高考文科数学试题解析分类汇编
- 格式:doc
- 大小:818.50 KB
- 文档页数:10
2023年高考文科数学解析分类汇编代数
(逐题详解)
本文档旨在提供2023年高考文科数学解析分类汇编代数的逐题详解,以帮助考生更好地准备数学考试。
一、题目一
题目描述
[题目描述]
解答步骤
1. [解答步骤1]
2. [解答步骤2]
3. [解答步骤3]
...
n. [解答步骤n]
解答过程
[解答过程的详细描述,可以包括需要用到的公式、定理、推导等]
结果分析
[对解答过程中得到的结果进行分析、解释,说明结果的意义和重要性]
二、题目二
题目描述
[题目描述]
解答步骤
1. [解答步骤1]
2. [解答步骤2]
3. [解答步骤3]
...
n. [解答步骤n]
解答过程
[解答过程的详细描述,可以包括需要用到的公式、定理、推导等]
结果分析
[对解答过程中得到的结果进行分析、解释,说明结果的意义和重要性]
...
三、题目三
题目描述
[题目描述]
解答步骤
1. [解答步骤1]
2. [解答步骤2]
3. [解答步骤3]
...
n. [解答步骤n]
解答过程
[解答过程的详细描述,可以包括需要用到的公式、定理、推导等]
结果分析
[对解答过程中得到的结果进行分析、解释,说明结果的意义和重要性]
...
以此类推,本文档将逐题详解2023年高考文科数学解析分类汇编代数的题目,希望能为考生提供参考和指导。
祝考生取得优秀的成绩!。
全国普通高等学校招生统一考试文科数学(带解析)一、选择题1.已知集合{1,0,1}A =-,{|11}B x x =-≤<,则AB =() (A ){0}(B ){1,0}-(C ){0,1}(D ){1,0,1}-【难度】1【考点】集合的运算【答案】B【解析】因为1,0,1,B B B -∈∈∉所以{}1,0AB =-. 2.设,,a b c R ∈,且a b >,则()(A )ac bc >(B )11a b <(C )22a b >(D )33a b > 【难度】1【考点】不等式的性质【答案】D【解析】排除法,取0c =,则ac bc =,故A 错误;取1,1a b ==-,则11a b>,22a b =,故B ,C 错误;选D. 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是()(A )1y x = (B) x y e -=(C )21y x =-+ (D) lg ||y x =【难度】1【考点】函数综合【答案】C【解析】 y=1x是奇函数,y=e3 是非奇非偶函数, y=x2+1既是偶函数又在区间(0,+ ∞)上单调递减,y=lg ∣x ∣是偶函数,在(0,+ ∞)上单调递增.解答本题也可以借助图象,利用数形结合解决.4.在复平面内,复数(2)i i -对应的点位于()(A )第一象限(B )第二象限(C )第三象限(D )第四象限【难度】1【考点】复数综合运算【答案】A【解析】复数i (2i )=2i+1对应的点为()1,2,在第一象限.5.在ABC ∆中,3a =,5b =,1sin 3A =,则sin B=() (A )15(B )59(C )5(D )1 【难度】2【考点】解斜三角形【答案】 B【解析】由正弦定理,得15sin 53sin 39b A B a ⨯===,选B. 6.执行如图所示的程序框图,输出的S 值为()(A )1(B )23(C )1321(D )610987 【难度】2【考点】算法和程序框图【答案】C【解析】第一次执行循环:1122113S +==⨯+,1i =; 第二次执行循环:221133221213S ⎛⎫+ ⎪⎝⎭==⨯+,2i =,满足i ≥2,结束循环,输出1321S =. 7.双曲线221y x m -=的充分必要条件是() (A )12m >(B )1m ≥(C )1m >(D )2m > 【难度】2 【考点】双曲线【答案】C【解析】由双曲线的方程可知,21,,a b m c ===,>1m >.8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,P 到各顶点的距离的不同取值有()A(A )3个(B )4个(C )5个(D )6个【难度】2【考点】点线面的位置关系【答案】B【解析】设正方体的棱长为3,计算得''3PA PC PD ===,'6PA PC PB ===,3PB =,'23PD =,故P 到各顶点的距离的不同取值有4个.二、填空题9.若抛物线22y px =的焦点坐标为(1,0),则p =____;准线方程为_____. 【难度】1【考点】抛物线【答案】2,1x =-【解析】由12p x ==,得2p =, 其准线方程为12p x =-=-. 10.某四棱锥的三视图如图所示,该四棱锥的体积为__________.【难度】1【考点】空间几何体的三视图与直观图【答案】3【解析】该四棱锥的底面是一个边长为3的正方形,高为1, 故该棱锥的体积为213133⨯⨯=. 11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q =__________;前n 项n S =_____. 【难度】2【考点】等比数列【答案】2,()421n -【解析】 352440220a a q a a +===+, 由()22411220a a a +=+=,解得14a =,故()()41242112n n nS -==--. 12.设D 为不等式组0,20,30x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为___________.【难度】2【考点】线性规划【解析】画出不等式组0,20,30x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域D ,如图所示.点()1,0到直线20x y -=5=.13.函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪<⎩的值域为_________.【难度】2【考点】分段函数,抽象函数与复合函数【答案】(),2-∞【解析】当1x ≥时,()12log 0f x x =≤;当1x <时,()()20,2x f x =∈,故函数的值域为(),2-∞.14.已知点(1,1)A -,(3,0)B ,(2,1)C ,若平面区域D 由所有满足AP AB AC λμ=+(12λ≤≤,01μ≤≤)的点P 组成,则D 的面积为__________.【难度】3【考点】线性规划【答案】3【解析】()2,1AB =,()1,2AC =,()()()2,11,22,2AP AB AC λμλμλμλμ=+=+=++,设(),P x y ,则()1,1AP x y =-+,所以12,12,x y λμλμ-=+⎧⎨+=+⎩即23,323.3y x x y μλ-+⎧=⎪⎪⎨--⎪=⎪⎩因为12λ≤≤,01μ≤≤, 所以23013y x -+≤≤且23123x y --≤≤,即230,20,260,290.x y x y x y x y --≤⎧⎪-≥⎪⎨--≥⎪⎪--≤⎩ 画出平面区域,如下图所示,||5CD =,E 到直线230x y --=的距离为5, 故四边形BDCE 的面积为3.三、解答题15.已知函数21()(2cos 1)sin 2cos 42f x x x x =-+(Ⅰ)求()f x 的最小正周期及最大值; (Ⅱ)若(,)2παπ∈,且2()2f α=,求α的值. 【难度】3 【考点】三角函数综合【答案】(Ⅰ)2(Ⅱ)916πα= 【解析】 (Ⅰ),因为()()212cos 1sin 2cos 42f x x x x =-+ 1cos 2sin 2cos 42x x x =+()1sin 4cos 42x x =+ 2sin(4)24x π=+ 所以()f x 的最小正周期为2π,最大值为2. 因为(,)2παπ∈,所以9174(,)444πππα+∈. 因为2()f α=,所以22()sin(4)4f παα=+=,即sin(4)14πα+=. 所以5442ππα+=,故916πα=. 16.下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【难度】3【考点】概率综合【答案】(Ⅰ)613(Ⅱ)413(Ⅲ)从3月5日开始连续三天的空气质量指数方差最大 【解析】(Ⅰ)在3月1日至3月13日这13天中,1日,2日,3日,7日,12日,13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率为613。
专题05 立体几何(选择题、填空题)1.【2020年高考全国Ⅰ卷文数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A BC D 【答案】C【解析】如图,设,CD a PE b ==,则PO ==由题意得212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得b a =.故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.2.【2020年高考全国Ⅱ卷文数】已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为AB .32C .1D 【答案】C【解析】设球O 的半径为R ,则2416R ππ=,解得:2R =. 设ABC 外接圆半径为r ,边长为a ,ABC 的等边三角形,212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d ===.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面. 3.【2020年高考全国Ⅲ卷文数】如图为某几何体的三视图,则该几何体的表面积是A.B .C .D .【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.4.【2020年高考全国Ⅰ卷文数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R , 依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=,1OO AB ∴==根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.5.【2020年高考天津】若棱长为 A .12π B .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=. 故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心. 6.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6+B .6+C .12D .12+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.7.【2020年高考浙江】某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .6【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱, 且三棱锥的一个侧面垂直于底面,且棱锥的高为1, 棱柱的底面为等腰直角三角形,棱柱的高为2, 所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.8.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.9.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD , 根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒, 所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选B.【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.10.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.11.【2019年高考全国Ⅱ卷文数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD , 易得直线BM ,EN 是三角形EBD 的中线,是相交直线. 过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,M F ⊥平面ABCD , MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,22MF BF BM ==∴= BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.12.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭. 故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.13.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>;在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.14.【2018年高考全国Ⅱ卷文数】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为A.1722B.5C.3D.2【答案】B【解析】根据圆柱的三视图以及其本身的特征,知点M在上底面上,点N在下底面上,且可以确定点M 和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,=B.【名师点睛】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.15.【2018年高考全国Ⅱ卷文数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【答案】A【解析】由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.【名师点睛】本题主要考查空间几何体的三视图,考查考生的空间想象能力和阅读理解能力,考查的数学核心素养是直观想象.16.【2018年高考全国I 卷文数】在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BBC C 所成的角为30︒,则该长方体的体积为A .8B .C .D .【答案】C【解析】在长方体1111ABCD A BC D -中,连接1BC ,根据线面角的定义可知130AC B ︒∠=,因为2AB =,所以1BC =,从而求得1CC =所以该长方体的体积为22V =⨯⨯= 故选C.【名师点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长、宽、高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,最终求得结果.17.【2018年高考全国I 卷文数】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A. B .12π C.D .10π【答案】B【解析】根据题意,可得截面是边长为所以其表面积为22π2π12πS =+=,故选B.【名师点睛】该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.18.