《点集拓扑学》第一章2
- 格式:ppt
- 大小:919.50 KB
- 文档页数:30
《点集拓扑学》第一章集合论初步本章介绍有关集合论的一些基木知识.从未经定义的“集合”和“元素”两个概念出发,给出集合运算、关系、映射以及集合的基数等方面的知识.至于选择公理,只是稍稍提了一下,进一步的知识待到要用到时再阐述.旨在不会过早地陷入繁难的逻辑困惑之中。
这里所介绍的集合论通常称为“朴素的集合论”,如果对集合的理论有进一步的需求,例如打算研究集合论本身或者打算研究数理逻辑,可以去研读有关公理集合论的专著.即令就朴素集合论本身而言,我们也无意使本章的内容构成一个完全自我封闭的体系,主要是我们没有打算重建数系,而假定读者了解有关正整数,整数,有理数,实数的基木知识,以及其中的四则运算,大小的比较(<和W),和实数理论中关于实数的完备性的论断(任何由实数构成的集合有上界必有上确界)等,它们对于读者决不会是陌生的.此外,对于通常的(算术)归纳原则也按读者早己熟悉的方式去使用,而不另作逻辑上的处理.§1.1集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体.例如我们常说“正在这里听课的全体学生的集合”,“所有整数的集合”等等.集合也常称为集,族,类.集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点,或成员.集合也可以没有元素.例如平方等于2的有理数的集合,既大于1 又小于2的整数的集合都没有任何元素.这种没有元素的集合我们称之为空集,记作0・此外,由一个元素构成的集合,我们常称为单点集.集合的表示法:(1)用文句来描述一个集合由哪些元素构成(像前面所作的那样), 是定义集合的一个重要方式.(2)描述法:我们还通过以下的方式来定义集合:记号匕|关于x的一个命题P}表示使花括号中竖线后而的那个命题P成立的所有元素x构成的集合.例如,集合{* X为实数,并且0<Xl}即通常所谓开区间(0, 1).在运用集合这种定义方式时有时允许一些变通,例如集合{戏以是实数}便是集合{刃丿=/,其中%是实数}的简略表示,不难明口这个集合实际上是由全体非负实数构成的.集合表示方式中的竖线“丨”也可用冒号“:”或分号”来代替.(3)列举法:也常将一个集合的所有元素列举出来再加上花括号以表示这个集合.例如表示由元素 TJ构成的集合.如果确实不至于发生混淆,在用列举的办法表示集合时容许某种省略.例如,有时我们可以用{1, 2, 3,・・・}表示全体正整数构成的集合,用{1, 3, 5,…}表示全体正奇数相成的集合.但我们并不鼓励这种做法,因为后而的规律不是很清楚,容易产生误解.我们再三提请读者注意:不管你用任何一种方式定义集合,最重要的是不允许产生歧义,也就是说你所定义的集合的元素应当是完全确定的.在本书中,我们用:乙表示全体正整数构成的集合,称为正整数集;Z表示全体整数构成的集合,称为整数集;Q表示全体有理数构成的集合,称为有理数集;R表示全体实数构成的集合,称为实数集;并且假定读者熟知这些集合.以下是一些常用的记号:e:表示元素与集合的关系,如:xex , xe{x}等G表示集合与集合的关系,如:AUB (等价于(这个记号即是通常数学课木中的匚)二:表示与上述相反的含义.表示两个集合相等,女口:A二B (等价于以下的这个定理等价于形式逻辑中的相应命题,从直觉着去看也是自明的.定理1.1.1设A, B, C都是集合,贝!J(1)A=A;(2)^A=B,则B=A;(3)^A=B, B=C,则A=C.定理1. 1.2设A, B, C都是集合,则(1)A";(2)若AuB, BUA,则A=B;(3)若AUB, BUC,则A".证明(1)显然.(2)AUB 意即:若xWA,贝iJxGB;BS意即:若xGB,则xWA.这两者合起来正好就是A=B的意思.(3)xGA.由于AUB,故xGB;又由于B UC,从而x^C.综上所述,如果xeA就有xec.此意即AUC.因为空集0不含任何元素,所以它包含于每一个集合之中.由此我们可以得出结论:空集是惟一的.设A, B是两个集合.如果AUB,我们则称A为B的子集;如果A是B的子集,但A又不等于B,即AUB, AHB,也就是说A 的每一个元素都是B的元素,但B中至少有一个元素不是A的元素,这时,我们称A为B的真子集.我们常常需要讨论以集合作为元素的集合,并且为了强调这一特点,这类集合常称为集族.例如,缶{⑴,{1,2}, {1,2,3}}是一个集族. 它的三个元素分别为:{1}, {1,2}, {1,2, 3}及d设X是一个集合,我们常用尸(X)表示X的所有子集构成的集族, 称为集合X的幕集.例如,集合{1, 2}的幕集是P{⑴,{1, 2},⑵,0}.木章中所介绍的集合论是所谓“朴素的”集合论.在这种集合论中,“集合”和“元素”等基本概念均不加定义而被认作是自明的.正因为如此,历史上曾经产生过一些悖论.而对于绝大多数读者来说了解朴素的集合己是足够的了,只是要求他们在运用的时候保持适当的谨慎,以免导致逻辑矛盾•例如,我们应当知道一个集合本身不能是这个集合一个元素.即:若A是集合则AWA不成立.这一点是容易理解的.例如,由一些学生组成的一个班级决不会是这个班级里的一名学生.因此,我们不能说“所有集合构成的集合”,因为如果有这样一个“集合”的话,它本身既是一个集合,就应当是这个“所有集合构成的集合”的一个元素了.也因此,我们应当能够了解一个元素a和仅含一个元素a的单点集4}是两回事,尽管我们有时为了行文的简便而在记号上忽略这个区别.作业:掌握集合、元素的概念、表示法熟练区分“G”与“U”的意义§1.2集合的基本运算在这一节中我们介绍集合的并、交、差三种基本运算,这三种运算的基本规律,以及它们与集合的包含关系之间的基本关联.定义1.2. 1设A与B是两个集合.集合{x|xeA或xWB}称为集合A与集合B的并集或并,记作AUB, 读为A并B.集合{x|x eA且xWB}称为集合A与集合B的交集或交,记作AAB, 读为A交B.若AQB二0,则称集合A与集合B无交或不相交;反之,若AQBH0,则称集合A与集合B有(非空的)交.集合{x|xeA且x吃B}称为集合A与集合B的差集,记作A\B或A -B,读为A差B,或A减B.关于集合的并、交、差三种运算之间,有以下的基本规律.定理1.2.1设A, B, C都是集合.则以下等式成立:(1)幕等律AUA=AADA=A(2)交换律AUB=BUA AnB=BnA(3)结合律(AUB) UC=AU (BUC)(AAB) nc=An (BAC)(4)分配律(APB) UC=(AUC) Cl (BUC)(AUB) nc=(Anc)u (Bnc)(5)DeMongan 律A-(BUC)= ( (A-B) A (A-C)A-((BnC) = (A-B)U(A-C)集合的并、交、差三种运算与集合间的包含关系之间有着以下基本关联.定理1.2.2设A, B是两个集合.下列三个条件等价:(1)A UB;(2)AnB=A;(3)AUB=B・定义1.2.2设X是一个基础集.对于X的任何一个子集A,我们称X-A 为A (相对于基础集X而言)的补集或余集记作占.我们应当提醒读者,补集占的定义与基础集的选取有关.所以在研究某一个问题时,若用到补集这个概念,在整个工作过程中基础集必须保持不变.定理1.2.3设X是一个基础集.若A, B为X的子集,则Au0=A,Ar^0 = 0,AuX = X,Ar^X =AAuA = X,Ar\A r = 0}{AuBy =A r\B,XAr\B')' = A以上证明均只须用到集合的各种定义,此处不证,略去. 作业:熟记这两节的各种公式.掌握证明两个集合A二B与AUB的基本方法KugO冷亡虫,=疋B(/ = E o 且 u R A B u 力)§1.3关系我们从前在数学的各种科目中学过诸如函数、次序、运算,以及等价等种种概念,它们的一个共同的特点在于给出了某些给定集合的元素之间的某种联系.为了明确地定义它们,我们先定义“关系”,而为了定义关系,又必需先有两个集合的笛卡儿积这个概念.定义1.3. 1设X和Y是两个集合.集合{ (x, y) |xex, yey}称为X与Y的笛卡儿积,记作XXY,读为X叉乘Y.其中(x, y)是一个有序偶,x称为(x, y)的第一个坐标,y称为(x, y)的第二个坐标.X称为XXY的第一个坐标集,Y称为XXY的第二个坐标集•集合X与自身的笛卡儿积XXX称为X的2重(笛卡儿)积,通常简单记作胪.有点儿不幸的是我们用于有序偶的记号和用于“开区间”的记号是一样的,有时容易混淆.因此在可能发生混淆的情形下应当加以说明,以避免误解.给定两个集合,通过取它们的笛卡儿积以得到一个新的集合,这个办法对于读者并不陌生.以前学过的数学中通过实数集合构作复数集合,通过直线构作平面时,用的都是这个办法.我们应当注意,一般说来集合X与集合Y的笛卡儿积XXY完全不同于集合Y与集合X的笛卡儿积YXX.定义1. 3. 3设X,Y是两个集合•如果R是X与Y的笛卡儿积XXY 的一个子集,即RUXXY,则称R是从X到Y的一个关系.定义1. 3.4设R是从集合X到集合Y的一个关系,即RCXXY.如果(x, y) WR,则我们称x与y是R相关的,并且记作xRy・如果AUX, 则Y的子集{yWY|存在xeA使得xRy}称为集合A对于关系R而言的象集,或者简单地称为集合A的象集,或者称为集合A的R象,并且记作R (A) , R (X)称为关系R的值域.关系的概念是十分广泛的.读者很快便会看到,以前在另外的数学学科中学过的函数(映射),等价,序,运算等等概念都是关系的特例.这里有两个特别简单的从集合X到集合Y的关系,一个是XXY 本身,另一个是空集(1).请读者自己对它们进行简单的考查.定义1. 3.5设R是从集合X到集合Y的一个关系,即RCXXY.这时笛卡儿积YXX的子集{ (y, x) eYXX|xRy}是从集合Y到集合X的一个关系,我们称它为关系R的逆,并且记作尺一】.如果BUY, X的子集氏"(B)是集合B的氏一】象,我们也常称它为集合B对于关系R而言的原象,或者集合B的R原象.特别,关系氏" 的值域氏"(Y)也称为关系R的定义域.定义1. 3.6设R是从某个X到集合Y的一个关系,即RuXX Y, S 是从集合y到集合Z的一个关系,即SuYX乙集合{ (x, z) exXY 存在yGY使得xRy并且ySz}是笛卡儿积XXZ的一个子集,即从集合X到集合Z的一个关系,此关系称为关系R与关系S的复合或积,记作SoR.定理1.3.1设R是从集合X到集合Y的一个关系,S是从集合Y 到集合Z的一个关系,T是从集合Z到集合U的一个关系.贝!J:(1)(L)J 二R证明(略)定理1.3.2设R是从集合X到集合Y的一个关系,S是从某个Y 到集合Z的一个关系.则对于X的任意两个子集A和B,我们有:(1)R (AUB) =R (A) UR (B);(2)R (AAB) UR (A) AR (B);(3)(SoR) (A) =S(R(A)).证明(略)在本节的最后我们要提到有限个集合的笛卡儿积的概念,它是两个集合的笛卡儿积的概念的简单推广.定义1. 3. 7 设瓦耳必是n>l个集合.