当前位置:文档之家› 探讨水泥熟料强度

探讨水泥熟料强度

探讨水泥熟料强度
探讨水泥熟料强度

探讨水泥熟料强度

1 本人从事水泥行业20年余,从土立窑的窑工开始,烧过立窑、中控窑,现在做5000t/d 的窑操,从事过车间主任、生产部部长、质量厂长,具有煅烧高级技师,工艺师证,统计研究过多家水泥厂的熟料台账对提高熟料强度有着以下的见解,现将我的看法说出来供大家探讨。

先从配料开始,配料中要追求高KH、低N、低P,(需要说明的是我的观点和一般人的不同之处就在这里,一般厂家追求高KH、高N、高P,他们的理由是提高C3S 和C3A)毫无疑问,高KH的目的是追求高C3S ,降低N率目的同样是提高C3S ,虽然从理论上讲N率越高形成的C3S 越多,但这只是在相同KH的情况下,在实际煅烧中就不是理论数据,殊不知熟料的易烧性不只是以KH决定,也决定于N率也就是说,KN越高、N率越高,易烧性越差。如果提高N率一般情况下Fcao就高,只能降低KH,这样达不到提高C3S 的目的。我们可以做个计算,每提高0.1的KH要大于提高0.1的N率所得到的C3S 。根据我的经验1.8的N率在实际煅烧中熟料饱和比可以提高到0.98,FCao可以不超过2.5,但是如果2.9的N率,实际煅烧中熟料KH不能超过0.89,如果达到0.9的KH,熟料中的FCao就会超过2.5。并且我通过统计多家的熟料强度可也确定的说:KH和熟料强度特别是三天强度成正比,而N率和三天强度几乎没有规律。所以要想提高三天、28天强度必须要提高KH,想提高KH,实际生产中N率就提不高。

降低P值的目的就是提高C4AF 降低C3A,这一条大家不明白的往往就是被C3A的三天强度多蒙蔽,关于C3A的叙说,水化热高,三天强度三天内全部发挥出来,但请记住一般情况后边还有一句,绝对值不高,实际上C4AF 的强度仅次于C3S ,即便是三天、28

天强度也远远高于C3A,通过我对多家的熟料台账统计证明P值和三天强度,28天强度成正比,C3A对水泥性能的负面影响也大,水化热高、强度绝对值不高、凝结时间来得快,还要石膏来调节,假凝是它、熟料强度到缩也是它,所以尽可能的降低,只要不影响煅烧产量就行。

煅烧对强度的影响大家知道的不少和理论上的差距不大,我暂且不论正。

2 楼主的配料方案已显落伍!

ISO检验结果表明,高硅低铁配料强度损失最小,这也是转窑和立窑的区别所在.此外,高硅水泥和易性等使用性能均优于高铁,这也是众多立窑小水泥除强度外所无法相比的!

高KH低S配料属八九十年代立窑采用复合矿化剂的配料方案,实施ISO如果继续沿用该方案则显产量低,煤耗高!而大型干法窑采用高硅中饱和比配料则是传统的转窑技术,也是实现

良好煅烧的根本保证!

值得一提的是,立窑采用高硅配料并非某立窑水泥研究所的所谓新工艺技术,要实现低煤耗

快烧还得老老实实地从改进生料的易烧性着手!

本人水泥工艺大学本科毕业,也操此行当20多年,是早期立窑复合矿化剂的成功生产实践者,愿与各位同仁共同探讨!

3 以下是引用CHCM888在2006-1-5 18:41:38的发言:楼主的配料方案已显落伍! ISO检验结果表明,高硅低铁配料强度损失最小,这也是转窑和立窑的区别所在.此外,高硅水泥和易性等使用性能均优于高铁,这也是众多立窑小水泥除强度外所无法相比的! 高KH低S 配料属八九十年代立窑采用复合矿化剂的配料方案,实施ISO如果继续沿用该方案则显产量低,煤耗高!而大型干法窑采用高硅中饱和比配料则是传统的转窑技术,也是实现良好煅烧的

根本保证! 值得一提的是,立窑采用高硅配料并非某立窑水泥研究所的所谓新工艺技术,要实

现低煤耗快烧还得老老实实地从改进生料的易烧性着手! 本人水泥工艺大学本科毕业,也操此行当20多年,是早期立窑复合矿化剂的成功生产实践者,愿与各位同仁共同探讨!

从配制高性能混凝土的角度来讲,你的说法是正确的。高硅水泥与外加剂的相容性好。ISO标准与高硅配方适应性强。

1 记得刚实施ISO的第一年,本人曾于湖南某立窑厂搞技术服务,沿用原配料方案,熟料KH0.96N1.8左右,的确全年42.5级水泥富裕标号合格率达100%,且混合材年平均达17.5%,只可惜产量不高,而煤耗稍高.后改KH0.91N2.1P1.5左右,虽3天稍低但28天较前好,且上火快,产量高,煤耗亦较佳! 众所周知,实施ISO,立窑生产高标号熟料,3天强度易但28天难,而适当提高C2S,相同的粉磨比S和F-C对比下,28天强度确实有所提高.(注意本人所指是”适当”而不是走极端). 与GB比较,实施ISO,强度损失顺序为C2S很熟悉,广西北流成功应用复合矿化剂是采用高KH 配料方案,本人就是该技术的成功实践者,但后来改用广州石井配方更显优质高产低消耗,楼

上各位不妨试试? 而对旋窑,KH0.9N2.5左右则较为适中,也是旋窑从生以来的经验总结,也是旋窑的优势所在!如改高KH高F势必会引起F-C高,破坏窑皮,还原料等.立窑可以试,但转窑本人认为就大可不必!转窑的配料要做到”难烧但不发散,结粒但不起块”---这是宗旨! 周沛教授的<现代立窑技术>本人认为很是肤浅,我看了;此外,本人在此对那些声称立窑熟料28天抗压强度可以达到60Mpa的同仁作诚恳务实地求证:您的小磨试验控制了比表面积了吗?做的准确度如何?最后一点要说明,无论何种配料方案,强度不是关键,优质高产低消耗才是最佳

很好!能遇上你这样有才华朋友是我的荣幸:

先解释你这句:强度损失顺序为C2S

1 昨天因有事请没谈明白,今天接着来

先解释你这句:强度损失顺序为C2S

再解释以下问题,

朋友讲:曾于湖南某立窑厂搞技术服务,沿用原配料方案,熟料KH0.96N1.8左右,的确全年42.5级水泥富裕标号合格率达100%,且混合材年平均达17.5%,只可惜产量不高,而煤耗稍高.后改KH0.91N2.1P1.5左右,虽3天稍低但28天较前好,且上火快,产量高,煤耗亦较佳!