【2018年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .2B .4C .6D .8【答案】C俯视图正视图【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯= 故选C.【名师点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.19.【2018年高考全国Ⅱ卷文数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为 A. B .C.D .【答案】B【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,23BM BE ∴==Rt OBM ∴△中,有2OM ==,426DM OD OM ∴=+=+=,()max 163D ABC V -∴=⨯=,故选B.【名师点睛】本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当点D 在平面ABC 上的射影为三角形ABC 的重心时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到23BM BE ==OM ,进而得到结果,属于较难题型.20.【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A BC D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A BC D 【答案】C【解析】如图,在正方体1111ABCD A BC D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【名师点睛】本题主要考查异面直线所成的角,考查考生的空间想象能力、化归与转化能力以及运算求解能力,考查的数学核心素养是直观想象、数学运算.求异面直线所成的角,需要将异面直线所成的角等价转化为相交直线所成的角,然后利用解三角形的知识加以求解.21.【2018年高考浙江卷】已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】因为,,m n m n ⊄⊂∥αα,所以根据线面平行的判定定理得m ∥α. 由m ∥α不能得出m 与α内任一直线平行, 所以m n ∥是m ∥α的充分不必要条件,故选A. 【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.22.【2018年高考浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【答案】D【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ 从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D.【名师点睛】分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.23.【2018年高考北京卷文数】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A .1B .2C .3D .4【答案】C【解析】由三视图可得四棱锥P ABCD -如图所示,在四棱锥P ABCD -中,2,2,2,1PD AD CD AB ====,由勾股定理可知:3,PA PC PB BC ==== 则在四棱锥中,直角三角形有:,,PAD PCD PAB △△△,共3个, 故选C.【名师点睛】此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.解答本题时,根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.24.【2020年高考全国Ⅱ卷文数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧ ②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α; 若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个, 命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面, 命题3p 为假命题;对于命题4p ,若直线m ⊥平面α, 则m 垂直于平面α内所有直线, 直线l ⊂平面α,∴直线m ⊥直线l , 命题4p 为真命题. 综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.25.【2020年高考全国Ⅲ卷文数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM =122S =⨯⨯△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯= 解得:22r,其体积:3433V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.26.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______. 【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.27.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 ▲ cm.【答案】2π【解析】正六棱柱体积为262⨯圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为: 2π【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.28.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A BC D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A BC D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11BC CB ,设P 为侧面11BC CB 与球面的交线上的点,则1DE EP ⊥,1D E =,所以||EP ===,所以侧面11BC CB 与球面的交线上的点到E因为||||EF EG ==11BC CB 与球面的交线是扇形EFG 的弧FG ,因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==.故答案为:2.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.29.【2019年高考全国Ⅱ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________.【解析】作,PD PE 分别垂直于,AC BC ,PO ⊥平面ABC ,连接CO ,由题意可知,CD PD CD PO ⊥⊥,=PD PO P ,CD 平面PDO ,又OD ⊂平面PDO ,CD OD ∴⊥,PD PE ==2PC =,sin sin PCE PCD ∴∠=∠=, 60PCB PCA ︒∴∠=∠=,又易知PO CO ⊥,CO 为ACB ∠的平分线,451,,OCD OD CD OC ︒∴∠=∴===,又2PC =,PO ∴==【名师点睛】本题主要考查学生空间想象能力,合理画图成为关键,准确找到P 在底面上的射影,使用线面垂直定理,得到垂直关系,利用勾股定理解决.注意画图视角选择不当,线面垂直定理使用不够灵活,难以发现垂直关系,问题则很难解决,将几何体摆放成正常视角,是立体几何问题解决的有效手段,几何关系利于观察,解题事半功倍.30.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==,1.【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形. 31.【2019年高考全国Ⅱ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A BC D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H分别为所在棱的中点,16cm 4cm AB=BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGHS =⨯-⨯⨯⨯=四边形, ∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A BC D -的体积为32466144cm V =⨯⨯=, 所以该模型体积为3214412132cm O EFGH V V V -=-=-=, 其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.32.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=. 【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 33.【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α. 故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.34.【2019年高考天津卷文数】若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】π42=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心, 故圆柱的高为1,圆柱的底面半径为12, 故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 【名师点睛】本题主要考查空间几何体的结构特征以及圆柱的体积计算问题,解答时,根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.35.【2019年高考江苏卷】如图,长方体1111ABCD A BC D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .。
2022年数学文高考真题分类汇编专题07概率与统计1.【2022高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.1125B.C.D.3236【答案】A【解析】考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.2.【2022高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.7533B.C.D.108810【答案】B【解析】试题分析:因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为故选B.考点:几何概型.【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.3.[2022高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C,B点表示四月的平均最低气温约为5C.下面叙述不正确的是()40155,408A.各月的平均最低气温都在0C以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均气温高于20C的月份有5个【答案】D【解析】考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.学优高考网4.[2022高考新课标Ⅲ文数]小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.8111B.C.D.1581530【答案】C【解析】试题分析:开机密码的可能有(M,1),M(,2)M,(,3)M,(,M,4),(I,5)I,(,1)I,((,,4I2)),,((,I,53)(N,1),(N,2),(N,3),(N,4),(N, 5),共15种可能,所以小敏输入一次密码能够成功开机的概率是选C.考点:古典概型.1,故15【解题反思】对古典概型必须明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数n必须是有限个;②出现的各个不同的试验结果数m其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)m得出的结果才是正确的.n5.【2022高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140【答案】D【解析】考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.6.【2022高考天津文数】甲、乙两人下棋,两人下成和棋的概率是率为()(A)11,甲获胜的概率是,则甲不输的概2356(B)25(C)16(D)13【答案】A【解析】试题分析:甲不输概率为115.选A.236考点:概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法.对古典概型概率考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.7.【2022高考北京文数】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.1289B.C.D.552525【答案】B考点:古典概型【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式P(A)但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m,n,再运用公式P(A)m求出事件A的概率,这是一个形象直观的好方法,nm求概率.学优高考网n8.【2022高考北京文数】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.【名师点睛】本题将统计与实际应用结合,创新味十足,是能力立意的好题,根据表格中数据分析排名的多种可能性,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏,另外注意条件中数据的特征.9.【2022高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29【解析】考点:统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.学优高考网10.【2022高考四川文科】从2、3、8、9任取两个不同的数值,分别记为a、b,则oglab为整数的概率=.【答案】【解析】16考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,4因此所有对数的个数就相当于4个数中任取两个的全排列,个数为A4,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.11.【2022高考上海文科】某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.【答案】161.6【解析】试题分析:将4种水果每两种分为一组,有C246种方法,则甲、乙两位同学各自所选的两种水果相同的概率为考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.12.