六年级最值问题教师版
- 格式:doc
- 大小:840.38 KB
- 文档页数:5
例1.1.有9个同学要进行象棋比赛,他们准备分成两组,不同组的人相互之间只比赛一场,同组的人之间不比赛。
他们一共最多能比赛多少场?2.直角三角形斜边长为10cm,求这个直角三角形面积的最大值。
3.一个边长为30的正方形,四个角减去四个正方形,剩下部分可以拼成一个无盖长方体,那么所得的长方体容积最大是多少?4.用1、2、3、4、5、6、7、8、9这九个数字(每个数字仅用一次)组成两个多位数,那么这两个多位数的乘积最大是多少?5.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用0,2,4,6,8这5个⨯-⨯的计算结果的最大值。
数字组成一个三位数FGH和一个两位数IJ。
求算式ABC DE FGH IJ例2.1.如图,用1×2和1×3两种规格的小长方形地板砖铺满5×8的地面,至少需要地板砖多少块?2. 国际象棋的皇后可以控制她所在的横线、竖线和斜线,图中一个皇后(图中五角星)就把整个3×3的棋盘控制了。
那么为了控制一个4×4的棋盘至少要放几个皇后?3. 通过在表达式1÷2÷3中加括号,我们可以得到两个不同的值(1÷2)÷3=61和1÷(2÷3)=23,现在表达式1÷2÷3÷4÷5÷6÷7÷8中加上括号,问我们所能得到的最大值是多少?4. 把14分拆成几个自然数的和,再求出这些自然数的乘积,使得到的积尽可能大,这个乘积是多少?请证明你的结论。
5. 在1,3,5,……99中选取k 个数,使得它们的和为1949,那么k 的最大值是多少?6. A 、B 、C 、D 、E 、F 、G 、H 、I 表示9个各不相同的不为零的自然数,这9个数排成一排,如果其中任何五个相邻的数之和都大于40,那么这9个数的和最小是多少?。
第25讲 最大最小问题一、知识要点人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。
最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。
二、精讲精练【例题1】a 和b 是小于100的两个不同的自然数,求a -ba+b的最大值。
根据题意,应使分子尽可能大,使分母尽可能小。
所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a -b a+b 的最大值是99-199+1 =4950 答:a -b a+b 的最大值是4950 。
练习1:1、 设x 和y 是选自前100个自然数的两个不同的数,求x -yx+y的最大值。
2、 a 和b 是小于50的两个不同的自然数,且a >b ,求a -ba+b的最小值。
3、 设x 和y 是选自前200个自然数的两个不同的数,且x >y ,①求x+yx -y的最大值;②求x+yx -y的最小值。
【例题2】有甲、乙两个两位数,甲数27等于乙数的23。
这两个两位数的差最多是多少?甲数:乙数=23:27=7:3,甲数的7份,乙数的3份。
由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56 答:这两个两位数的差最多是56。
练习2:1.有甲、乙两个两位数,甲数的310等于乙数的45。
这两个两位数的差最多是多少?2、甲、乙两数都是三位数,如果甲数的56恰好等于乙数的14。
这两个两位数的和最小是多少?3.加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?【例题3】如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。
问:这样的数对共有多少个?在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对。
第十五章最值问题知识要点1.如果两个整数的和一定,那么这两个整数的差越小,它们的乘积越大。
当两个数相等时,它们的乘积最大。
2.两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小。
3.把一个数拆分成若干个自然数之和,如果要使这若干个自然数的乘积最大,那么这些自然数应全是2或3,且2的个数不超过2个。
