方波 三角波 正弦波 锯齿波发生器
- 格式:doc
- 大小:46.14 KB
- 文档页数:11
基于E D A技术的正弦波方波三角波锯齿波四种波形发生器Newly compiled on November 23, 2020梧州学院课程论文(2014 -2015学年第2学期)课程论文题目:基于EDA技术的正弦波、方波、三角波、锯齿波、四种波形发生器学生姓名:目录论文题目: 基于EDA技术的正弦波、方波、三角波、锯齿波、四种波形发生器学生姓名:摘要随着EDA技术以及大规模集成电路技术的迅猛发展,波形发生器的各方面性能指标都达到了一个新的水平。
采用CPLD/FPGA器件在QuartuesII设计环境中用VerilogHDL语言完成的波形发生器具有频率稳定性高,可靠性高,输出波形稳定等特点。
本文介绍了基于EDA技术的波形发生器的研究与设计。
本文采用VerilogHDL语言,运用LPM-ROM制定的方法设计的波形发生器,经过按键来选择四种波形实现了正弦波,方波,三角波,以及锯齿波四种波形的输出,经过实际下载到FPGA实验板上,设计要求已经完全实现。
关键词:VerilogHDL 波形发生器 LPM-ROM FPGA一、系统设计目的与要求、前言随着现代化集成电路和计算机技术的不断飞跃发展,使得电子产品的设计在市场上的应用更为广泛,而且其实现方法的选择也变得越来越多。
基于电路板的设计方法是传统电子产品通用的一中设计方案,这种方法是需要采用较多的固定功能器件,再通过这几器件的设计配合,从而实现模拟电子产品的功能,这些工作的重点就在于如何选择这些器件及怎样设计电路板。
由于可编程逻辑器件的出现和计算机性价比的提高,这影响了传统的数字电子系统的设计方法,对其进行了解放性的革命。
现在要实现电子系统的功能是通过设计师自己设计的芯片来完成的,之后将传统的固件选用及电路板设计工作放在芯片设计中进行,这种方法是现代电子系统的设计方法。
上个世纪九十年代以来,由于复杂化、数字化和大规模集成化的电子产品设计系统的日趋成熟,使得各种电子系统的设计软件也应运而生。
方波-三角波-正弦波-锯齿波发生器电子工程设计报告目录设计要求1.前言 (1)2方波、三角波、正弦波发生器方案 (2)2.1原理框图 (2)3.各组成部分的工作原理 (3)3.1方波发生电路的工作原理 (3)3.2方波--三角波转换电路的工作原理 (4)3.3三角波--正弦波转换电路的工作原理 (6)3.4方波—锯齿波转换电路的工作原理 (7)3.5总电路图 (8)方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。
函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。
设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。
然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。
其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。
函数(波形)信号发生器。
能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。
关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。
2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在0.02-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
课程设计(论文)说明书题目:方波、三角波、正弦波发生器院(系):专业:学生姓名:学号:指导教师:职称:2012年12 月 5 日摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在显示器上观察波形及数据,得到结果。
电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。
本设计就是利用Multisim软件进行电路图的绘制并进行仿真。
关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulationKey words: power, waveform, comparator, an integrator, a converter circuit, Multisim目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器- ------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------135 实验总结--------------------------------------13谢辞、参考文献-----------------------------------14一设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。
方波——三角波——正弦波函数信号发生器现今世界中电子技术与电子产品的应用越加广泛,人们对电子技术的要求也越来越高。
因此如何根据实际要求设计出简便实用的电子技术物品便显得尤为重要。
灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
能将简单的易获取的信号转换为自己所需的复杂信号是一项必不可少的技术。
以555定时器为核心器件,制作一种方波-三角波-正玄波函数转发生器,制作成本较低。
适合学生学习电子技术测量使用。
比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。
输出波形的频率和占空比还可以由电流或电阻控制。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
随着众多领域对于复杂的、可由用户定义的测试波形的需要而形成和发展起来的,波形发生器的主要特点是可以产生任何一种特殊波形,输出信号的频率、电平以及平滑低通滤波的截至频率也可以作到程序设置,因此在机械性能分析、雷达和导航、自动测试系统等方面得到广泛的应用。