事实上你已经承认高KH强度高,这没什么可异议的,你的另一个表达意思既是:低KH高N率的产量高并且煤耗低。我不承认。事实上立窑产量高低取决于煤,对于三率值的关系不是太大,煤高燃烧速度慢,形成的液相量就多,粘度也大,产量低;煤少,由于温度低起火慢,液相量和粘度小,底火层不牢固,产量也低。KH的高低决定于游离氧化钙高低,只要煤适当产量仍然不会低,理论上讲KH、N率和煤耗成正比,这你不会不承认吧,你降KH 提N率这要看它们二者之间抵消多少,再者立窑的煤耗高低主要取决于明火煅烧和窑筒体的保温,对于三率值得变化就显得很微弱,提一次火的煤耗要比率值得变化大得多。我曾经在浙江烧过0.94的饱和比,2.1的硅酸率,在山东烧过0.95的饱和比,2.0的硅酸率铁率1.0,在吉林烧过0.97饱和比,1.7的硅酸率,铁率1.4,在辽宁0.92KH,硅酸率2.5,铁

率1.9,影响产量的大部分原因是煤的掺加量,产量在我的管理下在他们的基础上肯定会有大的提高。

再谈矿化剂,事实上矿化剂不是完全但的通,我们也不能否定它的原理,有不少的厂家从没有过渡到有再到没有,这些与科学的管理,科学的配方有关,我们这里不再论证。

对你所给转窑下的结论,我不反对,但是我们厂的5000T/D生产线现在为0.92,2.5,1.4,强度在61MPa左右,但是个别大厂在0.88,2.9,1.7左右强度却在50左右,我想不知道与你的理论有没有区别,请回答。

至于周沛教授好像已经去世了我们没必要贬低它了,观点吗我们只作参考

朋友;

其实我更多关注的是回转窑,确切地说5000t/d大窑,我对大厂的配料更是关注,因为今后来说它毕竟是要担负起卧国水泥的民族工业的重担。至于立窑的终结只是早晚的问题。至于立窑的质量产量就拿现在管理好的来厂家来说,还是非常有竞争力,但是至于产量的高低有很多种算法,有的厂家是按称来计算,有的厂家是用水泥倒退,至于报表有很多是不准的,但最好的应该是用年终倒退水泥的办法比较准,还有运转率的统计都有问题。

请你算一算14吨的台时每年按90的运转率,按80%的水泥用量就接近生产水泥14万吨,需要说明的立窑厂子很少有按80%的用量,并且运转率管理好一点的都要达到94以上,最高的一年我管理的窑运转率高达97%,一年仅仅停机11天。所以有些产量需要推敲

水泥混凝土强度的检测方法

水泥混凝土强度的检测方法 1、水泥砼抗压强度 测定砼抗压强度是评定砼品质的主要指标。目前,砼抗压强度试件以边长为150mm的正立方体为标准试件,砼强度以该试件标准养护到28天,按规定方法 测得的强度为准。 当砼抗压强度采用非标准试件时,其集料粒径要求及抗压强度尺寸换算系数如下: 集料粒径要求及抗压强度换算系数 集料最大粒径 试件尺寸(mm)尺寸换算系数 (mm) 30 100×100×100 0.95 40 150×150×150 1.00 60 200×200×200 1.05

砼立方体试件抗压强度计算:R=P/A 其中:R—砼抗压强度(MPa)P—极限荷载(N)A—受压面积(mm2)注:①以3个试件测值的算术平均值为测定值。如任一个测值与中间值的差值超过中间值的15%,则取中间值为测定值;如有两个测值与中间值的差值均超过上述规定时,则该组试验结果无效。②结果计算至0.1MPa。③非标准试件的 抗压强度应乘以尺寸换算系数。 2、砼抗折(抗弯拉)强度 测定砼抗(抗弯拉)极限强度,是为了提供水泥砼路面设计参数,检查水泥砼路面施工品质和确定抗折弹性模量试验加荷标准。 水泥砼抗折强度是以150mm×150mm×550mm的梁形试件,在标准养护条件下,达到规定龄期后,在净跨450mm,双支点荷载作用下的弯拉破坏,并按规定的计算方法得到的强度值。 砼抗折强度计算:Rb=PL/bha 其中:Rb—抗折强度(MPa);P—极限荷载(N);L—支座间距(L=450mm);b—试件宽度(mm);h—试件高度(mm)。 注:①如断面位于加荷点外侧,则该试件之结果无效;如两根试件无效,则该组结果作废。断面位置在试件断块短边一侧的底面中轴线上量得。②以3个试件测值的算术平均值为测定值。如任一个测值与中间值的差值超过中间值的15%,则取中间值为测定值;如有两个测值与中间值的差值均超过上述规定时,则该组试验结果无效。③结果计算至0.01MPa。④采用100mm×100mm×400mm非标准试件时,所取得的抗折强度值应乘以尺寸换算系数0.85。

水泥混凝土立方体抗压强度

水泥混凝土立方体看抗压强度试验 (JTG E30 T0553-2005) 一、目的、适用范围 本方法规定了测定水泥混凝土抗压极限强度的方法和步骤。本方法可用于确定水泥混凝土的强度等级,作为评定水泥混凝土品质的主要指标。 本方法适用于各类水泥混凝土立方体试件的极限抗压强度试验。 二、仪器设备 1、压力机或万能试验机:上下压板平整并有足够刚度,可以均匀、连续地加荷卸荷,可以保持固定荷载,能够满足试件破型吨位要求。 2、球座: 刚质坚硬,转型灵活.球座最好放置在试件顶面(特别是棱柱试件),并凸面朝上,当试件均匀受力后,一般不宜敲动球座. 3、试摸:由铸铁或钢制成,试件尺寸见表。 抗压强度试件尺寸 集料公称最大粒径 (mm)试件尺寸 (mm) 集料公称最大粒径 (mm) 试件尺寸 (mm) 31.5150×150×15053200×200×200 26.5100×100×100 混凝土等级大于等于C60时,试验机上、下压板之间应各垫一钢

垫板,平面尺寸应不小于试件的承压面,其厚度至少为25mm。钢垫板应机械加工,其平面度允许偏差±0.04mm;表面硬度大于等于55HRC;硬化层厚度约5mm 三、试验方法与步骤 1、试验准备 混凝土抗压强度试件以边长150mm的正方体为标准试件,其集料公称最大粒径为31.5mm。混凝土抗压强度试件同龄期者为一组,每组为3个同条件制作和养护的混泥土试块。 2、试验步骤 取出试件,先检查其尺寸及形状,相对两面应平行,表面倾斜差不得超过0.5mm。量出棱边长度,精确至1mm。试件受力截面积按其与压力机上下接触面的平均值计算。在破行前,保持试件原有湿度,在试验时擦干试件。 以成型时的侧面为上下受压面,试件要放在球座上,球座置于压力机中心,几何对中。强度等级小于C30的混凝土取0.3~0.5MPa/s的加荷速度;强度等级大于C30且小于C60时,则取0.5~0.8MPa/s的加荷速度;强度等级大于C60时,则取0.8~1.0MPa/s的加荷速度。当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直至试件破坏,记下破坏极限荷载F(N)。

水泥混凝土抗弯拉强度试验方法

水泥混凝土抗弯拉强度试验方法 双击自动滚屏 发布者: tmsx发布时间:2006-12-29阅读:1030次 1目的、适用范围和引用标准 本方法规定了测定水泥混凝土抗弯拉极限强度的方法,以提供设计参数,检查水泥混凝土施工品质和确定抗弯拉弹性模量试验加荷标准。 本方法适用于各类水泥混凝土棱柱体试件。 引用标准: CB/T2611—1992《试验机通用技术要求》 CB/T3722一1992《液压式压力试验机》 T0551—2005《水泥混凝土试件制作与硬化水泥混凝土现场取样方法》 2仪器设备 (1)压力机或万能试验机: 应符合T055lxx 2.3的规定。 (2)抗弯拉试验装置(即三 分点处双点xx和三点自由 支承式混凝土抗弯拉强度与 抗弯拉弹性模量试验装置): 如图T0558-1所示

