《高等数学》-各章知识点总结——第1章
- 格式:doc
- 大小:703.50 KB
- 文档页数:6
第1章 函数与极限总结
1、极限的概念
(1)数列极限的定义
给定数列{x n },若存在常数a ,对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切n , 恒有
|x n-a |<ε 则称a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为
a x n n =∞
→lim 或xn →a (n→∞).
(2)函数极限的定义
设函数f (x)在点x 0的某一去心邻域内(或当0x M >>)有定义,如果存在常数A , 对于任意给定的正数ε (不论它多么小), 总存在正数δ,(或存在X ) 使得当x满足不等式0<|x -x0|<δ 时,(或当x X >时) 恒有 |f (x)-A |<ε ,
那么常数A就叫做函数f (x)当0x x →(或x →∞)时的极限, 记为
A x f x x =→)(lim 0
或f (x )→A (当x →x0).(
或lim ()x f x A →∞
=)
类似的有:如果存在常数A ,对0,0,εδ∀>∃>当00:x x x x δ-<<(00x x x δ<<-)时,恒有()f x A ε-<,则称A 为()f x 当0x x →时的左极限(或右极限)记作
00
lim ()(lim ())x x x x f x A f x A -
+→→==或
显然有0
lim ()lim ()lim ())x x x x x x f x A f x f x A -+→→→=⇔==
如果存在常数A ,对0,0,X ε∀>∃>当()x X x X <->或时,恒有()f x A ε-<,则称A 为()f x 当x →-∞(或当x →+∞)时的极限 记作lim ()(lim ())x x f x A f x A →-∞
→+∞
==或
显然有lim ()lim ()lim ())x x x f x A f x f x A →∞
→-∞
→+∞
=⇔==
2、极限的性质 (1)唯一性
若a x n n =∞
→lim ,lim n n x b →∞
=,则a b =
若0()
lim ()x x x f x A →∞→=0()
lim ()x x x f x B →∞→=,则A B =
(2)有界性
(i)若a x n n =∞
→lim ,则0M ∃>使得对,n N
+
∀∈恒有n x M ≤
(i i)若0
lim ()x x f x A →=,则0M ∃>当0:0x x x δ<-<时,有()f x M ≤
(ii i)若lim ()x f x A →∞
=,则0,0M X ∃>>当x X >时,有()f x M ≤
(3)局部保号性
(i )若a x n n =∞
→lim 且0(0)a a ><或则N N +∃∈,当n N >时,恒有0(0)n n x x ><或
(ii )若0
lim ()x x f x A →=,且0(0)A A ><或,则0δ∃>当0:0x x x δ<-<时,有
()0(()0)f x f x ><或
3、极限存在的准则
(i )夹逼准则 给定数列{},{},{}n n n x y z
若①0,n N +
∃∈当0n n >时有n n n y x z ≤≤
②lim lim n n n n y z a →∞
→∞
==,
则lim n n x a →∞
=
给定函数(),(),()f x g x h x ,
若①当0
0(,)x U x r ∈(或x X >)时,有()()()g x f x h x ≤≤ ②00()
()lim ()lim ()x x x x x x g x h x A →∞→∞→→==,
则0()
lim ()x x x f x A →∞→=
(ii)单调有界准则
给定数列{}n x ,若①对n N +∀∈有11()n n n n x x x x ++≤≥或②()M m ∃使对
n N +∀∈有()n n x M x m ≤≥或则lim n n x →∞
存在
若()f x 在点0x 的左侧邻域(或右侧邻域)单调有界,则0
lim ()x x f x -→(或0
lim ()x x f x +→)
存在
4、极限的运算法则
(1)若0()
lim ()x x x f x A →∞→=,0()
lim ()x x x g x B →∞→=
则(i)0()
lim [()()]x x x f x g x A B →∞→±=±
(ii)0()
lim [()()]x x x f x g x A B →∞→⋅=⋅
(ii i)0()
()lim
()x x x f x A
g x B
→∞→=⋅(0B ≠) (2)设(i)0
0()lim ()x x u g x g x u →==且(ii )当0
0(,)x U x δ∈时0()g x u ≠
(iii )0
lim ()u u f u A →=
则0
lim [()]lim ()x x u u f g x f u A →→==
5、两个重要极限
(1)
0sin lim
1
x x
x →=()0sin ()
lim
1()u x u x u x →=
sin lim
0x x x ∞→=,1lim sin 1x x x →∞=,01
lim sin 0x x x
→=
(2)1lim 1x
x e x →∞⎛
⎫+= ⎪⎝⎭)
()(1lim 1;()x u u x e u x →∞⎛⎫+= ⎪⎝⎭
1
lim(1)x
x x e
→+=()
()0
1()
lim 1();v x x v v x e →+=
6、无穷小量与无穷大量的概念
(1)
若0()
lim
()0x x x x α→∞→=,即对0,0,εδ∀>∃>当0:0x x x δ<-<(或
x X >)时有()x αε<,则称当0()()x x x x α→→∞或,无穷小量
(2)
若
0()
lim ()x x x f x →∞→=∞
即对
0,0(0),
M X δ∀>∃>>或当
0:0x x x δ<-<(或
x X >)时有
()f x M
>则称当
0()()x x x f x →→∞或,无穷大量
7、无穷小量与有极限的量及无穷大量的关系,无穷小量的运算法则 (1)00()
()
lim ()()(),lim
()0x x x x x x f x A f x A x x αα→∞→∞→→=⇔=+=其中
(2)00()
()
1
lim ()0()0lim
()
x x x x x x f x f x f x →∞
→∞→→=≠⇒=∞() (3)00
()
()
1
lim ()lim
0()x x x x x x g x g x →∞→∞→→=∞⇒= (4)0()
lim ()0,x x x f x M →∞
→=∞∃>且当0:0x x x δ<-<(或x X >)时有()g x M ≤,则