率因数校正技术得到广泛研究和发展,这就要求提高后级直流变换器开关管的电压定额,未解决此问题,1992年Pinheiro提出了零电压开关三电平直流变换器(Zero-Voltage-switching three-level DC/DC converter,ZVS TL变换器),其开关应力为输入直流电压的一半,非常适用于输入高电压,输出大功率的场合。三电平电路的产生对高压大容量变换器的研究有着重大意义。

多电平变换器大致可分成输出串联式和电平箝位式两大类。

三电平变换器是在两电平变换器基础上推演变化来的,所以和两电平变换器一样,也分为Buck、Boost、Buck-Boost、Cuk 、Sepic、Zeta等不隔离TL变换器以及正激、反激、推免和桥式等隔离的TL变换器。

三电平变换器相对于两电平变换器有很多优点:单个器件承受电压应力小,系统主电路容易实现高电压容量;相同开关频率下,输出电压电流波形更接近正弦,谐波含量低。采用合适的算法,能保证系统更加安全地运行。

因其低开关管电压应力受到人们广泛兴趣,多电平逆变器成为研究热点,国内外学者尤其致力于三电平变换器的拓扑结构和控制方法,三电平变换器得到了长足的发展。部分三电平变换器在降低开关应力的同时,还大大减小了滤波电感和滤波电容,改善了变换器的动态特性。

三电平buck直流变换器虽然有上述多电平变换器的优点:开关电压应力小,滤波电感和滤波电容小。可是输入输出不共地,很多场合无法应用。这是由其拓扑结构决定的,因此要在拓扑结构上做些改进,于是有了改进型三电平buck直流变换器,即输入输出共地。

三电平Buck直流变换器是通过Q1、Q2两个开关管的交替工作来实现的。Q1、Q2各导通180°。占空比D>0.5时和<0.5时变换器的工作状态是不一样的。三电平Buck直流变换器是高阶、离散、非线性、时变的系统,开关数目多,工作状态复杂,传统方法对它的分析和建模研究是比较困难的。准确建模对其分析设计有重要作用,是直流变换器设计分析的基础工作。分析三电平buck直流变换器的稳定性和动态特性,目前有下列方法:状态空间平均法,李亚普诺夫稳定性法,以及积分滑模控制法,脉冲波形积分法等。

Buck变换器的设计与仿真.

S a b e r 仿真作业 Buck 变换器的设计与仿真 目录 1 Buck变换器技 术 .......................................................................................................................... - 2 - 1.1 Buck变换器基本工作原理 ................................................................................................. - 2 - 1.2 Buck变换器工作模态分 析 ................................................................................................. - 2 - 1.3 Buck变化器外特 性 ............................................................................................................ - 3 - 2 Buck变换器参数设 计 ................................................................................................................... - 5 - 2.1 Buck 变换器性能指标 . ........................................................................................................ - 5 - 2.2 Buck变换器主电路设 计 ..................................................................................................... - 5 - 2.2.1 占空比 D . ................................................................................................................. - 5 - 2.2.2 滤波电感 Lf.............................................................................................................. - 5 - 2.2.3 滤波电容 Cf ............................................................................................................. - 6 - 2.2.4 开关管 Q 的选取 ...................................................................................................... - 7 - 2.2.5 续流二极管 D 的选 取 .............................................................................................. - 7 - 3 Buck变换器开环仿 真 ................................................................................................................... - 7 - 3.1 Buck 变换器仿真参数及指标 . ............................................................................................. - 7 -

双路可调电源组装正负可调稳压电源

项目名称:正负可调稳压电源 一、实训任务描述 所有的电子设备都离不开可靠的电源为其供电,有电器的地方就有电源。大多数电子设备的直流供电方法都是将交流电源经过变压、整流、滤波、稳压等变换为所需的直流电压。完成这种变换任务的电源称为直流稳压电源。本项目就是要组装一个正负可调的稳压电源,为以后的实训项目做好准备。 二、任务目标 1、了解电源电路的工作原理。 2、学会直流稳压电源的调节方法 三、实训任务要求 1、通过对本制作的安装、焊接、调试,了解电子产品的内部构造,训练动手能力,掌握元器件的识别、简易测试以及整机调试工艺。 2、熟练使用各种焊接工具。 3、对照电路原理图,了解工作原理,并与实物对照。 4、认真仔细的装配与焊接,排除安装焊接过程中出现的故障。 四、实训任务资讯 1、原理介绍: 整体电路是一个全波整流电路,P1外接一个带中心抽头的双24V变压器,正电压由P1的1 脚输入,经D1进行半波整流,经C6进行滤波,然后经可调稳压模块LM317后得到功放电路需要的正电压值(+VCC最小为1.2V,最大为37V)和电流值(I+> 1.5A),再经过滤波后供给外电路。同理,负电压由P1的3脚输入,经整流、滤波、可调稳压模块LM337稳压后得到功放电路需要的负电压值(-VCC最小为-37V,最大为-1.2V )和电流值(- I >- 1.5A)。正、负电源从P2的1、3脚输出给外部电路供电。 电路原理图如下图所示: 2、元件 清如 图一一1原 理图