3试件制备和养护 3.1试件尺寸应符合T0551中表T0551-1的规定,同时在试件长向中部区段内表面不得有直径超过5mm、深度超过2mm的孔洞。 3.2混凝土抗弯拉强度试件应取同龄期者为一组,每组3根同条件制作和养护的试件。 4试验步骤 4.1试件取出后,用湿毛巾覆盖并及时进行试验,保持试件干湿状态不变。在试件中部量出其宽度和高度,精确至lmm。 4.2调整两个可移动支座,将试件安放在支座上,试件成型时的侧面朝上,几何对中后,务必使支座及承压面与活动船形垫块的接触面平稳、均匀,否则应垫平。 4.3加荷时,应保持均匀、连续。当混凝土的强度等级小于C30时,加荷速度为 0.02MPa/s~ 0.05MPa/s;当混凝土的强度等级大于等于C30且小于C60时,加荷速度为 0.05MPa/s~ 0.08MPa/s;当混凝土的强度等级大于等于C60时,加荷速度为 0.08MPa/s~ 0.10MPa/s。当试件接近破坏而开始迅速变形时,不得调整试验机油门,直至试件破坏,记下破坏极限荷载F(N)。 4.4记录下最大荷载和试件下边缘断裂的位置。5试验结果 5.1当断面发生在两个加荷点之间时,抗弯拉强度按下式计算: 式中:

附录D 水泥混凝土抗压强度评定

附录D 水泥混凝土抗压强度评定 D.0.1 评定水泥混凝土的抗压强度,应以标准养生28d 龄期的试件为准。试件为边长150mm 的立方体。试件3 件为1 组,制取组数应符合下列规定: 1) 不同强度等级及不同配合比的混凝土应在浇筑地点或拌和地点分别随机制取试件。 2) 浇筑一般体积的结构物(如基础、墩台等)时,每一单元结构物应制取2 组。 3) 连续浇筑大体积结构时,每80~200m3 或每一工作班应制取2 组。 4)上部结构,主要构件长16m 以下应制取1 组,16~30m 制取2 组,31~50m 制取3 组,50m 以上者不少于5 组。小型构件 每批或每工作班至少应制取2 组。 5) 每根钻孔桩至少应制取2 组;桩长20m 以上者不少于3 组;桩径大、浇筑时间很长时,不少于4 组。如换工作班时, 每工作班应制取2 组。 6) 构筑物(小桥涵、挡土墙)每座、每处或每工作班制取不少于2 组。当原材料和配合比相同、并由同一拌和站拌制时, 可几座或几处合并制取2 组。 7) 应根据施工需要,另制取几组与结构物同条件养生的试件,作为拆模、吊装、张拉预应力\承受荷载等施工阶段的强 度依据。 D.0.2 水泥混凝土抗压强度的合格标准 1) 试件≥10 组时,应以数理统计方法按下述条件评定: Rn-K l S n≥0.9R R min≥K2R 式中:n—同批混凝土试件组数; R n—同批n 组试件强度的平均值(MPa); S n—同批n 组试件强度的标准差(MPa), R—混凝土设计强度等级(MPa); R min—n 组试件中强度最低一组的值(MPa): K1、K2—合格判定系数,见附表D。 附表D K1、K2 的值 n 10~14 15~24 ≥25 K1 1.70 1.65 1.60 K2 0.9 0.85 D.0.2.2 试件<10 组时,可用非统计方法按下述条件进行评定: R n≥1.15R R min≥0.95R D.0.3 实测项目中,水泥混凝土抗压强度评为不合格时相应分项工程为不合格。

水泥28d抗压强度预测

水泥28d抗压强度预测 强度是水泥质量的重要指标,是确定出厂水泥标号的重要依据,GB175—92标准中对水泥各龄期强度及其检验方法作了具体的规定。根据水泥强度标准检验方法,水泥28d抗压强度必须在水泥胶砂试体养护28d后才能得出,不能满足实际生产控制的要求。随着大规模工程的需求和水泥生产规模的日益扩大,水泥的贮存和周转期愈来愈短,往往根据水泥早期强度甚至快速强度决定出厂,因此,如何准确预测水泥28d抗压强度,是确保出厂水泥质量的关键。本文根据实验和实际生产数据,通过回归分析,建立了水泥28d抗压强度预测公式,经实际生产验证,行之有效。 1 水泥28d强度影响因素 主要影响因素的确定,是回归分析的前提。水泥强度的影响因素有熟料的质量、SO3含量、混合材的掺量及粉磨细度等,其对水泥强度的影响程度不尽相同,以我公司Ⅱ型硅酸盐水泥的生产为例,来逐一分析。 1.1 熟料的质量 熟料的矿物组成及其结构决定了熟料的质量,对水泥强度的增长起决定性作用。水泥28d强度,基本依赖于C3S的含量,C3S含量高早期强度增进率高,在28d时已基本发挥出最高强度的绝大部分;C2S主要影响水泥后期强度,而对28d以前的强度影响不大;C3A主要对1d、3d等早期强度影响最大;而C4AF对水泥强度无较大的影响。因此,合理、稳定的矿物组成是确保水泥强度及其增长率的重要因素。 1.2 SO3含量 水泥中SO3含量主要来源于石膏,其含量的变化影响硅酸盐水泥的水化,尤其是C3S的早期水化。图1是水泥SO3含量与水泥抗压强度(R i)曲线图。图中表明,SO3含量在2.0%~3.0%之间,对各龄期强度影响不大。而我厂出磨水泥SO3含量控制在2.5%±0.3%范围之内,不至于对强度影响较大,可不予考虑。

水泥砂浆地面施工工艺标准

水泥砂浆地面施工工艺标准 1范围 本工艺标准适用于工业与民用建筑的水泥砂浆整体面层地面和设计要求为毛胚房地面时的水泥砂浆地面找平层。 2施工准备 2.1 材料及主要机具: 2.1.1水泥:硅酸盐水泥、普通硅酸盐水泥,其标号不应小于32.5,并严禁混用不同品种、不同标号的水泥。 2.1.2砂:应采用中砂或粗砂,过8㎜孔径筛子,含泥量不应大于3%。 2.1.3主要机具:搅拌机、手推车、木刮杠、木抹子、铁抹子、劈缝溜子、喷壶、铁锹、小水桶、长把刷子、扫帚、钢丝刷、粉线包、錾子、锤子。 2.2 作业条件: 2.2.1 地面(或楼面)的垫层以及预埋在地面内各种管线已做完。穿过楼面的竖管已安完,管洞已堵塞密实。有地漏房间应找好泛水。 2.2.2 墙面的+50㎝水平标高线已弹在四周墙上。 2.2.3 门框已立好,并在框内侧做好保护,防止手推车碰坏。 2.2.4 墙、顶抹灰已做完。屋面防水做完。 3 操作工艺 3.1 工艺流程: →→→→ →→→ →→→ 3.1.1 基层处理:先将基层上的灰尘扫掉,用钢丝刷和錾子刷净、剔掉灰浆皮和灰渣层,用10%的火碱水溶液刷掉基层上的油污,并用清水及时将碱液冲净。 3.1.2找标高弹线:根据墙上的+50㎝水平线,往下量测出面层标高,