典例巧解例1 两个自然数的和是13,要使两个整数的乘积最大,这两个整数是多少?点拨将两个自然数的和为13的所有情况都列出来,有以下7种情况:13=0+13,0×13=0; 13=1+12,1×12=12;13=2+11,11×2=22; 13=3+10,3×10=30;13=4+9,4×9=36; 13=5+8,5×8=40;13=6+7,6×7=42。
由此可见,两个整数的和一定时,两个整数的差越小,它们的乘积越大。
解13÷2=6……1,6×(6+1)=42。
答:这两个整数分别为6和7。
例2 比较下面两个乘积的大小。
A=57128463×87596512 B=57128470×87596505点拨要比较A与B的大小,用计算的方法求积会很麻烦。
仔细观察两组对应因数的大小,我们不难发现,两个因数的和是一定的,只要比较每组两个因数差的大小就可以了,差大的积反而小,差小的积反而大。
解 A组两个因数的差:87596512-57128463=30468049,B组两个因数的差:87596505-57128470=30468035。
因为30468049>30468035,所以B>A。
例3 两个自然数的积是50,这两个自然数是什么值时,它们的和最小?点拨两个自然数乘积是50的,共有三种情况:50=50×1,50+1=51;50=25×2,25+2=27;50=10×5,10+5=15。
最值问题(题库)六年级暑假:最值问题一、学习目标掌握小学类各种最值问题二、知识点拨(1)从极端情况入手我们在分析某些数学问题时,不妨考虑一下把问题推向“极端”。
因为当某一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问题的“本来面目”清楚地显露出来,从而使问题迅速获解。
(2)枚举比较根据题目的要求,把可能的答案一一枚举出来,使题目的条件逐步缩小范围,筛选比较出题目的答案。
(3)分析推理根据两个事物在某些属性上都相同,猜测它们在其他属性上也有可能相同的推理方法。
(4)构造在寻求解题途径难以进展时,构造出新的式子或图形,往往可以取得出奇制胜的效果。
(5)应用求最大值和最小值的结论和一定的两个数,差越小,积越大。
积一定的两个数,差越小,和越小。
三、教学建议本讲重点是让学生体会加法和减法的意义,以及学习在面对错误时利用还原思想调整出正确答案的能力。
那么针对这个目标,教师在选题时,可以根据班级学生的知识体系结构以及学习能力选择题目。
其中类型一到类型六是必学的知识,建议可以只选每个类型的例题(练习可以根据班级情况适当选择),从简到难学习。
注:本建议适合班级学生程度中等。
四、经典例题[类型一]和一定差小积大、积一定差大和大【例 1】把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?分析:拆数问题尽可能多的出现3,解答:16÷3=5……1,所以16=3+3+3+3+3+4【巩固提高1】将17分成若干个自然数的和,再求这些自然数的乘积,要使得到的乘积尽可能大,这个乘积是多少?A【巩固提高2】把50拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?A【巩固提高3】将30拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,应怎样拆?B【巩固提高4】将546分解成四个不同自然数的乘积,这四个自然数的和最大是多少?B【例 2】 用20厘米长得铁丝弯成边长是整数的长方形,这样的长方形不止一种。
小学六年级奥数计算题及答案:最值问题
★这篇【小学六年级奥数计算题及答案:最值问题】,是特地为大家整理的,希望对大家有所帮助!
一把钥匙只能开一把锁.现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试( )次才能配好全部的钥匙和锁.
分析:第一把钥匙最坏的情况要试3次,把这把钥匙和这把锁拿出;剩下的3把锁和3把钥匙,最坏的情况要试2次,把这把钥匙和这把锁拿出;剩下的2把锁和2把钥匙,最坏的情况要试1次,把这把钥匙和这把锁拿出;剩下的1把锁和1把钥匙就不用试了.
解:3+2+1=6(次);
答:最多要试6次才能配好全部的钥匙和锁.