表——1: 表一一1正负可调电源元件清单 型号 封装 数量 0.1uF C1, C5, C6, C9, C10, C12 CC0.350/B 6 3300uF [C2, C3, C4, C7, C8, C11 CD0.750 6 400 7 D1, D2 DIODE1.016 2 4004 D3, D5 DI0DE0.850 2 TIP42C :Q1 TO-126 1 TIP41C Q2 TO-126 1 22 「R1, R5 AXIAL0.8 2W 2 240 :R2, R4 AXIAL0.4 2 10k RW1, RW2 VR5 2 LM317 卜1 TO-126 1 LM337 [U3 TO-126 1 散热片 长 15mn 宽 10mn 高 20mm 4 螺丝 4 PCB 板 1 3、元器件介绍: ① LM317 LM317作为输出电压可变的集成三端稳压块,是一种使用方便、应用广泛的集成稳压块。 它的输出电压范围在1.2伏到37伏之间,并能够提供超过1.5安的电流,即最小稳定工作电流。 由于317稳压块的生产厂家不同、型 号不同,其最小稳定工作电流也不相同,但一般不大于 5mA 当317稳压块的输出电流小于其最小稳定工作电流时,317稳压块就不能正常工作。当317稳压块 的输出电流大于其最小稳定工作电流时,317稳压块就可以输出稳定的直流电压。 如果用317稳压 块制作稳压电源时,没有注意 317稳压块的最小稳定工作电流,那么制作的稳压电源可能会出现 不正常现象:稳压电源输出的有载电压和空载电 压差别较大。 在应用中,为了电路的稳定工作,在一般情况下,还需要接二极管作为保护电路, 防止电路中 的电容放电时的高压把317烧坏。LM317外形如图一一2所示。 LM337 LM337 较常见的降 线性稳压器, LM337的输 压 范围是 -1.2V 至 -37V ,负载电 大为 的使 ② 是比 压型 出电 流最 图——2 LM317 图——3 LM337

BUCK变换器设计

BUCK变换器设计报告 一、BUCK变换器原理 降压变换器(Buck Converter)就是将直流输入电压变换成相对低的平均直流输出电压。它的特点是输出电压比输入的电压低,但输出电流比输入电流高。它主要用于直流稳压电源。 二、BUCK主电路参数计算及器件选择 1、BUCK变换器的设计方法 利用MATLAB和PSPICE对设计电路进行设计,根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真,再选取合适的闭环控制器进行闭环控制系统的设计,比较开环闭环仿真模型的超调量、调节时间等,选取性能优良的模型进行电路搭建。 2、主电路的设计指标 输入电压:标称直流48V,围43~53V 输出电压:直流24V,5A 输出电压纹波:100mV 电流纹波:0.25A

开关频率:250kHz 相位裕量:60° 幅值裕量:10dB 3、BUCK主电路 主电路的相关参数: 开关周期:T S= s f 1=4×10-6s 占空比:当输入电压为43V时,D max=0.55814 当输入电压为53V时,D min=0.45283 输出电压:V O=24V 输出电流I O=5A 纹波电流:Δi L=0.25A 纹波电压:ΔV L=100mV 电感量计算:由Δi L= 2L v- V o max - in DT S 得: L= L o max - in i 2v- V ΔD min T S= 25 .0 2 24 53 ? -×0.4528×4×10-6=1.05× 10-4H

电容量计算:由ΔV L =C i L 8ΔT S 得: C= L L V 8i ΔΔT S = 1 .0825 .0?×4×10-6=1.25×10-6F 而实际中,考虑到能量存储以及输入和负载变化的影响,C 的取值一般要大于该计算值,故取值为120μF 。 实际中,电解电容一般都具有等效串联电阻,因此在选择的过程中要注意此电阻的大小对系统性能的影响。通常钽电容的ESR 在100毫欧姆以下,而铝电解电容则高于这个数值,有些种类电容的ESR 甚至高达数欧。ESR 的高低与电容的容量、电压、频率和温度等多因素有关,一般对于等效串联电阻过大的电容,我们可以采用电容并联的方法减小此串联电阻。此处取R ESR =50m Ω。 4、主电路的开环传递函数 in ESR ESR V sC R R sL sC R R s d ) 1//() 1 //()(s V s G O vd +++==)()( ) (s )1(C 1)1(s G 2 vd C R R L R R L s V C sR ESR ESR in ESR +++++=)( in 0 2 V Q s s 11)(G 2 ωωω++ + = z vd s s ESR z CR 1 =ω

21.3双路直流稳压电源电路

实验报告 实验课程:EDA技术实验 学生姓名:某某某 学号:5801215xxx 专业班级:测控技术与仪器xxx班 指导老师:刘诚 3333年33月33日

直流稳压电源电路原理图设计 一.实验目的: (1)熟悉原理图编辑器 (2)掌握原理图的实体放置与编辑 (3)熟练完成双路直流稳压电源电路原理图设计。 二:实验内容: 绘制双路直流稳压电源电路原理图如图所示 图1:双路直流稳压电源电路原理图 三:实验步骤: (1)启动Protel99SE,新建文件“双路直流稳压电源电路原理图.sch”进入原理图编辑界面。 (2)设置图纸。将图号设置为A4即可。 (3)添加元件库。GB4728——85 (4)放置元件。根据双路直流稳压电源电路的组成情况,