并弹在墙上。 3.1.3 洒水湿润:用喷壶将地面基层均匀洒水一遍。 3.1.4 抹灰饼和标筋(或称冲筋):根据房间内四周墙上弹的面层标高水平线,确定面层抹灰厚度(不应小于20㎜),然后拉水平线开始抹灰饼(5㎝×5㎝)横竖间距为1.5~2.00m,灰饼上平面即为地面面层标高。 如果房间较大,为保证整体面层平整度,还须抹标筋(或称冲筋),将水泥砂浆铺在灰饼之间,宽度与灰饼相同,用木抹子拍抹成与灰饼上表面相平一致。 3.1.5 搅拌砂浆:水泥砂浆的体积比宜为1:2(水泥:砂),其稠度不应大于35㎜,强度等级不应小于M15。为了控制加水量,应使用搅拌机搅拌均匀,颜色一致。 3.1.6 刷水泥浆结合层:在铺设水泥砂浆之前;应涂刷水泥浆一层,其水灰比为0.4~0.5(涂刷之前要将抹灰饼的余灰清扫干净,再洒水湿润),不要涂刷面积过大,随刷随铺面层砂浆。 3.1.7 铺水泥砂浆面层:涂刷水泥浆之后紧跟着铺水泥砂浆,在灰饼之间(或标筋之间)将砂浆铺均匀,然后用木刮杠按灰饼(或标筋)高度刮平。铺砂浆时如果灰饼(或标筋)已硬化,木刮杠刮平后,同时将利用过的灰饼(或标筋)敲掉,并用砂浆填平。 3.1.8 木抹子搓平:木刮杠刮平后,立即用木抹子搓平,从内向外退着操作,并随时用2 m靠尺检查其平整度。 3.1.9 当设计要求需要压光时,采用铁抹子压光: 1 铁抹子压第一遍:木抹子抹平后,立即用铁抹子压第一遍,直到出浆为止,如果砂浆过稀表面有泌水现象时,可均匀撒一遍干水泥和砂(1:1)的拌合料(砂子要过3㎜筛),再用木抹子用力抹压,使干拌料与砂浆紧密结合一体,吸水后用铁抹子压平。如有分格要求的地面,在面层上弹分格线,用劈缝溜子开缝,再用溜子将分缝内压至平、直、光。上述操作均在水泥砂浆初凝之前完成。 2 第二遍压光:面层砂浆初凝后,人踩上去,有脚印但不下陷时,用铁抹子压第二遍,边抹压边把坑凹处填平,要求不漏压,表面压平、压光。有分格的地面压过后,应用溜子溜压,做到缝边光直、缝隙清晰、缝内光滑顺直。 3 第三遍压光:在水泥砂浆终凝前进行第三遍压光(人踩上去稍有脚印),

水泥、混凝土、砌体强度表示方法

水泥、混凝土、砌体强度表示方法 1 水泥 水泥标号是按规定龄期的抗压强度和抗折强度划分,强度以KGF/ CM2 计。硅酸盐水泥、普通水泥的强度龄期为3 D、28 D ,矿渣水泥、火山灰水泥、粉煤灰水泥和复合水泥的强度龄期为3 D、7 D、28 D。强度的检验方法按《水泥胶砂强度检验方法》(GB177 85)(简称GB 法,此标准已于1999 年5 月1 日废止)执行。各类水泥的强度共设275、325、425、425R、525、525R、625、625R 和725R 九个标号。 强度等级:水泥强度等级也按规定龄期的抗压强度和抗折强度划分,唯强度以MPA 计。各类水泥的强度龄期统一为3 D、28 D。强度的检验方法按《水泥胶砂强度检验方法(ISO 法)》(GB/ T17671 1999)(简称ISO 法,此标准于1999 年5 月1 日实施)执行。常用各类水泥的强度共设32. 5 、32. 5R、42. 5 、42. 5R、52. 5 、52. 5R、62. 5 和62. 5R 八个等级。相应的产品新标准是《硅酸盐水泥、普通硅酸盐水泥》(GB175 1999)、《矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥》(GB1344 1999)和《复合硅酸盐水泥》(GB12958 1999)。这三项标准于1999 年12 月1 日起实施。考虑水泥生产、检验及使用方面的实际情况,规定了为期1 年的过渡期。过渡期内新老标准的水泥并行,从而实现平稳过渡。 标号与强度等级:水泥强度从标号到强度等级的变化,主要是由于采用了不同的强度检验方法,即由GB 法改为ISO 法。这是国水泥标准为向国际标准靠拢并与其保持一致做出的重大修改。两种检验方法在胶砂组成(标准砂、灰砂比、水灰比)、搅拌方法、振实成型方法、养护、加载速度、试验条件控制和仪器设备等方面有明显的差别。经试验对比,老标准水泥采用GB 法和ISO 法的试验结果是:抗折强度差值不大,对水泥强度指标的影响可忽略不计;而抗压强度用ISO 法检验的则普遍较用GB 法检验的降低了大约一个强度等级。如标号为425 的水泥,其强度等级相当于32. 5。就平均统计水平来看,标号与强度等级的关系大致是425 号→32. 5 级、525 号→42. 5级、625 号→52. 5 级。 2 混凝土 标号:混凝土标号是指按标准方法制作、养护的边长为20 CM 的立方体标准试件,在28 D 龄期用标准试验方法所测得的抗压极限强度,以KGF/ CM2 计。如500 号混凝土,其试件抗压极限强度为500 KGF/ CM2 。当采用非标准尺寸的试件时,应换算成标准试件的强度,换算系数分别是:边长15 CM 的立方体试件为0. 95 ,边长10 CM 的立方体试件为0. 90 。混凝土的标号通常采用150、200、250、300、350、400、450、500、550、600。《铁路混凝土及砌石工程施工规范》(TBJ210 86)(此标准于1997 年7 月1 日废止)和《铁路桥涵设计规范》(TBJ2 85)(此标准于2000 年2月1 日废止)均作如此规定。 强度等级:混凝土的强度等级按立方体试件抗压强度标准值划分。立方体试件抗压强度标准值则是指按标准方法制作、养护的边长为150 MM的立方体标准试件,在28 D 龄期用标准试验方法所测得的抗压强度总体分布中的一个值,强度低于该值的百分率不得

水泥混凝土立方体抗压强度

水泥混凝土立方体抗压强度试验 (JTG E30 T0553-2005) 一、目的、适用范围 本方法规定了测定水泥混凝土抗压极限强度的方法和步骤。本方法可用于确定水泥混凝土的强度等级,作为评定水泥混凝土品质的主要指标。 本方法适用于各类水泥混凝土立方体试件的极限抗压强度试验。 二、仪器设备 1、压力机或万能试验机:上下压板平整并有足够刚度,可以均匀、连续地加荷卸荷,可以保持固定荷载,能够满足试件破型吨位要求。 2、球座: 刚质坚硬,转型灵活.球座最好放置在试件顶面(特别是棱柱试件),并凸面朝上,当试件均匀受力后,一般不宜敲动球座. 3、试摸:由铸铁或钢制成,试件尺寸见表。 抗压强度试件尺寸 集料公称最大粒径 (mm)试件尺寸 (mm) 集料公称最大粒径 (mm) 试件尺寸 (mm) 31.5150×150×15053200×200×200 26.5100×100×100 混凝土等级大于等于C60时,试验机上、下压板之间应各垫一钢