集合I x i e X、® € X2e X x")称为舟‘兀*•••** 的笛卡儿积,并且记作或者[]益其中(心心…石为有次序的n元素组,勺(i=l, 2, —n)称为n 元素组(忑旳…心)的第i个坐标,X i (i = l, 2,…, n)称为笛卡儿积乂\莫2”••召的第i个坐标集.n>l个集合X的笛卡儿积XXXX-XX常简单地记作炉n个集合的笛卡儿积的概念读者必然也不会感到陌生,在线性代数中n维欧氏空间作为集合而言就是n个直线(作为集合而言)的笛卡儿积.需要提醒读者的是,如果你在给定的n个集合中交换了集合的次序,一般说来得到的笛卡儿积会是完全不同的集合.至今我们并未定义“0个集合的笛卡儿积”,此事将来再以某种方式补充・(参见§9.1) 作业:理解“关系”的概念,掌握“关系”与“映射”的异同,“映射” 与“函数”的异同.(映射要求象惟一,关系没要求.函数要求定义域与值域是数域,而映射不一定)掌握运算乘积的概念与性质掌握集合的笛卡儿积中元素的形式§1.4等价关系初等数论中的同余类的概念,群论中的商群的概念,乃至于解析几何中的自由向量的概念等等都是读者所熟知的.这些概念的精确定义事实上都有赖于本节中所讨论的等价关系的概念.在本书中我们将通过等价关系来定义拓扑空间的商空间.定义1. 4. 1设X是一个集合.从集合X到集合X的一个关系将简称为集合X中的一个关系.集合X中的关系{(x, x) |xex}称为恒同关系,或恒同,对角线,记作△ (X)或△・定义1.4.2设R是集合X中的一个关系.关系R称为自反的,如果厶(X) CR,即对于任何xex,有xRx;关系R称为对称的,如果恥L , 即对于任何x, yex,如果xRy则yRx;关系R称为反对称的,如果RnR-1 =0,即对于任何x, yex, xRy和yRx不能同时成立;关系R 称为传递的,如果RoRUR,即对丁-任何x, y, zGX,如果xRy, yRz, 则有xRz.集合X中的一个关系如果同时是自反、对称和传递的,则称为集合X中的一个等价关系.容易验证集合X中的恒同关系△ (X)是自反、对称、传递的,因此是X中的一个等价关系.集合X的幕集尸(X)中两个元素(即集合X的两个子集)之间的“相等关系”可以理解为集合尸(X) X尸(X)的子集{ (A, B) |A, B"(X), A=B}从定理1.1.1中可见,它是自反、对称、传递的,因此是尸(X) 中的一个等价关系.集合X的幕集尸(X)中两个元素(即集合X的两个子集)之间的“包含关系”可以理解为集合尸(X) X尸(X)的子集{ (A, B) |A, B" (X), AuB}根据定理1.1.2可见,它是自反的、传递的,但容易知道它不是对称的,因此不是尸(X)中的一个等价关系.集合X的幕集尸(X)中两个元素(即集合X的两个子集)之间的“真子集关系”可以理解为集合尸(X) X尸(X)的子集{(A, B) |A, BW尸(X), A U B,AHB}根据定理1.1.3可见,它是反对称的,传递的,但它不是自反的, 因而不是尸(X)中的一个等价关系.实数集合R中有一个通常的小于关系<,即RXR的子集{ (x, y) |x, yGR, x<y}容易验证关系<是反对称的,传递的,但不是自反的.设p是一个素数,我们在整数集合Z中定义一个关系三p如下:=?-{ (x, y) WZXZ]存在nGZ 使得x —y 二np}关系J常称为模P等价关系,容易验证模P等价关系J是自反的, 对称的,传递的,因此是z中的一个等价关系.定义1. 4.3设R是集合X中的一个等价关系.集合X中的两个点x, y,如果满足条件:xRy,则称x与y是R等价的,或简称为等价的; 对于每一个xeX,集合X的子集:{yWXlxRy}称为x的R等价类或等价类,常记作【心或[x],并且任何一个yG【心都称为R等价类【心的一个代表元素;集族{t^l xeX}称为集合X相对于等价关系R而言的商集,记作X/R.我们考虑整数集合Z中的模2等价关系勺,易见,1巳3和2巳8.因此1与3是勺等价的,2和8也是三2等价的.整数2所属的等价类是所有偶数构成的集合,每一个偶数都可以叫做这个等价类的一个代表元素.此外易见,商集Z/三2有且仅有两个元素:一个是所有奇数构成的集合,另一个是所有偶数构成的集合.下面这个定理说明,给定了一个等价关系,等于说给定了一个分类的原则,把一个非空集合分割成一些非空的两两无交的等价类,使得这集合的每一个元素都在某一个等价类中.定理1.4.1设R是非空集合X中的一个等价关系.贝!(1)如果xex,则xW【心,因而【刃宀;(2)对于任意x, yGX,或者MlwAL,或者证明(1)设xex,由于R是自反的,所以xRx,因此*丘闪匚・・・【刃上工0・(3)对于任意x, yWX,如果,设zW[x]C[y].此时有zRx,且zRy.由于R是对称的,所以xRz・又由于R是传递的,所以xRy・对于任何一个t e【刃丘,有t Rx,由上述xRy和R的传递性可见tRy, 即tel-xh.这证明MbuAL同理可证【刃上ukk.因此【刃2【词上(注意:要证或者…或者…,应从以下入手:否定掉一个,去证另一个)在初等数论中我们早就知道整数模(素数)P的等价关系J将整数集合Z分为互不相交的等价类,每一个等价类记作[刘去,称为整数X的模P同余类.让我们再回忆一下在解析几何学中定义自由向量的过程:首先将固定向量定义为平面(或n维欧氏空间)中的有序偶;然后在全体固定向量构成的集合(暂时记为X)中定义一个关系〜,使得两个固定向量x和y 〜相关(即x〜y)当且仅当x能通过平而(或n维欧氏空间)的一个平移与y重合.容易验证这个关系〜是X中的一个等价关系.每一个~等价类便称为一个自由向量.作业:熟练掌握等价关系,等价类的概念.掌握商集的概念.明确商集的构成§1.5映射数学分析中的函数概念,群论中的同态概念,线性代数中的线性变换概念等等都是读者所熟知的概念.这些概念的精确定义事实上都有赖于本节中所讨论的映射概念.定义1. 5. 1设F是从集合X到集合Y的一个关系.如果对于每一个x WX存在惟一的一个y丘Y使得xFy,则称F是从X到Y的一个映射, 并且记作F: X-Y.换言之,F是一个映射,如果对于每一个xex:(1)存在yWY,使得xFy;(2)如果对于H必GY有^^和入绥,则HT2.定义1. 5.2设X和Y是两个集合,F: X-Y(读做F是从X到Y的一个映射).对于每一个xex,使得xFy的唯一的那个yGY称为x的象或值,记作F (x);对于每一个yGY,如果xex使得xFy (即y是x的象),则称x是y的一个原象(注意:yeY可以没有原象,也可以有不止一个原象).由于映射本身便是关系,因此,如果F是从集合X到集合Y的一个映射,那么:(1)对于任何AUX,象F (A)有定义,并且F(A) = {F(x) xeA}(2)对于任何BUY,原象F- (B)有定义,并且厂】(B) ={xex F(x)eB} (y±意:厂匕)与严(g)的异同,前者不一定有意义,而后者总存在;前者表示元素,后者表示集合)(3)如果Z也是一个集合并且G: Y-Z,则关系的复合GoF作为一个从X到Z的关系有定义;(4)尺一】作为从Y到X的一个关系有定义,但一般说来应"不是一个从Y到X的映射(这要看F是否是一一映射);(5) F的定义域有定义,并且它就是X;(意味着X中的每个元素都必须有象)(6) F的值域有定义,并且它就是F (X)・(F(X)不一定充满Y)定理1.5.1设X, Y和Z都是集合.如果F: X-Y和G: Y-乙则SF: X-Z;并且对于任何xGX,有GoF(X)=G(F(x))(这实际上是映射的积的本质)证明(略)(但要理解上式等号左右两边的不同含义,前者是两个映射的积(也是一个映射)作用在x上,后者是F先作用在x上,然后G 再作用在F (x)±).今后我们常用小写字母f, g, h,……表示映射.定理1. 5.2设X和Y是两个集合,f:X~Y・如果A, BUY 则(1)r1(AUB)=广" (A)U厂(B);(2)(AAB)=广" (A)nr1(B);(3)(A-B)=厂(A)-了' (B)・简言之,映射的原象保持集合的并,交,差运算.证明(略)・定义1. 5.3设X和Y是两个集合,X-Y.如果Y中的每一个点都有原象(即f的值域为Y,亦即f (X)二Y),则称f是一个满射,或者称f为一个从X到Y上的映射;如果X中不同的点的象是Y中不同的点(即对于任何如果心工乃,则有八1"了(心),则称f 是一个单射;如果f既是一个单射又是一个满射,则称f为一个既单且满的映射,或者一一映射.如果f (X)是一个单点集,则称f是一个常值映射,并且当f(X)二{y}时,我们也说f是一个取常值y的映射.易见,集合X中的恒同关系△ (X)是从X到X的一个一一映射,我们也常称之为(集合X上的)恒同映射或恒同,有时也称之为单位映射,并且也常用记号“或i: X-X来表示它.根据定义易见,对于任何xex,有i (x)=x.概言之,恒同映射便是把每一个点映为这个点自身的映射.由于下面的这个定理,一一映射也称为可逆映射.定理1. 5.3设X和Y是两个集合.又设f:X-Y.如果f是一个一一映射,则厂便是一个从Y到X的映射(因此我们可以写广:Y-X),并且是既单且满的.此外我们还有:广'n和"厂=妆证明(略)定理1. 5.4设X, Y和Z都是集合,f:XfY, g: Y-Z.如果f 和g都是单射,则gof:X~Z也是单射;如果f和g都是满射,则g。
2024年河北师大点集拓扑课件 1[1]0一、教学内容本节课我们将学习《点集拓扑》教材的第一章“集合与映射”,具体内容包括集合的基本概念、集合的运算、映射的定义与性质、特殊类型的映射等。
重点在于让学生理解集合与映射的基本理论,为后续的点集拓扑学打下坚实基础。
二、教学目标1. 理解并掌握集合的基本概念,能够运用集合的运算解决实际问题。
2. 理解映射的定义及其相关性质,能够判断不同类型的映射。
3. 培养学生的抽象思维能力和逻辑推理能力,为学习点集拓扑学奠定基础。
三、教学难点与重点教学难点:映射的性质及其判断,特殊类型的映射。
教学重点:集合的基本概念,集合的运算,映射的定义与性质。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:教材、笔记本、文具。
五、教学过程1. 导入:通过实际生活中的例子,引导学生理解集合的概念。
举例:一个班级的学生、所有的偶数、所有的三角形等。
2. 新课讲解:(1)集合的基本概念:集合的定义、元素、集合的表示方法。
(2)集合的运算:交集、并集、补集、幂集。
(3)映射的定义:映射的概念、映射的表示方法。
(4)映射的性质:单射、满射、双射。
(5)特殊类型的映射:恒等映射、投影映射、线性映射。
3. 例题讲解:(1)求集合A和B的交集、并集、补集。
(2)判断给定的映射是否为单射、满射、双射。
4. 随堂练习:(1)已知集合A,求A的幂集。
(2)判断给定映射的类型。
六、板书设计1. 集合的基本概念、运算及表示方法。
2. 映射的定义、性质及特殊类型的映射。
3. 例题及解答。
七、作业设计1. 作业题目:(1)设A为集合,求A的幂集。
(2)已知映射f:A→B,判断f是否为单射、满射、双射。
2. 答案:(1)幂集的求解方法:列举法、公式法。
(2)判断映射类型的依据:映射的定义及性质。
八、课后反思及拓展延伸1. 反思:本节课学生对集合与映射的基本概念掌握程度,对例题的解答情况。
2. 拓展延伸:(1)研究集合的势(cardinality)。
