中考数学重点知识《阅读理解题专题》
- 格式:doc
- 大小:475.01 KB
- 文档页数:10
专题三阅读理解问题专题透视■ 典例解析■ 专题实训专题透视阅读理解型问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.阅读理解题一般是提供一定的材料,或介绍一个概念,或给出一种解法等,让你在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是:“阅读f分析一理解-解决问题典例解析一、新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或 定义),然后再根据新概念提出要解决的相关问题.主要目的 是考査学生的自学能力和对新知识的理解与运用能力.解决这 类问题:要求学生准确理解题目中所构建的新概念,将学习 的新概念和已有的知识相结合,并进行运用. nm (2015 -临沂)定义:给定关于x 的函数y,对于该函 数图象;n ;n上任意两点(x p y。
, (x2, y2).当Xi%时,都Wy1<y2>称该函数为增函数.根据上述定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号).①y=2x;②y=-x+l; @y=x2 (x>0) ; @y =【分析】结合一次函数、二次函数、反比例函数的性质,严格按照新定义的要求验证即可.【解答】假设点(X1,y T) , (x2, y2)在y=2x上, 当X]〈X2时,y?-y 1=2x2-2xi=2 g-x】)>0.则y=2x是增函数.同理可证y=x2 (x>0)是增函数,y=-x+l不是增函数.y =--在每个象限内是增函数,但当x1<0<x2W,有yi>y2,则v y = -l 不是增函数.1=1【答彙]①③【点评】本题考查了一次函数、二次函数及反比例函数的性质,正确理解增函数的定义是解题的关键.翼②(2014・四川舟山)类比梯形的定义,我们定义:有 一组对角相等而另一组对角不相等的凸四边形叫作“等对 角四边形”.(1)已知:如图1,四边形ABCD 是“等对角四边形”, /AUNC, ZA=70° , ZB=80° .求NC, ND 的度数.(2)在探究“等对角四边形”性质时:!1! !1! !1! U!①小红画了一个“等对角四边形"ABCD (如图2),其中!1!ZABC=ZADC, AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意'等对角四边形',当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗 ?若正确,请证明;若不正确,请举出反例.在“等对角四边形力ABCD 中,ZDAB=60° , AB=5, AD=4.求对角线AC 的长. (3)已知:ZABC=90°U!【分析】(1)利用“等对角四边形”这个概念来计算.!1!(2)①利用等边对等角和等角对等边来证明;②举例画图.(3)①当ZADC=ZABC=90°时,延长AD, BC相交于点E, 利用勾股定理求解;②当ZBCD=ZDAB=60°时,过点D作DE1AB于点E, DF丄专题三阅读理解问题BC 于点F,求线段利用勾股定理求解.【解答】(1)如图IL.等对角四边形ABCD, ZA^ZC,A ZD=ZB=80° ,A ZC=360° -70° -80° -80° =130° .专题三阅读理解问题①如図Z,连核BD,VAB=AD,•I ZABD=ZADB.•/ ZABC=ZADC,:.Z ABC- ZABD= Z ADC- Z ADB,:.ZCBD=ZCDB,ACB=CD.②不正确,AB=AD,但 CB^CD,反例:如图3, ZA=ZC=90° ,C 图(3)①如图4,当ZADC=ZABC=90°时,延长AD, BC相交于点E, V ZABC=90° , ZDAB=60° ,AB=5,AAE=10,ADE=AE-AD=10-4=6.VZEDC=90° , ZE=30° ,二CD = 2>/3,•I AC = V A D2+CD2=M +(2构2 = 2^7.②如图5,当NBCD二NDAB二60。
阅读理解专题阅读理解型问题一般文字表达较长,信息量较大,各样关系盘根错节,常常是先给一个资料,或介绍一个新的知识点,或给出针对某一种题目的解法,而后再给合条件出题 . 解决这种题的重点是要认真认真地阅读给定的资料,弄清资猜中隐含的数学知识、结论,或揭露的数学规律,或示意的解题方法,而后睁开联想,怎样从题目给定的资料获取新信息、新知识、新方法进行迁徙,建模应用,解决题目中提出的问题.一、新定义型a2≥ ,ab(b)例 1 关于实数 a, b,定义运算“ * ”: a*b =2 <ab b b).(a比如: 4*2,由于 4> 2,因此2是一元二次方程24*2= 4 - 4×2= 8.若 x1,x2x - 5x+ 6= 0的两个根,则 x1*x 2= _________________ .剖析:用公式法或因式分解法求出方程的两个根,而后利用新定义解之.