故答案为:6.。
把一个自然数n 拆分成若干个自然数的和,怎样拆这些分拆数的乘积最大?第一种情况:拆出的个数已指定结论:这些数越接近乘积越大第二种情况:拆出的个数随意结论:多拆3,少拆2,不拆1例3各位数码是0、1或2,且能被225整除的最小自然数是多少?例2n 200820082008200808个能被11整除,那么,n 的最小值为多少?例1一个数的20倍减1能被153整除,这样的自然数中最小的是多少?最值问题测试题1.从0,l ,2,3,4,5,6,7,8,9这10个数字中选出5个不同的数字组成一个五位数,使它能被3,5,7,13整除,这个数最大是多少?2.要用竹篱笆围一个面积为6400平方米的矩形养鸡场。
如果每米篱笆要用去30千克毛竹,那么该怎样围,才能使毛竹最省?3.在六位数ABCDEF 中,不同的字母表示不同的数字,且满足A ,AB ,ABC ,ABCD ,ABCDE ,ABCDEF 依次能被2,3,5,7,11,13整除。
则ABCDEF 的最小值是 ;已知当ABCDEF 取得最大值时0C =,6F =,那么ABCDEF 的最大值是________。
4.在8个不同约数的自然数中,最小的一个是____。
5.从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____。
6.有13个不同的自然数,它们的和是100。
问其中偶数最多有多少个?最少有多少个?例6用1,3,5,7,9这5个数字组成一个三位数ABC 和一个两位数DE ,再用O ,2,4,6,8这5个数字组成一个三位数FGH 和一个两位数IJ 。
求算式ABC ×DE -FGH ×IJ 的计算结果的最大值。
例5用1、2、3、4、5、6、7、8、9这九个数字(每个数字仅用一次)组成一个四位数和一个五位数,使乘积最大:则□□□□□×□□□□应该怎样填?例4已知自然数A 、B 满足以下两个性质:⑴A 、B 不互素;⑵A 、B 的最大公约数与最小公倍数之和为35。
最值问题1、六年级最值问题:难度:高难度表示一个四位数,表示一个三位数,A,B,C,D,E,F,G代表1至9的不同的数字。
已知,问:乘积的最大与最小值差多少?答:2、六年级六年级最值问题:难度:高难度一组互不相同的自然数,其中最小的数是1,最大的数是25,除1之外,这组数中的任一个数或者等于这组数中某一个数的2倍,或者等于这组数中某两个数之和,问:这组数之和最大值是多少?当这组数之和有最小值时,这组数都有哪些数?并说明和是最小值的理由。
答:3、六年级最值问题:难度:高难度将l,2,3…49,50任意分成l0组,每组5个数,在每组中取数值居中的那个数为“中位数”,求这l0个中位数之和的最大值及最小值。
答:4、六年级最值问题:难度:中难度把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中所拆出的那些质数相乘,得到的乘积中,哪个最小?答:5、六年级最值问题:难度:高难度下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?答:1、六年级最值问题习题答案:【解】可以看出A=1,因为E≠O,1,所以B最大为7,这时E=2由于D、G都不能是O,1,所以D+G=13,C+F=8由于F≠O,1,2,所以C最大为5。
从而三位数最大为759,这时=34。
最小为234(这时=759最大)。
=(1000+)×(993-),=1000×993-1000×+993×一×=993000-7×—-×于是在最大时,乘积最小,最小时,乘积最大,因此,所求的差是(993000-7×234-234×234)-(993000-7×759-759×759)=7×(759-234)+759×759-234×234 =7×(759-234)+(759+234)×(759-234)=7×(759-234)+993×(759-234)=1000×<759-234)=525000。
小学六年级奥数第十五章最值问题第十五章最值问题知识要点1.如果两个整数的和一定,那么这两个整数的差越小,它们的乘积越大。
当两个数相等时,它们的乘积最大。
2.两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小。
3.把一个数拆分成假设干个自然数之和,如果要使这假设干个自然数的乘积最大,那么这些自然数应全是2或3,且2的个数不超过2个。