P13第1。
2节6* 证明:0n >个集合经过并,交,差三种运算最多能生成212n-个互不相同的集合,并且确有0n >个集合,它们经过并,交,差三种运算恰能生成212n -个互不相同的集合。
证:分两步完成。
第一步,证明m 个两两无交的集合经过并,交,差三种运算最多能生成2m 个互不相同的集合。
因为,通过并运算,m 个两两无交的集合最多能生成1221m m m m m C C C +++=-个互不相同的集合,而交运算仅能产生空集,差运算也不能产生新的不同的集合,第一步的结论得证。
第二步,证明任意n 个集合经过并,交,差三种运算最多能产生21n -个互不相交的集合。
事实上,记11121212312310112121212312123121ˆ1,2,,ˆˆˆˆˆ,,,n nii i i n i i i i ni i i i i i n n i i jn E A E A A A A i nE A A A A A i i E A A A A A A i i i E A j i i i =-='===<=<<=≠ˆiA 表示去掉i A ,0E 的个数至多为1,11i E 的个数至多为1n C ,122i i E 的个数至多为2n C ,…,1211n n i i i E -- 的个数至多为1n n C -,故它们总的个数为1221n n n n n C C C +++=-它们的并集为1n i i A =。
令()()()()()()()()()111121122111111222212313111111222(1)2(1)2(1)1222121111,,,,,,,,,n n n n n n n n n n n n i n i in nn n i i i n n n n i i n in n i i i B E B E B B E B B E B B E B B E B BE B B A B B A B B A B ++++++--===++-+-+-+----=====-=-=-=-=-=-=-=-=-1221,,,n B B B - 至多有21n -个两两无交的非空集,且每一i A 可由1221,,,n B B B - 经过并,交,差三种运算表出,所以12,,,n A A A 经过并,交,差三种运算生成的集簇与1221,,,n B B B - 经过这三种运算生成的集簇相同。
《点集拓扑学教案》word版教案章节一:引言1.1 课程介绍本课程旨在帮助学生理解点集拓扑学的基本概念和性质,掌握基本的拓扑空间及其性质,了解拓扑学在数学和物理学中的应用。
1.2 知识点1.2.1 拓扑空间的定义与性质1.2.2 开集、闭集和边界1.2.3 拓扑关系的传递性1.3 教学目标通过本章的学习,使学生了解拓扑空间的基本概念,掌握开集、闭集和边界的定义及其性质,理解拓扑关系的传递性。
教案章节二:拓扑空间2.1 基本概念2.1.1 拓扑空间的定义2.1.2 拓扑空间的性质2.1.3 常见的拓扑空间2.2 拓扑关系2.2.1 拓扑关系的定义2.2.2 拓扑关系的性质2.2.3 拓扑关系的传递性2.3 教学目标通过本章的学习,使学生掌握拓扑空间的基本概念和性质,理解拓扑关系的定义及其性质,掌握拓扑关系的传递性。
教案章节三:开集与闭集3.1 开集与闭集的定义3.1.1 开集的定义3.1.2 闭集的定义3.2 开集与闭集的性质3.2.1 开集与闭集的举例3.2.2 开集与闭集的关系3.2.3 开集与闭集的运算3.3 教学目标通过本章的学习,使学生理解开集与闭集的定义及其性质,掌握开集与闭集的举例和运算。
教案章节四:边界4.1 边界概念4.1.1 边界的定义4.1.2 边界的性质4.2 边界定理4.2.1 边界定理的定义4.2.2 边界定理的证明4.3 教学目标通过本章的学习,使学生了解边界的定义及其性质,掌握边界定理及其证明。
教案章节五:拓扑关系与边界关系5.1 拓扑关系与边界关系的联系5.1.1 拓扑关系与边界关系的定义5.1.2 拓扑关系与边界关系的性质5.2 拓扑关系与边界关系的应用5.2.1 拓扑关系与边界关系在几何学中的应用5.2.2 拓扑关系与边界关系在物理学中的应用5.3 教学目标通过本章的学习,使学生理解拓扑关系与边界关系的联系及其性质,掌握拓扑关系与边界关系在数学和物理学中的应用。
《点集拓扑学》教学大纲课程名称:《点集拓扑学》Point Set Topology课程性质:数学与应用数学专业必修课学时数:36教材:《点集拓扑讲义》熊金城编著.高等教育出版社, 2011年12月第4版.主要参考书:《点集拓扑学》徐森林编著,高等教育出版社,2007年7月第1版.《基础拓扑学》胡适耕编著,华中科技大学出版社,2007年8月第1版.《基础拓扑学讲义》尤承业编著,北京大学出版社,1997年11月第1版.《拓扑学》 [美] 芒克里斯编著,熊金城等翻译,机械工业出版社,2006年4月第1版. 授课方式:课堂讲授为主所属院系:数学学院数学与应用数学系课程基础:《数学分析》、《实变函数论》一、课程简介拓扑学是近代数学的三大基础之一,是研究抽象空间的理论的一门学科,它具有高度的概括性和抽象性.点集拓扑学产生于19世纪.G.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果.1906年M.-R.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始.泛函分析的兴起,希尔伯特空间和巴拿赫空间的建立,促进了把点集当作空间来研究.数学分析研究的中心问题是极限,而收敛与连续又是极限的基本问题.为把收敛与连续的研究推广到一般集合上,需要在一般集合上描述与点或与集合“邻近”的概念.如何描述“邻近”,可以用“距离”,但“距离”与“邻近”并无必然的联系.1914年F.豪斯道夫开始考虑用“开集”来定义拓扑.对一个非空集合X,规定X的每点有一个包含此点的子集作成的子集族,满足一组开集公理(即仿照欧几里得空间邻域所具特性给出的一组性质).该子集族中的每个集合称为这点的一个邻域,这就给出了X的一个拓扑结构,X连同此拓扑结构称为一个拓扑空间.X的每点有邻域,故可研究一点的邻近,由此可仿照微积分的方法定义两个拓扑空间之间的连续映射的概念.若一个映射连续,且存在逆映射,逆映射也连续,则称此映射为同胚映射.具有同胚映射的两个拓扑空间称为同胚的(直观地说即两个空间相应的图形从一个可连续地形变为另一个).要证明两个空间同胚,只要找到它们之间的同胚映射即可.在欧几里得直线上,作为子空间,两个任意的闭区间同胚;任意两开区间同胚;半开半闭的区间[c,d)与[a,b)同胚;二维球面挖去一个点S2-p与欧几里得平面K2同胚.要证明两个拓扑空间不同胚,需证明它们之间不存在同胚映射.方法是找同胚不变量或拓扑不变性(即在同胚映射下保持不变的性质);第一个空间具有某同胚不变量,另一个空间不具有,则此二空间不同胚.一般拓扑学中常见的拓扑不变性有连通性、道路连通性、紧性、列紧性、分离性等.在历史上F.豪斯多夫提出了分离空间;弗雷歇看出了紧性与列紧性有密切关系;帕维尔·萨穆伊洛维奇·乌雷松对紧空间进行了系统研究,且在拓扑空间可否变量化的问题上作出了贡献;1937年H.嘉当引进了“滤子”的概念,能进一步刻画一致收敛,使收敛的更本质的属性揭示了出来;维数的问题是E.嘉当在研究皮亚诺曲线(一种可填满整个正方形的“曲线”)时提出的,1912年H.庞加莱给出定义,由乌雷松等人加以改进.二、教学目的点集拓扑近代数学的三大基础之一,是研究抽象空间的理论的一门学科.该课程从点集拓扑学的发展简史出发,深入浅出地阐述了点集拓扑学的基本理论、基本问题和基本方法.内容包括:点集拓扑基础、拓扑空间与连续映射、子空间、积空间、商空间及有关可数性的公理等.其中各部分主题鲜明,逻辑性强,通过对各部分内容由浅入深的讲解,使学生透彻地理解基本概念,努力将每个知识点与中学数学的知识及已经学过的大学其它数学课程(例如实变函数论)联系起来,便于学生比较理解,增加对知识背景的认识.三、教学要求本课程研究点集拓扑学的基本理论和基本方法。
§1.4等价关系初等数论中的同余类的概念,群论中的商群的概念,乃至于解析几何中的自由向量的概念等等都是读者所熟知的.这些概念的精确定义事实上都有赖于本节中所讨论的等价关系的概念.在本书中我们将通过等价关系来定义拓扑空间的商空间.定义1.4.1 设X是一个集合.从集合X到集合X的一个关系将简称为集合X中的一个关系.集合X中的关系{(x,x)|x∈X}称为恒同关系,或恒同,对角线,记作△(X)或△.定义1.4.2 设R是集合X中的一个关系.关系R称为自反的,如果△(X)R,即对于任何x∈X,有xRx;关系R称为对称的,如果,即对于任何x,y∈X,如果xRy则yRx;关系R称为反对称的,如果,即对于任何x,y∈X,xRy和yRx不能同时成立;关系R称为传递的,如果R R R,即对于任何x,y,z∈X,如果xRy,yRz,则有xRz.集合X中的一个关系如果同时是自反、对称和传递的,则称为集合X中的一个等价关系.容易验证集合X中的恒同关系△(X)是自反、对称、传递的,因此是X中的一个等价关系.集合X的幂集P(X)中两个元素(即集合X的两个子集)之间的“相等关系”可以理解为集合P(X)×P(X)的子集{(A,B)|A,B∈P(X),A=B}从定理1.1.l中可见,它是自反、对称、传递的,因此是P(X)中的一个等价关系.集合X的幂集P(X)中两个元素(即集合X的两个子集)之间的“包含关系”可以理解为集合P(X)×P(X)的子集{(A,B)|A,B∈P (X),A B}根据定理1.1.2可见,它是自反的、传递的,但容易知道它不是对称的,因此不是P(X)中的一个等价关系.集合X的幂集P(X)中两个元素(即集合X的两个子集)之间的“真子集关系”可以理解为集合P(X)×P(X)的子集{(A,B)|A,B∈P(X),A B,A≠B}根据定理1.1.3可见,它是反对称的,传递的,但它不是自反的,因而不是P(X)中的一个等价关系.实数集合R中有一个通常的小于关系<,即R×R的子集{(x,y)|x,y∈R,x<y}容易验证关系<是反对称的,传递的,但不是自反的.设p是一个素数,我们在整数集合Z中定义一个关系≡p如下:={(x,y)∈Z×Z|存在n∈Z使得x-y=np}关系常称为模p等价关系,容易验证模p等价关系是自反的,对称的,传递的,因此是Z中的一个等价关系.定义1.4.3 设R是集合X中的一个等价关系.集合X中的两个点x,y,如果满足条件:xRy,则称x与y是R等价的,或简称为等价的;对于每一个x∈X,集合X的子集:{y∈X|xRy}称为x的R等价类或等价类,常记作或[x],并且任何一个y∈都称为R等价类的一个代表元素;集族{| x∈X}称为集合X相对于等价关系R而言的商集,记作X/R.我们考虑整数集合Z中的模2等价关系,易见,13和28.因此1与3是等价的,2和8也是等价的.整数2所属的等价类是所有偶数构成的集合,每一个偶数都可以叫做这个等价类的一个代表元素.此外易见,商集Z/有且仅有两个元素:一个是所有奇数构成的集合,另一个是所有偶数构成的集合.下面这个定理说明,给定了一个等价关系,等于说给定了一个分类的原则,把一个非空集合分割成一些非空的两两无交的等价类,使得这集合的每一个元素都在某一个等价类中.定理1.4.1 设R是非空集合X中的一个等价关系.则:(1)如果x∈X,则x∈,因而;(2)对于任意x,y∈X,或者=,或者证明(1)设x∈X,由于R是自反的,所以xRx,因此x∈,∴≠.(3)对于任意x,y∈X,如果,设z∈[x]∩[y].此时有zRx,且zRy.由于R是对称的,所以xRz.又由于R是传递的,所以xRy.对于任何一个t∈,有tRx,由上述xRy和R的传递性可见tRy,即t∈.这证明同理可证.因此=(注意:要证或者…或者…,应从以下入手:否定掉一个,去证另一个)在初等数论中我们早就知道整数模(素数)p的等价关系将整数集合Z分为互不相交的等价类,每一个等价类记作,称为整数x的模p同余类.让我们再回忆一下在解析几何学中定义自由向量的过程:首先将固定向量定义为平面(或n维欧氏空间)中的有序偶;然后在全体固定向量构成的集合(暂时记为X)中定义一个关系~,使得两个固定向量x和y~相关(即x~y)当且仅当x能通过平面(或n维欧氏空间)的一个平移与y重合.容易验证这个关系~是X中的一个等价关系.每一个~等价类便称为一个自由向量.作业:熟练掌握等价关系,等价类的概念.掌握商集的概念.明确商集的构成。