解:能够用公式法求出方程x2- 5x+6= 0 的两个根是 2和 3,可能是 x1=2,x2=3,也可能是 x1=3, x2=2,依据所给定义运算可知原题有两个答案 3 或- 3..本题简单忽略议论思想,会少一种状况.评注:本题需要学生先经过阅读掌握新定义公式,再利用近似方法解决问题.考察了学生察看问题,剖析问题,解决问题的能力.追踪训练:1. 若定义: f(a,b)=(-a,b),g(m,n)=(m,-n),比如 f (1,2)(1,2) , g ( 4, 5)( 4,5) ,则 g( f (2,3)) 等于()A.(2, -3 ) B .(-2,3) C.(2, 3) D.( -2 ,-3 )2.关于实数 x, 我们规定【 x】表示不大于x 的最大整数,比如1.2 1 ,3 3 , 2.53,若 x 4 5 ,则x的值能够是()10A. 40 B .45 C .51D. 56二、类比型例 2 阅读下边资料后,解答问题 .分母中含有未知数的不等式叫分式不等式. 如:x - 22x 3<0 等.那么怎样求出它们>,x10x - 1的解集呢?依据我们学过的有理数除法法例可知,两数相除,同号得正,异号得负,其字母表达式为:( 1)若 a > 0 , b > 0 ,则 a >0,若 a < 0 , b <0,则 a> 0; b b ( 2)若 a > 0 , b < 0 ,则 a<0 ,若 a < 0, b >0 ,则 a< 0.bb反之,( 1)若 a> 0,则> ,< ,a0 或 a 0bb > , < ; 0 b 0a( 2)若 < 0 ,则 __________ 或 _____________ .b依据上述规律,求不等式﹙A ﹚x2>0, ﹙ B ﹚ 2x 2-3x+2019 < 2018 的解集 .x 1剖析: 关于( 2),依据两数相除,异号得负解答;先依据同号得正把不等式转变成不等式组,而后解一元一次不等式组即可.关于( A ),据分式不等式大于零能够获取其分子、分母同号,进而转变为两个一元一次不等式组求解即可;关于( B ),将一元二次不等 式的左边因式分解后化为两个一元一次不等式组求解即可.解:( 2)若 <0,则或故答案为或 ;由上述规律可知,不等式﹙A ﹚转变为或因此 x > 2 或 x <﹣ 1.不等式﹙ B ﹚即为 2x 2-3x+1 < 0.∵ 2x 2-3x+1= ﹙x - 1﹚( 2x-1 ),∴ 2x 2-3x+1 < 0 可化为﹙ x - 1﹚( 2x-1 )< 0. 由上述规律可x 1 0 x 1 0知①3 0或②32x2x 解不等式组①,无解,解不等式组②,得1<x<1.2的解集为 1<x<1.∴不等式 2x 2-3x+2019 <20182评注: 本题本质是一元一次不等式组的应用,读懂题目信息, 理解不等式转变为不等式组的方法是解题关 键.例 4阅 读 材 料 : 关 于 三 角 函 数 还 有 如 下 的 公 式 : sin ( α±β )=sin αcos β± cos αsin β;tan (α±β) =tantan.1m tan tan利用这些公式能够 将一些不是特别角的三角函数转变为特别角的三角函数来求值.例:tan15 °=tan (45° - 30°) =tan45 - tan30=1 tan45 gtan3031(3 3)(3 3) 12 6 3=2- 3.3 3(33)(33)613依据以上阅读资料,请选择适合的公式解答下边问题( 1)计算: sin15 °;( 2)一铁塔是市标记性建筑物之一(图1),小草想用所学知识来丈量该铁塔的高度,如图 2,小草站在与塔底 A 相距 7 米的 C 处,测得塔顶的仰角为75°, 小草的眼睛离地面的距离 DC 为1.62米,请帮助小草求出铁塔的高度(精准到0.1 米;参照数据:3 =1.732,2 =1.414 ).分 析 : ( 1 ) 把 15° 化 为 ( 45° - 30° ) 以 后 , 再 利 用 公 式 sin ( α±β )=sin αcos β± cos αsin β 计算,即可求出 sin15 °的值;( 2)先依据锐角三角函数的定义求出BE 的长,再依据 AB=AE+BE 即可得出结论.解:﹙ 1﹚sin15 °=sin (45° - 30°)=sin45 °co s30° - cos45°sin30 °=2 3 2 1 6 262 222244;4(2)在 Rt △ BDE 中,∵∠ BED=90°,∠ BDE=75°, DE=AC=7米, ∴ B E=DEtan ∠BDE=DEtan75°.∵tan75 °=tan (45°+30°) =tan45 tan30=1 tan45 gtan3031 (3 3)(3 3) 12 63 =2+ 3 .33(33)(33) 613∴BE=7( 2+ 3 ) =14+7 3 ,∴ AB=AE+BE=1.62+14+7 3 ≈27.7 (米).答:乌蒙铁塔的高度约为 27.7 米.评注: 本题考察了特别角的三角函数值和仰角的知识,本题难度中等, 注意能借助仰角结构直角三角形并解直角三角形是解本题的重点,注意掌握数形联合思想的应用.例 5 阅读资料:小艳在学习二次根式后,发现一些含根号的式子能够写成另一个式子的平方,如3+=(1+)2.