典例巧解例1 两个自然数的和是13,要使两个整数的乘积最大,这两个整数是多少?点拨将两个自然数的和为13的所有情况都列出来,有以下7种情况: 13=0+13, 0×13=0; 13=1+12, 1×12=12; 13=2+11, 11×2=22; 13=3+10, 3×10=30; 13=4+9, 4×9=36; 13=5+8, 5×8=40; 13=6+7, 6×7=42。
由此可见,两个整数的和一定时,两个整数的差越小,它们的乘积越大。
解13÷2=6??1, 6×(6+1)=42。
答:这两个整数分别为6和7。
例2 比拟下面两个乘积的大小。
A=57128463×87596512 B=57128470×87596505点拨要比拟A与B的大小,用计算的方法求积会很麻烦。
仔细观察两组对应因数的大小,我们不难发现,两个因数的和是一定的,只要比拟每组两个因数差的大小就可以了,差大的积反而小,差小的积反而大。
解 A组两个因数的差:87596512-57128463=30468049, B组两个因数的差:87596505-57128470=30468035。
因为30468049>30468035,所以B>A。
例3 两个自然数的积是50,这两个自然数是什么值时,它们的和最小?点拨两个自然数乘积是50的,共有三种情况: 50=50×1,50+1=51; 50=25×2,25+2=27; 50=10×5,10+5=15。
第16讲 最值问题二兴趣篇1、用0,1,2,…,9这10个数字各一次组成5个两位数a 、b 、c 、d 、e 。
请问: a b c d e -+-+最大可能是多少?答案:222[分析]要让a b c d e -+-+结果尽量大,那么,,a c e 的十位要尽量大,,b d 的十位尽量小。
再让,,a c e 的个位要尽量大,,b d 的个位尽量小。
那么可以得到9610852374222-+-+=。
2、将135个人分成若干小组,要求任意两个组的人数都不同,最多可以分成多少组?这时人数最少的那组有多少人?答案:15组;1个人或2个人[分析]123......15120,123......16136++++=++++=,因此最多可以分为15组。
又,234......16135++++=,因此人数最少的一组有1或2人。
3、有11个同学计划组织一场围棋比赛,他们准备分为两组,每组进行单循环比赛,那么他们最少需要比赛多少场?答案:25场[分析]两队人数最接近的时候,比赛场次最少。
要证实此结论,可采用逐步调整法: 考虑初始状态是()11,0,那么把一个人从1组调到2组可以减少10场比赛,变成()10,1;再把一个人从1组调到2组可以减少1组9场比赛,增加2组1场比赛,变成()9,2……。
()()7,46,5→,减少6场,增加4场;()()6,55,6→减少5场,增加5场。
再调整的时候,增加的场数要比减少的多了,那么()6,5分组时的场次达到最少。
分成1组5人,1组6人,那么共需比225625C C +=(场)。
4、我们知道,很多自然数可以表示成两个不同质数的和,例如835=+。
有的数有几种不同的表示方法,例如10039711891783=+=+=+。
请问:恰好有两种表示方法的最小数是多少?答案:16[分析]如果我们能找到4个数a b c d <<<使得b a d c -=-,那么就有a d b c +=+。
《最值问题》教案教学内容:教学目标:1、学会枚举、分析推理等方法解决最值问题。
了解均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小。
2、培养学生熟练掌握并灵活运用多数学思想方法来思考以及举一反三的运用能力。
教学重点:各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的。
教学难点:学会确定解决问题的思维方向和解题关键的方法。
教学方法:自主探究、合作交流。
教学准备:多媒体课件教学过程:一、快速抢答:(课件出示)1、世界上最大的鸟是什么鸟?鸵鸟2、世界上最小的鸟是什么鸟?蜂鸟3、世界上最高的山峰是哪座山峰?珠穆朗玛峰(中国、尼泊尔边界)海拔8848米4、世界上最长的河流是哪条河?尼罗河(非洲)6671千米5、最大的三位数比最小的四位数小几?小16、24和36的最大公因数是几?最小公倍数是几?12、72二、导入新课:1、导入新课,板书课题。
在现实生活中,我们经常碰到带有“最”字的问题,如投入最少、效益最大、材料最省、利润最高、路程最短等.我们可把这一大类统称为代数类最值问题,今天,我们一起研究最值问题。
教师板书课题:最值问题。