【2022高考上海文科】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.13.【2022高考新课标1文数】(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数2420221060161718192022更换的易损零件数记某表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(I)若n=19,求y与某的函数解析式;(II)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【答案】(I)y【解析】,某19,3800(某N)(II)19(III)19,某19,500某5700(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.学优高考网14.【2022高考新课标2文数】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数保费0123452a0.85aa1.25a1.5a1.75a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数频数060150230330420510(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(III)求续保人本年度的平均保费估计值.【答案】(Ⅰ)由公式求解.【解析】60503030求P(A)的估计值;(Ⅱ)由求P(B)的估计值;(III)根据平均值得计算200200(Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3,200故P(B)的估计值为0.3.(Ⅲ)由题所求分布列为:保费频率0.85a0.30a0.251.25a0.151.5a0.151.75a0.102a0.05调查200名续保人的平均保费为0.85a0.30a0.251.25a0.151.5a0.151.75a0.302a0.101.1925a,因此,续保人本年度平均保费估计值为 1.1925a.考点:样本的频率、平均值的计算.【名师点睛】样本的数字特征常见的命题角度有:(1)样本的数字特征与直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题.15.[2022高考新课标Ⅲ文数]下图是我国2022年至2022年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(II)建立y关于t的回归方程(系数精确到0.01),预测2022年我国生活垃圾无害化处理量.附注:参考数据:yi9.32,tiyi40.17,i1i1772(yy)0.55,7≈2.646.ii17参考公式:相关系数r(tt)(yy)iii1n(tt)(y2ii1i1nn,iy)2b中斜率和截距的最小二乘估计公式分别为:回归方程yab(ti1nit)(yiy)i(ti1nybt.,at)2【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.【解析】考点:线性相关与线性回归方程的求法与应用.【方法点拨】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数r公式求出r,然后根据r的大小进行判断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.学优高考网16.【2022高考北京文数】(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【答案】(Ⅰ)3;(Ⅱ)10.5元.【解析】所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.考点:频率分布直方图求频率,频率分布直方图求平均数的估计值.【名师点睛】1.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.2.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.17.【2022高考山东文数】(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为某,y.奖励规则如下:①若某y3,则奖励玩具一个;②若某y8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(I)求小亮获得玩具的概率;(II)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】()【解析】5.()小亮获得水杯的概率大于获得饮料的概率.16所以,PB63.168则事件C包含的基本事件共有5个,即1,4,2,2,2,3,3,2,4,1,所以,PC因为5.1635,816所以,小亮获得水杯的概率大于获得饮料的概率.考点:古典概型学优高考网【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题较易,能较好的考查考生数学应用意识、基本运算求解能力等.18.【2022高考四川文科】(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.【答案】(Ⅰ)a0.30;(Ⅱ)36000;(Ⅲ)2.04.【解析】试题分析:(Ⅰ)由高某组距=频率,计算每组中的频率,因为所有频率之和为1,计算出a的值;(Ⅱ)利用高某组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率某样本总数=频数,计算所求人数;(Ⅲ)将前5组的频率之和与前4组的频率之和进行比较,得出2≤某<2.5,再进行计算.试题解析:(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08某0.5=0.04.同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5某a+0.5某a,解得a=0.30.考点:频率分布直方图、频率、频数的计算公式【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.。
2023高考数学分类解析汇总2023集合运算与逻辑术语 1 2023复数 3 2023算法与程序框图 4 2023平面向量 5 2023数列 6 2023排列与组合 8 2023概率与统计 9 2023三角函数 14 2023解三角形 16 2023解析几何初步(直线与圆) 18 2023圆锥曲线 19 2023函数 22 2023线性规划 24 2023立体几何 25 2023导数 30 2023参数方程 32 2023不等式 332023集合运算与逻辑术语1.【2023甲卷理科T1】设集合A={x∣x=3k+1,k∈Z},B={x∣x=3k+2,k∈Z},U为整数集,则∁U(A∪B)=()A.{x∣x=3k,k∈z}B.{x∣x=3k-1,k∈z}C.{x∣x=3k-2,k∈Z}D.ϕ2.【2023甲卷文科T1】设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪(C∪M)=()A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}3.【2023乙卷理科T2】设集合U=R, 集合M={x x<1},N={x|-1<x<2},则{x|x≥2}=()A.C U(M∪N)B.N∪C U MC.C U(M∩N)D.M∪C U N4.【2023乙卷文科T2】设全集U={0,1,2,4,6,8}, 集合M={0,4,6},N={0,1,6}, 则M∪C U N=()A.{0,2,4,6,8}B.{0,1,4,6,8}C.{1,2,4,6,8}D.U5.【2023新一卷T1】已知集合M={-2,-1,0,1,2},A={x|x2-x-6≥0},则M∩N=()A.{-2,-1,0,1}B.0,1,2C.{-2}D.{2}6.【2023新一卷T7】记S n为数列a n的前n项和,设甲:a n为等差数列;乙:S n n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件7.【2023新二卷T2】设集合A=0,-a,B=1,a-2,2a-2,若A⊆B,则a=()A.2B.1C.23D.-18.【2023上海卷T13】已知P={1,2},Q={2,3},若M={x|x∈P且x∉Q},则M=()A.{1}B.{2}C.{1,2}D.{1,2,3}9.【2023天津卷T1】已知集合U={1,2,3,4,5},A={1,3},B={1,2,4},则C U(B∪A)=()A.{1,3,5}B.{1,3}C.{1,2,4}D.{1,2,4,5}10.【2023天津卷T2】“a2=b2”是“a2+b2=2ab”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件2023复数1.【2023甲卷理科T2】若复数(a+i)1-a i,则a=()A.-1B.0C.1D.22.【2023甲卷文科T2】51+i32+i2-i=()A.-1B.1C.1-iD.1+i3.【2023乙卷理科T1】设z=2+i1+i2+i5, 则z=()A.1-2iB.1+2iC.2-iD.2+i4.【2023乙卷文科T1】2+i2+2i3=()A.1B.2C.5D.55.【2023新一卷T2】已知z=1-i2+2i,则z-z=()A.-iB.iC.0D.16.【2023新二卷T1】在复平面内,(1+3i)(3-i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限7.【2023上海卷T6】已知当z=1+i,则|1-i·z|=8.【2023天津卷T10】已知i是虚数单位,化简5+14i2+3i的结果为2023算法与程序框图1.【2023甲卷理科T3】执行下面的程序框圈,输出的B=()A.21B.34C.55D.89开始n=1,A=1,B=2n≤3?A=A+BB=A+Bn=n+1输出结束2.【2023甲卷文科T6】执行右边的程序框图,输出的B=()A.21B.34C.55D.89开始n=3,A=1,B=2,k=1k≤n?A=A+BB=A+Bk=k+1输出B结束2023平面向量1.【2023甲卷理科T4】向量|a |=|b |=b ,|c |=2,且a +b +c =0 ,则cos ‹a -c ,b-c ›=()A.-15B.-25. C.25D.452.【2023甲卷文科T3】已知向量a =(3,1),b =(2,2),则cos ‹a +b,a -b ›=()A.117B.1717. C.55D.2553.【2023乙卷理科T12】已知⊙O 的半径为1, 直线PA 与⊙O 相切于点A , 直线PB 与⊙O 交于B ,C 两点, D 为BC 的中点,若|PO |=2, 则PA ⋅PD的最大值为()A.1+22B.1+222C.1+2D.2+24.【2023乙卷文科T6】正方形ABCD 的边长是2,E 是AB 的中点, 则EC ⋅ED=()A.5B.3C.25D.55.【2023新一卷T3】已知向量a =(1,1),b =(1,-1). 若(a +λb )⊥(a+μb ),则()A.λ+μ=1B.λ+μ=-1C.λμ=1D.λμ=-16.【2023新二卷T13】已知向量a ,b 满足a -b =3,a +b =2a -b,则b =.7.【2023上海卷T2】已知a =-2,3 ,b =1,2 , 求a ⋅b =.8.【2023天津卷T14】在△ABC 中.∠A =60°,点D 为AB 的中点,点E 为CD 的中点,若设AB =a ,AC =b , 则AE 可用a、b表示为.若BF =13BC ,则AE ⋅AF 的最大值为.2023数列1.【2023甲卷理科T5】已知数到a n中,a1=1,S n为a n前n项和,S5=5S3-4,则S4=()A.7B.9C.15D.302.【2023甲卷文科T5】记S n为等差数列{a n}的前n项和.若a2+a6=10,a4a8=45,则S5=()A.25B.22C.20D.153.【2023甲卷文科T13】记S n为等比数列{a n}的前n项和.若8S6=7S3,则{a n}的公比为.4.【2023乙卷理科T10】已知等差数列a n的公差为2π3, 集合S=cos a n∣n∈N∗, 若S={a,b}, 则ab=()A.-1B.-12C.0D.125.【2023乙卷理科T15】已知a n为等比数列, a2a4a5=a3a6,a9a10=-8, 则a7=6.【2023新二卷T8】记S n为等比数列{a n}的前n项和,若S4=-5,S6=21S2,则S8=()A.120B.85C.-85D.-1207.【2023上海卷T3】已知{a n}为等比数列,且a1=3,q=2,求S6=8.【2023天津卷T6】已知{a n}为等差数列, S n为数列{a n}的前n项和,a n+1=2S n+2, 则a4的值为()A.3B.18C.54D.1529.【2023甲卷理科T17】已知数列a n中,a2=1,设S n为{a n}前n项和,2S n=na n.(1)求a n的通项公式;(2)求数列a n+12n的前n项和Tn.10.【2023乙卷文科T18】记S n为等差数列a n的前n项和, 已知a2=11,S10=40.(1)求a n的通项公式;(2)求数列a n的前n项和T n.11.【2023新一卷T20】设等差数列a n的公差为d,且d>1. 令b n=n2+na n,记S n,T n分别为数列a n,b n的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求a n的通项公式;(2)若b n为等差数列,且S99-T99=99,求d.12.【2023新二卷T18】若等差数列{a n},数列{b n}满足b n=a n-6,n为奇数,2a n,n为偶数,记Sn,T n分别为{a n},{b n}的前n项和,S4=32,T3=16.(1)求{a n}的通项公式;(2)证明:n>5时,T n>S n.13.【2023天津卷T19】已知{an}是等差数列,a2+a5=16, a5-a3=4.(1)求{an}的通项公式和n-1i=2n-1a i(2)已知{b n}为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1, 则b k<a n<b k+1i.当k≥2时,求证:2k-1<b n<2k+1ii.求{b n}的通项公式及其前n项和.1.【2023甲卷理科T9】有五名志愿者参加社服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为()A.120B.60C.40D.302.【2023乙卷理科T7】甲乙两位同学从6种课外读物中各自选读2种, 则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种3.【2023新一卷T13】某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有种(用数字作答).4.【2023新二卷T3】某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有()A.C45400∙C15200种B.C20400∙C40200种C.C30400∙C30200种D.C40400∙C20200种5.【2023上海卷T10】已知1+2023x10+2023-x100=a0+a1x+a2x2+⋯+a100x100, 其中a0,a1,a2⋯a100∈R,若0≤k≤100且k∈N,当a k<0时,k的最大值是6.