垫板,平面尺寸应不小于试件的承压面,其厚度至少为25mm。钢垫板应机械加工,其平面度允许偏差±0.04mm;表面硬度大于等于55HRC;硬化层厚度约5mm 三、试验方法与步骤 1、试验准备 混凝土抗压强度试件以边长150mm的正方体为标准试件,其集料公称最大粒径为31.5mm。混凝土抗压强度试件同龄期者为一组,每组为3个同条件制作和养护的混泥土试块。 2、试验步骤 取出试件,先检查其尺寸及形状,相对两面应平行,表面倾斜差不得超过0.5mm。量出棱边长度,精确至1mm。试件受力截面积按其与压力机上下接触面的平均值计算。在破行前,保持试件原有湿度,在试验时擦干试件。 以成型时的侧面为上下受压面,试件要放在球座上,球座置于压力机中心,几何对中。强度等级小于C30的混凝土取0.3~0.5MPa/s的加荷速度;强度等级大于C30且小于C60时,则取0.5~0.8MPa/s的加荷速度;强度等级大于C60时,则取0.8~1.0MPa/s的加荷速度。当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直至试件破坏,记下破坏极限荷载F(N)。

混凝土和砂浆标号与强度等级的关系

材料标号与强度等级的关系 工程材料的强度采用强度等级取代标号来表示,符合与国际标准和国外先进标准接轨的趋势,也是我国贯彻法定计量单位及对同一标准化内容的各类标准应协调统一的需要。经过各方面的多年努力,这项工作已经完成。当前搞清材料标号与强度等级的关系,对工程设计、施工、监理工作以及标准规范的制修订工作很有必要。本文就铁路工程中使用量大面广的混凝土与砌体材料的标号与强度等级的关系予以简述。 1 水泥 标号:水泥标号是按规定龄期的抗压强度和抗折强度划分,强度以kgf/ cm2计。硅酸盐水泥、普通水泥的强度龄期为3 d、28 d ,矿渣水泥、火山灰水泥、粉煤灰水泥和复合水泥的强度龄期为3 d、7 d、28 d。强度的检验方法按《水泥胶砂强度检验方法》(GB177 85)(简称GB 法,此标准已于1999 年5 月1 日废止)执行。各类水泥的强度共设275、325、425、425R、525、525R、625、625R 和725R 九个标号。

强度等级:水泥强度等级也按规定龄期的抗压强度和抗折强度划分,唯强度以MPa 计。各类水泥的强度龄期统一为3 d、28 d。强度的检验方法按《水泥胶砂强度检验方法( ISO 法)》(GB/ T17671 1999)(简称ISO 法,此标准于1999 年5 月1 日实施)执行。常用各类水泥的强度共设32. 5 、32. 5R、42. 5 、42. 5R、52. 5 、52. 5R、62. 5 和62. 5R八个等级。相应的产品新标准是《硅酸盐水泥、普通硅酸盐水泥》(GB175 1999)、《矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥》(GB1344 1999)和《复合硅酸盐水泥》(GB12958 1999)。这三项标准于1999 年12 月1 日起实施。考虑水泥生产、检验及使用方面的实际情况,规定了为期1 年的过渡期。过渡期内新老标准的水泥并行,从而实现平稳过渡。 标号与强度等级:水泥强度从标号到强度等级的变化,主要是由于采用了不同的强度检验方法,即由GB 法改为ISO 法。这是我国水泥标准为向国际标准靠拢并与其保持一致做出的重大修改。两种检验方法在胶砂组成(标准砂、灰砂比、水灰比)、搅拌方法、振实成型方法、养护、加载速度、试验条件控制和仪器设备等方面有明显的差别。经试验对比,老标准水泥采用GB 法和ISO 法的试验结果是:抗折强度差值不大,对水泥强度指标的影响可忽略不计;而抗压强度用ISO 法检验的则普遍较用GB 法检验的降低了大约一个强度等级。如标号为425 的水泥,其强度等级相当于32. 5。就平均统计水平来看,标号

水泥28天抗压强度检验结果的误差分析

水泥28天抗压强度检验结果的误差分析 摘要:本文试图运用方差理论,对水泥强度检验结果的重复性及再现性的误差进行分析,以实现对检验人员、检验仪器设备和检验环境的考核和控制。 1、引言 水泥抗压强度检验值是评判水泥强度等级的主要指标,因此水泥抗压强度检验值的误差是否足够小,直接影响对水泥质量的评判。我们知道检验误差是与检验人员是否具备熟练的检验技术、是否认真仔细地进行操作以及检验过程中是否有差错等有关,这些包括制备水泥强度试件的试模、成型方法、养护方法,试压时使用的抗压夹具、加荷方法以及试验环境、养护环境、检验数值的读取方法等有关。目前许多检验机构虽然已经将上述的检验仪器设备、环境、计量设备、检验人员操作等方面纳入了质量管理体系。但如何分析和判断这些因素对检验结果造成的影响呢?现在大多检验机构仅依据现行标准GB/T17671-1999《水泥胶砂强度检验方法(ISO法)》中对检验方法的精确性的规定。即:(10.5条)检验方法的精确性通过其重复性和再现性来测量,(10.6条)对于28天抗压强度的测定,在合格试验室之间的再现性,用变异系数表示,可要求不超过6%,(11.5条)对于28天抗压强度的测定,一个合格试验室在上述条件下的重复性以变异系数表示,可要求在1%-3%之间。而这些规定过于宽泛,不容易使检验人员及时发现问题,为此笔者试图用方差理论对水泥强度检验中的误差进行分析,以便及早发现影响强度检验值的因素,及时对影响的主要因素进行控制。 2、重复试验结果的(组间)误差分析 在水泥抗压强度检验中,如果没有误差的存在,则水泥抗压强度检验值应该相同。在实际检验中可以认为水泥强度检验值的波动,主要是由误差因素造成的。因此,可以假设在检验人员不变,试样质量均匀,检验仪器设备相同的情况下,水泥抗压强度的检验值应该服从正态分布,同时组与组的方差相等,且数据相互独立。根据方差理论,试件的组内(三块试件,六个抗压强度检验值)的差异是由试件制作人员和破型人员及测试仪器的测试误差引起。 为了便于讨论,我们以某检测单位对某32.5级普通硅酸盐水泥的四次重复试验结果进行分析,试验使用同一试样,试验由同一检验人员,采用相同的仪器设备,养护条件相同,其28d抗压强度测试结果见表1: 表1 序号28天抗压强度(MPa) 1 2 3 4 5 6 数据和平均值 1 41. 2 44.4 42.6 42.9 43.6 41.0 255.7 42.6 2 40.1 40.8 41.2 40.2 39.2 38.7 240.2 40.0 3 40.7 39.9 41.9 42.6 44.5 42. 4 252.0 42.0 4 42.2 40.4 41.1 40.6 40.6 39.8 244.7 40.8 表中共有4组试件,24个检验数据,对这24个数据分析如下: 4组数据的强度代表值的统计特征值如下: 平均值:41.4MPa,标准差:s=1.17MPa, 变异系数:C v=2.83% 变异系数在1-3%之间,符合GB/T17671-1999标准第11.5条重复性要求,即从标准角度而言检验的精确度满足要求,但是若从方差上分析我们会发现检验的精确度并不符合检验要求。 下面我们从方差上进行分析: 24个测定值的数据和为:T=992.6 24个测定值的平方和为:ΣΣy ij2=41106.24 4组数据和的平方:ΣT i2/6=41076.77 故总的偏差平方和:S T=ΣΣy ij2-T2/24=41106.24-992.62/24=53.96,自由度f T=23 组间偏差(因子)平方和:S A=ΣT i2-T2/24=41076.77-992.62/24=24.49,自由度f A=3 组内偏差(误差)平方和:S e=S T-S A=53.96-24.49=29.47,自由度f e=20