在屏幕左方的元件管理器中取相应的元件,并放置于屏幕编辑区。(5)设置元件属性。在元件放置后,用鼠标双击相应元件,出现元件属性菜单,更改元件标号及名称。 (6)调整元件位置,注意布局合理。 (7)连线。根据电路原理,在元件引脚之间连线。注意连线平直。(8)放置节点。一般情况下,“T”字连接处的节点是在连线时由系统自动放置的,而所有“十”字连接处的节点必须手动放置。(9)放置输入输出点.电源.地.,均使用Power Objects工具菜单即可画出。 (10)放置注释文字。 (11)进行电路的修饰及整理。在电路绘制基本完成后,还需要 进行相关整理,使其更加规范整洁。 (12)保存文件。 四:实验所绘原理图:

五:实验总结及心得: 通过这次的实验,也发现了自己添加元器件时,添加错了一个器件选型,也就是mc7915电源芯片,这个芯片的封装引脚分布没搞清楚。这跟78xx型的电源芯片有所区别。

Buck变换器工作原理介绍

Buck 变换器工作原理介绍 2.2.1 Buck 变换器的基本工作原理 Buck 变换器又称为降压变换器,串联稳压开关电源和三端开关型降压稳压电源。其基本的原理结构图如图2.2所示。 G a b c WM V G d 图2.2 Buck 变换器的基本原理图 由上图可知,Buck 变换器主要包括:开关元件M1,二极管D1,电感L1,电容C1和反馈环路。而一般的反馈环路由四部分组成:采样网络,误差放大器(Error Amplifier ,E/A ),脉宽调制器(Pulse Width Modulation ,PWM )和驱动电路。 为了便于对Buck 变换器基本工作原理的分析,我们首先作以下几点合理的假设[1]: a 、开关元件M1和二极管D1都是理想元件。它们可以快速的导通和关断,且导通时压降为零,关断时漏电流为零; b 、电容和电感同样是理想元件。电感工作在线性区而未饱和时,寄生电阻等于零。电容的等效串联电阻(Equivalent Series Resistance ,ESR )和等效串联电感(Equivalent Series inductance ,ESL )等于零; c 、输出电压中的纹波电压和输出电压相比非常小,可以忽略不计。 d 、采样网络R1和R2的阻抗很大,从而使得流经它们的电流可以忽略不计。 在以上假设的基础上,下面我们对Buck 变换器的基本原理进行分析。 如图2.2所示,当开关元件M1导通时,电压V1与输出电压Vdc 相等,晶体管D1处于反向截至状态,电流01=D I 。电流11L M I I =流经电感L1,电流线性增加。经过电容C1滤波后,产生输出电流O I 和输出电压O V 。采样网络R1和R2对输出电压O V 进行采样得到电压信号S V ,并与参考电压ref V 比较放大得到信号。

BUCK变换器设计毕业设计

课程名称:电力电子技术 题目:BUCK变换器设计

9

目录 第一章概述 (5) 1.1 本课题在国内外的发展现状与趋势 (5) 第二章Buck变换器设计总思路 (6) 2.1 电路的总设计思路 (6) 2.2 电路设计总框图 (6) 2.3 总电路图 (7) 第三章BUCK主电路设计 (8) 3.1 Buck变换器主电路基本工作原理 (8) 3.2 主电路保护(过电压保护) (9) 3.3 Buck变换器工作模态分析 (10) 3.4 Buck变换器元件参数 (12) 3.4.1 占空比D (12) 3.4.2 滤波电容C f (13) 3.5 Buck变换器仿真电路及结果 (14) 第四章控制和驱动电路模块 (15) 4.1 SG3525A脉宽调制器控制电路 (15) 4.1.1.SG3525简介 (15) 4.1.2.SG3525内部结构和工作特性 (15) 4.2 SG3525构成的控制电路单元电路图 (18) 4.3 驱动电路设计 (18) 第五章课程设计总结 (19)

第六章附录 (20) 第七章参考文献 (21) 第一章概述 1.1 本课题在国内外的发展现状与趋势 从八十年代末起,工程师们为了缩小DC/DC变换器的体积,提高功率密度,首先从大幅度提高开关电源的工作频率做起,但这种努力结果是大幅度缩小了体积,却降低了效率。发热增多,体积缩小,难过高温关。因为当时MOSFET的开关速度还不够快,大幅提高频率使MOSFET的开关损耗驱动损耗大幅度增加。工程师们开始研究各种避开开关损耗的软开关技术。虽然技术模式百花齐放,然而从工程实用角度仅有两项是开发成功且一直延续到现在。一项是VICOR公司的有源箝位ZVS软开关技术;另一项就是九十年代初诞生的全桥移相ZVS软开关技术。 有源箝位技术历经三代,且都申报了专利。第一代系美国VICOR公司的有源箝位ZVS技术,其专利已经于2002年2月到期。VICOR公司利用该技术,配合磁元件,将DC/DC的工作频率提高到1MHZ,功率密度接近200W/in3,然而其转换效率却始终没有超过90%,主要原因在于MOSFET的损耗不仅有开关损耗,还有导通损耗和驱动损耗。特别是驱动损耗随工作频率的上升也大幅度增加,而且因1MHZ频率之下不易采用同步整流技术,其效率是无法再提高的。因此,其转换效率始终没有突破90%大关。 为了降低第一代有源箝位技术的成本,IPD公司申报了第二代有源箝位技术专利。它采用P沟MOSFET在变压器二次侧用于 forward电路拓朴的有源箝位。这使产品成本减低很多。但这种方法形成的MOSFET的零电压开关(ZVS)边界条件较窄,在全工作条件范围内