【2023上海卷T12】空间内存在三点A、B、C,满足AB=AC=BC=1,在空间内取不同两点(不计顺序),使得这两点与A、B、C可以组成正四棱锥,求方案数为7.【2023天津卷T11】在2x3-1 x6的展开式中,x2项的系数为1.【2023甲卷理科T6】有50人报名足球倶乐部,60人报名乒乓球倶乐部,人报名足球或与丘球倶乐部,若已知某人报足球倶乐部,则其报乒乓球倶乐部的概率为()A.0.8B.0.4C.0.2D.0.12.【2023甲卷文科T4】某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.233.【2023乙卷理科T5,文科T7】已知O是平面直角坐标系的原点, 在区域(x,y)∣1≤x2+y2≤4内随机取一点A, 则直线OA的倾斜角不大于π4的概率为()A.18B.16C.14D.124.【2023乙卷文科T9】某学校举办作文比赛, 共6个主题, 每位参赛同学从中随机抽取一个主题准备作文, 则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.135.【2023新一卷T9】有一组样本数据x1,x2,⋯,x6,其中x1是最小值,x6是最大值,则()A.x2,x3,x4,x5的平均数等于x1,x2,⋯,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,⋯,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,⋯,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,⋯,x6的极差6.【2023新二卷T12】在信道内传输0,1信号,信号的传输相互独立,发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输,单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次,收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如:若依次收到1,0,1,则译码为1)()A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)2D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率7.【2023上海卷T9】国内生产总值(GDP)是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP稳步增长,第一季度和第四季度的GDP分别为231和242,且四个季度GDP的中位数与平均数相等,则2020年GDP总额为.8.【2023上海卷T14】根据身高和体重散点图,下列说法正确的是()A.身高越高,体重越重B.身高越高,体重越轻C.身高与体重成正相关D.身高与体重成负相关9.【2023天津卷T7】忘了。
2013年高考解析分类汇编3:三角函数一、选择题1 .(2013年高考大纲卷(文2))已知a 是第二象限角,5sin ,cos 13a a ==则 ( )A .1213-B .513-C .513D .1213【答案】A因为135sin =α,α为第二象限角,所以1312cos -=α.故选A.2 .(2013年高考课标Ⅰ卷(文9))函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为【答案】C ;函数()(1cos )sin f x x x =-为奇函数,所以图象关于原点对称,所以排除B.02x π<<时,()0f x >,排除A. ()(1cos )sin 1222f πππ=-=,排除D,选C.3 .(2013年高考四川卷(文6))函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A .2,3π-B .2,6π-C .4,6π-D .4,3π【答案】A43129312543ππππ==+=T ,所以π=T ,所以πωπ=2,2=ω,)42sin(2)(+=x x f ,所以πϕπk =+-⨯)3(2,所以32ππϕ+=k ,又22πϕπ<<-,所以3πϕ-=,选A.4 .(2013年高考湖南(文5))在锐角ABC ∆中,角,A B 所对的边长分别为,a b .若2sin 3,a B b A =则角等于A .3π B .4π C .6πD .12π【答案】A本题考查正弦定理的应用。
由正弦定理得得2sin sin 3A B B =,即3sin A =,以为三角形为锐角ABC ∆,所以3A π=,选A.5 .(2013年高考福建卷(文))将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是 ( )A .35π B .65π C .2πD .6π【答案】B本题考查的三角函数的图像的平移.把)23,0(P 代入)22)(2sin()(πθπθ<<-+=x x f ,解得3πθ=,所以)232sin()(ϕπ-+=x x g ,把)23,0(P 代入得,πϕk =或6ππϕ-=k ,观察选项,故选B6 .(2013年高考陕西卷(文9))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A因为cos cos sin b C c B a A +=,所以A A B C C B sin sin cos sin cos sin =+又A C B B C C B sin )sin(cos sin cos sin =+=+。
2024年高考文科数学全国甲卷+答案详解(试题部分)一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =( ) A .{}1,2,3,4B .{}1,2,3C .{}3,4D .{}1,2,92.设z =,则z z ⋅=( ) A .-iB .1C .-1D .23.若实数,x y 满足约束条件43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,则5z x y =−的最小值为( )A .5B .12C .2−D .72−4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A .2−B .73C .1D .295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .236.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( ) A .4B .3C .2D7.曲线()631f x x x =+−在()0,1−处的切线与坐标轴围成的面积为( )A .16BC .12D. 8.函数()()2e e sin x xf x x x −=−+−在区间[ 2.8,2.8]−的大致图像为( )A .B .C .D .9.已知cos cos sin ααα=−πtan 4α⎛⎫+= ⎪⎝⎭( )A.1 B.1 CD.110.设αβ、是两个平面,m n 、是两条直线,且m αβ=.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A .32BCD二、填空题12.函数()sin f x x x =在[]0,π上的最大值是 . 13.已知1a >,8115log log 42a a −=−,则=a . 14.曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,则a 的取值范围为 . 三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=−. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =−−+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x −<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴. 19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于AB 、两点,若2AB =,求a 的值. 20.实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.2024年高考文科数学全国甲卷+答案详解(答案详解)一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =( ) A .{}1,2,3,4 B .{}1,2,3C .{}3,4D .{}1,2,9【答案】A【解析】根据题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=, 则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=. 故选A2.设z =,则z z ⋅=( ) A .-i B .1C .-1D .2【答案】D【解析】根据题意得,z =,故22i 2zz =−=. 故选D3.若实数,x y 满足约束条件43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,则5z x y =−的最小值为( )A .5B .12C .2−D .72−【答案】D【解析】实数,x y 满足43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,作出可行域如图:由5z x y =−可得1155y x z =−,即z 的几何意义为1155y x z =−的截距的15−, 则该直线截距取最大值时,z 有最小值,此时直线1155y x z =−过点A , 联立43302690x y x y −−=⎧⎨+−=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =−⨯=−. 故选D.4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A .2− B .73C .1D .29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【解析】方法1:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选D方法2:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=. 故选D方法3:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选D5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解. 【解析】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选B6.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( )A.4 B .3 C .2 D 【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【解析】根据题意,()10,4F −、()20,4F 、()6,4P −,则1228F F c ==,110PF =,26PF ,则1221064a PF PF =−=−=,则28224c e a ===. 故选C.7.曲线()631f x x x =+−在()0,1−处的切线与坐标轴围成的面积为( )A .16B C .12D . 【答案】A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =−−=−,故切线的横截距为13,纵截距为1−,故切线与坐标轴围成的面积为1111236⨯⨯=故选A.8.函数()()2e e sin x xf x x x −=−+−在区间[ 2.8,2.8]−的大致图像为( )A .B .C .D .【答案】B【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【解析】()()()()()22e e sin e e sin x x x xf x x x x x f x −−−=−+−−=−+−=,又函数定义域为[]2.8,2.8−,故该函数为偶函数,AC 错误, 又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=−+−>−+−=−−>−> ⎪ ⎪⎝⎭⎝⎭, D 错误.故选B.9.已知cos cos sin ααα=−πtan 4α⎛⎫+= ⎪⎝⎭( )A .1B .1CD .1【答案】B 【分析】先将cos cos sin αα−α弦化切求得tan α,再根据两角和的正切公式即可求解.【解析】因为cos cos sin ααα=−11tan =−α,tan 1⇒α=,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪−α⎝⎭, 故选B.10.设αβ、是两个平面,m n 、是两条直线,且m αβ=.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α, 当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确; ②,若m n ⊥,则n 与,αβ不一定垂直,②错误;③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ=,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误; ①③正确, 故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32BC.2D【答案】C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可. 【解析】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==. 根据余弦定理可得:22294b a c ac ac =+−=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=, 因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +. 故选C. 二、填空题12.函数()sin f x x x =在[]0,π上的最大值是 . 【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【解析】()πsin 2sin 3f x x x x ⎛⎫==− ⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤−∈−⎢⎥⎣⎦,当ππ32x −=时,即5π6x =时,()max 2f x =.答案为:2 13.已知1a >,8115log log 42a a −=−,则=a . 【答案】64【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解. 【解析】由题28211315log log log 4log 22a a a a −=−=−,整理得()2225log 60log a a −−=, 2log 1a ⇒=−或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==答案为:64.14.曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,则a 的取值范围为 .【答案】()2,1−【分析】将函数转化为方程,令()2331x x x a −=−−+,分离参数a ,构造新函数()3251,g x x x x =+−+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【解析】令()2331x x x a −=−−+,即3251a x x x =+−+,令()()32510,g x x x x x =+−+>则()()()2325351g x x x x x =+−=+−',令()()00g x x '=>得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==−,因为曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a ∈−.答案为:()2,1− 三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=−. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.【答案】(1)153n n a −⎛⎫= ⎪⎝⎭(2)353232n⎛⎫− ⎪⎝⎭ 【分析】(1)利用退位法可求公比,再求出首项后可求通项; (2)利用等比数列的求和公式可求n S .【解析】(1)因为1233n n S a +=−,故1233n n S a −=−,所以()12332n n n a a a n +=−≥即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =−=⨯−=−,故11a =,故153n n a −⎛⎫= ⎪⎝⎭.(2)根据等比数列求和公式得5113353523213n nnS ⎡⎤⎛⎫⨯−⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==− ⎪⎝⎭−. 16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离. 【答案】(1)见详解;【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作FO AD ⊥,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V −−=即可求解. 【解析】(1)因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ; (2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM 中点,所以OB =ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,等体积法可得M ABF F ABM V V −−=,2112333F ABM ABM V S FO −=⋅=⋅=△,2222222cos2FA AB FBFAB FAB FA AB+−+−∠===∠=⋅11sin 222FAB S FA AB FAB =⋅⋅∠==△,设点M 到FAB 的距离为d ,则1133M FAB F ABM FAB V V S d d −−==⋅⋅==△解得d =M 到ABF17.已知函数()()1ln 1f x a x x =−−+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x −<恒成立.【答案】(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性; (2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x −−++>即可.【解析】(1)()f x 定义域为(0,)+∞,11()ax f x a x x'−=−= 当0a ≤时,1()0ax f x x −'=<,故()f x 在(0,)+∞上单调递减;当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减. 综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫ ⎪⎝⎭上单调递减. (2)2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x −−−−=−−+−≥−++,令1()e 21ln (1)x g x x x x −=−++>,下证()0g x >即可.11()e 2x g x x −'=−+,再令()()h x g x '=,则121()e x h x x−'=−,显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=−=,即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=−+=,即()g x 在(1,)+∞上单调递增, 故0()(1)e 21ln10g x g >=−++=,问题得证18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴. (1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)见解析【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程. (2)设:(4)AB y k x =−,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y −,结合韦达定理化简前者可得10Q y y −=,故可证AQ y ⊥轴.【解析】(1)设(),0F c ,由题设有1c =且232b a =,故2132a a −=,故2a =,故b = 所以椭圆方程为22143x y +=. (2)直线AB 的斜率必定存在,设:(4)AB y k x =−,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=−⎩可得()2222343264120k x k x k +−+−=, 故()()422Δ102443464120k k k =−+−>,故1122k −<<,又22121222326412,3434k k x x x x k k −+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=− ⎪⎝⎭−,故22223325252Q y y y x x −−==−−, 所以()1222112225332525Q y x y y y y y x x ⨯−+−=+=−− ()()()12224253425k x x k x x −⨯−+−=−()222212122264123225825834342525k k x x x x k k k k x x −⨯−⨯+−++++==−− 2222212824160243234025k k k k k x −−+++==−,故1Q y y =,即AQ y ⊥轴.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值. 【答案】(1)221y x =+ (2)34a =【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩C 的直角方程. (2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值; 法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【解析】(1)由cos 1ρρθ=+,将cos x ρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+. (2)对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R . 将其代入221y x =+中得()221)210s a s a +−+−=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=−−=−,且()()22Δ818116160a a a =−−−=−>,故1a <,12AB s s ∴=−2=,解得34a =. 法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +−+−=,()22Δ(22)41880a a a =−−−=−+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=−=−,则AB =2=, 解得34a = 20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.【答案】(1)见解析(2)见解析【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【解析】(1)因为()()2222222022a b a ab b a b b a −+=−−++=≥, 当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;(2)222222222222()a b b a a b b a a b a b −+−≥−+−=+−+ 22222()()()()(1)326a b a b a b a b a b a b =+−+≥+−+=++−≥⨯=。
2024年普通高等学校招生全国统一考试全国甲卷文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合{}{}1,2,3,4,5,9,1A B x x A ==+∈∣,则()A B ⋂=A {}1,2,3,4B {}1,2,3,4C {}1,2,3,4D {}1,2,3,4【答案】A【解析】因为{}{}{}1,2,3,4,5,9,10,1,2,3,4,8A B x x A ==+∈=∣,所以A {}1,2,3,4B ⋂=,故选(A ). 【难度】基础题【关联题点】集合运算、交集 2.设z =则()z z ⋅=A .iB .1C .-1D .2【答案】D【解析】因为z =,所以2z z ⋅=,故选D .【难度】基础题【关联题点】复数运算、共轭复数3.若,x y 满足约束条件4330,220,2690,x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩则5z x y =-的最小值为A .12B .0C .52-D .72-【答案】D【解析】将约束条件两两联立可得3个交点:()30,1,12⎛⎫- ⎪⎝⎭、和13,2⎛⎫ ⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D . 【难度】基础题【关联题点】线性规划、约束条件4.等差数列{}n a 的前n 项和为n S ,若()9371,S a a =+=A -2 B73 C 1D29【答案】D【解析】令0d =,则9371291,,99n n S a a a a ===+=,故选D . 【难度】基础题【关联题点】等差数列、通项公式5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是() A14B13C12D23【答案】B【解析】甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B . 【难度】基础题【关联题点】计数原理、特殊位置法6.已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为 A .4 B .3C .2D .2【答案】C 【解析】12212F F c e a PF PF ===-,故选C . 【难度】中档题【关联题点】双曲线、离心率、圆锥曲线定义7.曲线()63f x x x =+在()0,1-处的切线与坐标轴围成的面积为()A16B32C12【答案】A【解析】因为563y x '=+,所以1113,31,1236k y x S ==-=⨯⨯=,故选(A ). 【难度】基础题【关联题点】导数应用、切线8.函数()()2e esin xxf x x x -=-+-的大致图像为()ABCD【答案】B【解析】()()()()22-ee sin()e e sin xx x x f x x x x x f x --=-+--=-+-=,所以()f x 是偶函数,图像关于y 轴对称,又因为2()0()22n n f n Z ππ⎛⎫=-<∈ ⎪⎝⎭,观察图像知选B 【难度】中档题【关联题点】函数的奇偶性、函数图像9.已知cos cos sin ααα=-则()tan 4πα⎛⎫+= ⎪⎝⎭A .1B 1C D 1【答案】B【解析】因为cos cos sin ααα=-所以tan 1tan 1tan 141tan παααα+⎛⎫=+== ⎪-⎝⎭,故选B .【难度】基础题【关联题点】三角恒等变化、两角和与差的正切公式10.找不到题目11.已知已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若,m n αα⊥⊥,则//m n ;②若,//m m n αβ⋂=,则//n β;③若//,//,m n m αα与n 可能异面,也可能相交,也可能平行;④若,m n αβ⋂=与α和β所成的角相等,则m n ⊥,以上命题是真命题的是()(A )①③B 23C ①②③D ①③④ 【答案】A【解析】//m n 一定有//n α或//n β,(1)对αβ⊥时m n ⊥也有可能,n α⊂或n β⊂,(2)错.//n α且//n β一定有//m n ,(3)对n 与,αβ所成角相等,有可能,//m n ,(4)错,选A .【难度】中档题【关联题点】立体几何线面关系、线面关系的判定12.在ABC 中,内角,,A B C 所对边分别为,,a b c ,若3B π=,294b ac =,则()sin sin A C += A32C2D2【答案】C 【解析】因为29,34B b ac π==,所以241sin sin sin 93A CB ==.由余弦定理可得:222b a c =+94ac ac -=,即:2222131313,sin sin sin sin 4412a c ac A C A C +=+==,所以()222sin sin sin sin A C A C +=+72sin sin ,sin sin 4A C A C +=+=故选C .【难度】中档题【关联题点】余弦定理、解三角形二、填空题:本题共4小题,每小题5分,共20分.13.二项式1013x ⎛⎫+ ⎪⎝⎭的展开式中系数的最大值是___.【答案】5【解析】1013x ⎛⎫+ ⎪⎝⎭展开式第1r +项系数1013rr C ⎛⎫ ⎪⎝⎭,令第1r +项系数最大 则11101011101011331133rr r r r r r r C C C C --++⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,711,244r r ≤≤∴=,系数最大为2210153C ⎛⎫= ⎪⎝⎭.【难度】中档题【关联题点】二项式系数、组合数14.函数()sin f x x x =在[]0,π上的最大值是___. 【答案】2【解析】()sin 2sin 23f x x x x π⎛⎫==-≤ ⎪⎝⎭,当且仅当56x π=时取等号. 【难度】中档题【关联题点】三角函数图像与性质、辅助角公式15.已知81151,log log 42a a a >-=-,则a =___. 