2、什么是最值问题?在日常生活、生产劳动、商业贸易、科学研究、决策运筹中,经常会遇到这样一类问题:怎样安排时间最省、怎样行走路线最短、怎样管理费用最低、怎样设计面积最大?怎样合作效率最高、怎样加工的使用率最大等等,它们都可以归结为在一定范围、一定条件下求最大值或最小值。
解答这类问题时,要认真审题,根据题目的具体特点,仔细分析,深入思考,灵活、辨证地选择解法。
三、自主探究(一):1、出示例1:【例1】某校六年级一班准备用100元钱买圣诞树装饰品。
在花店这样的装饰品成束出售,由20多花组成的花束每束价值4元,由35多花组成的花束每束价值6元,由50多花组成的花束每束价值9元。
请问每种花束各买多少才能买到最多的花朵?2、引导学生读题,分析题意:3、学生自主探究。
最值问题(讲义)六年级下册小升初数学应用题真题汇编通用版(含解析)小升初数学运用题真题汇编典型运用题—最值问题班级姓名得分1.(湖南湘郡培粹中学小升初招生)五个连续的自然数的和是75,这五个连续的自然数中最大的数是。
2.(河南鹤壁六年级期末)小明、小红、小刚三人的年龄正好是三个连续的偶数,他们的年龄总和是48岁,他们中最大的是多少岁?3.(浙江杭州六年级期末)用3、4、5、7四个数组成两个分数,再进行运算,结果最大是多少?请列式计算。
4.(江苏宿迁小学毕业考试)如右图,一个圆柱形油桶,底面直径是6dm,高是10dm。
(1)要给油桶的表面刷上油漆,刷油漆的面积是多少平方分米?(2)用这样的一整桶汽油为油箱容量是51升的小汽车加油,最多可以加满多少辆?(油桶铁皮的厚度忽略不计)5.(黑龙江齐齐哈尔六年级期末)如图所示,一个棱长为6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,剩下的体积是多少立方厘米?6.(安徽合肥小升初考试)伐木工人准备将一根圆柱形的木材(如图)加工成最大的方木(指横截面的正方形面积最大),这根方木的体积是多少立方厘米?合多少立方米?7.(山东青岛六年级期末)制作一个无盖圆柱形水桶,有四种型号的铁皮可供选择(不考虑损耗)。
(1)要恰好做成水桶,有几种选择方案?(2)算一算哪种方案做成的水桶容积最大?最大是多少?8.(陕西爱知中学入学考试)在一条水渠边,用篱笆围成一块直角梯形菜地(如图)。
已知篱笆总长28米,那么怎样围这块菜地的面积最大?最大地面积是多少平方米?9.(湖南广益中学小升初招生)a和b是小于100的两个非零的不同自然数。
的最大值是。
10.(某工大附中入学考试)一艘货船上卸下了若干台机器,这些机器的总质量是38吨,但每台机器的质量都不超过1吨。
如果用载重3吨的汽车把这些机器运到仓库,那么至少需要几辆这样的汽车才能保证一次运完?11.(湖南雅礼梅溪湖中学小升初招生)从1开始,轮流加3加4,得到下面的一列数:1,4,8,11,15,18,22,…在这列数中,最小的三位数是。
1. 掌握最值中的数字谜的技巧2.能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。
模块一、横式数字谜【例 1】 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.12345□□□□【考点】混合计算中的数字谜 【难度】2星 【题型】填空 【关键词】希望杯,六年级,初赛,第3题,6分 【解析】 为了得到最大结果必须用“×”连接4和5,那么4和5前边一定是“+”,通过尝试得到:112345203-÷+⨯=.【答案】1203【例 2】 将+,-,×,÷四个运算符号分别填入下面的四个框中使该式的值最大。
1111123456□□□□【考点】混合计算中的数字谜 【难度】3星 【题型】填空 【关键词】华杯赛,初赛,第9题例题精讲知识点拨教学目标5-1-2-5.最值中的数字谜(二)【解析】题目给出5个数,乘、除之后成3个数,其中减数应尽量小,由两个数合成(相乘或相除)的加数与另一个分数相加应尽量大,,,,;,,,;而,,,;其中最小的是,而,,所以最大【答案】最大【例3】将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数.这个结果最大为.÷++=÷+【考点】混合计算中的数字谜【难度】3星【题型】填空【解析】等号左边相当于三个奇数相加,其结果为奇数,而等号右边的计算结果为奇数时,最大为628487÷+=,又3157987÷++=满足条件(情况不唯一),所以结果的最大值为87.【答案】87【例4】一个电子表用5个两位数(包括首位为0的两位数)表示时间,如15:23:45/06/18表示6月18日15点23分45秒.