擅长思虑的小艳进行了以下探究:设 a+b=( m+n2(其中 a, b, m,n 均为正整数),则有 a+b22.)=m+2n +2mn∴a=m2+2n2, b=2mn.这样小艳就找到了一种把近似 a+b 的式子化为平方式的方法.请你模仿小艳的方法探究并解决以下问题:(1)当 a, b, m, n 均为正整数时,若a+b=,用含 m,n 的式子分别表示a, b,得: a=, b=;(2)利用所探索的结论,找一组正整数a, b,m,n 填空:+=( +)2;(3)若 a+4=,且 a, m,n 均为正整数,求 a 的值 .剖析 : ( 1)依据完整平方公式的运算法例,即可得出a, b 的表达式;(2)第一确立 m, n 的正整数值,而后依据(1)的结论即可求出a, b 的值;(3)依据题意, 4=2mn,第一确立 m, n 的值,经过剖析 m=2, n=1 或许 m=1,n=2,而后即可确立 a 的值.解:( 1)∵ a+b =22,,∴ a+b =m+3n +2mn22故答案为22, 2mn.∴a=m+3n, b=2mn.m+3n(2)设 m=1, n=1,∴ a=m2+3n2=4, b=2mn=2.故答案为 4, 2, 1, 1.2 2(3)由题意,得 a=m+3n , b=2mn.∵4=2mn,且 m, n 为正整数,∴ m=2, n=1 或许 m=1, n=2.2222∴a=2 +3×1=7,或 a=1 +3×2=13.评注:本题主要考察二次根式的混淆运算,完整平方公式,重点在于娴熟运算完整平方公式和二次根式的运算法例.例 6阅读:大家知道,在数轴上,x=1 表示一个点,而在平面直角坐标系中,x=1 表示一条直线;我们还知道,以二元一次方程2x-y+1=0 的全部解为坐标的点构成的图形就是一次函数 y=2x+1 的图象,它也是一条直线,如图3- ①.察看图①能够得出,直线 x=1 与直线 y=2x+1 的交点 P 的坐标 (1,3) 就是方程组x1,2 x y 1 0的解,因此这个方程组的解为x1,在直角坐标系中, x≤1表示一个平面地区,即直线 x=1y 3.以及它的左边部分,如图3-② .y≤2x+1 也表示一个平面地区,即直线y=2x+1以及它下方的部分,如图3- ③ .(5)图 3回答以下问题:(1)在如图 3- ④所示直角坐标系中,用作图象的方法求出方程组x2,的解;y 2 x 2x2,(2)用暗影表示不等式组y 2 x 2,所围成的地区 .y0剖析:经过阅读资料可知,要解决第(1) 小题,只需画出函数x=-2 和 y=-2x+2 的图象,找出它们的交点坐标即可;第 (2) 小题,该不等式组表示的地区就是直线x=-2 及其右边的部分,直线y=-2x+2 及其下方的部分和y=0 及其上方的部分所围成的公共地区.解:( 1)如图 3- ⑤所示,在座标系中分别作出直线x=-2 和直线 y=-2x+2 ,察看图象可知,这两条直线的交点是P(-2,6).因此x2, 是方程组y 6x2,的解 .y 2 x2( 2)如图 3- ⑤所示 .评注:本题给出了一个崭新的知识情形,经过阅读资料,可知资猜中给出一种解决问题的方法,即方程组的解就是两个函数图象的交点坐标;不等式或不等式组的解集能够用坐标系中图形地区直观地表示出来,不单要掌握这种方法,还可以在原解答的基础上,用这种方法解决近似的问题 . 解答这种问题的重点是弄清解题原理,详尽剖析解题思路,梳理前后的因果关系以及每一步变形的理论依照,而后给出问题的解答.经过该题的解答,我们认识了用函数的图象来解方程组或不等式组,是解方程组或不等式组的一种特别方法 .追踪训练:22解:不等式 x -4 > 0 可化为(x+2)( x-2 )> 0,由有理数的乘法法例“两数相乘,同号得正”,得x 2 0 x 2 0①2 0②2 0xx解不等式组①,得x > 2,解不等式组②,得x < -2.∴( x+2)( x-2 )> 0 的解集为 x > 2 或 x < -2 ,即一元二次不等式 x 2-4 >0 的解集为 x > 2或 x < -2 .( 1)一元二次不等式 x 2-16 > 0 的解集为 ;( 2)分式不等式x 1 的解集为;x34. 阅读以下资料资料 1:从三张不一样的卡片中选出两张排成 一列,有 6 种不一样的排法,抽象成数学识题就是从 3 个不一样的元素中选用 2 个元素的摆列,摆列数记为A 32 326. 一般地,从 n 个不一样的元素中选用 m 个元素的摆列数记作 A n m.A n mn ( n 1)( n 2)( n 3) ( n m 1)( m ≤ n ) .资料 2:从三张不一样的卡片中选用两张,有 3 种不一样的选法,抽象成数学识题就是从3个不一样的元素中选用 2 个元素的组合,组合数为C 323 2 3 .2 1例:从 6 个不一样的元素选 3 个元素的组合数为C 6365 4 20 .3 2 1阅读后回答以下问题:( 1)从 5 张不一样的卡片中选出 3 张排成一列,有几种不一样的排法?( 2)从某个学习小组 8 人中选用 3 人参加活动,有多少种不一样的选法?答案:1. 