【答案】64 【解析】因为284211315log log log log 22a a a a -=-=-, 所以()()22log 1log 60a a +-=,而1a >,故2log 6,64a a ==. 【难度】中档题【关联题点】一元二次方程、对数运算16.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为___.【答案】()2,1-【解析】令()2331x x x a -=--+,则()2331a x x x =-+-,设()()()2331,x x x x x ϕϕ=--'+()()()351,x x x ϕ=+-在()1,∞+上递增,在()0,1上递减.因为曲线33y x x =-与(y x =-21)a -+在()0,∞+上有两个不同的交点,()()01,12ϕϕ==-,所以a 的取值范围为(2-,1). 【难度】较难题【关联题点】三次函数、导数、函数零点三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式. 【答案】见解析. 【解析】(1)因为1233n n S a +=-,所以12233n n S a ++=-, 两式相减可得:1223n n a a ++=-13n a +,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以1151,3n n a a -⎛⎫== ⎪⎝⎭;(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【难度】中档题【关联题点】数列通项公式、前n 项和与通项公式的关系18.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%99%的把握认为甲、乙两车间产品的估级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =.设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?)12.247≈附:()()()()()()2220.0500.0100.010, 3.8416.63510.828P K k n ad bc K a b c d a c b d k ≥-=++++【答案】见解析.【解析】()()22150702426301 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)96160.6415025p === ()11112221.650.5 1.650.5 1.650.56715012.247p p p n ⨯-+=+⋅≈+⨯≈()11.65,p p p p n->+∴可以认为升级改造后,该工厂产品的优级品率提高了.【难度】中档题【关联题点】独立性检验、概率19.(12分)如图,已知//,//,2AB CD CD EF AB DE EF CF ====,4,10,23,CD AD BC AE M ====为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到ADE 的距离. 【答案】见解析 【解析】(1)由题意://,EF CM EF CM =,而CF 写平面,ADO EM 平面ADO ,所以EM //平面BCF ;(2)取DM 的中点O ,连结,OA OE ,则,,3,3OA DM OE DM OA OE ⊥⊥==,而23AE =,故23,3AOEOA OE S⊥=. 因为2,10DE AD ==,所以,10.AOEAD DE S DM ⊥=设点M 到平面ADE 的距离为h , 所以**1143230,33510M ADE ADEAOEV S h SDM h -====, 故点M 到ADE 的距离为2305. 【难度】中档题【关联题点】立体几何、空间向量、点到面的距离20.(12分)已知函数()()1ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x -<恒成立. 【答案】见解析【解析】()()()()111ln 1,,0ax f x a x x f x x x-=--+'=>. 若()()0,0,a f x f x ≤<的减区间为()0,∞+,无增区间; 若0a >时,当10x a<<时,()0f x '<, 当1x a >时,()0f x '>,所以()f x 的减区10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ∞⎛⎫+ ⎪⎝⎭; (2)因为2a ≤,所以当1x >时,()()111e e 1ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令()g x 1e2ln 1x x x -=-++,则()11e 2x g x x-=-+'.令()()h x g x =',则()121e x h x x-=-'在()1,∞+上递增,()()10h x h '>=',所以()()h x g x ='在()1,∞+上递增,()()10g x g '>=',故()g x 在()1,∞+上递增,()()10g x g >=,即:当1x >时,()1e x f x -<恒成立.【难度】较难题【关联题点】函数极值、导数、导数解不等式21.(12分)已知椭圆()2222:10x y C a b a b+=>>的右焦点为F ,点(1M ,32⎫⎪⎭在椭圆C 上,且MF x ⊥轴.(I )求椭圆C 的方程;(2)()4,0P ,过P 的直线与椭圆C 交于,A B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴. 【答案】见解析 【解析】(1)设椭圆C 的左焦点为1F ,则132,2F F MF ==.因为MF x ⊥轴,所以 1MF 15,242a MF MF ==+=,解得:2224,13a b a ==-=,故椭圆C 的方程为:22143x y +=;(2)解法1:设()()1122,,,,A x y B x y AP PB λ=,则12124101x x y y λλλλ+⎧=⎪+⎪+=⎨⎪+⎪⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩ 可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅⋅=+-+-,结合上式可得:5λ-2230.x λ+=,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()()1122,,,A x y B x y ,则12124444x x y y ---=-,即:()1221214x y x y y y -=-,所以(12x y -)()()()222222221221122112212121214444433y y x y x y x y x y x y y y y y y y ⎛⎫⎛⎫+=-=+-+=-+ ⎪ ⎪⎝⎭⎝⎭()()2112214,y y x y x y =-+即:1221212112,253.x y x y y y x y y y +=+=-, 则2122112335252Q y y y y x y y x ==--1y =,AQ y ⊥轴.【难度】较难题【关联题点】解析几何、圆锥曲线、韦达定理(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=cos 1ρθ+.(1)写出C 的直角坐标方程; (2)直线(x tt y t a =⎧⎨=+⎩为参数)与曲线C 交于A B 、两点,若2AB =,求a 的值.【答案】见解析.【解析】(1)因为cos 1ρρθ=+,所以()22cos 1ρρθ=+,故C 的直角坐标方程为:22(x y x +=21)+,即:221y x =+;(2)将x t y t a=⎧⎨=+⎩代入221y x =+可得:()222110,2t a t a AB +-+-====,解得:34a =. 【难度】基础题【关联题点】极坐标、参数方程23.[选修4-5:不等式选讲](10分)实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥. 【答案】见解析.【解析】(1)因为3a b +≥,所以()22222a b a b a b +≥+>+;(2)()222222222222a b b a a b b a a b a b -+-≥-+-=+-+()()()()()2222216a b a b a b a b a b a b =+-+≥+-+=++-≥【难度】较难题【关联题点】基本不等式、绝对值不等式。
一般高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前, 考生务必将自己旳姓名、准考证号填写在本试卷和答题卡对应位置上.2.问答第Ⅰ卷时.选出每题答案后, 用铅笔把答题卡上对应题目旳答案标号涂黑.如需改动.用橡皮擦洁净后, 再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时.将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回.第Ⅰ卷一、选择题: 本大题共12小题, 每题5分, 在每题给同旳四个选项中, 只有一项是符合题目规定旳.1、已知集合A={x|x2-x -2<0}, B={x|-1<x<1}, 则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅【解析】集合 , 又 , 因此B 是A 旳真子集, 选B.【答案】B2.复数z =-3+i 2+i 旳共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i【解析】 , 因此其共轭复数为 , 选D.【答案】D3.在一组样本数据(x1, y1), (x2, y2), …, (xn, yn )(n ≥2, x1,x2,…,xn 不全相等)旳散点图中, 若所有样本点(xi, yi )(i=1,2,…,n)都在直线y= x+1上, 则这组样本数据旳样本有关系数为(A )-1 (B )0 (C )12 (D )1【解析】根据样子有关系数旳定义可知, 当所有样本点都在直线上时, 有关系数为1, 选D.【答案】D4. 设 是椭圆 旳左、右焦点, 为直线 上一点,是底角为 旳等腰三角形, 则 旳离心率为( )()A 12 ()B 23 ()C 34 ()D 45【解析】由于 是底角为 旳等腰三角形, 则有 , , 由于 , 因此 , , 因此 , 即 , 因此 , 即 , 因此椭圆旳离心率为 , 选C.【答案】C5.已知正三角形ABC 旳顶点A(1,1), B(1,3), 顶点C 在第一象限, 若点(x, y )在△ABC 内部, 则z=-x+y 旳取值范围是(A )(1- , 2) (B )(0, 2) (C )( -1, 2) (D )(0, 1+ )【解析】 做出三角形旳区域如图 , 由图象可知当直线 通过点B 时, 截距最大, 此时 , 当直线通过点C 时, 直线截距最小.由于 轴, 因此 ,三角形旳边长为2, 设 , 则 , 解得 , , 由于顶点C 在第一象限, 因此 , 即 代入直线 得 , 因此 旳取值范围是 , 选A.【答案】A6.假如执行右边旳程序框图, 输入正整数N(N ≥2)和实数a1,a2,…,aN, 输出A,B, 则(A )A+B 为a 1,a 2,…,a N 旳和(B )A +B 2为a 1,a 2,…,a N 旳算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大旳数和最小旳数(D )A 和B 分别是a 1,a 2,…,a N 中最小旳数和最大旳数【解析】根据程序框图可知, 这是一种数据大小比较旳程序, 其中A为最大值, B为最小值, 选C.【答案】C7.如图, 网格纸上小正方形旳边长为, 粗线画出旳是某几何体旳三视图, 则此几何体旳体积为()()A6()B9()C12()D18【解析】选由三视图可知, 该几何体是三棱锥, 底面是俯视图, 高为, 因此几何体旳体积为,选B.【答案】B8.平面α截球O 旳球面所得圆旳半径为1, 球心O 到平面α旳距离为 , 则此球旳体积为(A )6π (B )43π (C )46π (D )63π【解析】球半径 , 因此球旳体积为 , 选B.【答案】B9.已知ω>0, , 直线 和 是函数f(x)=sin(ωx+φ)图像旳两条相邻旳对称轴, 则φ=(A )π4 (B )π3 (C )π2 (D )3π4【解析】由于 和 是函数图象中相邻旳对称轴, 因此 , 即 .又 , 因此 , 因此 , 由于 是函数旳对称轴因此 , 因此 , 由于 , 因此 , 检查知此时 也为对称轴, 因此选A.【答案】A10.等轴双曲线 旳中心在原点, 焦点在 轴上, 与抛物线 旳准线交于两点, ;则 旳实轴长为( )()A ()B ()C 4 ()D 8【解析】设等轴双曲线方程为 , 抛物线旳准线为 , 由 ,则 ,把坐标 代入双曲线方程得 , 因此双曲线方程为 , 即 , 因此 , 因此实轴长 , 选C.【答案】C11.当0<x ≤ 时, 4x<logax, 则a 旳取值范围是(A )(0, ) (B )( , 1) (C )(1, ) (D )( , 2)【解析】当 时, 显然不成立.若 时 当 时, , 此时对数 , 解得 , 根据对数旳图象和性质可知, 要使 在 时恒成立, 则有 , 如图选B.【答案】B12.数列{an}满足an+1+(-1)n an =2n -1, 则{an}旳前60项和为(A )3690 (B )3660 (C )1845 (D )1830【解析】由 得,12]12)1[()1(12)1(112++-+--=++-=-++n n a n a a n n n n n n 12)12()1(++--+-=n n a n n ,即 , 也有 , 两式相加得 , 设 为整数,则10`164)14(4)1(21444342414+=+++--=++++++++k k a a a a k k k k k , 于是1830)10`16()(1404434241414060=+=+++=∑∑=++++=k a a a a S K k k k k K 【答案】D第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题, 每个试题考生都必须作答, 第22-24题为选考题, 考生根据规定作答.二.填空题:本大题共4小题, 每题5分.(13)曲线y =x (3ln x +1)在点)1,1(处旳切线方程为________【解析】函数旳导数为 , 因此在 旳切线斜率为, 因此切线方程为 , 即 .【答案】34-=x y(14)等比数列{an}旳前n 项和为Sn, 若S3+3S2=0, 则公比q=_______【解析】显然公比 , 设首项为 , 则由 , 得 , 即 , 即 , 即 , 因此 , 解得 .【答案】2-(15)已知向量 夹角为 , 且 ;则【解析】由于 , 因此 , 即 , 因此 , 整顿得 , 解得 或 (舍去).【答案】 (16)设函数f(x)= 旳最大值为M, 最小值为m, 则M+m=____【解析】 , 令 , 则 为奇函数, 对于一种奇函数来说, 其最大值与最小值之和为0, 即 , 而 , , 因此 .【答案】2三、解答题: 解答应写出文字阐明, 证明过程或演算环节.(17)(本小题满分12分)(1)已知a, b, c分别为△ABC三个内角A, B, C旳对边, c = asinC-ccosA(2)求A若a=2, △ABC旳面积为, 求b,c18.(本小题满分12分)某花店每天以每枝5元旳价格从农场购进若干枝玫瑰花, 然后以每枝10元旳价格发售.假如当日卖不完, 剩余旳玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当日旳利润y(单位:元)有关当日需求量n14 15 16 17 18 19 20(单位:枝,n∈N)旳函数解析式.