而本课题设计的正是多种波形发生器。
本设计由555定时器和积分器组成方波—三角波产生电路,555定时器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
该设计在proteus仿真软件上进行了仿真,验证了该设计方法正确性和有效性。
方波三角波正弦波锯齿波发生器This model paper was revised by LINDA on December 15, 2012.电子工程设计报告目录设计要求1.前言 ................................................................... 2方波、三角波、正弦波发生器方案...........................................原理框图 ............................................................ 3.各组成部分的工作原理 ...................................................方波发生电路的工作原理 .............................................方波--三角波转换电路的工作原理 .....................................三角波--正弦波转换电路的工作原理 ....................................方波—锯齿波转换电路的工作原理 .....................................总电路图 ............................................................方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。
函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。
设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。
一、设计目的及要求:1.1、设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2).熟悉集成电路:集成运算放大器LM324,并掌握其工作原理。
1.2、设计要求: (1)设计波形产生电路。
(2)信号频率范围:100Hz ——1000Hz 。
(3)信号波形:正弦波。
二、实验方案:方案一:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。
但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。
如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。
反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。
为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。
选频网络由R 、C 和L 、C 等电抗性元件组成。
正弦波振荡器的名称一般由选频网络来命名。
正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。
产生正弦波的条件与负反馈放大电路产生自激的条件十分类似。
只不过负反馈放大电路中是由于信号频率达到了通频带的两端,产生了足够的附加相移,从而使负反馈变成了正反馈。
在振荡电路中加的就是正反馈,振荡建立后只是一种频率的信号,无所谓附加相移。
(a)负反馈放大电路 (b)正反馈振荡电路图1 振荡器的方框图比较图1(a) 和 (b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。
由于振荡电路的输入信号i X =0,所以i X =fX 。
由于正、负号的改变,正反馈的放大倍数为:F AA A -=1f,式中A 是放大电路的放大倍数,.F 是反馈网络的放大倍数。
振荡条件:1..=F A幅度平衡条件:|..F A |=1相位平衡条件:ϕAF = ϕA +ϕF = ±2n π振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求1|..|>F A 这称为起振条件。
2.方波、三角波、正弦波发生器方案2.1 方案一原理框图图1 方波、三角波、正弦波、信号发生器的原理框图首先由555定时器组成的多谐振荡器产生方波,然后由积分电路将方波转化为三角波,最后用低通滤波器将方波转化为正弦波,但这样的输出将造成负载的输出正弦波波形变形,因为负载的变动将拉动波形的崎变。
2.2方案二原理框图图2 正弦波、方波、三角波信号发生器的原理框图RC 正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法,电路框图如上。
先通过RC 正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。
此电路具有良好的正弦波和方波信号。
但经过积分器电路产生的同步三角波信号,存在难度。
原因是积分器电路的积分时间常数是不变的,而随着方波信号频率的改变,积分电路输出的三角波幅度同时改变。
若要保持三角波幅度不变,需同时改变积分时间常数的大小。
2.3函数发生器的选择方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
为进一步掌握电路的基本理论及实验调试技术,本课题未采用单片函数发生器模块8038。
方案一的电路结构、思路简单,运行时性能稳定且能较好的符合设计要求,且成本低廉、调整方便,关于输出正弦波波形的变形,可以通过可变电阻的调节来调整。
而方案二,关于三角波的缺陷,不是能很好的处理,且波形质量不太理想,且频率调节不如方案一简单方便。
综上所述,我们选择方案一。
3.各组成部分的工作原理3.1方波发生电路的工作原理图3 由555定时器组成的多谐振荡器利用555与外围元件构成多谐振荡器,来产生方波的原理。
用555定时器组成的多谐振荡器如图3所示。