水泥混凝土强度试验检测方法

水泥混凝土强度试验检测方法

第四节、水泥混凝土强度试验检测方法 一、水泥混凝土试件的成型与养护力法(一)概述 为测定经稠度试验合格的混合料的技术性质(水泥混凝土抗压和抗折强度试验)并使测定 结果具有可比性,必须按规定的方法制备各种不同尺寸的试件,并进行标准养护,一般情况下 当坍落度小于70mm时,用标准振动台成型,否则,用人工插捣法成型。 (二)试件成型与养护方法 l.试件的成型 (1)将试模装配好,检查试模尺寸,避免使用变形试模。 (2)给试模内部涂一薄层矿物油脂或其它脱模剂,注意勿使涂模油或脱模剂过多,否则会 影响混凝土实际强度,然后将拌好的混合料装入试模,进行捣实工作。 (3)混合料捣实工作可采用下列方式: ①振动法。将拌好的混合料装人试模中,并使其稍高出模顶放在振动台上夹紧,振动至表 面呈现水泥浆为止,一般不超过1.5min。 振动台规格为:频率为(3000士2oo)次/min,负荷

下的振幅为0.36mm,空载时的振幅应为 0.5mm,如采用平板振动器,功率一般为1.1kW。 ②插捣法。将混合料分两层装人,用直径16mm的圆铁棍以螺旋形从边缘向中心均匀地 进行。插捣次数应符合规定。 插捣底层时,捣棒插到模底;插捣上层时,捣棒插入该层底面下20~30mm处。插捣时应 用力将捣棒压下,不得冲击,捣完一层后,如有棒坑留下,可用捣棒轻轻填平。 流动性的混凝上,在插捣过程中,随时用馒刀沿试模内壁插抹数次,以防试件产生麻面。 (4)用前述方法捣实之后,用馒刀将多余的混合料刮除。使与模口齐平,2~4s后抹平表面。试件抹面与试模边缘高低差不得超过0.5mm。 2.养护方法 (1)试件成型后,用湿布覆盖表面(或采用其它保持湿度方法),以防止水分蒸发,并在室 温(20士5)℃、相对湿度太于50%的情况下静放1一2d,然后拆模并作第一次外观检查、编号, 有缺陷的试件应除去或加工补平。 (2)将完好试件标准养护至试验时,标准养护室温度:(20士3)℃,相对湿度:90%以上,试

普通水泥混凝土配合比参考表

普通水泥混凝土配合比参考表

水泥标号 水泥的标号是水泥“强度”的指标。水泥的强度是表示单位面积受力的大小,是指水泥加水拌和后,经凝结、硬化后的坚实程度(水泥的强度与组成水泥的矿物成分、颗粒细度、硬化时的温度、湿度、以及水泥中加水的比例等因素有关)。水泥的强度是确定水泥标号的指标,也是选用水泥的主要依据。测定水泥强度的方法用前是“软练法”。 目录

展开 基本信息 此法是将1:3的水泥、(福建平潭白石英砂)及规定的水,按照规定的方法与水泥拌制成软练胶砂,制成7.07 X 7.07 X 7.07厘米的立方体抗压试块与8字形抗拉试块,在标准条件下进行养护,分别测定其3天、7天及28天的抗压强度和抗拉强度,以分组试块的28天平均抗压强度来确定水泥的标号,但3天、7天的技压强度也必须满足规定的要求。 目前我国生产的水泥一般有225#、325#、425#、525#等几种标号。生产不同标号的水泥,是为了适应制做不同标号的混凝土的需要。 水泥的标号 标准 水泥的标号是水泥强度大小的标志,测定水泥标号的抗压强度,系指水泥砂浆硬结28d后的强度。例如检测得到28d后的抗压强度为310 kg/cm2,则水泥的标号定为300号。抗压强度为300-400 kg/cm2者均算为300号。普通水泥有:200、250、300、400、500、600六种标号。200号-300号的可用于一些房屋建筑。400号以上的可用于建筑较大的桥梁或厂房,以及一些重要路面和制造预制构件。 关于水泥标号的用法,其实并没有非常精细的规定,一般来说,设计图纸中会给出明确的规定。

在民用建筑工程中,一般用的比较多的是普通硅酸盐水泥和矿渣硅酸盐水泥。 标号一般常用的有,。 有325的和425的 325的250元--300元 425的360--450元品牌,地区不一样价格就不一样 关于水泥标号 通用水泥新标准是:GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰硅酸盐水泥及粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水泥》。从2001年4月1日起正式实施。 与旧标准的区别 (1)六大水泥产品标准均引用GB/T17671-1999方法为该标准的强度检验方法,不再采用GB177-85方法。 (2)水泥标号改为强度等级 六大水泥标准实行以MPa表示的强度等级,如、、、等,使强度等级的数值与水泥28天抗压强度指标的最低值相同。新标准还统一规划了我国水泥的强度等级,硅酸盐水泥分3个强度等级6个类型,即、、、、、。其他五大水泥也分3个等级6个类型,即、、、、、。 (3)强度龄期与各龄期强度指标设置 六大通用水泥标准修订的内容还涉及到强度龄期与各龄期强度指标的设置。六大通用水泥新标准规定的强度龄期均为3天和28天两个龄期,每个龄期均有抗折与抗压强度指标要求。 (4)其他方面的修订

粉喷桩7天、28天、90天抗压强度变化

摘要:本文结合工程实际,从设计及施工两方面简要介绍用水泥 土搅拌桩法加固软土地基 关键词:水泥土搅拌桩加固软土地基 一、前言 随着我国经济的高速发展,国内的基本建设蓬勃兴起,基建用地日益紧张,那些土质软弱的场地也必须利用起来。因此必须对这类场地进行人工加固,这个过程称为地基处理。我国幅员辽阔,在各地都分布着各种成因的软土地基,这些软土含水量高(高达60%以上)、孔隙比大(>1.0)、工程性状差,因而人们提出了各种软土地基加固技术。地基处理有很多种方法,如水泥土搅拌桩法、换填法、预压法、强夯法、振冲法、挤密桩法、砂石桩法等等。 水泥土搅拌桩法具有施工工期短、加固深度大、处理效果好等特点,能有效的解决地基差异沉降,并且对周围环境影响不大。水泥土搅拌桩加固技术目前在全国很多地区得到了广泛的应用,如天津滨海地区软基的加固处理,江苏省国营淮海农场加固桥涵软土地基,广州大学城市政道路软土地基加固。 本文结合广州大学城外环路软土地基加固处理的设计和施工,谈谈用水泥土搅拌桩加固软土地基的心得体会。 二、地质水文情况 广州大学城外环路长约14.9km,跨越剥蚀残丘、丘间洼地、珠江三角洲等多个地貌单元,工程地质条件复杂,根据地形、地貌、