点集拓扑学教案为开设数学专业本科自学考试及宁德师专数学系数学教育专业“点集拓扑”课程,按熊金城《点集拓扑讲义》(第三版,北京:高等教育出版社,2003)第一至七章编写的教案。
自考生授课30学时,专科生授课45学时。
教学内容与进度安排如下。
章节自考生授课主要内容时数1朴素集合论22.1-2.3度量空间、拓扑空间、连续映射、邻域42.4-2.7闭集闭包、内部、边界、基、序列43子空间、积空间、商空间34连通、连通分支、局部连通、道路连通35第一、二可数性、可分性、Lindelöf性36.1-6.4各种分离性公理T0-T436.5-6.6分离公理的运算保持、Urysohn度量化定理27.1-7.3紧致性、分离性及R n中的紧致子集37.4-7.5各种紧致性、度量空间中的紧致性27.6局部紧致空间、仿紧致空间1章节专科生授课主要内容时数备注拓扑学的起源1一朴素集合论5习题课时11.1集合、映射与关系21.2无限集、选择公理2二拓扑空间与连续映射14习题课时22.1度量空间与连续映射3不讲附录2.2拓扑空间与连续映射22.3邻域与邻域系1不讲定理2.3.32.4导集、闭集、闭包3不讲例2.4.4,定理2.4.8 2.5内部、边界12.6基与子基1部分证明定理 2.6.3,邻域基及相关内容在5.1中介绍2.7拓扑空间中的序列1三子空间、有限积空间、商空间5习题课时13.1子空间 1.5嵌入在6.6中介绍3.2积空间 1.53.3商空间1例3.3.3起不讲四连通性6习题课时14.1连通空间24.2连通性的某些简单应用14.3连通分支0.54.4局部连通空间14.5道路连通空间0.5道路连通分支不讲五有关可数性的公理5习题课时15.1第一与第二可数性公理25.2可分空间1定理5.2.1不讲5.3Lindelöf空间1六分离性公理8习题课时26.1T0、T1、Hausdorff空间 1.56.2正则、正规、T3、T4空间1例6.2.2讲部分6.3Urysohn引理和Tietze扩张定理0.5不讲定理6.3.1,6.3.4的证明6.4完全正则空间,Tychonoff空间16.5分离性公理与子空间、积空间和商空间16.6可度量化空间1定理6.6.1讲部分七紧致性10习题课时3(含总复习)7.1紧致性 2.5定理7.1.6讲部分7.2紧致性与分离性公理0.5引理7.3.2用分析中的结论7.3n维欧氏空间R n中的紧致子集0.57.4几种紧致性以及其间的关系 1.57.5度量空间中的紧致性17.6局部紧致空间,仿紧致空间1定理7.6.8不讲第一章朴素集合论点集拓扑学(Point-set Topology)现称一般拓扑学(General Topology),它的起源与出发点都是集合论.作为基本的点集拓扑学知识,所需的只是一些朴素集合论的预备知识.本章介绍本书中要用到的一些集合论内容,主要涉及集合及集族的运算、等价关系、映射、可数集、选择公理等.作为一教材,讲义对各部分内容均有较系统的论述,作为授课,我们只强调一些基本内容,而对已有过了解的知识不提或少提.记号:Z,Z+,R,Q分别表示整数集,正整数集,实数集和有理数集.一.集合的运算幂集P(X),交∩、并∪、差-(补,余CA,A').运算律:De Morgan律:(1)A-(B∪C)=(A-B)∩(A-C)(2)A-(B∩C)=(A-B)∪(A-C)利用集合的包含关系证明(1).类似可定义任意有限个集的交或并,如记A i.A1∪A2∪…∪A n=(A1∪…∪A n-1)∪A n=∪i≤n A i=∪ni=1规定0个集之并是∅,不用0个集之交.二.关系R是集合X的一个关系,即R⊂X×X,(x,y)∈R记为xRy,称x与y是R相关的.R称为自反的,若∀x∈X,xRx;R称为对称的,若xRy,则yRx;R称为传递的,若xRy,yRz,则xRz.等价关系:自反、对称、传递的关系.如, Δ(X)={(x, x)|x∈X},恒同关系,它是等价关系;{(x,y)|x,y∈R,x<y},小于关系,它是传递的,但不是对称的、不是自反的.设R是X上等价关系,∀x∈X,x的R等价类或等价类[x]R或[x]为{y∈X|xRy},[x]R的元称为[x]R的代表元;商集X/R={[x]R|x∈X}.定理1.4.1设R是非空集合X的等价关系,则(1)∀x∈X,x∈[x]R;(2)∀x,y∈X,或者[x]R=[y]R,或者[x]R∩[y]R=∅.证(2).设z∈[x]R∩[y]R,则zRx,zRy,于是[x]R⊂[y]R且[y]R⊂[x]R,于是[x]R=[y]R.三.映射函数f: X→Y. ∀A⊂X,f(A)={f(x)|x∈A}像;∀B⊂Y,f-1(B)={x∈X|f(x)∈B}原像.满射、单射、一一映射(双射)、可逆映射、常值映射、恒同映射i X、限制f|A、扩张、内射i X|A: A→X.X i={(x1,…,x n)|x i∈X i,i≤n}到第i个坐标集集合X i,i≤n,笛卡儿积X1×X2×…×X n= Пi≤n X i=Пni=1X i的投射p i:X→X i定义为p(x)=x i,其中x=(x1,…,x n).对等价关系R,集合X到商集X/R的自然投射p:X→X/R定义为p(x)=[x]R.四.集族数列{x n}={x n}n∈Z+,有标集族{Aγ}γ∈Γ,指标集Γ,与{Aγ|γ∈Γ}不同,可记有标集族A={A}A∈A;类似地,定义其并∪γ∈ΓAγ(或∪A)、交∩γ∈ΓAγ(或∩A),不定义0个集的交.与有限集族有相同的运算律,如De Morgan律A-(∪γ∈ΓAγ)=∩γ∈Γ(A-Aγ),A-(∩γ∈ΓAγ)=∪γ∈Γ(A-Aγ).映射对应的集族性质:f(∪γ∈ΓAγ)=∪γ∈Γf(Aγ),f(∩γ∈ΓAγ)⊂∩γ∈Γf(Aγ),f-1(∪γ∈ΓBγ)=∪γ∈Γf-1(Bγ),f-1(∩γ∈ΓBγ)=∩γ∈Γf-1(Bγ).五.无限集通过一一映射来确定两集合的个数的多少.有限集(∅或与某{1,2,…,n}有一一映射),无限集,可数集(∅或存在X到Z+的单射),不可数集.易验证:有限集是可数集,可数集的子集是可数集,可数集的映像是可数集.定理1.7.3X是可数集⇔X是Z+的映像.由此,Q是可数集,两可数集的笛卡儿积集是可数集,可数个可数集之并集是可数集.定理1.7.8R是不可数集.利用Cantor对角线法证明开区间(0,1)中的实数不可数.直观上,集合A中元素的个数称为该集合的基数,记为card A,或|A|.|Z+|=ℵ0,|R|=ℵ.若存在从集合A到集合B的单射,则定义|A|≤|B|.连续统假设:不存在基数α,使得ℵ0<α<ℵ.选择公理:若A是由非空集构成的集族,则∀A∈A,可取定ε(A)∈A.由选择公理可证明,若α,β是基数,则下述三式中有且仅有一成立:α<β,α=β,α>β.第二章拓扑空间与连续映射本章是点集拓扑学基础中之基础,从度量空间及其连续映射导入一般拓扑学中最基本的两个概念:拓扑空间、连续映射,分析了拓扑空间中的开集、邻域、聚点、闭集、闭包、内部、边界、基与子基的性质,各几种不同的角度生成拓扑空间,及刻画拓扑空间上的连续性.§2.1度量空间与连续映射在R 上,|x-y|表示点x 与y 之间的距离.绝对值是一非负函数,具有三条重要性质.定义2.1.1设X 是一集合,ρ:X ⨯X →R .如果ρ满足正定性、对称性和三角不等式,则称ρ是X 的一个度量.(X,ρ)称为度量空间,ρ(x,y)表示两点x,y 之间的距离.例2.1.1实数空间R .ρ(x,y)=|x-y|,R 的通常度量.例2.1.2n 维欧氏空间R n =R ⨯R ⨯…⨯R .对于x ∈R n,记x=(x i ).定义ρ(x,y)=∑=n1i 2i i )y -(x ,R n 的通常度量,n 维欧氏空间.R 2称为欧氏平面或平面.例2.1.3Hilbert 空间H .H ={x=(x 1,x 2,…)|x i ∈R ,i ∈Z +;∑∞=1i 2ix <∞}.定义ρ(x,y)=∑∞=1i 2i i )y -(x ,则度量空间(H ,ρ)称为Hilbert 空间.例2.1.4离散度量空间.度量空间(X,ρ)称为离散的,若∀x ∈X,∃δx >0,使得不存在X 中的点y ≠x,满足ρ(x,y)<δx .如对集合X,按如下方式定义ρ:X ⨯X →R 是X 上的离散度量:⎩⎨⎧≠==y.x 1,y,x 0,y)(x,ρ定义2.1.2设(X,ρ)是度量空间.B(x,ε)={y ∈X |ρ(x,y)<ε}称为以x 为心,ε为半径的球形邻域,或ε邻域,或球形邻域.对(R ,|.|),B(x,ε)=(x-ε,x+ε).定理2.1.1度量空间(X,ρ)的球形邻域具有性质:(1)∀x ∈X,ε>0,x ∈B(x,ε);(2)∀x ∈X,ε1,ε2>0,∃ε>0,使B(x,ε)⊂B(x,ε1)∩B(x,ε2);(3)若y ∈B(x,ε),∃δ>0使B(y,δ)⊂B(x,ε).证(2)0<ε<min{ε1,ε2};(3)δ=ε-ρ(x,y),则B(y,δ)⊂B(x,ε).定义2.1.3X的子集A称为(X,ρ)的开集,若∀a∈A,∃ε>0,使B(a,ε)⊂A.每一球形邻域是开集.例2.1.5R中的开区间是开集.∀x∈(a,b),让ε=min{x-a,b-x},则B(x,ε)⊂(a,b).同样可证,无限开区也是开集.闭区间[a,b]不是开集.定理2.1.2度量空间的开集具有以下性质:(1)X,∅是开集;(2)两开集的交是开集;(3)任意开集族之并是开集.证(1)由定理2.1.1(1);(2),(3)由定理2.1.1(2).定义2.1.4设X是度量空间,x∈X,U⊂X.U称为x的邻域,若∃开集V,使x∈V⊂U.定理2.1.3U是X中点x的邻域⇔∃ε>0,使B(x,ε)⊂U.定义2.1.5设X,Y是两度量空间.f:X→Y, x0∈X,称f在x0连续,若∀f(x0)的球形邻域B(f(x0),ε)(∀ε>0),∃x0的球形邻域B(x0,δ)(∃δ>0),使f(B(x0,δ))⊂B(f(x0),ε)(当ρX(x,x0)<δ时,ρY(y,f(x0))<ε).称f在X连续,若f在X的每一点连续.