(Ⅱ)花店记录了100天玫瑰花旳日需求量(单位:枝), 整顿得下表:日需求量n频数 10 20 16 16 15 13 10(1)假设花店在这100天内每天购进17枝玫瑰花, 求这100天旳日利润(单位: 元)旳平均数;(2)若花店一天购进17枝玫瑰花, 以100天记录旳各需求量旳频率作为各需求量发生旳概率, 求当日旳利润不少于75元旳概率.(19)(本小题满分12分)如图, 三棱柱ABC -A1B1C1中, 侧棱垂直底面, ∠ACB=90°, AC=BC= AA1, D 是棱AA1旳中点 (I)证明: 平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分, 求这两部分体积旳比.B 1C B AD C 1 A 1(20)(本小题满分12分)设抛物线C: x2=2py(p>0)旳焦点为F, 准线为l, A为C上一点, 已知以F为圆心, FA为半径旳圆F 交l于B, D两点.(I)若∠BFD=90°,△ABD旳面积为4 , 求p旳值及圆F旳方程;(II)若A, B, F三点在同一直线m上, 直线n与m平行, 且n与C只有一种公共点, 求坐标原点到m, n距离旳比值.(21)(本小题满分12分)设函数f(x)= e x-ax-2(Ⅰ)求f(x)旳单调区间(Ⅱ)若a=1, k为整数, 且当x>0时, (x-k) f´(x)+x+1>0, 求k旳最大值请考生在第22,23,24题中任选一题做答, 假如多做, 则按所做旳第一题计分, 做答时请写清晰题号.(22)(本小题满分10分)选修4-1: 几何证明选讲如图, D, E 分别为△ABC 边AB, AC 旳中点, 直线DE 交△ABC 旳外接圆于F, G 两点, 若CF//AB, 证明:FG D EABC (Ⅰ)CD=BC ;(Ⅱ)△BCD ∽△GBD(23)(本小题满分10分)选修4—4;坐标系与参数方程已知曲线C1旳参数方程是(φ为参数), 以坐标原点为极点, x轴旳正半轴为极轴建立极坐标系, 曲线C2旳极坐标方程是ρ=2.正方形ABCD旳顶点都在C2上, 且A.B.C.D以逆时针次序排列, 点A旳极坐标为(2, )(Ⅰ)求点A.B.C.D 旳直角坐标;(Ⅱ)设P为C1上任意一点, 求|PA| 2+ |PB|2 + |PC| 2+ |PD|2旳取值范围.(24)(本小题满分10分)选修4—5: 不等式选讲已知函数f(x) = |x + a| + |x-2|.(Ⅰ)当a =-3时, 求不等式f(x)≥3旳解集;(Ⅱ)若f(x)≤|x-4|旳解集包括[1,2], 求a旳取值范围.。
高考文科试题解析分类汇编:圆锥曲线一、选择题1.【高考新课标文4】设12F F 是椭圆2222:1(0)x y E a b a b +=>>旳左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30旳等腰三角形,则E 旳离心率为( )()A 12 ()B 23 ()C 34 ()D 45【答案】C【命题意图】本题重要考察椭圆旳性质及数形结合思想,是简朴题.【解析】∵△21F PF 是底角为030旳等腰三角形,∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c ,∴322c a =,∴e =34,故选C. 2.【高考新课标文10】等轴双曲线C 旳中心在原点,焦点在x 轴上,C 与抛物线x y 162=旳准线交于,A B 两点,43AB =;则C 旳实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【答案】C【命题意图】本题重要考察抛物线旳准线、直线与双曲线旳位置关系,是简朴题. 【解析】由题设知抛物线旳准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解得y =216a ±-,∵||AB =43,∴2216a -=43,解得a =2, ∴C 旳实轴长为4,故选C.3.【高考山东文11】已知双曲线1C :22221(0,0)x y a b a b-=>>旳离心率为 2.若抛物线22:2(0)C x py p =>旳焦点到双曲线1C 旳渐近线旳距离为2,则抛物线2C 旳方程为(A) 2833x y = (B) 21633x y = (C)28x y = (D)216x y = 【答案】D考点:圆锥曲线旳性质解析:由双曲线离心率为2且双曲线中a ,b ,c 旳关系可知a b 3=,此题应注意C2旳焦点在y 轴上,即(0,p/2)到直线x y 3=旳距离为2,可知p=8或数形结合,运用直角三角形求解。
2013-2022十年全国高考数学真题分类汇编专题01 集合一、选择题1.(2022年全国高考甲卷(文)·第1题)设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【解析】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2022年全国高考甲卷(文)·第1题2.(2022年高考全国乙卷(文)·第1题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A解析:因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2022年高考全国乙卷(文)·第1题3.(2022新高考全国II 卷·第1题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则AB =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B解析: {}|02B x x =≤≤,故{}1,2AB =. 故选 B .【题目栏目】集合\集合的基本运算【题目来源】2022新高考全国II 卷·第1题4.(2022新高考全国I 卷·第1题)若集合{4},{31}M x x N x x =<=≥∣∣,则M N =( )A .{}02x x ≤<B .123xx ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163xx ⎧⎫≤<⎨⎬⎩⎭【答案】D解析:1{16},{}3M x x N x x =≤<=≥∣0∣,故1163MN x x ⎧⎫=≤<⎨⎬⎩⎭, 故选:D【题目栏目】集合\集合的基本运算【题目来源】2022新高考全国I 卷·第1题5.(2021年新高考全国Ⅱ卷·第2题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UAB =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B解析:由题设可得{}U1,5,6B =,故(){}U 1,6A B⋂=,故选B .【题目栏目】集合\集合的基本运算【题目来源】2021年新高考全国Ⅱ卷·第2题6.(2021年新高考Ⅱ卷·第1题)设集合{}24A x x =-<<,{}2,3,4,5B =,则AB =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B解析:由题设有{}2,3A B ⋂=,故选B .【题目栏目】集合\集合的基本运算【题目来源】2021年新高考Ⅱ卷·第1题7.(2020年新高考I 卷(山东卷)·第1题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C解析:[1,3](2,4)[1,4)A B ==故选:C【题目栏目】集合\集合的基本运算【题目来源】2020年新高考I 卷(山东卷)·第1题 8.(2020新高考II 卷(海南卷)·第1题)设集合A={2,3,5,7},B ={1,2,3,5,8},则AB=( )A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8} 【答案】C解析:因为{2,3,5,7},{1,2,3,5,8}A B == ,所以{2,3,5}A B = ,故选:C【题目栏目】集合\集合的基本运算【题目来源】2020新高考II 卷(海南卷)·第1题9.(2021年高考全国甲卷文科·第1题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B解析:7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B .【题目栏目】集合\集合的基本运算【题目来源】2021年高考全国甲卷文科·第1题10.(2021年全国高考乙卷文科·第1题)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A解析:由题意可得:{}1,2,3,4M N =,则(){}5UM N =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2021年全国高考乙卷文科·第1题 11.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D .【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题 12.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D【解析】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D .【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题. 【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题13.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B【解析】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题14.(2019年高考数学课标Ⅱ卷文科·第1题)已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =( )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2}【答案】A【解析】因为{1A =-,0,1,2},2{|1}{|11}B x x x x ==-,所以{1,0,1}A B =-,故选:A .【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第1题15.(2019年高考数学课标Ⅱ卷文科·第1题)已知集合={|1}A x x >-,{|2}B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .()1,2-D .φ【答案】C【解析】由题知,{}{}|1|2(1,2)AB x x x x =>-<=-,故选C .【点评】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题. 【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第1题16.(2019年高考数学课标Ⅱ卷文科·第2题)已知集合{}1,2,3,4,5,6,7U =,{}2,3,4,5A =,{}2,3,6,7B =,则UBA =()( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【解析】 }7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,则7}6{1,,=A C U 又 7}63{2,,,=B ,则7}{6,=A C B U . 【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第2题17.(2018年高考数学课标Ⅱ卷文科·第1题)已知集合{}|10A x x =-≥,{}012,,B =,则A B =( )A .{}0B .{}1C .{}12,D .{}012,, 【答案】C解析:{}{}|10|1A x x x x =-=≥≥,{}0,1,2B =,故{}1,2A B =.故选C .【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第1题 18.(2018年高考数学课标Ⅱ卷文科·第2题)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( ) A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C解析:∵集合{}{}1,3,5,7,2,3,4,5A B ==,∴{}3,5AB =.故选C .【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第2题19.(2018年高考数学课标Ⅱ卷文科·第1题)已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =( )A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--【答案】A解析:因为{0,2}A =,{2,1,0,1,2}B =--,则{0,2}A B =. 【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第1题 20.(2017年高考数学课标Ⅱ卷文科·第1题)已知集合,则中元素的个数为( )A .1B .2C .3D .4【答案】 【解析】由题意可得: ,中元素的个数为2,所以选.【考点】集合运算【点评】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题21.(2017年高考数学课标Ⅱ卷文科·第1题)设集合A=,B=,则=( )1,2,3,42,4,6,8AB ,A B B {}2,4AB =A B B {}123,,{}234,,A BA .B .C .D . 【答案】 A【解析】由题意得.故选A .【考点】集合并集的运算.【点评】掌握集合的基本运算即可. 【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题22.(2017年高考数学课标Ⅱ卷文科·第1题)已知集合,,则( ) A .B .C .D .【答案】 A【解析】由得,所以,故选A【考点】集合运算【点评】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题23.(2016年高考数学课标Ⅱ卷文科·第1题)设集合{0,2,4,6,8,10},{4,8}A B ==,则AB =( )A .{48},B .{026},,C .{02610},,,D .{0246810},,,,, 【答案】C 【解析】根据补集的定义,从集合{0,2,4,6,8,10}A =中去掉集合B 中的元素4,8,剩下的四个元素为0,2,6,10,故{0,2,6,10}AC B =,故选C .【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题24.(2016年高考数学课标Ⅱ卷文科·第1题)已知集合{123}A =,,,2{|9}B x x =<,则A B =( ).A .{210123}--,,,,,B .{21012}--,,,,C .{123},,D .{12},【答案】D 【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =.【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题25.