第5章-1 曲线拟合(线性最小二乘法)讲解
- 格式:ppt
- 大小:287.00 KB
- 文档页数:16
曲线拟合最小二乘法
曲线拟合是指通过已知数据点来推导出一条函数曲线,使得该曲线尽
可能地贴近这些数据点。
而最小二乘法(Least Squares Method)是求解
这种拟合问题的一种常用方法。
最小二乘法的核心思想是尽量减小误差平方和。
假设已知的数据点为$(x_i, y_i)$,曲线函数为 $y=f(x)$,我们希望找到一组参数 $\theta$,使得 $f(x_i;\theta)$ 与 $y_i$ 的差距最小,即:
$$\min_{\theta}\sum_{i=1}^n [y_i - f(x_i;\theta)]^2$$。
这个式子被称为目标函数,也叫做残差平方和(RSS)。
通过对目标
函数进行求导,可以得到最优参数 $\theta^*$ 的解析解:
$$\theta^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T
\mathbf{y}$$。
其中,$\mathbf{X}$ 是一个 $n \times p$ 的矩阵,每一行代表一
个数据点的特征向量,$p$ 是曲线函数的参数个数。
$\mathbf{y}$ 是一
个 $n \times 1$ 的列向量,代表数据点的真实输出值。
最小二乘法在实际应用中有很广泛的应用。
例如,可以用它来构建多
项式回归模型、高斯过程回归模型等。
此外,在机器学习领域,最小二乘
法也被用于求解线性回归模型、岭回归模型等。
曲线拟合问题最常用的解法——线性最小二乘法的基本思路第一步:先选定一组函数 r 1(x), r 2(x), …r m (x), m<n, 令f(x)=a 1r 1(x)+a 2r 2(x)+ …+a m r m (x) (1) 其中 a 1,a 2, …a m 为待定系数。
第二步: 确定a 1,a 2, …a m 的准则(最小二乘准则): 使n 个点(x i ,y i ) 与曲线 y=f(x) 的距离δi 的平方和最小 。
记221211211(,,)[()][()](2)n nm i i i i i nmk k i i i k J a a a f x y a r x y δ======-=-∑∑∑∑问题归结为,求 a 1,a 2, …a m 使 J(a 1,a 2, …a m ) 最小。
线性最小二乘法的求解:预备知识超定方程组:方程个数大于未知量个数的方程组111122111122 ()m m n n nm m nr a r a r a y n m r a r a r a y +++=⎧⎪>⎨⎪+++=⎩ 即 Ra=y其中111112112,,m n n nm m n a y r r r R a y r r r a y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦超定方程一般是不存在解的矛盾方程组。
如果有向量a 使得211221()ni i im m i i r ar a r a y =+++-∑ 达到最小,则称a 为上述超定方程的最小二乘解。
线性最小二乘法的求解所以,曲线拟合的最小二乘法要解决的问题,实际上就是求以下超定方程组的最小二乘解的问题。
Ra=y (3)其中111111()(),,()()m n m n m n r x r x a y R a y r x r x a y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦定理:当R T R 可逆时,超定方程组(3)存在最小二乘解,且即为方程组 R T Ra=R T y的解:a=(R T R)-1R T y线性最小二乘拟合f(x)=a1r1(x)+ …+a m r m(x)中函数{r1(x), …r m(x)}的选取1. 通过机理分析建立数学模型来确定f(x);2. 将数据(x i,y i) i=1, …n 作图,通过直观判断确定f(x):用MATLAB作线性最小二乘拟合1. 作多项式f(x)=a1x m+ …+a m x+a m+1拟合,可利用已有程序:例对下面一组数据作二次多项式拟合xi 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1 yi 1.978 3.28 6.16 7.34 7.66 9.58 9.48 9.30 11.22123()f x a x a x a =++中 的123(,,)A a a a =使得:1121[()] iii f x y =-∑最小解法1.用解超定方程的方法211211111 1x x R x x ⎛⎫⎪=⎪ ⎪⎝⎭此时 1)输入以下命令:x=0:0.1:1;y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; R=[(x.