定理2.1.4设X,Y是两度量空间.f:X→Y, x0∈X,那么(1)f在x0连续⇔若U是f(x0)的邻域,则f–1(U)是x0的邻域;(2)f在X连续⇔若U是Y的开集,则f–1(U)是X的开集.证(1)利用定义2.1.5,2.1.4.(2)“⇒”f–1(U)是每一点的邻域.“⇐”证每一点连续,利用(1).由此可见,度量空间的连续只与邻域或开集有关.它导入建立比度量空间更一般的拓扑空间的概念及其连续性.§2.2拓扑空间与连续映射定义2.2.1设T是集合X的子集族,若T满足:(1)X,∅∈T;(2)∀A,B∈T⇒A∩B∈T;(3)∀T1⊂T,∪T1∈T;称T是X的一个拓扑.(X,T)是拓扑空间,T的元称为X的开集.空间X的拓扑是X的全体开集的族.定义2.2.2(X,ρ)度量空间.Tρ由X的所有开集构成的族.(X,Tρ)称为由度量ρ诱导出的拓扑空间.简称Tρ为度量拓扑.度量空间⇒拓扑空间.例2.2.1平庸拓扑T={X,∅}.平庸空间.例2.2.2离散拓扑T=P(X).离散空间.X的每一子集是开集.由离散度量空间导出的拓扑是离散拓扑.∪∅}.例2.2.4有限补拓扑T={U⊂X|U'是X的有限子集}{验证T是X上的拓扑.(1)显然.(2)∀A,B⊂X,讨论A∩B时分两种情形,一是A,B中有一是∅,二是A,B都不是∅.(3)设T1⊂T,不妨设∃∅≠A0∈T1,利用De Morgan律.有限补空间.∪∅}.例2.2.5可数补拓扑T={U⊂X|U'是X的可数子集}{定义2.2.3可度量化空间.离散空间是可度量化空间.多于一点的平庸空间不是可度量化空间.度量化问题是点集拓扑学研究的中心问题之一.本书将在§6.6中给出该问题的一个经典的解.定义2.2.4X,Y是两拓扑空间.f:X→Y.称f连续,若Y中每一开集U的原象f-1(U)是X中的开集.定理2.2.1恒同映射连续.连续函数的复合是连续的.定义2.2.5f:X→Y称为同胚或同胚映射,若f是一一映射且f及f-1均连续.定义2.2.6称两空间X与Y同胚,或X同胚于Y,若存在从X到Y的同胚.定理2.2.2(2.2.3)恒同映射同胚(X与X同胚);f同胚⇒f-1同胚(若X与Y同胚,则Y与X同胚);同胚的复合是同胚(若X与Y同胚,且Y与Z同胚,则X与Z同胚).空间的同胚关系是等价关系.拓扑学的中心任务:研究拓扑不变性质.抽象化过程:欧氏空间→度量空间→拓扑空间;点距离→度量→开集.§2.3邻域定义2.3.1设(X,T)是拓扑空间.x∈X,U⊂X称为x的邻域,如果存在V∈T使x∈V⊂U;若U 是开的,U称为x的开邻域.定理2.3.1设U⊂X.U是X的开集⇔U是它的每一点的邻域.证由定义得“⇒”;利用开集之并为开得“⇐”.x在X的所有邻域构成的族称为x的邻域系,记为U x.定理2.3.2U x的性质:(1)X∈U x;∀U∈U x,x∈U;(2)U,V∈U x⇒U∩V∈U x;(3)U∈U x且U⊂V⇒V∈U x;(4)U∈U x⇒∃V∈U x使V⊂U且∀y∈V,V∈U y.证由定义2.3.1得(1);由开集的交是开集得(2);由定义2.3.1得(3);取V为满足x∈V⊂U的开集.由邻域系出发可建立拓扑空间的理论,显得自然,但不流行.利用邻域与开集的关系(定理2.3.1)导出开集,从U x(∀x∈X)具有定理2.3.2的性质的(1)-(4)出发,定义T={U⊂X|∀x∈U,U∈U x},则(X,T)是拓扑空间,且这空间中每一点x的邻域系恰是U x.详见定理2.3.3.定义2.3.2(点连续)映射f:X→Y称为在点x∈X连续,如果U是f(x)在Y中的邻域,则f-1(U)是x在X中的邻域.定理2.1.4保证了在度量空间中点的连续性与由度量导出的拓扑空间中的点的连续性的一致.另一方面,关于点的连续性,易验证(定理 2.3.4),恒等映射在每一点连续,两点连续的函数之复合仍是点连续的.定义2.2.4与定义2.3.2所定义的“整体”连续与每一“点”连续是一致的.定理2.3.5设f:X→Y. 则f连续⇔f在每一x∈X连续.证“⇒”若U是f(x)的邻域,∃开集V使f(x)∈V⊂U,x∈f-1(V)⊂f-1(U).“⇐”若U是Y的开集,∀x∈f-1(U),U是f(x)的邻域,f-1(U)是x的邻域,所以f-1(U)在X中开.§2.4导集、闭集、闭包定义2.4.1设A⊂X.x称为A的聚点(凝聚点,极限点),如果x的每一邻域U中有A中异于x 的点,即U∩(A-{x})≠∅.A的全体聚点之集称为A的导集,记为d(A).x称为A的孤立点,若x不是A的聚点,即存在x的邻域U使U∩(A-{x})=∅,即U∩A⊂{x}.例2.4.1X是离散空间.若A⊂X,则d(A)=∅.∀x∈X,取U={x},则U∩A⊂{x},所以x∉d(A).例 2.4.2X是平庸空间,A⊂X.若A=∅,则d(A)=∅;若|A|=1,则d(A)=X-A;若|A|>1,则d(A)=X.对于x∈X,若U是x的邻域,则U=X,于是U∩(A-{x})≠∅⇔A-{x}≠∅⇔A⊄{x},由此,易计算d(A).定理2.4.1A,B⊂X,则(1)d(∅)=∅;(2)A⊂B⇒d(A)⊂d(B);∪∪;(3)d(A B)=d(A)d(B)(4)d(d(A))⊂A d(A).∪证由定义2.4.1得(1)和(2).∪分别存在x的邻域U,V使得关于(3).由(2)得d(A)∪d(B)⊂d(A B)∪.设x∉d(A)d(B),∪)⊂{x}.U∩A⊂{x},V∩B⊂{x},令D=U∩V,则D∩(A B∪存在x的邻域U,使得U∩A⊂{x},取x的开邻域V⊂U,则V∩A=∅,关于(4).设x∉A d(A),∀y∈V,V∩(A-{y})=∅,y∉d(A),V∩d(A)=∅,x∉d(d(A)).定义2.4.2A⊂X称为X的闭集,如果d(A)⊂A.定理2.4.2A闭⇔A'开.证“⇒”∀x∈A',由于d(A)⊂A,存在x的邻域U使U∩A=∅,于是U⊂A'.“⇐”∀x∈A',A'∩A=∅, x∉d(A),所以d(A)⊂A.例2.4.3R的闭区间是闭集.∪+∞)开集.(a,b)不是闭集,因为a是聚点.[a,b]'=(-∞,a)(b,定理2.4.3记F是空间X的全部闭集族,则(1)X,∅∈F;(2)A,B∈F⇒A B∪∈F;(3)∅≠H⊂F⇒∩H∈H H∈F.证利用De Morgan定律及拓扑的定义.F={U'|U∈T}.直接验证可得(1)、(2).(3)令U={H'∣H∈H}.则∪H∈H H'∈T,从而∩H∈H H=∩H∈H H''=(∪H∈H H')'∈F.Cantor集(例2.4.4)是集合论、点集拓扑或实变函数论中是具有特别意义的例子,它说明R中的闭集可以是很复杂的,在此不介绍.∪称为A的闭包,记为A,A-或c(A).定义2.4.3A d(A)定理2.4.5对A,B⊂X,有(1)∅-=∅;(2)A⊂A-;(3)(A∪B)-=A-∪B-;(4)(A-)-=A-.∪∪∪∪∪∪A-∪B-.证(3)(A∪B)-=A B d(A B)=A d(A)B d(B)=(4)(A-)-=(A∪d(A))-=A-∪d(A)-=A d(A)d(d(∪∪A))=A-.上述4条确定了闭包运算,称为Kuratowski闭包公理,由此可建立拓扑空间的概念.事实上,记此运算为c(A),定义T={U⊂X|c(U')=U'},则(X,T)是拓扑空间,且这空间中每一c(A)=A-,详见定理2.4.8.关于闭包的几个相关结果:(1)x∈A-⇔对x的任一邻域有U∩A≠∅.(定义2.4.3后)(2)d(A)=(A-{x})-.(3)A闭⇔d(A)⊂A⇔A=A-.(定理2.4.4)(4)A-是闭集.(定理2.4.6)(5)A-是包含A的所有闭集之交,是包含A的最小闭集.(定理2.4.7:设F是包含A的所有闭集之交,则A⊂F⊂A-,A-⊂F,所以F=A-.)定义2.4.5(X,ρ)是度量空间.对非空的A⊂X,x∈X,定义ρ(x,A)=inf{ρ(x,y)|y∈A}.定理2.4.9对度量空间(X,ρ)的非空子集A,(1)x∈A-⇔ρ(x,A)=0;(2)x∈d(A)⇔ρ(x,A-{x})=0.证ρ(x,A)=0⇔∀ε>0,∃y∈A,ρ(x,y)<ε⇔B(x,ε)∩A≠∅⇔∀U∈U x, U∩A≠∅⇔x∈A-.定理2.4.10设f:X→Y,则下述等价(1)f连续;(2)若B闭于Y,则f-1(B)闭于X;(3)∀A⊂X,f(A-)⊂f(A)-.证(1)⇒(2)B是Y的闭集,B'是Y的开集,f-1(B')=f-1(B)'是X的开集,f-1(B)是X的闭集.(2)⇒(3)f(A)⊂f(A)-,A⊂f-1(f(A)-),A-⊂f-1(f(A)-),f(A-)⊂f(A)-.(3)⇒(1)设U是Y的开集,U'是Y的闭集且f(f-1(U')-)⊂f(f-1(U'))-⊂U'-=U',f-1(U')-⊂f-1(U'), f-1(U')=f-1(U)'是闭,f-1(U)是开.§2.5内部、边界定义2.5.1若A是x的邻域,则称x是A的内点.A的所有内点的集合称为A的内部,记为A︒.定理2.5.1对A⊂X,A︒=A'-',A-=A'︒'.证x∈A︒,由于A∩A'=∅,于是x∉A'-,从而x∈A'-'.反之,x∈A'-',x∉A'-,∃x的邻域V∩A'=∅, V⊂A,x∈A︒.因此,A︒=A'-'.从而A'︒=A''-'=A-',A︒-=A'︒'.定理2.5.3对A,B⊂X,有(1)X︒=X;(2)A︒⊂A;(3)(A∩B)︒=A︒∩B︒;(4)A︒︒=A︒.证(1)、(2)是显然的.(A∩B)︒=(A'∪B')-'=A'-'∩B'-'=A︒∩B︒.而A︒︒=A'-''-'=A'-'=A︒.关于内部的几个相关结果:(1)A是x的邻域⇔x∈A︒.(2)A︒是开集.(定理2.5.4)(3)A是开集⇔A=A︒.(定理2.5.2)(4)A︒是A所包含的所有开集之并,是含于A内的最大开集.(定理2.5.5)证(2)A︒=A'-'是开集.(3)A开⇔A'闭⇔A'=A'-⇔A=A'-'=A︒.(4)设O是含于A内的所有开集之并,A︒⊂O⊂A,O⊂A︒,所以O=A︒.定义2.5.2x称为A的边界点,若x的每一邻域,既含有A中的点又有A'中的点.A的边界点之集称为边界,记为∂A.定理2.5.6对A⊂X,有(1)∂A=A-∩A'-=∂(A');(2)A-=A︒∪∂A;(3)A︒=A--∂A.∪︒-)=A-.∪'-)=A-∩(A︒A∪-)∩(A︒A∪-∩A'-)=(A︒A证(2)A︒∪∂A=A︒(A(3)A--∂A=A--(A-∩A'-)=A--A'-=A-∩A'-'=A︒.§2.6基与子基度量空间→球形邻域→开集→拓扑.在度量空间中球形邻域的作用就是拓扑空间中基的作用.定义2.6.1设T是空间X的拓扑,B⊂T,如果T中每一元是B中某子集族之并,称B是X的基.所有单点集的族是离散空间的基.定理2.6.2设B⊂T.B为X的基⇔∀x∈X及x的邻域U x,∃V x∈B使x∈V x⊂U x.证“⇒”∃开集W x使得x∈W x⊂U x,∃B1⊂B使得W x=∪B1,∃V x∈B1⊂B使x∈V x⊂U x.“⇐”设U∈T,∀x∈U,∃V x∈B使x∈V x⊂U,从而{V x|x∈U}⊂B且U=∪x∈U V x.在度量空间中,所有球形邻域的族是度量拓扑的基(定理2.6.1).所有开区间的族是R的基.定理2.6.3拓扑空间X的基B满足:(i)∪B=X;(ii)∀B1,B2∈B,x∈B1∩B2,∃B3∈B使x∈B3⊂B1∩B2.