双路可调直流稳压电源

基础电源电路设计--双路输出可调直流稳压电源的设计 工作原理 本直流电源由电源、滤波、保护、稳压等四个基本模块组成,如图1 框图所示,其电路原理图如图2 所示。 图1 直流电源模块方框图 1.电源变压器采用降压变压器,将电网交流电压220V 变换成需要的交流电压。此交流电压经过整流后,可获得电子设备所需要的直流电压。 2.整流电路利用单相桥式整流电路,把50Hz 的交流电变换为方向不变但大小仍有脉动的直流电。其优点是电压较高、纹波电压较小,变压器的利用率高。设计采用IN4007二极管组成整流电路,也可以采用桥堆RS808 等做全桥整流,最大电流可达8A,配合本设计的大滤波电容,使得本电源的瞬时大电流的供电特性好、噪声小、反应速度快、输出纹波小。 3.滤波电路采用电容滤波电路,将整流电路输出的脉动成分大部分滤除,得到比较平滑的直流电。本电路采用4700μF/50V 的大电容C1、C2 使输出电压更加平滑,电源瞬间特性好,适合带感性负载,如电机的启动。C1、C2 各并联了一只0.1μF/63V 的CBB 电容,滤去高频干扰,使输入到集成电路LM317、LM337、LM7805的直流电尽可能的平滑和纯净。 4. LM7805固定输出5V 稳压输出。为适应不同应用场合的需要而将电压设置为可调,可调稳压电路由LM317 输出正电源,LM337 输出负电源。LM317 和LM337 均使用了内部热过载,包含过流保护、热关断和安全工作区补偿等完善的保护电路,使得电源可以省去保险丝等易损耗器件。可调节输出电压的计算Uo=1.25× (1+Rf/R), Rf 为可调电阻的取值(即图中的电位器W1、W2),R (即图中的电阻R1、R2)为三端可调稳压输出端与调整端间的电阻值。可调电阻选用精密可调电阻,保证输出电压的精确可调。如选用的可调电阻Rf 为5k Ω、R 为270Ω的组合,可以分别对1.25V ~24V-1.25V ~-24V 之间实现连续可调。 5.稳压电路因为线性电源发热量较大,所以本电源中需加了足够的散热器。 2)、参数计算 1.LM317 与LM337 的选择 LM317/LM337 的电压输出范围是±1.25V ~±37V ,负载电流最大为1.5A,仅需两个外接电阻来设置输出电压,连续可调。此外,它的线性调整率为0.01 和负载调整率0.1%也比标准的固定稳压器好。此外该器件内置过载保护电路、安全保护等多重保护功能。内阻小、电压稳定、噪音极低、输出纹波小(输出端最小仅用100μF),实际使用效果比LM78××、LM79××等稳压模组好。 2.稳压电阻Rf 、R 的选择 要保证 LM317/LM337在空载时能够稳定地工作,只要保证Uo/(Rf+R)≥1.5mA 就可以了。 1.5mA 为稳压块的最小稳定工作电流。可以选择Rf 、R 分别为5k Ω可调电阻和270 Ω的固定 交流220V 输入

BUCK 变换器轻载时三种工作模式原理及应用

BUCK 变换器轻载时三种工作模式原理及应用 Adlsong 摘要摘要::降压型Buck 变换器在轻载有三种工作模式:突发模式、跳脉冲模式和强迫连续模式。文中详细的阐述了这三种模式的工作原理, 同时介绍了这三种模式的优点及缺点。 通过滞洄比较器监控输出电压的突发模式开关管工作的时间短,效率高,纹波最大。强迫连续模式电感的电流双向流动,效率最低,纹波最小。跳脉冲模式工作DCM 模式并跳去一些脉冲,效率和纹波介于上述两种模式之间。同时本文给出3.3V 到2.5V 的Buck 变换器电感,输入电容和输出电容的计算和选取方法。 关键词关键词::突发模式 跳脉冲模式 强迫连续模式 轻载 Abstract: Buck conveter has three modes at light output load: burst mode, pulse skip mode and force continuous mode. The principles of three modes are discussed in detail in this paper. The advantages and disadvantages of three modes are presented and also compared at the same time. The longest off time duration, highest efficiency and highest ouput ripple voltage are featured for burst mode detecting output votage via hysteresis comparator. The least efficiency and least ouput ripple voltage is featured for force continuous mode with positive and negative current through the inductor. The efficiency and ouput ripple voltage of pulse skip mode with skipping some swithching pulse is between that of two modes above. The methods to calculate the inductance, input