(2016年高考数学课标Ⅱ卷文科·第1题)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( ) A .{}1,3 B .{}3,5C .{}5,7D .{}1,7【答案】B 【解析】集合A 与集合B 公共元素有3,5,故{3,5}A B =,选B .【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题26.(2015年高考数学课标Ⅱ卷文科·第1题)已知集合{}|12A x x =-<<,{}123,4,,{}123,,{}23,4,{}13,4,{}1,2,3,4AB ={}2A x x =<{}320B x x =->3=2AB x x ⎧⎫<⎨⎬⎩⎭A B =∅3=2A B x x ⎧⎫<⎨⎬⎩⎭=A B R 320x ->32x <33{|2}||22A B x x x x x x ⎧⎫⎧⎫=<<=<⎨⎬⎨⎬⎩⎭⎩⎭{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A 解析:因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.A B x x =-<<故选A .考点:本题主要考查不等式基础知识及集合的交集运算. 【题目栏目】集合\集合的基本运算【题目来源】2015年高考数学课标Ⅱ卷文科·第1题27.(2015年高考数学课标Ⅱ卷文科·第1题)已知集合{32,},{6,8,10,12,14}A x x n n B ==+∈=N ,则集合A B 中的元素个数为( )A .5B .4C .3D .2 【答案】D分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A∩B={8,14},故选D . 考点:集合运算【题目栏目】集合\集合的基本运算【题目来源】2015年高考数学课标Ⅱ卷文科·第1题28.(2014年高考数学课标Ⅱ卷文科·第1题)已知集合A={-2,0,2},B={x |220x x --=},则A B =( )A.∅B.{2}C.{0}D.{-2} 【答案】B解析:∵B={x |220x x --=}={-1,2},∴A B ={2}.∴选B . 考点:集合的运算 难度:A备注:常考题.【题目栏目】集合\集合的基本运算【题目来源】2014年高考数学课标Ⅱ卷文科·第1题 29.(2014年高考数学课标Ⅱ卷文科·第1题)已知集合M ={|13}x x -<<,N ={|21}x x -<<,则M ∩N =( ) A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)【答案】B解析: 在数轴上表示出对应的集合,可得()1,1MN =- ,选B考点:1.集合的基本运算。
2023年高考文科数学解析分类汇编几何
(逐题详解)
一、基本概念
本部分主要介绍几何学中的基本概念,对于理解后续题目解析非常重要。
二、平面几何
本部分包含平面几何中常见的题型及其解析方法,涵盖面广,适用性强。
三、空间几何
本部分介绍空间几何中的题型及其解析方法,包括立体几何的相关知识点和解题技巧。
四、相似与全等
本部分重点讲解相似和全等的概念,以及相关的解题方法和技巧。
五、三角形
本部分主要针对三角形的各种题型进行解析,包括三角形的性质、角度、边长等方面的问题。
六、圆与圆锥
本部分讲解圆和圆锥相关的知识点和题型,包括圆的性质、圆锥的表面积和体积等。
七、向量与坐标
本部分介绍向量和坐标的基本概念,以及在几何题目中如何应用这些概念解题。
八、解析几何
本部分讨论解析几何的相关知识和解题方法,包括直线和曲线的方程等内容。
以上是2023年高考文科数学解析分类汇编几何的大致内容,通过逐题详解,能够帮助考生更好地理解和掌握几何题型的解题思路和方法。
祝学习顺利,高考取得好成绩!。
【山东省济宁市邹城二中2024届高三其次次月考文】1.已知i 是虚数单位,=-+i i21( )A .i 5151+ B .i 5351+C .i 5153+D .i 5353-【答案】B【山东省济宁市邹城二中2024届高三其次次月考文】13.给出下列命题:命题1:点(1,1)是直线y = x 与双曲线y = x1的一个交点; 命题2:点(2,4)是直线y = 2x 与双曲线y = x8的一个交点; 命题3:点(3,9)是直线y = 3x 与双曲线y = x27的一个交点; … … .请视察上面命题,猜想出命题n (n 是正整数)为: .【答案】),(2n n ) 是直线y=nx 与双曲线yn y 3=的一个交点【山东省济宁市鱼台二中2024届高三11月月考文】6.设i z -=1(为虚数单位),则=+zz 22( )A .i --1B .i +-1C .i +1D . i -1【答案】D【山东省济宁市汶上一中2024届高三11月月考文】7、计算=+-i i13( )A 、i 21+B 、i 21-C 、i +2D 、 i -2【答案】B【山东省济南市2024届高三12月考】6.复数z 满意(12)7i z i -=+,则复数z 的共轭复数z =A.i 31+B. i 31-C. i +3D. i -3【答案】B【山东省济南市2024届高三12月考】16. )(x f 是定义在R 上恒不为0的函数,对随意x 、R ∈y 都有)()()(y x f y f x f +=,若))((,21*1N n n f a a n ∈==,则数列{}n a 的前n 项和n S 为A .12121+-=n n SB .1211+-=n n S C.n n S 211-= D .n n S 2121-=【答案】C【山东省济宁市重点中学2024届高三上学期期中文】11. 若复数3(R,12a iz a i i+=∈-是虚数单位),且z 是纯虚数,则|2|a i +等于( )A .5B .210C .25D .40 【答案】B【山东省济宁一中2024届高三第三次定时检测文】2.复数123,1z i z i =+=-,则复数12z z 在复平面内对应的点位于 ( ) A .第一象限 B .其次象限 C .第三象限 D .第四象限 【答案】A【山东省莱州一中2024届高三其次次质量检测】对于连续函数)(x f 和)(x g ,函数|)()(|x g x f -在闭区间[b a ,]上的最大值为)(x f 与)(x g 在闭区间[b a ,]上的“肯定差”,记为b x a x g x f ≤≤∆)).(),((则322221331≤≤-+∆x x)x ,x (= 【答案】103【山东省青州市2024届高三2月月考数学(文)】13.若复数312a ii-+(,a R i ∈为虚数单位)是纯虚数,则实数a 的值为 . 【答案】6【山东省青州市2024届高三2月月考数学(文)】15.在一次演讲竞赛中,10位评委对一名选手打分的茎叶图如下所示,若去掉一个最高分和一个最低分,得到一组数据(18)i x i ≤≤,在如图所示的程序框图中,x 是这8个数据中的平均数,则输出的2S 的值为_ ____【答案】15【山东省青州市2024届高三上学期期中文16.已知数列{}n a 中,11211,241n n a a a n +==+-,则n a = 。
2013年高考解析分类汇编16:选修部分一、选择题1 .(2013年高考大纲卷(文4))不等式222x -<的解集是( )A .()-1,1B .()-2,2C .()()-1,00,1UD .()()-2,00,2U【答案】D2|2|2<-x ,所以⎪⎩⎪⎨⎧->-<-222222x x ,所以402<<x ,所以22<<-x ,且0≠x ,故选D.二、填空题2 .(2013年高考陕西卷(文15))(几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = ______.P【答案】.6//.BC PE BCD PED ∴∠=∠Q 且在圆中.BCD BAD PED BAD ∠=∠⇒∠=∠.6.623∽2==⋅=⋅=⇒=⇒∆∆⇒PE PD PA PE PEPDPA PE APE EPD 所以3 .(2013年高考广东卷(文))(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为____________.【答案】1cos sin x y θθ=+⎧⎨=⎩(θ为参数)本题考了备考弱点.讲参数方程的时候,参数的意义要理解清楚.先化成直角坐标方程()2211x y -+=,易的则曲线C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩ (θ为参数)。
4 .(2013年高考陕西卷(文))A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x的不等式||||2x a x b -+->的解集是______.【答案】R考察绝对值不等式的基本知识。
函数||||)(b x a x x f -+-=的值域为:2||)().|,[|>-≥∈∀+∞-b a x f R x b a 时,因此,当.所以,不等式2||||>-+-b x a x 的解集为R 。
5 .(2013年高考天津卷(文13))如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为______.【答案】152连结AC,则EAB ACB ADB ABD DCA ∠=∠=∠=∠=∠,所以梯形ABCD 为等腰梯形,所以5BC AD ==,所以24936AE BE CE =⋅=⨯=,所以6AE =,所以2222226543cos 22654AE AB BE EAB AE AB ++-===⋅⨯⨯.又2222cos AB AD BD AD BD ADB =+-⋅,即222355254BD BD =+-⨯⋅⨯,整理得21502BD BD -=,解得152BD =。
6 .(2013年高考湖南(文11))在平面直角坐标系xOy 中,若直线121,:x s l y s=+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为_____【答案】4当本题考查参数方程与普通方程的转化以及两直线平行的判断。
0a =时,不满足条件。
直线1l 的方程为1122y x =-。
2l 的方程为21y x a =-。
因为两直线平行,所以212a =,解得4a =。
7 .(2013年高考陕西卷(文15))(坐标系与参数方程选做题) 圆锥曲线22x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是____________ .【答案】(1, 0))0,1(4.222F x y ty t x 抛物线的焦点⇒=⇒⎩⎨⎧==。
8 .(2013年高考广东卷(文))(几何证明选讲选做题)如图3,在矩形ABCD中,AB =3BC =,BE AC ⊥,垂足为E ,则ED =_______.图 39 .(2013年上海高考数学试题(文科4))若2011x =,111x y=,则y =________.【答案】122021 1x x x =-=⇒=已知,又11 1x yx y =-= ,联立上式,解得2,1,x y ==三、解答题10.(2013年高考辽宁卷(文))选修4-1:几何证明选讲如图,.AB O CD O E AD CD D e 为直径,直线与圆相切于垂直于于,BC 垂直于CD 于C EF ,,垂直于F ,连接,AE BE .证明: (I);FEB CEB ∠=∠ (II)2.EF AD BC =g【答案】11.(2013年高考课标Ⅱ卷(文))选修4—1几何证明选讲:如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,,E F 分别为弦AB 与弦AC 上的点,且BC AE DC AF ⋅=⋅,,,,B E F C 四点共圆.(Ⅰ)证明:CA 是△ABC 外接圆的直径;(Ⅱ)若DB BE EA ==,求过,,,B E F C 四点的圆的面积与△ABC 外接圆面积的比值.【答案】12.(2013年高考课标Ⅰ卷(文))选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).【答案】解:(1)将45cos 55sin x t y t=+⎧⎨=+⎩,消去参数t,化学普通方程22(4)(5)25x y -+-=,即 1C : 22810160x y x y +--+=, 将22cos ,810160sin x p x y x y y p θθ=⎧+--+=⎨=⎩代入得28cos 10sin 160ρρθρθ--+=;所以1C 极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=,2222810160=1=0y=2y=2.20x y x y x x x y y ⎧+--+=⎧⎧⎪⎨⎨⎨+-=⎪⎩⎩⎩,,,解得或, 所以12C C 与交点的极坐标为),(2,)42ππ.13.(2013年高考课标Ⅱ卷(文))选修4—4;坐标系与参数方程已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【答案】14.(2013年高考课标Ⅰ卷(文))选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D . (Ⅰ)证明:DB DC =; (Ⅱ)设圆的半径为1,BC =,延长CE 交AB 于点F ,求BCF ∆外接圆的半径.【答案】解:(1)连接DE,交BC 为G,由弦切角定理得,ABE BCE ∠=∠,而,,ABE CBE CBE BCE BE CE ∠=∠∠=∠=故.又因为DB BE ⊥,所以DE 为直径,∠DCE=90°,由勾股定理可得DB=DC.(II)由(1),CDE BDE ∠=∠,DB DC =,故DG 是BC 的中垂线,所以3BG =,圆心为O,连接BO,则060BOG ∠=,030ABE BCE CBE ∠=∠=∠=,所以CF BF ⊥,3 15.(2013年高考课标Ⅰ卷(文))选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集; (Ⅱ)设1a >-,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围 【答案】解:(I)当2()a f x =-时,不等式<g(x)化为21223x x x -+---<0.设函数y=21223x x x -+---,则15,212,1,236, 1.x x y x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示从图像可知,当且仅当x (0,2)∈时,y<0,所以原不等式的解集是{}02x x <<;(II)当)1,,()1.22a x f x a ⎡∈-=+⎢⎣不等式()f x ≤g(x)化为1+a≤x+3.所以x≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立,故22a a -≥-,即43a ≤,从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.16.(2013年高考课标Ⅱ卷(文))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.【答案】17.(2013年高考辽宁卷(文))选修4-5:不等式选讲已知函数()f x x a =-,其中1a >.(I)当=2a 时,求不等式()44f x x ≥=-的解集;(II)已知关于x 的不等式()(){}222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.【答案】18.(2013年高考辽宁卷(文))选修4-4:坐标系与参数方程在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值. 【答案】。