解:由题意,得 f(2 ,- 3)=( - 2,- 3) ,因此 g(f(2 ,- 3))=g( - 2,- 3)=( - 2,3) ,应选 B .2 . C3. 解:( 1)不等式 x 2-16 > 0 可化为( x+4)( x-4 )> 0,由有理数的乘法法例“两数相乘,同号得正”,得①x4 0 或② x4 0x4 0x 4 0解不等式组①,得 x > 4,解不等式组②,得 x <-4.∴( x+4)( x-4 )> 0 的解集为 x > 4 或 x < -4 ,即一元二次不等式 x 2-16 > 0 的解集为 x >4 或 x < -4 .(2)∵x1 x 1 0x 1 0 0 , ∴3 或x3 解得 x > 3 或 x < 1.x3x4. 解:(1)A53 5 4 3 60 ;(2)C838 7656 . 321。
四.阅读理解题一.知识综述1、何种问题是阅读理解题? 阅读理解类问题,就是既考查同学们的阅读能力,同时又考查同学们数学基础理论水平的问题。
2、阅读理解题的结构如何?阅读理解题的结构一般包括阅读材料和阅读目的两部分。
3、阅读理解题的特点是什么? 阅读理解类题的篇幅一般较长,信息量较大,各种关系错综复杂,不易梳理;就考查方法而言,不仅要求同学回答是什么,而且要求回答为什么?如果正确,要说出根据;如果错误,要说出理由;如果缺少条件,要补齐条件;如果步骤不全,要补全步骤。
有时要提出猜想,有时要给出证明,有时问数学思想方法,有时问理论根据和方案。
既注重最终结果,又注重理解过程。
一、 理解掌握 例1:计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”,如(1101)2表示二进制数,转换为十进制形式是13212021210123=⨯+⨯+⨯+⨯,那么将二进制(1111)2转换为十进制形式是数( )A 、8B 、15C 、20D 、30分析:本题考查的是二进制与十进制这间的转化,首先要理解二进制与十进制的含义,然后要学会它们这间的转化方法。
本题已给出了一个例子,因此,只要按例子做即可。
解:15212121210123=⨯+⨯+⨯+⨯。
故选 B 。
例2:阅读下面材料并完成填空。
你能比较两个数20022001和20012002的大小吗?为了解决这个问题,先把问题一般化,即比较n 1n 1)(n n++和的大小(n ≥1的整数)。
然后,从分析n=1,n=2,n=3,……,从这些简单情形入手,从中发现规律,经过归纳,猜想出结论。
⑴通过计算,比较下列①~③各组两个数的大小(在横线上填“>”“<”或“=” ) ① 21____21 ②32____32 ③43____34 ④54>45 ⑤5665> ⑥6776> ⑦7887> ⑵从第⑴小题的结果经过归纳,可以猜想出n 1n 1)(n n++和的大小关系是______________________________________ ⑶根据上面归纳猜想得到的一般结论,可以得到20022001____20012002(填“>”、“=”或“<” 分析:要比较20022001和20012002的大小,直接计算是不可能的,本题阅读材料部分实际上给出了从简单情形入手,从中发现规律,经过归纳,猜想出结论,进而最后比较大小的方法。
中考数学阅读理解问题专题复习专题
阅读理解问题
【知识点】
阅读理解型问题在近几年的中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.
【规律方法】
解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.。
专题二阅读理解题专题讲解阅读理解题是近年中考常见题型,它由两部分组成,一是阅读材料,二是考察内容,它要求学生根据阅读获得的信息回答问题,提供的阅读材料主要包括:一个新的数学概念的形成和运用过程,或一个新数学公式的推导和运用,或提供新闻背景材料等,考察内容既有基础,又有自学能力和探索能力等综合素质等。
解答这类问题的关键是理解阅读材料的实质,把握方法规律,然后甲乙解决。
阅读理解题是近几年考试热点,出现形式多样。
【典型例题】考点1 新知学习型问题新知学习型阅读理解题,是指题目中首先出现一个新知识(通常是新概念新公式),通过阅读题目提供的材料,从中获得新知识,通过对新知识的理解来解决题目提出的问题,其主要目的是考察学生的自学能力,对新知识的理解运用能力,便于学生养成良好学习习惯。
例1 高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数。
例如:[2.3]=2,[−1.5]=−2.则下列结论:①[−2.1]+[1]=−2;②[x]+[−x]=0;③若[x+1]=3,则x的取值范围是2⩽x<3;④当−1⩽x<1时,[x+1]+[−x+1]的值为0、1、2.其中正确的结论有___(写出所有正确结论的序号).考点2 探索归纳型问题这时一类将阅读与探索猜想结合在一起的新型考题,其特点是要求学生从给出的特殊条件中,通过阅读,理解,分析,归纳出一般规律。