地层结构及工程地质条件复杂程度,将全线划分为工程地质二个大区。 I区地貌单元为剥蚀残丘,主要见于场地西北(北亭村~南步村)、东南(穗石村~南亭村)。剥蚀残丘,坡、残积土已裸露。Ⅱ区地貌单元为珠江三角洲、河漫滩、丘间洼地,主要见于场地西南(北亭村~南亭村),东北(穗石村~南步村),受海湾潮汐的影响,珠江水位变化1~2m,淤泥层厚度一般2~12m,空间分布很不均匀,有较强的地域性。因Ⅱ区区段较长,且淤泥层的工程性质同淤泥的生成环境及外界条件变化关系密切。鉴于此,将Ⅱ区进一步划分为四个亚区:Ⅱ1亚区在岗丘边缘,淤泥厚度小于2m;Ⅱ2亚区表面有硬壳层1~2m,淤泥厚度一般小于3m;Ⅱ3亚区表面有耕植土层,淤泥厚度一般3~6m ;Ⅱ4亚区为古河床,淤泥厚度一般大于6m。 勘察各钻孔均见地下水,仅少数位于Ⅰ区剥蚀残丘的钻孔未见地下水,在Ⅰ区的剥蚀残丘地下水主要赋存于第四系土层及基岩裂隙中,水量较小,属上层滞水及基岩裂隙水类型;在剥蚀残丘间洼地及河漫滩主要赋存于第四系细砂、中砂冲积地层中,水量丰沛,属上层滞水~潜水类型,局部略具承压性。地下水与珠江水有良好水利联系,并靠珠江水和大气降水补给,在与珠江相通的涌溪附近,水位受潮汐影响变化明显。水位埋深各区变化大,道路路基范围内地下水在直接临水或强透水土层中对混凝土结构具弱~中等分解类腐蚀性,在弱透水层对混凝土结构不具腐蚀性。

水泥砂浆标号强度

1、 水泥砂浆标号强度 水泥砂浆标号强度的意思是指对按标准方法制作和养护的立方体试件,在28d龄期,用标准试验方法测得的抗压强度总体分布中的一个值。 100号水泥砂浆就是说它的强度是100kg/cm2,但是现在全部改成以MPa为单位了,100号对应于M10。配合比根据原材料不同、砂浆用途不同而不同,没有一定的,以常用的42.5普通硅酸盐水泥、中砂配100(M10)砌筑砂浆为例:水泥305kg:砂1.10m3:水183kg。砂浆的标号有M3,M5,M7.5,M10,M12.5,M15,M20,M25,M30,M40几种。砂浆按用途分有砌筑、抹灰、接缝几种,跟标号无关。 M7.5砂浆是以标准立方体试件(70.7mm*70.7mm*70.7mm),一组6块,在标准养护条件下,测定其28天的抗压强度而定的。根据砂浆的抗压强度,将砂浆分为M20,M15,M10,M7.5,M5.0M2.5,M1.0等7个等级。 2、Mu代表的是"砌块"中强度等级与混凝土强度等级所采用的表示方法是同一方法系统,即抗压MPa数。 混凝土强度等级不只4个等级从C10到C50每5MPa为一个级差,共9个等级但常用的为C10到C35,C40已经属于高强混凝土了,强度要求再高如没有其它特殊要求就不如钢结构来得合算了。 Mu就是指砌块(强度等级)红砖标准名称是普通粘土烧结砖,常用是Mu5,Mu7.5,Mu10三个等级并以Mu7.5最为常用,Mu10用在基础中多一些,但现在红砖在工程中已经不再允许使用了。 砌块是材料名称如普通烧结砖,粉煤灰砖,空心砌块等等,砌体是指结构,这两个名词可不是同一概念。 3、根据《建筑结构设计术语和符号标准》GB/T50083-97的规定,混凝土强度等级的定义是:根据混凝土立方体抗压强度标准值划分的强度级别。 混凝土立方体抗压强度标准值,系指按照标准方法制作养护的边长为150mm的立方体试件,在28d龄期用标准试验方法测得的具有95%保证率的抗压强度。照标准方法制作养护的边长为150mm的立方体试件,在28d龄期用标准试验方法测得的具有95%保证率的抗压强度。普通混凝土按立方体抗压强度标准值划分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等12个强度等级。C20就是能承受20MP,C30就是能承受30MP,以此类推... 水泥的标号 水泥的标号是水泥强度大小的标志,测定水泥标号的抗压强度,系指水泥砂浆硬结28d后的强度。例如检测得到28d后的抗压强度为310 kg/cm2,则水泥的标号定为300号。抗压强度为300-400 kg/cm2者均算为300号。普通水泥有:200、250、300、400、500、600六种标号。200号-300号的可用于一些房屋建筑。400号以上的可用于建筑较大的桥梁或厂房,以及一些重要路面和制造预制构件。 关于水泥标号的用法,其实并没有非常精细的规定,一般来说,设计图纸中会给出明确的规定。 在民用建筑工程中,一般用的比较多的是普通硅酸盐水泥和矿渣硅酸盐水泥。 标号一般常用的有P.O 32.5/42.5,P.S 32.5/42.5。 水泥新标准与老标准相比修订的主要内容是: (1)六大水泥产品标准均引用GB/T17671-1999方法为该标准的强度检验方法,不再采用

水泥和混凝土的标号及强度

1水泥 标号:水泥标号是按规定龄期的抗压强度和抗折强度划分,强度以kgf/ cm2 计。硅酸盐水泥、普通水泥的强度龄期为3 d、28 d ,矿渣水泥、火山灰水泥、粉煤灰水泥和复合水泥的强度龄期为3 d、7 d、28 d。强度的检验方法按《水泥胶砂强度检验方法》(GB177 85)(简称GB 法,此标准已于1999 年5 月1 日废止)执行。各类水泥的强度共设275、325、425、425R、525、525R、625、625R 和725R 九个标号。 强度等级:水泥强度等级也按规定龄期的抗压强度和抗折强度划分,唯强度以MPa 计。各类水泥的强度龄期统一为3 d、28 d。强度的检验方法按《水泥胶砂强度检验方法(ISO 法)》(GB/ T17671 1999)(简称ISO 法,此标准于1999 年5 月1 日实施)执行。常用各类水泥的强度共设32. 5 、32. 5R、42. 5 、42. 5R、52. 5 、52. 5R、62. 5 和62. 5R八个等级。相应的产品新标准是《硅酸盐水泥、普通硅酸盐水泥》(GB175 1999)、《矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥》(GB1344 1999)和《复合硅酸盐水泥》(GB12958 1999)。这三项标准于1999 年12 月1 日起实施。考虑水泥生产、检验及使用方面的实际情况,规定了为期1 年的过渡期。过渡期内新老标准的水泥并行,从而实现平稳过渡。 标号与强度等级:水泥强度从标号到强度等级的变化,主要是由于采用了不同的强度检验方法,即由GB 法改为ISO 法。这是我国水泥标准为向国际标准靠拢并与其保持一致做出的重大修改。两种检验方法在胶砂组成(标准砂、灰砂比、水灰比)、搅拌方法、振实成型方法、养护、加载速度、试验条件控制和仪器设备等方面有明显的差别。经试验对比,老标准水泥采用GB 法和ISO 法的试验结果是:抗折强度差值不大,对水泥强度指标的影响可忽略不计;而抗压强度用ISO 法检验的则普遍较用GB 法检验的降低了大约一个强度等级。如标号为425 的水泥,其强度等级相当于32. 5。就平均统计水平来看,标号与强度等级的关系大致是425 号→32. 5 级、525 号→42. 5级、625 号→52. 5 级。 2混凝土 标号:混凝土标号是指按标准方法制作、养护的边长为20 cm 的立方体标准

混凝土的强度.