接通电源后,电容C2被充电,当电容C2上端电压Vc升到2Vcc/3时使555第3脚V0为低电平,同时555内放电三极管T导通,此时电容C2通过R3、Rp放电,Vc下降。
基于AT89C51的函数信号发生器设计设计团队:郭栋、陈磊、集炜、査荣杰指导老师:***2011-11-13目录1、概述 (3)2、技术性能指标 (3)2.1、设计内容及技术要求 (3)3、方案的选择 (3)3.1、方案一 (4)3.2、方案二 (6)3.3、方案三 (6)4、单元电路设计 (6)4.1、正弦波产生电路 (6)4.2、方波产生电路 (8)4.3、矩形波产生锯齿波电路 (99)5、总电路图 (10)6、波形仿真结果 (1010)6.1正弦波仿真结果 (10)6.2矩形波仿真结果 (11)6.3锯齿波仿真结果 (11)7、PCB版制作与调试 (12)8、元件清单 (134)结论 (14)总结与体会 (14)参考文献 (15)函数信号发生器1、概述信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
2、技术性能指标2.1、设计内容及技术要求:设计并制作一个信号发生器,具体要求如下:1、能够输出正弦波、方波、三角波;2、输出信号频率范围为10Hz——10KHz;3、输出信号幅值:正弦波3V,矩形波10V,锯齿波4V;4、输出矩形波占空比50%-95%可调,矩形波斜率可调。
5、信号发生器用220V/50Hz的工频交流电供电;6、电源:220V/50Hz的工频交流电供电。
按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim进行必要的仿真,用PCB软件进行制板、焊接,然后对制作的电路完成调试,撰写设计报告测,通过答辩3、方案的选择根据实验任务的要求,对信号产生部分可采用多种方案:如模拟电路实现方案,数字电路实现方案,模数结合实现方案等。
电子工程设计报告目录设计要求1.前言 (1)2方波、三角波、正弦波发生器方案 (2)2.1原理框图 (2)3.各组成部分的工作原理 (3)3.1方波发生电路的工作原理 (3)3.2方波--三角波转换电路的工作原理 (4)3.3三角波--正弦波转换电路的工作原理 (6)3.4方波—锯齿波转换电路的工作原理 (7)3.5总电路图 (8)方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。
函数信号发生器应用范围:通信、广播、电视系统中,都需要射频〔高频〕发射,这里的射频波就是载波。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。
设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。
然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。
其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。
函数〔波形〕信号发生器。
能产生某些特定的周期性时间函数波形〔正弦波、方波、三角波、锯齿波和脉冲波等〕信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼时机,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。
关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。
2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在0.02-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
课程设计(论文)说明书题目:方波、三角波、正弦波发生器院(系):专业:学生姓名:学号:指导教师:职称:2012年12 月 5 日摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在显示器上观察波形及数据,得到结果。
电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。
本设计就是利用Multisim软件进行电路图的绘制并进行仿真。
关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulationKey words: power, waveform, comparator, an integrator, a converter circuit, Multisim目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器- ------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------135 实验总结--------------------------------------13谢辞、参考文献-----------------------------------14一设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。
课程设计(论文)说明书题目:方波、三角波、正弦波发生器院(系):专业:学生姓名:学号:指导教师:职称:2012年12 月 5 日摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在显示器上观察波形及数据,得到结果。
电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。
本设计就是利用Multisim软件进行电路图的绘制并进行仿真。