例3 如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为,;(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”)(5)图n中,“叠弦角”的度数为(用含n的式子表示)例4.如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)垂美四边形两组对边的平方和相等.写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.考点3方法模仿型问题方法模仿阅读理解题,是指材料先给出一道题的解答方法,要求模仿这一方法来解决问题。
中考数学专题: 阅读理解题(含答案)所谓数学的阅读理解题,就是题目首先提供一定的材料,或介绍一个概念,或给出一种解法等,让你在理解材料的基础上,获得探索解决问题的方法,从而加以运用,解决实际问题.其目的在于考查学生的阅读理解能力、收集处理信息的能力和运用知识解决实际问题的能力. 阅读理解题的篇幅一般都较长,试题结构大致分两部分:一部分是阅读材料,别一部分是根据阅读材料需解决的有关问题.阅读材料既有选用与教材知识相关的内容的,也有广泛选用课外知识的.考查目标除了初中数学和基础知识外,更注重考查阅读理解、分析转化、范例运用、探索归纳等多方面的素质和能力.因此,这类问题需要学生通过对阅读材料的阅读理解,然后进行合情推理,就其本质进行归纳加工、猜想、类比和联想,作出合情判断和推理. 解决型阅读题的关键是首先仔细阅读信息,弄清信息所提供的数量关系,然后将信息转化为数学问题,感悟数学思想和方法,形成科学的思维方式和思维策略,进而解决问题.类型之一 考查掌握新知识能力的阅读理解题 命题者给定一个陌生的定义或公式或方法,让你去解决新问题,这类考题能考查解题者自学能力和阅读理解能力,能考查解题者接收、加工和利用信息的能力。
1.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5 ,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2; 第三步:算出a2的各位数字之和得n3,再计算n23+1得a3; …………依此类推,则a=____________.2.用“⇒”与“⇐”表示一种法则:(a ⇒b )= -b ,(a ⇐b )= -a ,如(2⇒3)= -3, 则()()2010201120092008⇒⇐⇒= .3.符号“a bc d ”称为二阶行列式,规定它的运算法则为:a b ad bc c d =-,请你根据上述规定求出下列等式中x 的值: 2111111xx =--类型之二 模仿型阅读理解题在已有知识的基础上,设计一个陌生的数学情景,通过阅读相关信息,根据题目引入新知识进行猜想解答的一类新题型.解题关键是理解材料中所提供的解题途径和方法,运用归纳与类比的方法 去探索新的解题方法.问题解答并不太难,虽出发点低,但落脚点高.是“学生的可持续发展”理念的体现. 4.阅读材料,解答下列问题. 例:当0a >时,如6a =则66a ==,故此时a 的绝对值是它本身当0a =时,a =,故此时a 的绝对值是零当0a <时,如6a =-则66(6)a =-==--,故此时a 的绝对值是它的相反数∴综合起来一个数的绝对值要分三种情况,即0000a a a a a a >⎧⎪==⎨⎪-<⎩当当当这种分析方法涌透了数学的分类讨论思想.问:(1的各种展开的情况.(2与a的大小关系.5.阅读理解:若m q p 、、为整数,且三次方程023=+++m qx px x 有整数解c ,则将c 代入方程得:023=+++m qc pc c ,移项得:qc pc c m ---=23,即有:()q pc c c m ---⨯=2,由于m c q pc c 及与---2都是整数,所以c 是m 的因数.上述过程说明:整数系数方程023=+++m qx px x 的整数解只可能是m 的因数.例如:方程023423=-++x x x 中-2的因数为±1和±2,将它们分别代入方程023423=-++x x x 进行验证得:x=-2是该方程的整数解,-1、1、2不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程07523=+++x x x 的整数解只可能是哪几个整数?(2)方程034223=+--x x x 是否有整数解?若有,请求出其整数解;若没有,请说明理由6.实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型: 在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球? 