Buck变换器环路设计(修改)

Buck 变换器的环路设计 1. 功率级传递函数 R1L1 Q1 buck 变换器功率级电路示意图 其传递函数为 1 )(1121+??++??+??=s C R ESR s C L s C ESR V V out out out i o 分子为一阶微分环节,有一个零点,其转折频率为 out zero C ESR f ?=π21 分母为二阶积分环节, 其阻尼系数1 2L C R out =ζ,其中ESR R R +=1 当1>ζ时,系统为过阻尼状态,有两个不同的极点。 当1=ζ时,系统为临界阻尼状态,有两个相同的极点。 当1<ζ时,系统为欠阻尼状态,有两个共轭的复数极点。 在DCDC 变换器中,为了获得较高的效率,会尽可能的减小R 的值,所以通常系统都是处在欠阻尼状态。

10 2103104105-40-20 20 102103104105 -200-150 -100 -50 典型的buck 变换器功率级幅频和相频特性曲线。 参数:Cout=100uF ,L1=2.2uH ,ESR=1m Ω,R1=10m Ω 在功率级的传函中,有一个由ESR 和Cout 构成的零点。当ESR 比较小时,幅频曲线在转折频率后会以-40db/dec 衰减,相频曲线也会由0deg 急剧的下降为-180deg 。在控制回路的环路补偿中就必须增加额外的相位超前补偿,否则不能满足要求的相位裕度。 当ESR 较大时,由ESR 和Cout 组成的零点会抵消到一个极点,控制回路中不需要额外的相位超前补偿,就能满足要求的相位裕度。 下图为ESR=100m Ω(其余参数相同)的幅频和相频特性曲线。可以看出,其相位最低降到-100deg ,尚有80deg 的相位裕度。

课程双路输出直流稳压电源

课程双路输出直流稳压电源

双路输出直流稳压电源 钟官军金海军张娅琳 指导老师:王淑娟 1.摘要 1.1功能说明: 通过四个控制按钮实现两路输出电压,可以对输出电压进行设定,显示值与输出电压值的误差不超过10mv。并可通过按键实现最高电流设定,进行过流保护。具体描述如下: 按键:按键1:左右设定时切换。 按键2:电压电流设定时切换。 按键3:设定值增加按键。 按键4:设定值减小按键。 显示(三位半LED):LED1:第一路的显示,电压设定时显示电压,电流设定时 显示电流,正常工作时显示电压。 LED2:第二路的显示,电压设定时显示电压, 电流设定时显示电流,正常工作时显 示电压。 参数:电压设定步进:V1.0 ± 显示误差:10 ≤mv 工作区:输出1:V ~ 2 ~ 18 0+,A 输出2:0 ~ 2 -,A ~ 18V 软件设定保护电流范围:A 2 ~ 硬件短路保护电流:A ≈ 2.2 a)基本组成 本直流电源由四个基本模块组成:电源部分,控制部分,功率放大部分,数字显示输出电流电压电路。采用硬件电路和单片机的编程控制,实现了在传设计一个电压在-18-+18V,电流0-2 A可调的双路直流稳压电源。实现传统基本直流稳压电源的突破和创新-电压电流的连续可调的和过压过流流保护。 电源变压器:采用降压变压器将电网交流电压220V变换成复合需要的交流

电源。此交流电压经过整流后可获得电子设备所需要的直流电压。 整流电路:利用单相桥式整流电路把方向和大小都大小都变化的50Hz的交流电变换为方向不变但大小仍有脉动的直流电。其优点是电压较高,纹波电压较小,整流二极管所承受的最大反向交流电流流过,变压器的利用率高。 滤波电路:利用储能元件-电容C两端的电压不能突变的性质,采用RC滤波电路将整流电路输出的脉动成分大部分滤除,得到比较平滑的直流电。 稳压电路:使整流滤波后的直流电压不随交流电网和负载的变化扰动而变化控制电路:为适应不同场合的需要而将电压电流置为可调。 保护电路:当电压电流过大超过量程利用单片机控制清零来实现电路保护。 数字显示部分:采用三位半的LED数字显示,挺高了精度和准确性,从而克服了模拟表头的造成的读数误差。利用8032单片机控制,可以实现精度。 由于采用大量高性能的集成模块,从而简化了电路的结构,突出了电源变换问题中的关键部分。通过努力的调试与检测,电路整体性能良好,可以较好的实现设计目的。本电源不仅可以单独使用,还可以置于其它电子设备中作为变压稳压或稳流源使用。 2.电源概述 2.1电源简介 电源是电子设备的心脏部分,其质量的好坏直接影响着电子设备的可靠性,而且电子设备的故障60%来自电源,因此作为电子设备的基础元件,电源受到越来越多的重视。现代电子设备使用的电源大致有线性稳压电源和开关稳压电源两大类。 所谓线性稳压电源,是指在稳压电源电路中的调整管是工作在线性放大区。将220V、50Hz的工频电压经过线性变压器降压以后,经过整流、滤波和稳压,输出一个直流电压。 2.2两类电源比较 线性稳压源的优点是:电源稳定度及负载稳定度较高;输出纹波电压小;瞬态响应速度快;线路结构简单,便于维修;没有开关干扰。 缺点是:功耗大、效率低,其效率一般只有35~60%;体积大、质量重、不能微小型化;必须有较大容量的滤波电容。 其中,交换效率低下是线性稳压电源的重要缺点,造成了资源的严重浪费。