关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulationKey words: power, waveform, comparator, an integrator, a converter circuit, Multisim目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器- ------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------135 实验总结--------------------------------------13谢辞、参考文献-----------------------------------14一设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。
方波三角波正弦波_锯齿波发生器Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】电子工程设计报告目录方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。
函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。
设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。
然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。
其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。
函数(波形)信号发生器。
能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。
关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。
2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。
可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。
方波三角波正弦波_锯齿波发生器This manuscript was revised by the office on December 10, 2020.电子工程设计报告目录方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。
函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。
设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。
然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。
其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。
函数(波形)信号发生器。
能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。
关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。
2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。
可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。
课程设计名称:设计制作一个方波\三角波\正弦波\锯齿波发生器摘要函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。
该电路可为实验室提供波形频率范围为0.02Hz~20kHz,幅值2v的稳定信号源。
大大降低了实验成本,有效的简化了实验的操作步骤,是实验室小型电路信号发生器的理想所选,具有广泛的应用价值。
此信号发生器采用模块化结构,主要由以下三个模块组成,即正弦波发生器模块、方波发生器模块、三角波发生器模块。
在设计此函数信号发生器时,采用模块化的设计思想,使设计起来更加简单、容易、条理清晰。
同时调试起来也更容易。
经过一系列的分析、准备,本次设计除在美观方面处理得不够得当之外,完成了全部的设计要求。
关键词:函数信号发生器、 LM324、集成运算放大器、晶体管差分放大目录前言 (4)第一章函数发生器的设计要求 (5)1.1 波形发生器的特点及应用 (5)1.2 设计任务及要求 (5)第二章电路设计原理及单元模块 (6)2.1 设计原理 (6)2.1 单元模块 (6)2.1.1 RC选频振荡模块 (6)2.1.2 过零比较器 (8)2.3.3 产生三角波模块 (9)第三章安装与调试 (12)3.1 电路的安装 (12)3.2 电路的调试 (12)3.2 电路的分析 (13)结论 (14)参考文献 (14)附录一 (15)附录二 (16)前言科学技术是第一生产力。
三次工业革命使我们的社会发生了翻天覆地的变化,使我们由手工时代进入了现代的电器时代。
同时科技在国家的国防事业中发挥了重要的作用,只有科技发展了才能使一个国家变得强大。
而作为二十一世纪的主义,作为一名大学生,不仅仅要将理论知识学会,更为重要的是要将所学的知识用于实际生活之中,使理论与实践能够联系起来。
波形发生器在实际生活中有很重要的作用,影响着科技的发展,在当今社会又好又快的生活方式是人们所向往的,因此作为一名学习知识的青年,应该学好基础知识,设计出是人民满意的东西,产出人性化和自能化的电子产品,另一方面电子产品不断的更新,需要我们更加扎实的基础。
模拟电路课程设计报告设计课题:设计制作一个方波 /三角波 /正弦波专业班级:09电信(本学生姓名 :学号:指导教师:设计时间:设计制作一个方波 /三角波 /正弦波 /锯齿波函数发生器一、设计任务与要求①输出波形频率范围为 0.2KHz~20kHz且连续可调;②正弦波幅值为±2V ;③方波幅值为 2V ,占空比可调;④三角波峰 -峰值为 2V ;⑤锯齿波峰 -峰值为 2V ;⑥分别用四个发光二极管显示四种波形输出;⑦用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V 。
二、方案设计与论证设计要求产生四种不同的波形分别为正弦波方波三角波锯齿波。
正弦波通过滞回比较器可以转换成方波, 方波通过一个积分电路可以转换成三角波, 只要调节三角波的占空比就可以得到锯齿波。
正弦波可以通过 RC 振荡电路产生。
