九年级下册数学 第24章圆小结与复习教案
- 格式:doc
- 大小:36.19 KB
- 文档页数:3
第二十四章《圆》小结
一、本章知识结构框图
二、本章知识点概括
(一)圆的有关概念
1、圆(两种定义)、圆心、半径;
2、圆的确定条件:
①圆心确定圆的位置,半径确定圆的大小;
②不在同一直线上的三个点确定一个圆。
3、弦、直径;
4、圆弧(弧)、半圆、优弧、劣弧;
5、等圆、等弧,同心圆;
6、圆心角、圆周角;
7、圆内接多边形、多边形的外接圆;
8、割线、切线、切点、切线长;
9、反证法:假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立。
(二)圆的基本性质
1、圆的对称性
①圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。
*②圆是中心对称图形,圆心是对称中心。
2、圆的弦、弧、直径的关系
①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
* [引申] 一条直线若具有:Ⅰ、经过圆心;Ⅱ、垂直于弦;Ⅲ、平分弦;Ⅳ、平分弦所对的劣弧;Ⅴ、平分弦所对的优弧,这五个性质中的任何两条,必具有其余三条性质,即“知
二推三”。(注意:具有Ⅰ和Ⅲ时,应除去弦为直径的情况)
3、弧、弦、圆心角的关系
①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
③在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
归纳:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。
4、圆周角的性质
①定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半。
②在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。
③推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
(三)与圆有关的位置关系
1、点与圆的位置关系
设⊙O的半径为r,OP=d则:
点P在圆内d
2、直线与圆的位置关系
设⊙O的半径为r,圆心O到l的距离为d则:
直线l与⊙O相交d 直线l与⊙O相切d=r 直线和圆只有一个公共点; 直线l与⊙O相离d>r 直线和圆没有公共点。 3、圆与圆的位置关系 ①如果两圆没有公共点,那么这两个圆相离,分为外离和内含; 如果两圆只有一个公共点,那么这两个圆相切,分为外切和内切; 如果两个圆有两个公共点,那么这两个圆相交。 ②设⊙O1的半径为r1,⊙O2半径为r2,圆心距为d,则: 两圆外离d>r2+r1; 两圆外切d=r2+r1; 两圆相交r2-r1<d<r2+r1(r2≥r1); 两圆内切d=r2-r1(r2>r1); 两圆内含0≤d<r2-r1(r2>r1)。 (四)圆的切线 1、定义:和圆只有一个公共点的直线是圆的切线。 2、性质: ①圆的切线到圆心的距离等于半径。 ②定理:圆的切线垂直于过切点的半径。 ③切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 3、判定: ①利用切线的定义。 ②到圆心的距离等于半径的直线是圆的切线。 ③定理:经过半径的外端并且和这条半径垂直的直线是圆的切线。 (五)圆与三角形 1、三角形的外接圆 (1)定义:经过三角形的三个顶点的圆叫做三角形的外接圆。 (2)三角形外心的性质:①是三角形三条边垂直平分线的交点;②到三角形各顶点距离相等;③外心的位置:锐角三角形外心在三角形内,直角三角形的外心恰好是斜边的中点,钝角三角形外心在三角形外面。 2、三角形的内切圆 (1)定义:与三角形各边都相切的圆叫做三角形的内切圆。 (2)三角形内心的性质:①是三角形角平分线的交点;②到三角形各边的距离相等;③都在三角形内。 (六)圆与四边形 1、由圆周角定理可以得到:圆内接四边形对角互补。 *2、由切线长定理可以得到:圆的外切四边形两组对边的和相等。 (七)圆与正多边形 1、正多边形的定义 各边相等,各角也相等的多边形叫做正多边形,其外接圆的圆心叫做这个正多边形的中心。 2、正多边形与圆的关系 把圆分成n (n ≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n 边形,这时圆叫做正n 边形的外接圆。 3、正多边形的有关计算(11个量) 边数n ,内角和,每个内角度数,外角和,每个外角度数,中心角αn ,边长a n ,半径R n ,边心距r n ,周长l n ,面积S n (S n =1/2l n r n ) 4、正多边形的画法 画正多边形的步骤:首先画出符合要求的圆;然后用量角器或用尺规等分圆;最后顺次连结各等分点。如用尺规等分圆后作正四、八边形与正六、三、十二边形。注意减少累积误差。 (八)弧长、扇形的面积、圆锥的侧面积和全面积公式 180n R l π=弧长 2360n R S π扇形==12lR (其中l 为弧长) S rl π圆锥侧= (其中l 为母线长) (九)直角三角形的一个判定 如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。 (十)本章常见的辅助线 课 后 反 思