^2)' x' ones(11,1)]; A=R\y'2)计算结果: A = -9.8108 20.1293 -0.03172()9.810820.12930.0317f x x x =-+-解法2.用多项式拟合的命令 1)输入以下命令: x=0:0.1:1;y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; A=polyfit(x,y,2) z=polyval(A,x);plot(x,y,'k+',x,z,'r') %作出数据点和拟合曲线的图形 2)计算结果: A = -9.8108 20.1293 -0.03172()9.810820.12930.0317f x x x =-+-用MATLAB 作非线性最小二乘拟合Matlab 的提供了两个求非线性最小二乘拟合的函数:lsqcurvefit 和lsqnonlin 。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 数值分析论文--曲线拟合的最小二乘法曲线拟合的最小二乘法姓名:徐志超学号:2019730059 专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。
根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。
这类问题通常有两种情况:一种是两个观测量 x 与 y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是 x 与 y 之间的函数形式还不知道,需要找出它们之间的经验公式。
后一种情况常假设 x 与 y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。
在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y 的误差。
设 x 和 y 的函数关系由理论公式 y=f(x; c1, c2, cm)1 / 13(0-0-1)给出,其中 c1, c2, cm 是 m 个要通过实验确定的参数。
对于每组观测数据(xi, yi) i=1, 2,, N。
都对应于 xy 平面上一个点。
若不存在测量误差,则这些数据点都准确落在理论曲线上。
只要选取m 组测量值代入式(0-0-1),便得到方程组yi=f (x;c1,c2,cm)(0-0-2)式中 i=1,2,, m.求 m 个方程的联立解即得 m 个参数的数值。
显然Nm 时,参数不能确定。
在 Nm 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。
实验三函数逼近与曲线拟合、问题的提出:函数逼近是指“对函数类A中给定的函数f(x),记作f(x)・A,要求在另一类简的便于计算的函数类B中求函数p(x)・A,使p(x)与f (x)的误差在某中度量意义下最小”函数类A通常是区间[a,b]上的连续函数,记作C[a,b],称为连续函数空间,而函数类B通常为n次多项式,有理函数或分段低次多项式等,函数逼近是数值分析的基础。
主要内容有:(1)最佳一致逼近多项式(2)最佳平方逼近多项式(3 )曲线拟合的最小二乘法实验要求:1、构造正交多项式;2、构造最佳一致逼近;3、构造最佳平方逼近多项式;4、构造最小二乘法进行曲线拟合;5、求出近似解析表达式,打印出逼近曲线与拟合曲线,且打印出其在数据点上的偏差;6、探讨新的方法比较结果。
三、实验目的和意义:1、学习并掌握正交多项式的MATLAB编程;2、学习并掌握最佳一致逼近的MATLAB实验及精度比较;3、学习并掌握最佳平方逼近多项式的MATLAB实验及精度比较;4、掌握曲线拟合的最小二乘法;5、最小二乘法也可用于求解超定线形代数方程组;6、探索拟合函数的选择与拟合精度之间的关系;四、算法步骤:1、正交多项式序列的生成{ \ ( X)}o •:设\ ( X)是[a,b]上首项系数数,如果多项式序列{ \ ( X)}o:满足关系式则称多项式序列{ \(X)}o:为在[a,b]上带权的n次正交多项式。
1 )输入函数「(x)和数据a,b;2) 分别求(x n, j(x)),C j (x), j(x))的内积;. . n 2 (X n,®j(X)), ,3) 按公式①;:o(X)=1, -(X) =X n j j(X)计算;:n(X),生成正交多项式;j鼻Wj(x),W j(x))流程图:开始a n=0的n次多项式,r(x)为[a,b]上权函;Q j秋A 0, jb(j, k)」(x) j(x) k(x)d(X> =a「(x)正交,称;:n (x)为[a,b]上带权「(x)cz>结束2、最佳一致逼近多项式f(x) C[a,b],若存在 R*(x) H n 使得.:(f,P ;^E n ,则称 P ; (x)是 f (x)在[a,b]上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式。