为了找到解决问题的办法,我们可把上述问题简单化:(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:1+3=4(如图①);(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7(如图②)(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:1+3×3=10(如图③):L L(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:1+3×(10-1)=28(如图⑩)模型拓展一:在不透明的口袋中装有红、黄、白、蓝、绿五种颜色的小球各20分(除颜色外完全相同),现从袋中随机摸球:(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是;(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是;(3)若要确保摸出的小球至少有n个同色(20n<),则最少需摸出小球的个数是.模型拓展二:在不透明口袋中装有m种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是.(2)若要确保摸出的小球至少有n个同色(20n<),则最少需摸出小球的个数是.问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生.类型之三操作型阅读理解题操作型阅读理解题通常先提供图形变化的方法步骤.解题的时候,你只要根据题目所提供的操作步骤一步步解题即可.它能有效检测学生的创新意识和创新能力的好题型,是中考改革的必然产物.这类问题能较好地考查学生用数学的能力,具有很强的开放性并具有一定的趣味性和挑战性.7.阅读理解:对于任意正实数a、b,∵2a b≥0,∴2a ab b-+≥0,∴a b+≥2ab,只有当a=b时,等号成立.结论:在a b+≥2ab(a、b均为正实数)中,若ab为定值p,则a+b≥2p,只有当a=b时,a+b有最小值2p.根据上述内容,回答下列问题:若m>0,只有当m=时,1mm+有最小值.思考验证:如图1,AB 为半圆O 的直径,C 为半圆上任意一点(与点A 、B 不重合),过点C 作CD⊥AB,垂足为D ,AD =a ,DB =b .试根据图形验证a b +≥2ab ,并指出等号成立时的条件.探索应用:如图2,已知A(-3,0),B(0,-4),P 为双曲线x y 12=(x >0)上的任意一点,过点P 作PC⊥x 轴于点C ,PD⊥y 轴于点D .求四边形ABCD 面积的最小值,并说明此时四边形ABCD 的形状.8.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.9.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A,B,E 在同一条直线上,P 是线段DF 的中点,连结PG,PC .若60ABC BEF ∠=∠=o ,探究PG 与PC 的位置关系及PGPC 的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG 与PC 的位置关系及PGPC 的值;(2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<o o,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC 的值(用含α的式子表示). 解:(1)线段PG 与PC 的位置关系是 ;PGPC =.参考答案1.【解析】本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律。
中考数学备考专题复习:阅读理解问题(含解析)中考备考专题复习:阅读理解问题一、单选题1、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A、0B、2C、3D、42、对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=73、设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A、②③④B、①③④C、①②④D、①②③4、定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A、0≤m≤1B、﹣3≤m≤1C、﹣3≤m≤3D、﹣1≤m≤0二、填空题5、州)阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=________.三、解答题6、自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)<0,则____________ .根据上述规律,求不等式>0的解集.7、阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.8、先阅读下列材料,然后解答问题:材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同元素中选取m个元素的排列数记作A n m,A n m=n(n-1)(n-2)…(n-m+1)(m≤n).例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.