反之,若集合X的子集族B满足(1)、(2),定义T={∪B1|B1⊂B},则T是X的以B作为基的唯一拓扑.证验证T是X的拓扑.(1)∅=∪∅.(2)先设B1,B2∈B,∀x∈B1∩B2,∃W x∈B使x∈W x⊂B1∩B2,于是B1∩B2=∪{W x|x∈B1∩B2}∈T.如果A1,A2∈T,设A1=∪B1,A2=∪B2,则A1∩A2=∪{B1∩B2| B1∈B1,B2∈B2}∈T.(3)设T1⊂T,∀A∈T1,∃B A⊂B,使得A=∪B A,那么∪T1=∪(∪{B A|A∈T1}).较强于(ii)且易于验证的条件是(ii')∀B1,B2∈B,B1∩B2∈B.例2.6.1实数下限拓扑空间.令B={[a,b)|a,b∈R,a<b},则B为R上一拓扑的基.这空间称为实数下限拓扑空间,记为R l.开区间是R l中的开集,因为(a,b)=∪i∈Z+[a+1/i,b).定义2.6.2设(X,T)是拓扑空间,S⊂T.若S的元之所有有限交构成的族是T的基,则称S是T的子基.S的元之有限交构成的族{S1∩S2∩…∩S n S∣i∈S,i≤n∈Z+}.显然,空间X的基是子基.∪-∞,b)b∣∈R}是R的子基.∣∈R}{(例2.6.2S={(a,+∞)a对照定理2.6.3,集合X的子集族S要作为子基生成X上的拓扑的充要条件是∪S=X.(定理2.6.4)映射的连续性可用基、子基来刻画或验证.定理2.6.5设X,Y是两拓扑空间,f:X→Y,下述等价:(1)f连续;(2)Y基B,使得B中每一元的原像在X中开;(3)Y有子基S,使得S中每一元的原像在X中开.证(3)⇒(2)设B是S的元之所有有限交构成的族,则B满足(2).(2)⇒(1)设U在Y中开,则U=∪B1,于是f-1(U)=∪{f-1(B)|B∈B1}在X中开.类似地,可定义点的邻域基与邻域子基的概念,同时用它们来验证映射的连续性等.在第五章中定义第一可数性时再介绍这些概念.§2.7拓扑空间中的序列可以与R中一样地定义序列、常值序列、子序列,见定义2.7.1,2.7.3.定义2.7.2X中序列x i→x.极限,收敛序列.平庸空间中任意序列收敛于空间中的任一点.数学分析中的一些收敛性质还是保留的,如常值序列收敛,收敛序列的子序列也收敛.(定理2.7.1)定理2.7.2A-{x}中序列x i→x⇒x∈d(A).证∀x的邻域U,U∩(A-{x})≠∅,所以x∈d(A).定理2.7.3f在x0连续且x i→x0⇒f(x i)→f(x0).证设U是f(x0)的邻域,则f-1(U)是x0的邻域,∃n∈Z+,当i>n时有x i∈f-1(U),从而f(x i)∈U.上述两定理的逆命题均不成立.例2.7.1设X是不可数集赋予可数补拓扑,则(1)在X中x i→x⇔∃n∈Z+,当i>n时有x i=x;(2)若A是X的不可数子集,则d(A)=X.证(1)的必要性.令D={x i|x i≠x,i∈Z+},则D'是x的邻域,∃n∈Z+,当i>n时有x i∈D',即x i=x.证(2)∀x的邻域U,A-{x}⊄U'(可数集),所以U∩(A-{x})≠∅,x∈d(A).定理2.7.2的逆命题不真.如例2.7.1,取定x0∈X,让A=X-{x0},则x0∈d(A),但A中没有序列收敛于x0.定理2.7.3的逆命题不真.取X是实数集赋予可数补拓扑,让i:X→R是恒等映射,若在X中x i→x,则在R中f(x i)→f(x),但i在x不连续,因为x在R的开邻域(x-1,x+1)的原像i-1((x-1, x+1))=(x-1,x+1)在X中不是开的.定理2.7.4设{x i}是度量空间(X,ρ)中的序列,则x i→x⇔ρ(x i,x)→0.证x i→x⇔∀x的邻域U,∃n∈Z+,当i>n时有x i∈U⇔∀ε>0,∃n∈Z+,当i>n时有x i∈B(x,ε)⇔∀ε>0,∃n∈Z+,当i>n时有ρ(x i,x)<ε⇔ρ(x i,x)→0.第三章子空间、积空间、商空间介绍三种从原有的拓扑空间或拓扑空间族构造新空间的经典方法,引入遗传性、可积性、可商性等概念,这些是研究拓扑性质的基本构架.§3.1子空间对于空间X的子集族A及Y⊂X,A在Y上的限制A|Y={A∩Y|A∈A}.(定义3.1.2)引理3.1.2设Y是空间(X,T)的子集,则T|Y是Y上的拓扑.证按拓扑的三个条件逐一验证.如,设T1⊂T|Y,∀A∈T1,∃B A∈T,使得A=B A∩Y,于是∪T1=∪{B A∩Y|A∈T1}=(∪{B A|A∈T1})∩Y∈T|Y.定义3.1.3对Y⊂X,(Y,T|Y)称为(X,T)的子空间,T|Y称为相对拓扑.“子空间”=“子集”+“相对拓扑”.易验证,若Z是Y的子空间,且Y是X的子空间,则Z是X的子空间.(定理3.1.4)定理3.1.5(3.1.7)设Y是X的子空间,y∈Y,则(1)若T,T*分别为X,Y的拓扑,则T*=T|Y;(2)若F,F*分别为X,Y的全体闭集族,则F*=F|Y;(3)若U y,U y*分别为y在X,Y中的邻域系,则U y*=U y|Y;(4)若B是X的基,则B|Y是Y的基.证(2)F*∈F*⇔Y-F*∈T|Y⇔Y-F*=U∩Y,U∈T⇔F*=(X-U)∩Y,U∈T⇔F*∈T|Y.(4)∀U开于Y,∃X的开集V,使得U=V∩Y,∃B1⊂B,满足V=∪B1,则U=∪(B1|Y).在R的子空间(0,+∞)中(0,1]是闭集.定理3.1.6设Y是X的子空间,A⊂Y,则(1)d Y(A)=d X(A)∩Y;(2)c Y(A)=c X(A)∩Y.证(1)y∈d Y(A),∀y在X中的邻域U,U∩(A-{y})⊃(U∩Y)∩(A-{y})≠∅,所以y∈d X(A)∩Y.反之,设y∈d X(A)∩Y,∀y在Y中的邻域V,∃y在X中的邻域U使V=U∩Y,于是V∩(A-{y})=(U∩(A-{y}))∩Y=U∩(A-{y})≠∅,所以y∈d Y(A).∪X(A)∩Y)=(A d∪c X(A)∩Y.∪X(A))∩(A Y)=∪Y(A)=A(d(2)c Y(A)=A d§3.2有限积空间就平面的球形邻域B d(x,ε)而言,我们知道球形邻域内含有方形邻域,方形邻域内含有球形邻域.从基的角度而言,形如B1(x1,ε1)⨯B2(x2,ε2)的集合就是平面拓扑的基了.对于两个拓扑空间X,Y,在笛卡儿积集X⨯Y中可考虑形如U⨯V的集合之全体,其中U,V分别是X,Y的开集.对于有限个空间X1,X2,…,X n,可考虑形如U1⨯U2⨯…⨯U n的集合.定理3.2.2设(X i,T i)(i≤n)是n个拓扑空间,则X=X1⨯X2⨯…⨯X n有唯一的拓扑,以X的子集族B={U1⨯U2⨯…⨯U n|U i∈T i,i≤n}为它的一个基.证验证B满足定理2.6.3的条件(i),(ii').(1)X=X1⨯X2⨯…⨯X n∈B,∪B=X;(2)若U1⨯U2⨯…⨯U n, V1⨯V2⨯…⨯V n∈B,则(U1⨯U2⨯…⨯U n)∩(V1⨯V2⨯…⨯V n)=(U1∩V1)⨯…⨯(U n∩V n)∈B.定义3.2.2以定理3.2.2中B为基生成X1⨯X2⨯…⨯X n上的唯一拓扑,称为拓扑T1,T2,…,T n的积拓扑.(X,T)称为(X1,T1),…,(X n,T n)的(有限)积空间.定理3.2.4设X=X1⨯X2⨯…⨯X n是积空间,B i是X i的基,则B*={B1⨯B2⨯…⨯B n|B i∈B i,i≤n}是积拓扑T的基.证利用定理2.6.2.设x ∈U ∈T ,∃U i ∈T i 使x ∈U 1⨯U 2⨯…⨯U n ⊂U,∃B i ∈B i 使x i ∈B i ⊂U i ,那么x ∈B 1⨯B 2⨯…⨯B n ⊂U 1⨯U 2⨯…⨯U n ⊂U.例3.2.1形如(a 1,b 1)⨯(a 2,b 2)⨯…⨯(a n ,b n )的集合构成 n 的基.设(X 1,ρ1),(X 2,ρ2)是两个度量空间.令ρ(x,y)=22222211)y ,x ()y ,x (ρρ+,则ρ是X 1⨯X 2上的度量,导出X 上的度量拓扑T .对于n 个度量空间之积可类似地定义.(定义3.2.1)定理3.2.1度量空间的有限积:积拓扑与度量拓扑一致.验证n=2的情形.易验证B 1(x 1,ε/2)⨯B 2(x 2,ε/2)⊂B(x,ε)⊂B 1(x 1,ε)⨯B 2(x 2,ε),于是每一B(x,ε)是积拓扑的开集,且每一B 1(x 1,ε)⨯B 2(x 2,ε)是度量拓扑的开集,所以导出相同的拓扑.定理3.2.5有限积空间X=X 1⨯X 2⨯…⨯X n 以S ={p -1i (U i )|U i ∈T i ,i ≤n}为子基,其中T i 是X i 的拓扑,p i :X →X i 是投射.仅证n=2的情形.p -11(U 1)=U 1⨯X 2,p -12(U 2)=X 1⨯U 2,所以p -11(U 1)∩p -12(U 2)=U 1⨯U 2∈B .定义3.2.3f:X →Y 称为开(闭)映射,若U 开(闭)于X,则f(U)开(闭)于Y .定理3.2.6p i :X →X i 是满、连续、开映射,未必是闭映射.由于p -1i (U i )=X 1⨯X 2⨯…⨯U i ⨯…⨯X n ,所以p i 连续.由于p i (U 1⨯U 2⨯…⨯U n )=U i ,所以p i 是开的.但是p 1:R 2→R 不是闭的.定理3.2.7设映射f:Y →X,其中X 是积空间X 1⨯X 2⨯…⨯X n .则f 连续⇔∀i ≤n,p i ◦f:Y →X i 连续.证充分性.对X 的子基S ={p -1i (U i )|i ≤n,U i ∈T i },f -1(p -1i (U i ))=(p i ◦f)-1(U i )开于Y .多元函数连续当且仅当它的每一分量连续.定理3.2.8积拓扑是使每一投射都连续的最小拓扑.即设T 是积空间X=X 1⨯X 2⨯…⨯X n 的积拓扑,若集合X 的拓扑T *满足:每一投射p i :(X,T *)→X i 连续,则T ⊂T *.证由于{p -1i (U i )|U i ∈T i ,i ≤n}⊂T *,所以T ⊂T *.§3.3商空间回忆,商集X/R,及自然投射p:X →X/R 定义为p(x)=[x]R .问题:设X 是拓扑空间,要在X/R 上定义拓扑,使p 连续的最大的拓扑.讨论更一般的情形,设(X,T )是拓扑空间且f:X →Y 是满射.赋予集合Y 什么拓扑,使f 连续的最大的拓扑.若f连续,且U是Y的开集,则f-1(U)是X的开集.让T1={U⊂Y|f-1(U)∈T},易验证T1是Y上的拓扑.定义3.3.1(3.3.2)称T1是Y的相对于满射f而言的商拓扑,f:(X,T)→(Y,T1)称为商映射.这时,U在Y中开⇔f-1(U)在X中开;F在Y中闭⇔f-1(F)在X中闭.定理3.3.1商拓扑是使f连续的最大拓扑.证设f:(X,T)→(Y,T1)是商映射.显然,f是连续的.如果T2是Y的拓扑使f:(X,T)→(Y,T2)连续,则∀U∈T2,f-1(U)∈T,于是U∈T1,即T2⊂T1,所以T1是使f连续的最大拓扑.定理3.3.2设f:X→Y是商映射.对于空间Z,映射g:Y→Z连续⇔映射g◦f:X→Z连续.证设g◦f:X→Z连续,∀W开于Z,(g◦f)-1(W)=f-1(g-1(W))开于X,由于f是商映射,所以g-1(W)开于Y,故g连续.定理3.3.3连续,满开(闭)映射⇒商映射.证设f:(X,T X)→(Y,T Y)是连续的满开(闭)映射,T1是Y的相对于f而言的商拓扑,要证T Y= T1.