方案一、一、直流电源部分电路可把 220V 的交流电变成 12V 的直流电二、波形产生部分1正弦波——方波上电路可以同时产生输出方波正弦波 2方波——三角波电路可产生三角波3方波——锯齿波Key = A10k¦¸电路可以产生锯齿波方案二一、直流电源部分电路可把 220V 的交流电变成 12V 的直流电1N4007二、波形产生电路1正弦波——方波——三角波100k¦¸Key=A50%电路可产生正弦波、方波、三角波2方波——锯齿波Key = A 10k¦¸电路可以产生锯齿波方案论证:我选的是第二个方案,上述两个方案均可以产生四种波形。
方案一的电路过多焊接部分, 显得不方便而且这样浪费了很多元器件, 但是方案的在调节的时候还是比较方便的,可以很快的调出波形。
方案二电路简洁利于焊接并且可以节省元器件, 但是在调节波形的时候可能会稍稍有点费力, 是由于在整个电路调波时, 只要调节前面部分就会影响后面的波形。
所以要兼顾前后。
基于AT89C51的函数信号发生器设计设计团队:郭栋、陈磊、集炜、査荣杰指导老师:程立新2011-11-13目录1、概述 (3)2、技术性能指标 (3)2.1、设计内容及技术要求 (3)3、方案的选择 (3)3.1、方案一 (4)3.2、方案二 (6)3.3、方案三 (6)4、单元电路设计 (6)4.1、正弦波产生电路 (6)4.2、方波产生电路 (8)4.3、矩形波产生锯齿波电路 (99)5、总电路图 (10)6、波形仿真结果 (1010)6.1正弦波仿真结果 (10)6.2矩形波仿真结果 (11)6.3锯齿波仿真结果 (11)7、PCB版制作与调试 (12)8、元件清单 (134)结论 (14)总结与体会 (14)参考文献 (15)函数信号发生器1、概述信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
2、技术性能指标2.1、设计内容及技术要求:设计并制作一个信号发生器,具体要求如下:1、能够输出正弦波、方波、三角波;2、输出信号频率范围为10Hz——10KHz;3、输出信号幅值:正弦波3V,矩形波10V,锯齿波4V;4、输出矩形波占空比50%-95%可调,矩形波斜率可调。
5、信号发生器用220V/50Hz的工频交流电供电;6、电源:220V/50Hz的工频交流电供电。
按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim进行必要的仿真,用PCB软件进行制板、焊接,然后对制作的电路完成调试,撰写设计报告测,通过答辩3、方案的选择根据实验任务的要求,对信号产生部分可采用多种方案:如模拟电路实现方案,数字电路实现方案,模数结合实现方案等。
方波-三角波-正弦波-锯齿波发生器.电子工程设计报告1目录设计要求1.前言 ............................ ............................... .. (1)........................................ 2 .2方波、三角波、正弦波发生器方案.............................. ...................... 2原理框图 2.13.各组成部分的工作原理 ............................ . (3)..................... ................ 3方波发生电路的工作原理3.1 ............................. 4.三角波转换电路的工作原理3.2方波--............................ 6正弦波转换电路的工作原理 3.3三角波--.......................... ... 7.方波—锯齿波转换电路的工作原理 3.4........................... ......................... 8 总电路图3.51方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。
函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。
设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。
然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。
其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。
函数(波形)信号发生器。
能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。
关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。
2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在0.02-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。
可见信号源在各种实验应用和实 1验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。
波形发生器就是信号源的一种,能够给被测电路提供所需要的波形。
传统的波形发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,不能根据实际需要灵活扩展。
随着微电子技术的发展,运用单片机技术,通过巧妙的软件设计和简易的硬件电路,产生数字式的正弦波、方波、三角波、锯齿等幅值可调的信号。
与现有各类型波形发生器比较而言,产生的数字信号干扰小,输出稳定,可靠性高,特别是操作简单方便。
方波、三角波、正弦波发生器方案22.1原理框图充RC电压比较器分积占空矩锯方积电路分正三频低比例放大电路,得图 1 方波、三角波、正弦波、锯齿波信号发生器的原理框图该发生器通过将滞回电压比较器的输出信号通即可组成矩形波信号发生RC过电路反馈到输入端, 2通过改变方波的然后经过积分电路产生三角波,器。
占空比不仅可以得到锯齿波,还可得到额外的矩形波。
三角波通过低通滤波电路来实现正弦波的输出。