一般地,从n个不同元素中选取m个元素的组合数记作C n m,C n m=(m≤n).例:从6个不同元素中选3个元素的组合数为:C63==20.问:(1)从7个人中选取4人排成一排,有多少种不同的排法?(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?9、定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.四、综合题10、阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明(2)求乙船每小时航行多少海里?11、阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为________ 万人次(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.12、阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.13、)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为________ ,第4项是________(2)如果一个数列a1, a2, a3, a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2, a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an =________(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.14、阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)求x2+4y2的值;(ii)求+的值.15、)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°请你运用所学知识,结合上述材料,解答下列问题.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.16、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)17、已知点P(x0, y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.18、定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.19、我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.20、阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约________亿元,你的预估理由________.21、)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)= = =2+根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为米,请你帮助李三求出纪念碑的高度.22、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).答案解析部分一、单选题1、【答案】B【考点】分段函数【解析】【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,此题是分段函数题,主要考查了新定义,解本题的关键是分段.2、【答案】B【考点】分式方程的解,定义新运算【解析】【解答】解:根据题意,得= ﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选B.【分析】所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.3、【答案】C【考点】整式的混合运算,因式分解的应用,二次函数的最值【解析】【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2, a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.4、【答案】 B【考点】一元一次不等式组的应用【解析】【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.二、填空题5、【答案】【考点】探索数与式的规律【解析】【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S= .【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题6、【答案】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.【考点】一元一次不等式组的应用【解析】【分析】根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.7、【答案】【解答】解:第1个数,当n=1时,[()n﹣()n]=(﹣)=×=1.第2个数,当n=2时,[()n﹣()n]=[()2﹣()2]=×(+)(﹣)=×1×=1.【考点】二次根式的应用【解析】【分析】分别把1、2代入式子化简求得答案即可.8、【答案】解:(1)A74=7×6×5×4=840(种).(2)C83==56(种)【考点】探索数与式的规律【解析】【分析】探索数与式的规律。