一、混凝土的强度等级 混凝土的强度等级是指混凝土的抗压强度。混凝土的强度等级应以混凝土立方体抗压强度标准值划分。采用符号C与立方体抗压强度标准值(以N/mm或MPa计)表示。混凝土的抗压强度是通过实验得出的,我国采用边长为150mm的立方体作为混凝土抗压强度的标准尺寸试件。<规范>规定以边长为150mm的立方体在(20±2)℃的温度和相对湿度在95%以上的潮湿空气中养护28d,依照标准实验方法测得的具有95%保证率的抗压强度作为混凝土强度等级. 按照GB50010-2002《混凝土结构设计规范》规定,普通混凝土划分为十四个等级, 即:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。 二、影响混凝土强度的因素 影响混凝土强度等级的因素主要有水泥等级和水灰比、集料、龄期、养护温度和湿度等有关。 1.水灰比 混凝土抗压强度与混凝土用水水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。所以混凝土施工时切勿用错了水泥标号。另外,水灰比也与混凝土强度成正比,水灰比大,混凝土强度高;水灰比小,混凝土强度低,因此,当水灰比不变时,企图用增加水泥用量来提高温凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。因此影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 2.粗骨料的影响 粗骨料对混凝土强度也有一定的影响。当石质强度相等时,决定于骨料的表面粗糙度。如:碎石表面比卵石表面粗糙,它与水泥砂浆的粘结力比卵石大;当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石强。一般混凝土的粗骨料控制在3.2cm

水泥砂浆强度

根据《砌筑砂浆配合比设计规程》(JGJ98-2000)以下配比比例皆是以重量为单位。我们来看看M5、M7.5、M10、C20、C25水泥砂浆的配比。 一、M5水泥砂浆的配合比: 水泥:中砂=1:5.23。 条件:施工水平,一般;砂子,中砂;砂子含水率:2.5%;水泥实际强度:32.5 MPa 二、M7.5水泥砂浆配合比: 砂浆试配时各材料的用量比例:水泥∶砂=260∶1541=1∶5.93 条件:用于砌筑沟井的水泥砂浆,强度为M7.5,稠度30~50mm。原材料的主要参数,水泥:32.5级水泥;中砂,堆积密度为1541kg/m3;施工水平:一般。选取水泥用量260kg/m3,砂子用量QS=1541kg/m3,水量为280kg/m3 三、M10水泥砂浆配合比: 砂浆各材料的用量比例:水泥∶砂=240∶1221=1∶5.09 条件:用于砌筑毛石挡土墙的水泥砂浆,强度为M10,稠度30~50mm。原材料的主要参数,水泥:32.5级水泥;中砂,堆积密度为1221kg/m3;施工水平: 一般。 水泥用量240kg/m3,砂子用量QS=1221kg/m3,水量为290kg/m3 四、C20混凝土配合比:水泥:砂:碎石:水=1:1.83:4.09:0.50 条件:坍落度35--50mm;砂子种类:粗砂,配制强度:28.2MPa;石子:河石;最大粒径:31.5mm;水泥强度等级32.5,实际强度35.0MPa . 每立方米混凝土中,水泥含量:326Kg;砂的含量:598Kg;碎石:1332Kg 五、C25混凝土配合比:水泥:砂:碎石:水=1:1.48:3.63:0.44 条件:坍落度35--50mm;砂子种类:粗砂,配制强度:28.2MPa;石子:河石(卵石);最大粒径:31.5mm;水泥强度等级32.5,实际强度35.0MPa . 其中每立方米混凝土中,水泥含量:370Kg;砂的含量:549Kg;碎石:1344Kg 以上是M5、M7.5、M10、C20、C25水泥砂浆的配比。可以根据实际条件调整配合比。变化幅度不会太大。

水泥混凝土立方体抗压强度试验方法

水泥混凝土立方体抗压强度试验方法 (Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens) 1 目的、适用范围和引用标准 本方法规定了测定水泥混凝土抗压极限强度的方法和步骤。本方法可用于确定水泥混凝土的强度等级,作为评定水泥混凝土品质的主要指标。 本方法适于各类水泥混凝土立方体试件的极限抗压强度试验。 引用标准: GB/ T 2611—1992《试验机通用技术要求》 GB/ T 3722—1992《液压式压力试验机》 T0551—2005《水泥混凝土试件制作与硬化水泥混凝土现场取样方法》 2仪器设备 (1)压力机或万能试验机:应符合T0551中2.3的规定。 (2)球座:应符合T0551的2.4规定。 (3)混凝土强度等级大于等于C60时,试验机上、下压板之间应各垫一钢垫板,平面尺寸应不小于试件的承压面,其厚度至少为25mm。钢垫板应机械加工,其平面度允许偏差±0.04mm,表面硬度大于等于55HRC;硬化层厚度约5mm。试件周围应设置防崩裂网罩。 3试件制备和养护 3.1试件制备和养护应符合T0551中相关规定。 3.2混凝土抗压强度试件尺寸符合T 0551中表T0551-1规定。

3.3 集料公称最大粒径符合T0551中表T0551-1规定。 3.4 混凝土抗压强度试件应同龄期者为一组,每组为3个同条件制作和养护的混凝土试块。 4 试验步骤 4.1 至试验龄期时,自养护室取出试件,应尽快试验,避免其湿度变化。 4.2 取出试件,检查其尺寸及形状,相对两面应平行。量出棱边长度,精确至lmm 。试件受力截面积按其与压力机上下接触面的平均值计算。在破型前,保持试件原有湿度,在试验时擦干试件。 4.3 以成型时侧面为上下受压面,试件中心应与压力机几何对中。 4.4 强度等级小于C30的混凝土取0.3MPa/s~0.5MPa/s 的加荷速度;强度等级大于 C30小于C60时,则取0.5MPa/ s~0.8MPa/s 的加荷速度;强度等级大于C60的混凝土取0.8MPa/s~1.0MPa/s 的加荷速度。当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直至试件破坏,记下破坏极限荷载F(N)。 5 试验结果 5.1 混凝土立方体试件抗压强度按下式计算: A F f cu (T0553-1) 式中:cu f ——混凝土立方体抗压强度(MPa); F ——极限荷载(N); A ——受压面积(mm 2)。

相关主题
文本预览
相关文档 最新文档