Buck-Boost变换器原理(过程啊)

Buck变换器原理 Buck变换器又称降压变换器、串联开关稳压电源、三端开关型降压稳压器。 1.线路组成 图1(a)所示为由单刀双掷开关S、电感元件L和电容C组成的Buck变换器电路图。图1(b)所示为由以占空比D工作的晶体管T r、二极管D1、电感L、电容C组成的Buck变换器电路图。电路完成把直流电压V s转换成直流电压V o的功能。 图1Buck变换器电路 2.工作原理 当开关S在位置a时,有图2 (a)所示的电流流过电感线圈L,电流线性增加,在负载R上流过电流I o,两端输出电压V o,极性上正下负。当i s>I o时,电容在充电状态。 这时二极管D1承受反向电压;经时间D1T s后(,t on为S在a位时间,T s是周期),当开关S在b位时,如图2(b)所示,由于线圈L中的磁场将改变线圈L两端的电压极性,以保持其电流i L不变。负载R两端电压仍是上正下负。在i L0,开关打开时,i s=0,故i s是脉动的,但输出电流I o,在L、D1、C作用下却是连续的,平稳的。 图2Buck变换器电路工作过程

Boost变换器 Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。 1.线路组成 线路由开关S、电感L、电容C组成,如图1所示,完成把电压V s升压到V o的功能。 图1 2.工作原理 当开关S在位置a时,如图2(a)所示电流i L流过电感线圈L,电流线性增加,电能以磁能形式储在电感线圈L中。此时,电容C放电,R上流过电流I o,R两端为输出电压V o,极性上正下负。由于开关管导通,二极管阳极接V s负极,二极管承受反向电压,所以电容不能通过开关管放电。开关S转换到位置b时,构成电路如2(b)所示,由于线圈L中的磁场将改变线圈L两端的电压极性,以保持i L不变。这样线圈L磁能转化成的电压V L与电源V s串联,以高于V o电压向电容C、负载R供电。高于V o时,电容有充电电流;等于V o时,充电电流为零;当V o有降压趋势时,电容向负载R放电,维持V o不变。 图2Boost变换器电路工作过程 由于V L+V s向负载R供电时,V o高于V s,故称它为升压变换器。工作中输入电流i s=i L是连续的。但流经二极管D1电流确实脉动的。由于有C的存在,负载R上仍有稳定、连续的负载电流I o。

高频同步整流BUCK变换器的设计与仿真本科毕业设计(论文)

编号 XXXX大学 毕业设计 题目高频同步整流BUCK变换器的 设计与仿真

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

buck变换电路设计

南京工程学院 自动化学院 电力电子技术课程设计报告 题目: Buck变换电路的设计 专业:自动化 班级:自动化 124 学号: 8 姓名:陈猛 指导教师:赵涛 起迄日期:—— 设计地点:工程中心4-207

目录 1 引言 2 设计任务及要求 设计任务 设计内容 3 设计方案选择及论证 控制芯片的选择 驱动芯片的选择 4 总体电路设计 5 功能电路设计 主电路的设计 驱动电路的设计 控制电路的设计 辅助电源的设计 6 电路仿真与调试 7 设计总结 8 参考文献 BUCK变换电路设计 1 引言 本次电力电子装置设计与制作,利用Buck降压斩波电路,使用

TL494作为控制芯片输出脉冲信号从而控制MOS管的开通与关断。为了将MOS管G极和S极隔离,本设计采用了集成的驱动芯片。另外本设计还加入了反馈环节,利用芯片自身的基准电压与反馈信号进行比较来调节输出脉冲的占空比,进而调整主电路的输出电压维持在一个稳定的电压状态。根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路。 2 设计任务及要求 设计任务: 设计一降压斩波电路,采用BUCK电路。输入直流电源:DC18~30V,输出电压为输入电压50%~100%可调:输出额定电流2A,电流峰峰值不大于,输出电压纹波不大与5%。 设计内容: 1)主电路的设计,器件的选型,电感和输出电容的选择; 2)驱动电路、检测电路和保护电路设计; 3)辅助电源设计,要求提供 DC15V 驱动电源和 5V 控制电源; 4)控制电路的设计,不同频率、不同脉宽 PWM 波的实现。 5)制作驱动和主电路; 6)利用提供的控制信号,完成 BUCK 电路的驱动和主电路和调试。 3 设计方案选择及论证 控制芯片的选择 方案一:采用SG3525芯片。它是一款专用的PWM控制集成电路芯片,它采