由定理3.3.1,T Y⊂T1.反之,∀V∈T1,f-1(V)∈T X.对于开映射的情形,V=f(f–1(V))∈T Y;对于闭映射的情形,V=Y-f(X-f–1(V))∈T Y,所以总有T1⊂T Y.定义3.3.3设R是空间(X,T)的等价关系,由自然投射p:X→X/R确定了X/R的商拓扑T R,称(X/R,T R)为商空间,这时p:X→X/R是商映射.例3.3.1在R中定义等价关系~:∀x,y∈R,x~y⇔或者x,y∈Q,或者x,y∉Q.商空间R/~是由两点组成的平庸空间.由于Q在R中既是开集,也不是闭集,所以单点集[Q]在R/~中既不是开集,也不是闭集.习惯上,把R/~说成是在R中将所有有理点和所有无理点分别粘合为一点所得到的商空间.例3.3.2在[0,1]上定义等价关系~:∀x,y∈[0,1],x~y⇔或者x=y,或者{x,y}={0,1}.[0,1]/~是在[0,1]中粘合0,1两点所得到的商空间,这商空间同胚于单位圆周S1.第四章连通性本章起的四章介绍4类重要的拓扑不变性质.本章讨论连通性、道路连通性、局部连通性及其在实分析中的一些简单的应用.§4.1连通空间在拓扑中怎样定义连通,分隔区间(0,1),(1,2)的关系与(0,1),[1,2)的关系不同,虽然他们都不相交,但相连的程度不一样.定义4.1.1设A,B⊂X,若A∩B-=A-∩B=∅,则称A,B是隔离的.区间(0,1)与(1,2)隔离,但区间(0,1)与[1,2)不隔离.几个基本事实:(1)两不交的开集是隔离的;(2)两不交的闭集是隔离的;(3)隔离子集的子集是隔离的.定义4.1.2X称为不连通的,若X中有非空的隔离子集A,B使X=A∪B,即X可表为两非空隔离集之并.否则X称为连通的.包含多于一个点的离散空间不连通,平庸空间是连通的.定理4.1.1对空间X,下述等价:(1)X是不连通的;(2)X可表为两非空不交闭集之并;(3)X可表为两非空不交开集之并;(4)X存在既开又闭的非空真子集.证(1)⇒(2)设隔离集A,B之并是X,B-=B-∩(A∪B)=(B-∩A)∪(B-∩B)=B.同理,A也是闭的.(2)⇒(3)设X是两非空不交闭集A,B之并,则X是两非空不交开集A',B'之并.(3)⇒(4)设X是两非空不交开集A,B之并,则A,B都是X的既开又闭的非空真子集.(4)⇒(1)若A是X的开闭集,则A,X-A隔离.例4.1.1Q不是R的连通子空间,因为Q=(Q∩(-∞,π))∪(Q∩(π,+∞)).定理4.1.2R是连通的.证若R不连通,则R是两非空不交Array闭集A,B之并.取定a∈A,b∈B,不妨设a<b.令A*=[a,b]∩A,B=[a,b]∩B,则A*,B*是R两非空不交闭集且[a,b]=A*∪B*.让c=supA*.因A*是闭的,c∈A*,c<b,(c,b]⊂B*.因B*是闭的,c∈B*,从而A*∩B*≠∅,矛盾.定义4.1.3若X的子空间Y是连通的,则称Y为连通子集,否则,称为不连通子集.定理4.1.3设A,B⊂Y⊂X,则A,B是Y的隔离集⇔A,B是X的隔离集.证c Y(A)∩B=c X(A)∩Y∩B=c X(A)∩B;同理,c Y(B)∩A=c X(B)∩A.定理4.1.4设Y是X的连通子集.如果X有隔离子集A,B,使Y⊂A∪B,则Y⊂A或Y⊂B.证A∩Y,B∩Y是Y的隔离集,所以A∩Y=∅,或B∩Y=∅,于是Y⊂B或Y⊂A.定理4.1.5若Y是X的连通子集且Y⊂Z⊂Y-,则Z是连通的.证若Z不连通,∃X的非空隔离集A,B使Z=A∪B⊃Y,于是Y⊂A或Y⊂B,不妨设Y⊂A,那么Z⊂Y-⊂A-,于是B=Z∩B=∅,矛盾.定理4.1.6设{Yγ}γ∈Γ是空间X的连通子集族.如果∩γ∈ΓYγ≠∅,则∪γ∈ΓYγ连通.证若∪γ∈ΓYγ是X中隔离集A,B之并,取定x∈∩γ∈ΓYγ,不妨设x∈A,则∀γ∈Γ,Yγ⊂A,所以∪γ∈ΓYγ⊂A,于是B=∅.定理4.1.7设Y⊂X.若∀x,y∈Y,∃X的连通子集Y xy使x,y∈Y xy⊂Y,则Y连通.证设Y≠∅.取定a∈Y,则Y=∪y∈Y Y ay且a∈∩y∈Y Y ay,所以Y连通.定理4.1.8(连续映射保持)设f:X→Y连续.若X连通,则f(X)连通.证若f(X)不连通,则f(X)含有非空的开闭真子集A.由于f:X→f(X)连续,于是f-1(A)是X的非空开闭真子集.连续映射保持性⇒可商性⇒拓扑不变性.有限可积性.对于拓扑性质P,要证有限可积性,因为X1⨯X2⨯…⨯X n同胚于(X1⨯…⨯X n-1)⨯X n,所以只须证:若X,Y具性质P,则X⨯Y具有性质P.定理4.1.9(有限可积性)设X1,X2,…,X n连通,则X1⨯X2⨯…⨯X n连通.证仅证若X,Y连通,则X⨯Y连通.取定(a, Array b)∈X⨯Y.∀(x,y)∈X⨯Y,令S xy=(X⨯{y})∪({a}⨯Y),由于X⨯{y}同胚于X,{a}⨯Y同胚于Y,所以X⨯{y},{a}⨯Y都连通且(a,y)∈(X⨯{y})∩({a}⨯Y),由定理4.1.6,S xy连通且(x,y)∈S xy,再由定理 4.1.7,X⨯Y=∪{S xy|(x,y)∈X⨯Y}连通.§4.2连通性的应用利用R连通性的证明(定理4.1.2)知,区间都是连通的.区间有9类:无限区间5类:(-∞,+∞),(a,+∞),[a,+∞),(-∞,a),(-∞,a].有限区间4类:(a,b),[a,b),(a,b],[a,b].定理4.2.1设E⊂R,则E连通⇔E是区间.证若E不是区间,∃a<c<b,使a,b∈E但c∉E.令A=(-∞,c)∩E,B=(c,+∞)∩E,则E是不交的非空开集A,B之并.定理4.2.2设X连通,f:X→R连续,则f(X)是R的一个区间.注∀x,y∈X,如果t介于f(x)与f(y)之间,则∃z∈X,使f(z)=t.事实上,不妨设f(x)≤t≤f(y),则t∈[f(x),f(y)]⊂f(X),所以∃z∈X,使f(z)=t.定理4.2.3(介值定理)设f:[a,b]→R连续,若r介于f(a)与f(b)之间,则∃z∈[a,b]使f(z)=r.定理4.2.4(不动点定理)设f:[0,1]→[0,1]连续,则∃z∈[0,1]使f(z)=z.证不妨设0<f(0),f(1)<1.定义F:[0,1]→R使F(x)=x-f(x),则F连续且F(0)<0<F(1),∃z∈[0,1]使得F(z)=0,即f(z)=z.定义f:R→R2为f(t)=(cos2πt,sin2πt),则f连续且f(R)=S1,于是S1是连通的.对x=(x1,x2)∈S1, -x=(-x1,-x2)∈S1称为x的对径点,映射r:S1→S1定义为r(x)=-x称为对径映射,则r连续.定理4.2.5(Borsuk-Ulam定理)设f:S1→R连续,则∃x∈S1,使得f(x)=f(-x).证定义F:S1→R为F(x)=f(x)-f(-x),则F连续.若∃a∈S1,使得f(a)≠f(-a),则F(a)⋅F(-a)<0,由定理4.2.2,∃z∈S1,使得F(z)=0,即f(z)=f(-z).定理4.2.6R n-{0}连通,其中n>1,0=(0,0,⋯,0)∈R n.证只证n=2的情形.令A=[0,+∞)⨯R-{0},B=(-∞,0]⨯R-{0},则A∪B=R2-{0},A∩B≠∅.由于(0,+∞)⨯R⊂A⊂c((0,+∞)⨯R),所以A连通.同理,B连通,从而A∪B连通.定理4.2.7R2与R不同胚.证若∃同胚f:R2→R,令g=f|R2-{0}:R2-{0}→R,则g连续,从而g(R2-{0})=R-{f(0)}连通,矛盾.§4.3连通分支将不连通集分解为一些“最大”连通子集(“连通分支”)之并.定义4.3.1x,y∈X称为连通的,若∃X的连通子集同时含x,y,记为x~y.点的连通关系~是等价关系:(1)x~x;(2)x~y⇒y~x;(3)x~y,y~z⇒x~z.定义4.3.2空间X关于点的连通关系的每一等价类称为X的一个连通分支.x~y⇔x,y属于X的同一连通分支.X是X的全体连通分支的互不相交并.定理4.3.1设C是空间X的连通分支,则(1)若Y是X的连通子集且Y∩C≠∅,则Y⊂C;(2)C是连通的闭集.证(1)取定x∈Y∩C,∀y∈Y,则x~y,所以y∈C.(2)取定c∈C.∀x∈C,∃X的连通集Y x∍c,x,由于Y x∩C≠∅,Y x⊂C,于是C=∪{Y x|x∈C}且c∈∩{Y x|x∈C},所以C是连通的.从而C-连通且C-∩C≠∅,于是C-⊂C,故C闭.以上说明:连通分支是最大的连通子集.连通分支可以不是开集.Q的连通分支都是单点集,不是Q的开子集.∀x,y∈Q,由定理4.2.1,不存在Q的连通子集同时含有x,y,所以Q的连通分支都是单点集.§4.4局部连通空间例4.4.1(拓扑学家的正弦曲线)令S={(x,sin(1/x))|x∈(0,1]},T={0}⨯[-1,1],S1=S∪T,则S-=S1,于是S,S1连通.在S1中,S中点与T中点的“较小的”邻域表现出不同的连通性.定义4.4.1设x∈X.若x的每一邻域U中都含有x的某一连通的邻域V,称X在x是局部连通的.空间X称为局部连通的,若X在每一点是局部连通的.S1是连通,非局部连通的.多于一点的离散空间是局部连通,非连通的.定理4.4.1对空间X,下述等价:(1)X是局部连通;(2)X的任一开集的任一连通分支是开集;(3)X有一个基,每一元是连通的.证(1)⇒(2)设C是X的开集U的连通分支.∀x∈C,∃x的连通的邻域V⊂U,于是V∩C≠∅, V⊂C,所以C是x的邻域,故C开.(2)⇒(3)令B={C⊂X|C是X的开集U的连通分支},则B是X的基.(3)⇒(1)设U是x的邻域,∃开集V使x∈V⊂U,∃连通开集C使x∈C⊂V⊂U,所以X局部连通.定理4.4.2设f:X→Y是连续开映射.若X局部连通,则f(X)局部连通.证∀y∈f(X),及y在f(X)中的邻域U,取x∈f-1(y),则f-1(U)是x的邻域,∃X的连通开集V使x∈V⊂f-1(U),于是y=f(x)∈f(V)⊂U.定理4.4.3局部连通性是有限可积性,即设X1,X2,…,X n局部连通,则X1⨯X2⨯…⨯X n局部连通.证仅证若X1,X2局部连通,则X1⨯X2局部连通.设B1,B2分别是X1,X2的由连通开集组成的基,则{B1⨯B2|B1∈B1,B2∈B2}是X1⨯X2的由连通开集组成的基(定理3.2.4).。
点集拓扑学合肥工业大学数学学院预备知识1. 点集拓扑的定义《点集拓扑学》课程是一门现代数学基础课程,属数学与应用数学专业的理论课。
是数学与应用数学专业的主干课。
点集拓扑学(Point Set Topology ),有时也被称为一般拓扑学(General Topology ),是数学的拓扑学的一个分支。
它研究拓扑空间以及定义在其上的数学构造的基本性质。
这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。
它的表述形式大概在1940 年左右就已经成文化了。
通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。
2. 点集拓扑的起源点集拓扑学产生于19世纪。
G.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果。