有一些时刻这个电子表上十个数字都不同,在这些时刻中,表示时间的5个两位数之和最大是.【考点】【难度】星【题型】填空【关键词】迎春杯,高年级,决赛,8题【解析】假设五个两位数的十位数上的数字之和为x,那么个位数上的数字之和为45x-,则五个两位数上的数字之和为1045459x x x+-=+,所以十位数上的数字之和越大,则五个两位数之和越大.显然,五个两位数的十位数字都不超过5,只能是012345,,,,,这五个数字中的五个.如果五个数字是54321,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,1只能在“月份”的十位上,此时“日期”的个位、“月份”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54320,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,此时“日期”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54310,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,则“日期”的个位无法满足情况.如果五个数字是54210,,,,,那么54,只能在“分”、“秒”两个两位数的十位,210,,依次在“日期”的十位上、“时”的十位上、“月份”的十位上容易满足条件.所以最大值为()45954210153+⨯++++=.【答案】153【例5】0.2.0080.A BCC A B∙∙=∙∙,三位数ABC的最大值是多少?【考点】乘除法中的最值问题【难度】3星【题型】填空【关键词】走美杯,六年级,初赛,第4题【解析】 2.008化为分数是251125,可以约分为251125的分数有502250、753375,所以ABC的最大值为753.【答案】753模块二、乘除法中的最值问题【例 6】 已知一个五位回文数等于45与一个四位回文数的乘积(即45abcba deed =⨯),那么这个五位回文数最大的可能值是________.【考点】乘除法中的最值问题 【难度】3星 【题型】填空 【关键词】迎春杯,五年级,初赛,第7题【解析】 根据题意,45abcba deed =,则abcba 为45的倍数,所以a 应为0或5,又a 还在首位,所以a =5,现在要让abcba 尽可能的大,首先需要位数高的尽可能的大,所以令9b =,8c =,则a b c b a ++++=5+9+8+9+5=36是9的倍数,用59895÷45=1331符合条件,所以这个五位回文数最大的可能值是59895.【答案】59895【例 7】 在下面乘法竖式的每个方格中填入一个非零数字,使算式成立。
第二十七讲最值问题最大和最小都是在某一固定范围内比较的结果.固定的范围就是一个定值,抓住这个“定值”就抓住了解题的关键.解决极值问题的策略,常常因题而异,归纳起来主要有以下四个“突破口”:1、从极端情况入手;2、从枚举比较入手;3、由分析推理入手;4、凭构造方程入手.在算式2212366221+⨯+÷-⨯-中适当添括号,使它的运算结果最大,并求它的最大值.【解析】:运算尽量用乘法,且使被乘数尽可能最大,对于除法,应该尽量使除数最小,最好是1.最大值为:()[]()2212366221 412 36192+⨯+÷-⨯-=⨯+=().1、将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2、把2-9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大.沙场点兵典型例题知识宝典将1,2,3,4,5,6,7这七个数分成两组,组成一个三位数和一个四位数,并使这两个数的乘积最大,那么这个三位数是多少?【解析】:组数乘积最大坚持两个原则:1.因数尽可能大;2.两个因数的差要尽可能小;由此求解⨯=时最大解:74265314846002沙场点兵1、把14拆成几个自然数的和,再求出这些数的乘积,如何拆可以使乘积最大?2、三个连续自然数,后面两个数的积与前面两个数的积之差是114.这三个数中最小的是多少?30名选手参加数学竞赛,已知参赛者中任何10人里至少有1名男选手,那么男选手至少有多少人?【解析】:30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,如果30名学生中有10名女生,最差的情况是,选的10人中可能全为女生,则女生至多只能有9人,即男生至少有30921-=人.