双路输出直流稳压电源汇总

长沙学院课程设计说明书 题目双路输出直流稳压电源系(部) 专业(班级) 姓名 学号 指导教师 起止日期2013/12/16-2013/12/26

模拟电子技术课程设计任务书(14) 系(部):电子与通信工程系专业:电子信息工程指导教师:陈希

长沙学院课程设计鉴定表

目录 目录 ......................................................................................................................................................................... IV 摘要 . (1) 绪论 (1) 一、设计目的 (2) 二、设计任务及要求 (2) 三、双路输出直流稳压电源设计思路 (2) 四、设计原理 (2) 1、直流稳压电源的基本原理 (3) 五、电路相关元件及电路指标简介 (4) 1、LM317集成稳压器的特性简介 (4) 2、 LM7805稳压器的性能 (6) 3、稳压电源的技术指标 (7) 4、串联型稳压电路的主要特点 (7) 六、电路原件选择 (8) 1、选择电源变压器 (8) 2、选择整流电路中的二极管 (8) 3、集成三端稳压器 (9) 5、滤波电路中滤波电容的选择 (10) 七、用Multisim软件仿真 (10) 1 实验原理图仿真 (10) 2 仿真结果 (10) 八、总结与体会 (11) 九、参考文献 (13)

摘要 随着科技的发展,电气、电子设备已经广泛的应用于日常、科研、学习等各个方面。电源作为电气、电子设备必不可少的能源供应部件,需求日益增加,而且对电源的功能、稳定性等各项指标也提出了更高的要求。对电源的研究和开发已经成为新技术、新设备开发的重要环节,在推动科技发展中起着重要作用。本设计主要用串联型稳压电路设计直流稳压电源,通过相关知识计算出各电路中各个器件的参数,使电路性能达到设计要求中的电压调整率,电流调整率,负载调整率,纹波电压等各项指标。 绪论 电源技术是一门实践性很强的工程技术,服务于各行各业。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。只有满足产品标准,才能够进入市场。随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。 电源可分为交流电源和直流电源,它是任何电子设备都不可缺少的组成部分。交流电源一般为220V、50Hz电源,但许多家用电器设备的内部电路都要采用直流电源作为供电能源,如收音机、电视机、带微处理器控制的家电设备等都离不开这种电源。直流电源又分为两类:一类是能直接供给直流电流或电压的,如电池、蓄电池、太阳能电池、硅光电池、生物电池等,本文不做具体介绍;另一类是将交流电变换成所需的稳定的直流电流或电压的,这类变换电路统称为直流稳压电源。现在所使用的大多数电子设备中,几乎都必须用到直流稳压电源来使其正常工作,而最常用的是能将交流电网电压转换为稳定直流电压的直流电源,可见直流稳压电源在电子设备中起着主要作用,为设备能够稳定工作提供保证。220V、50HZ的单向交流电源经电源变压器降压后,再经过整流滤波可获得低电压小功率直流电源。然而,由于电网电压可以有±10%变化。为此必须将整流滤波后的直流电压由稳压电路稳定后再提供给负载,使负载上直流电源电压受上述因素的影响程度达到最小。直流电源电压系统一般由四部分组成,它们分别是电源变压器、整流电路、滤波电路、稳压电路。

BUCK变换器de控制技术的研究.

BUCK 变换器的控制技术的研究 一、实验目的 1、理解开环、电压单闭环和电压电流双闭环控制策略的原理,完成系统闭环控制调试; 2、建立变换器的模型,通过仿真和实验掌握电压和电流调节器的参数设计方法; 3、验证BUCK变换器的输入输出波形特性,PWM波形,及输入输出数量关系,加深对BUCK变换器连续和断续工作模态下的工作原理及特性的理解。 二、实验内容 熟悉SG3525的原理及使用方法,理解PWM波产生过程;研究BUCK变换器开环、电压闭环、电压电流双闭环状态下电路各器件,包括功率管、二极管、电感电压电流工作情况,输入输出电量关系,控制电路参数对变换器的性能的影响。观察电压纹波,观察不同电感、频率和负载对电流连续点的影响。理解BUCK 变换器闭环控制过程,掌握闭环性能指标。 变换器的基本要求如下: 输入电压:20~30V 输出电压:15V(输出电压闭环控制时) 输出负载电流:0.1~1A 工作频率:50kHz 输出纹波电压:≤100m V 三、实验仪器

6 电压表 2 7 电流表 2 8 负载 1 四、实验原理 1)BUCK主电路原理图(图1) 图1.BUCK主电路原理图 2)控制电路SG3525内部结构框图() 图2.SG3525内部结构框图 五、实验步骤 1、将BUCK变换器挂箱的所有开关关闭后再接线。 2、控制电路接20V直流电压,调节电位器RW1,用示波器观察并记录占空比为某一定值时SG3525 各管脚波形及驱动电路输出波形。注意观察SG3525 的9脚、5脚波形和输出波形之间的关系,理解SG3525 芯片PWM 波产生过程。调节RW2观测PWM波频率的变化,通过测得的PWM波计算PWM波频率。 3、控制电路接20V直流电压,主电路接6-30V可调直流电压,可控制开关S4