1906年M.-R.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始。
3. 一些参考书籍(1)《拓扑空间论》,高国士,科学出版社,2000年7月第一版(2)《基础拓扑讲义》,尤承业,北京大学出版社,1997 年11 月第一版(3)《一版拓扑学讲义》,彭良雪,科学出版社,2011 年 2 月第一版第一章集合论初步在这一章中我们介绍有关集合论的一些基本知识. 从未经定义的集合”和元素”两个概念出发给出集合运算、关系、映射以及集合的基数等方面的知识等。
这里所介绍的集合论通常称为朴素的集合论”,这对大部分读者已经是足够了•那些对集合的理论有进一步需求的读者,例如打算研究集合论本身或者打算研究数理逻辑的读者,建议他们去研读有关公理集合论的专著。
1・1集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体。
例如我们常说正在这里听课的全体学生的集合”,所有整数的集合”等等•集合也常称为集。
集合(即通常所谓的集体”)是由它的元素(即通常所谓的个体”)构成的•例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素•元素也常称为元,点或成员.集合也可以没有元素.例如平方等于2的有理数的集合,既大于1又小于2的整数的集合都没有任何元素,这种没有元素的集合我们称之为空集,记作成的'。
点集拓扑学合肥工业大学数学学院预备知识1.点集拓扑的定义《点集拓扑学》课程是一门现代数学基础课程,属数学与应用数学专业的理论课。
是数学与应用数学专业的主干课。
点集拓扑学(Point Set Topology),有时也被称为一般拓扑学(General Topology),是数学的拓扑学的一个分支。
它研究拓扑空间以及定义在其上的数学构造的基本性质。
这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。
它的表述形式大概在1940年左右就已经成文化了。
通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。
2.点集拓扑的起源点集拓扑学产生于19世纪。
G.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果。
1906年M.-R.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始。
3.一些参考书籍(1)《拓扑空间论》,高国士,科学出版社,2000年7月第一版(2)《基础拓扑讲义》,尤承业,北京大学出版社,1997年11月第一版(3)《一版拓扑学讲义》,彭良雪,科学出版社,2011年2月第一版第一章 集合论初步在这一章中我们介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发给出集合运算、关系、映射以及集合的基数等方面的知识等。
这里所介绍的集合论通常称为“朴素的集合论”,这对大部分读者已经是足够了.那些对集合的理论有进一步需求的读者,例如打算研究集合论本身或者打算研究数理逻辑的读者,建议他们去研读有关公理集合论的专著。
1.1 集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体。
例如我们常说“正在这里听课的全体学生的集合”, “所有整数的集合”等等.集合也常称为集。
集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”)构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点或成员.集合也可以没有元素.例如平方等于2 的有理数的集合,既大于1 又小于2 的整数的集合都没有任何元素,这种没有元素的集合我们称之为空集,记作φ。
§2.4 导集,闭集,闭包本节重点:熟练掌握凝聚点、导集、闭集、闭包的概念;区别一个点属于导集或闭包的概念上的不同;掌握一个点属于导集或闭集或闭包的充要条件;掌握用“闭集”叙述的连续映射的充要条件.如果在一个拓扑空间中给定了一个子集,那么拓扑空间中的每一个点相对于这个子集而言“处境”各自不同,因此可以对它们进行分类处理.定义2.4.1 设X是一个拓扑空间,A X.如果点x∈X的每一个邻域U中都有A中异于x的点,即U∩(A-{x})≠,则称点x是集合A的一个凝聚点或极限点.集合A的所有凝聚点构成的集合称为A的导集,记作d(A).如果x∈A 并且x不是A的凝聚点,即存在x的一个邻域U使得U∩(A-{x})=,则称x 为A的一个孤立点.即:(牢记)在上述定义之中,凝聚点、导集、以及孤立点的定义无一例外地都依赖于它所在的拓扑空间的那个给定的拓扑.因此,当你在讨论问题时涉及了多个拓扑而又谈到某个凝聚点时,你必须明确你所谈的凝聚点是相对于哪个拓扑而言,不容许产生任何混淆.由于我们将要定义的许多概念绝大多数都是依赖于给定拓扑的,因此类似于这里谈到的问题今后几乎时时都会发生,我们不每次都作类似的注释,而请读者自己留心.某些读者可能已经在诸如欧氏空间中接触过刚刚定义的这些概念,但绝不要以为对欧氏空间有效的性质,例如欧氏空间中凝聚点的性质,对一般的拓扑空间都有效.以下两个例子可以帮助读者澄清某些不正确的潜在印象.例2.4.1 离散空间中集合的凝聚点和导集.设X是一个离散空间,A是X中的一个任意子集.由于X中的每一个单点集都是开集,因此如果x∈X,则X有一个邻域{x},使得,以上论证说明,集合A没有任何一个凝聚点,从而A的导集是空集,即d(A)=.例2.4.2 平庸空间中集合的凝聚点和导集.设X是一个平庸空间,A是X中的一个任意子集.我们分三种情形讨论:第1种情形:A=.这时A显然没有任何一个凝聚点,亦即d(A)=.(可以参见定理2.4.1中第(l)条的证明.)第2种情形:A是一个单点集,令 A={}如果x∈X,x≠,点x只有惟一的一个邻域X,这时,所以;因此x是A的一个凝聚点,即x∈d(A).然而对于的惟一邻域X有:所以d(A)=X-A.第3种情形:A包含点多于一个.请读者自己证明这时X中的每一个点都是A的凝聚点,即d(A)=X.定理2.4.1 设X是一个拓扑空间,A X.则(l)d()=;(2)A B蕴涵d(A)d(B);(3)d(A∪B)=d(A)∪d(B);(4)d(d(A))A∪d(A).证明(1)由于对于任何一点x∈X和点x的任何一个邻域U,有U∩(2)设A B.如果.这证明了d(A)d(B).(3)根据(2),因为A,B A∪B,所以有d(A),d(B)d(A∪B),从而d(A)∪d(B)d(A∪B).另一方面,如果综上所述,可见(3)成立.(这是证明一个集合包含于另一个集合的另一方法:要证,只要证即可.)(4)设:即(4)成立.定义2.4.2 设X是一个拓扑空间,A X.如果A的每一个凝聚点都属于A,即d(A)A,则称A是拓扑空间X中的一个闭集.例如,根据例2.4.l和例2.4.2中的讨论可见,离散空间中的任何一个子集都是闭集,而平庸空间中的任何一个非空的真子集都不是闭集.定理2.4.2 设X是一个拓扑空间,A X.则A是一个闭集,当且仅当A的补集是一个开集.证明必要性:设A是一个闭集充分性:设:即A是一个闭集.例2.4.3 实数空间R中作为闭集的区间.设a,b∈R,a<b.闭区间[a,b]是实数空间R中的一个闭集,因为[a,b]的补集=(-∞,a)∩(b,∞)是一个开集.同理,(-∞,a],[b,∞)都是闭集,(-∞,∞)=R显然更是一个闭集.然而开区间(a,b)却不是闭集,因为a是(a,b)的一个凝聚点,但a(a,b).同理区间(a,b],[a,b),(-∞,a)和(b,∞)都不是闭集.定理2.4.3 设X是一个拓扑空间.记F为所有闭集构成的族.则:(1)X,∈F(2)如果A,B∈F,则AUB∈F(从而如果)(3)如果≠在此定理的第(3)条中,我们特别要求≠的原因在于当=时所涉及的交运算没有定义.证明根据定理2.4.2,我们有T={|U∈F}其中,T为X的拓扑.(1)∵X,∈T,∴(2)若A、B∈F ,则(3)令:定理证明完成.总结:(1)有限个开集的交是开集,任意个开集的并是开集.其余情形不一定.(2)有限个闭集的并是闭集,任意个闭集的交是闭集.其余情形不一定.定义2.4.3 设X是一个拓扑空间,A X,集合A与A的导集d(A)的并A∪d(A)称为集合A的闭包,记作或容易看出,(注意:与x∈d(A)的区别)定理2.4.4 拓扑空间X的子集A是闭集的充要条件是A=证明:定理成立是因为:集合A为闭集当且仅当d(A)A而这又当且仅当A=A∪d(A)定理2.4.5 设X是一个拓扑空间,则对于任意A,B∈X,有:证明(1)成立是由于是闭集.(2)成立是根据闭包的定义.(3)成立是因为(4)成立是因为=A∪d(A)∪d(d(A))=A∪d(A)=在第(3)条和第(4)条的证明过程中我们分别用到了定理2.4.l中的第(3)条和第(4)条.定理2.4.6 拓扑空间X的任何一个子集A的闭包都是闭集.证明根据定理2.4.4和定理2.4.5(4)直接推得.定理2.4.7 设X是一个拓扑空间,F是由空间X中所有的闭某构成的族,则对于X的每一个子集A,有即集合A的闭包等于包含A的所有闭集之交.证明因为A包含于,而后者是一个闭集,由定理2.4.5(4)与定理2.4.4有另一方面,由于是一个闭集,并且,所以(“交”包含于形成交的任一个成员)综合这两个包含关系,即得所求证的等式.由定理2.4.7可见,X是一个包含着A的闭集,它又包含于任何一个包含A 的闭集之中,在这种意义下我们说:一个集合的闭包乃是包含着这个集合的最小的闭集.在度量空间中,集合的凝聚点,导集和闭包都可以通过度量来刻画.定义2.4.5 设(X,ρ)一个度量空间.X中的点x到X的非空子集A的距离ρ(x,A)定义为ρ(x,A)=inf{ρ(x,y)|y∈A}根据下确界的性质以及邻域的定义易见:ρ(x,A)=0当且仅当对于任意实数ε>0,存在y∈A使得ρ(x,y)<ε,换言之即是:对于任意B(x,ε)有B(x,ε)∩A≠,而这又等价于:对于x的任何一个邻域U有U∩A≠,应用以上讨论立即得到.定理2.4.9 设A是度量空间(X,ρ)中的一个非空子集.则(1)x∈d(A)当且仅当ρ(x,A-{x})=0;(2)x∈当且仅当ρ(x,A)=0.以下定理既为连续映射提供了等价的定义,也为验证映射的连续性提供了另外的手段.定理2.4.10 设X和Y是两个拓扑空间,f:X→Y.则以下条件等价:(l)f是一个连续映射;(2)Y中的任何一个闭集B的原象(B)是一个闭集;(3)对于X中的任何一个子集A,A的闭包的象包含于A的象的闭包,即;(4)对于Y中的任何一个子集B,B的闭包的原象包含B的原象的闭包,即.证明(1)蕴涵(2).设B Y是一个闭集.则是一个开集,因此根据(1),是X中的一个开集,因此(B)是X中的一个闭集.(2)蕴涵(3)设A X.由于f(A),根据(2),成立.(3)蕴涵(4)设A Y集合(B)X应用(3)即得(4)蕴涵(l).设U是Y中的一个开集.则是Y中的一个闭集.对此集合应用(4)可见:.总结一下,到目前为止,证明映射连续的方法有几种?证明一个子集是开集,闭集的方法有几种?如何证明一个点是某个子集的凝聚点?作业:P69 1.2。