峰然后将各种信号通过比例放大电路得到需要幅值;峰值的信号波该电路具有结构、思路简单,运行时性能稳定且能较好的符合设计要求,对原器件要求不高,且成本低廉、调整方便,.各组成部分的工作原理3方波发生电路的工作原理3.1R10kΩU1R343121kΩD2OPAMP_3T_VIRTUAL1N4680R2C151uFR11kΩD11kΩ1N4680GND GND图2 方波信号发生原理此电路由反相输入的滞回比较器和RC电路组成。
RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。
设某一时刻输出电压+Uz,,此时滞回电压比较器的门限电压为充放U。
输出信号通过R对电容C1正向充电,充电波TH2形如图3箭头所示。
当该电压上升到U时,TH2 3,门限电压也随之变为U电路的输出电压变为-U Z,TH1时输出当该电压下降到UC1经电阻R放电。
电容1TH,电容又开始正相充电。
上述过程周+Uz电压又回到而复始,电路产生了自激振荡。
U方波信号发生波形图33.2方波--三角波转换电路的工作原理1.电路的组成44RR1kRP510C5020kKey=R11uU100kURR1k1kOPAMP_3T_VIRTUA D1N5231OPAMP_3T_VIRTUA D1N 5231R GND10kΩ100kΩGND积分电路产生三角波图4积分电路输入和输出信号波形的关系根据RC输出信当RC积分电路的输入信号为方波时,可知,利用方波信号发生器和R由此可得,号就是三角波,C积分电路就可以组成三角波信号发生器。
如图4方波信号发生器输出的方波该电路的工作原理是:输入积分电路,在积分电路的输出端得到三角波信还通号。
积分电路的输出端除了输出三角波信号外,将三角波信号反馈到滞回电压比较R.p1过电阻R1器的输入端,将三角波信号整形变成方波信号输出。
该电路工作波形图如图5 5三角波图5.振荡频率2所以要确定该电路的因为,该电路振荡信号的频率与三角波输出信号的幅度有关,三角波输出信号的幅度等于滞回电压比振荡频率,必须先确定三角波信号的输出幅度。
较器的阈值电压,根据叠加定理可求出滞回电压比较器的阈值电压为u+=UOR1/(R1+R2)-UOR2(R1+R2)=u-=0=R1Uz/R2Uom=U由此可得输出信号的幅度为:TH,根据积分电路输出电压tUom所需要的时间为设积分电路的输出电压从+Uom到-和输入电压的关系式可得2Uom=uo1*t/(C*R4)t=2R4*C1*Uom/Uz=2R1*R4*C1/R2即所以三角波输出信号的频率为2t,因三角波信号的周期为f=R2/(4R1*R4*C1)--正弦波转换电路的工作原理3.3三角波三角波产生正弦波原理图6 图原理:采用低通滤波的方法将三角波变换为正弦波。
67正弦波图—锯齿波转换电路的工作原理 3.4方波R213510ΩR1050%20kΩKey=BR12D46R61kΩ1N415450%Key=A12C1D310kΩ8R41N4154191uFU2U1100kΩ14R31151kΩ7D2OPAMP_3T_VIRTUALOPAMP_3T_VIRTUAL1N46802R516D1100kΩ1N4680R7GND10kΩ8锯齿波产生原理图图三角波信号的特征是波形上升和下降的斜率相同,三角波就转化成锯当波形上升和下降的斜率不同时,的电路中的积分电只要将图齿波。
根据这个特征,4即可路改成时间常数随方波输出极性而变化的电路,D4D3组成锯齿波信号发生器。
图7中的二极管和 7+Uz的作用是改变积分电路的时间常数,当输入为R(8D4断开,积分电路的时间常数为导通,时,D3通,积分断,D41;当输入为-Uz时,D3到12)C .可得R(6到12)C1电路的时间常数为T=t1+t2=2(R4+R5)R1C1/R2波形图如图9锯齿波图9总电路图3.5Rp3113500kΩ510Ω50%Key=CRp2S1550%20kΩKey=BU317R9Rp110D46Key = Space2kΩR51kΩ1N415450%Key=A12C1D310kΩ3OPAMP_3T_VIRTUAL814R2111N4154191uFR8U2U110kΩ100kΩR3R6R714151kΩ510Ω510Ω7D2OPAMP_3T_VIRTUALC2C4OPAMP_3T_VIRTUAL1N46802C32.2uF4.7uFR162.2uF D1100kΩ1N4680GND R4GND10kΩ图9总电路图8图中S1开关可实现各种波形切换,滑动变阻器Rp2可实现不同频率调节,调节Rp1可实现方波占空比的调节,最主要的是可将三角波转换为锯齿波,调节Rp3可调节输出波形不同的幅值。
5实验总结为期几天的课程设计已经结束,在这几天的学习、设计、及电路搭建过程中我感触颇深。
使我对抽象的理论有了具体的认识。
通过对函数信号发生器的设计,我掌握了常用元件的识别和测试;熟悉了常用的仪器仪表;了解了电路的连接、搭建方法;以及如何提高电路的性能等等。
通过对函数信号发生器的设计,我还深刻认识到了“理论联系实际”的这句话的重要性与真实性。
而且通过对此课程的设计,我不但知道了以前不知道的理论知识,而且 9也巩固了以前知道的知识。
最重要的是在实践中理解了书本上的知识,明白了学以致用的真谛。
也明白老师为什么要求我们做好这个课程设计的原因。
他是为了教会我们如何运用所学的知识去解决实际的问题,提高我们的动手能力。
在整个设计到电路的焊接以及调试过程中,我个人感觉调试部分是最难的,因为你理论计算的值在实际当中并不一定是最佳参数,我们必须通过观察效果来改变参数的数值以期达到最好。
而参数的调试是一个经验的积累过程,没有经验是不可能在短时间内将其完成的,而这个可能也是老师要求我们加以提高的一个重要方面吧!其次,这次课程设计提高了我的团队合作水平,使我们配合更加默契,体会了在接好电路后测试出波形的那种喜悦,体会到成功来自于汗水,体会到成果的来之不易。
在实验过程中,我们遇到了不少的问题。
比如:波形失真,甚至不出波形这样的问题。
在老师和同学的帮助下,把问题一一解决,那种心情别提有多高兴啦。
实验中暴露出我们在理论学习中所存在的问题,有些理论知识还处于懵懂状态,老师们不厌其烦地为我们调整波形,讲解知识点,实在令我感动。
还有值得我们自豪的就是我们的线路连得横竖分明,简直就是艺术,当然,我们也有很多不足的地方,最后用一句话来结束吧:“实践是检验真理的唯一标准”。