解:3010130921--=-=()(人).答:男生至少有21人.1、一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)2、在长为1200米的路段上植树,最少要种多少棵,才能保证至少有两棵树之间的距离小于15米?如果两个四位数的差等于8921,就是说这两个四位数组成一个数对.问:这样的数对共有多少个?【解析】:在这些数对中,被减数最大是9999,此时减数是999989211078-=,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对.为了保证减数是四位数,最多可以减去78,因此,这样的数对共有78179+=个.1、两个四位数的差是8921。
六年级下第22讲最值问题在数学的学习中,最值问题常常让同学们感到既有趣又具有挑战性。
今天,咱们就一起来深入探讨一下六年级下册第 22 讲的最值问题。
首先,咱们得明白啥是最值问题。
简单来说,就是在一系列的条件限制下,找出某个量能达到的最大值或者最小值。
比如说,要把一堆东西分给几个人,怎么分能让某个人得到最多或者最少;或者在一定的规则下,怎样安排能让花费最少、收获最大等等。
咱们先来看看一些常见的最值问题类型。
第一种,和整数有关的最值。
比如,有一个整数,它除以 5 余 2,除以 7 余 3,这个整数最小是多少?要解决这种问题,咱们就得先找到5 和 7 的最小公倍数,然后再根据余数的条件去逐步推算。
第二种,几何图形中的最值。
像在一个长方形中,要剪去一个最大的正方形,这个正方形的边长最大能是多少?这就需要咱们考虑长方形的长和宽的关系。
第三种,行程问题中的最值。
比如,甲、乙两人同时从 A 地出发前往 B 地,甲的速度比乙快,问在什么情况下,甲和乙到达 B 地的时间差最大或者最小?了解了常见类型,那咱们来看看解决最值问题的一些方法和思路。
一个重要的方法就是列举法。
当可能的情况不是很多时,咱们可以把各种可能的情况一一列举出来,然后比较找出最值。
比如说,要从 1、2、3 这三个数字中选出两个数字组成两位数,最大的两位数是多少?咱们就可以把 12、13、21、23、31、32 都列出来,一眼就能看出 32最大。
还有假设法。
假设某个量达到了最大值或者最小值,然后看看在这种假设下,其他条件是否还能满足。
比如说,有一堆苹果分给几个小朋友,假设每个小朋友都分到了最多的苹果,然后看看苹果总数够不够分。
另外,比较法也很常用。
把不同的情况进行比较,找出其中的差异,从而判断出哪个是最大值,哪个是最小值。
接下来,咱们通过几个具体的例子来实际感受一下。
例 1:用一根长 20 厘米的铁丝围成一个长方形,长和宽都是整数,怎样围面积最大?咱们先想想,长方形的周长是 20 厘米,那长和宽的和就是 10 厘米。
容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.在日常生活中我们经常会遇到像下面这样的两类问题:问题一:从A 地道B 地,可以乘火车,也可以乘汽车或乘轮船。
一天中,火车有4班,汽车有3班,轮船有2班。
那么从A 地道B 地共有多少种不同的走法?问题二:从甲村到乙村有两条道路,从乙村去丙村有3条道路(如下图)。
从甲村经乙村去丙村,共有多少种不同的走法?解决上述两类问题就是运用加法原理和乘法原理。
➢ 加法原理:为了完成一件事,有几类方法。
第一类方法中有1m 种不同的方法,第二类方法中有2m 种不同的方法…….第n 类方法中有n m 种不同的方法。
那么,完成这件事共有12n N m m m =++⋅⋅⋅+种不同的方法。
➢ 乘法原理:为了完成一件事,需要n 个步骤。
做第一步有1m 种不同的方法,做第二步有2m 种不同的方法……做第n 步有n m 种不同的方法。
那么,完成这件事共有12n N m m m =⨯⨯⋅⋅⋅⨯种不同的方法。
典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】 方法一:设这4袋为A 、B 、C 、D ,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A 、B 、C 袋糖有20、20、21块糖.第34讲 最值问题则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则ABC×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。