Buck电路开题报告

毕业设计(论文)开题报告 一、课题的目的及意义(含国内外的研究现状分析或设计方案比较、选型分析等) 1. 选题背景及课题目的和意义 自第三次工业革命以来,电力电子技术飞速发展,广泛应用于电力、电子、通信、计算机等领域。其中,开关功率变换器作为一种基本的电力电子元件,国内外对于其应用和研究进行了广泛的探讨。然而随着电力工业发展,用户对电能质量的要求越来越高,各种电子元件特别是微处理器对供电模块的性能提出了极高的要求,传统的控制方法越来越不适用于现代电力工业对负载动态响应速度,稳态精度和传输效率的要求。经过半个多世纪的不断探索,开关功率变换器的控制技术有了脱胎换骨的变化,实现了从传统的模拟调制向数字调制,从单一电压调制向电压、电流、电荷以及组合调制方式的转变,有效的提高了变换器的动态性能。 本课题的目的在于综合分析比较现有调制方式,选择合理的有现实意义的调制策略,对其进行深入分析和研究,最终实现所选择方式的实验实现,为进一步的研究提供基础,实现相关领域人才和技能的培养。 2. 国内外研究现状与选型分析 按照开关变换器控制方式的发展历程,经历了从模拟控制到数字控制,从单环控制到双环控制,从线性控制到非线性控制,从单一控制量到组合控制的转变,有效的提高了开关变换器的快速响应能力,可以较好的满足现代电力工业对复杂电力环境下调制的要求。 模拟控制技术是最早应用于各个控制领域,不失为一种有效的控制手段,但随着电子信息工业的发展和微型计算机的普及,基于计算机的数字控制技术异军突起,借助于信息工业的优势,称为现代控制技术的主要发展方向。模拟控制技术是一种连续控制,通过事先计算好的电感电容参数组建电路,实现对输出量的控制。经过多年的发展,模拟控制技术已经相当成熟,然而其依然存在难以克服的固有缺陷: ①元器件比较多,控制电路复杂,不易于小型化; ②控制策略受到电路元件和电路结构的局限,控制电路成型后很难修改; ③由于模拟元件参数随工作环境变化,导致系统控制精度下降; ④调试不方便,难以实现复杂控制方案,灵活性较低。 此外,还存在没有内置的限流功能保护电路器件,对输入和输出的瞬变响缓慢等缺点,但在早期应用中不失为一种有效的控制方案。 数字控制技术是一种离散控制,通过A/D转换器将模拟量离散后输入计算机控制系统,不依赖于具体的电路元件。早期由于数字元件的成本、性能等自身问题,未能大规模应用于控制领域。近年来,随着微机工业的进步,数字控制技术也迎来了快速发展。相较于模拟控制技术,数字控制技术具有很多突出的优点:

基于BUCK变换器的电源设计

电子科技大学中山学院新型电源设计实践报告 设计名称基于BUCK变换器的开关电源设计 学院机电学院 班级 14级电气A班 学号姓名 2014100500521 刘连红 指导教师余翼 机电工程学院 2017年 12月 27日

一、设计要求与内容 开关电源是20世纪60年代电源历史上的一次革命,它安装于各种家用电器、工业设备及军用电子装置中,同时作为赋能装置应用于各个领域。比如在电力系统中的应用、在通信领域中的应用、在蓄电池充电中的应用、在风能\太阳能发电中的应用。这次我们要求设计一个9-12V的情况下,通过一个开关电源得到一个稳定的5V/1A的直流输出。我们要求这个开关电源有整流的功能,同时通过反馈控制,有稳压,调压,降压的功能。从而得到稳定的一个直流输出。 二、人员分工与时间安排表 三总体方案设计与论证 3.1 设计思路和流程

1.经过题目选定,确定使用基于BUCK变换器的电源设计。 2.在方案选择过程中,因为考虑到是非隔离电源,使用集成PWM调制芯片简化电路设计。 3.在分析了UC3842,SG3525等芯片的功能与参数后,选择MC34063作为控制方案,该芯片本身也有较强的驱动能力,可直接外接滤波电路与反馈电路来进行电源设计。 4.通过外接场效应管的方式极大增强了驱动能力,该场效应管最大电流可到达17A以上,设计中仅利用不到1A,如果更换滤波电路中的元器件,输出功率可以得到数倍的提升。如果将采样电阻改为电位器,还可以灵活调节输出电压。 3.2 开关电源总电路框图 图3-1 开关电源总电路框图 四、开关电源原理图各部分说明及计算 4.1总原理图的介绍 开关电源是指调整管工作在开关方式,只有导通和截止两个状态,上图为工作过程。 基准电压为固定值,由于输入波动或负载变化导致输出电压减小,采样电压将减小,经过比较放大后,脉冲调制电路根据这个误差,提高占空比使输出电压增大。同理,当由于输入波动或负载变化导致输入电压增大时,脉冲调制电路降低占空比使输出电压减小,以此来控制输出电压的稳定。 4.2 各部分的说明与计算

相关主题
文本预览
相关文档 最新文档