阅读理解型问题(专题4)——合情推理【考点透视】阅读理解型问题在近年的全国各地的中考试题中频频出现,特别引人注目,这些试题不再囿于教材的内容及其方法,以新颖别致的取材、富有层次和创造力的设问独树一帜.这些试题中还常常出现新的概念和方法,不仅要求学生理解这些新的概念和方法,而且要灵活运用这些新的概念和方法去分析、解决一些简单的问题.在阅读理解型问题中,除了考查学生的分析分析、综合、抽象、概括等演绎推理能力,即逻辑推理能力外,还经常考查学生的观察、猜想、不完全归纳、类比、联想等合情推理能力,考查学生的直觉思维.因此,这类问题需要学生通过对阅读材料的阅读理解,然后进行合情推理,就其本质进行归纳加工、猜想、类比和联想,作出合情判断和推理, 【典型例题】例1.已知正数a 和b ,有下列命题:(1)a +b =2,ab ≤1; (2)a +b =3,ab ≤23; (3)a +b =6,ab ≤3.根据以上三个命题所提供的规律猜想:若a +b =9,ab ≤ .(2000年北京市东城区中考试题)分析:观察(1)、(2)、(3)中的数字规律:不等号右边的数都是等号右边的数的21,由此可以作出猜想.解:ab ≤29. 说明:本题要求直接通过不完全归纳,总结规律,猜想结论. 例2.例2.(1)判断下列各式是否成立,你认为成立的请在括号内打“√”,不成立的打“×”.①322322=+( );②833833=+( ); ③15441544=+( ); ④24552455=+( ). (2)你判断完以上各题之后,发现了什么规律?请用含有n 的式子将规律表示出来,并注明n 的取值范围: .图4—1AD nB CD 1 D 2D 3E 1 E 2 E 3 E n 图4—2(3)请用数学知识说明你所写式子的正确性.(2000年江苏省常州市中考试题)分析:判断式子①、②、③、④内在的规律时可以发现:①中3=2 2-1;②中8=3 2-1;③中15=4 2-1;④中24=5 2-1.这样就可以统一用含n 的式子表示出来.解:(1)①√;②√;③√;④√.(2)12-+n n n =n 12-n n.其中n 为大于1的自然数. (3)12-+n n n =123-n n =122-⋅n n n =n 12-n n . 说明:本题虽然需要说明所写式子的正确性,但本题主要考查学生的合情推理能力,即用含有n 的式子将规律表示出来.例3.下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数是S .按此规律推断,S 和n 的关系式是 .(2000年山西省中考试题)分析:由正三角形每条边的花盆数n 与花盆的总数S 之间的关系,可以看出S 总是比n 的3倍少3. 解:S =3n -3.说明:本题的答案不唯一,其它形式也可以. 例4. 如图4—2所示,在△ABC 中,BC =a ,若D 1、E 1分别是AB 、AC 的中点,则D 1E 1=a 21; 若D 2、E 2分别是D 1B 、E 1C 的中点,则D 2E 2=a a a 43)2(21=+; 若D 3、E 3分别是D 2B 、E 2C 的中点,则D 3E 3=a a a 87)43(21=+;…………若D n 、E n 分别是D 1-n B 、E 1-n C 的中点,则D n E n = (n ≥1,且n 为整数).(2001年山东省济南市中考试题)分析:因为12121=;2221243-=;3321287-=;……,所以D n E n 也可以用含数字2的式子来表示.解:D n E n =11212---n n (n ≥1,且n 为整数).说明:寻找数字规律,应把已给的数写成有规律的一组数.n =2,S =3 n =3,S =6 n =4,S =9例5.问题:你能很快算出19952吗?为了解决这个问题,我们考察个位上的数为5的自然数的平方.任意一个个位数为5的自然数可写成10•n+5,即求(10•n+5)2的值(n为自然数).你试分析n=1,n=2,n=3,…,这些简单情况,从中探索规律,并归纳、猜想出结论(在下面空格内填上你的探索结果).(1)通过计算,探索规律:152=225可写成100×1(1+1)+25,252=625可写成100×2(2+1)+25,352=1225可写成100×3(3+1)+25,452=2025可写成100×4(4+1)+25,……752=5625可写成,852=7225可写成,……(2)从第(1)的结果,归纳、猜想得:(10n+5)2=.(3)根据上面的归纳、猜想,请算出:19952=.(1999年福建省三明市中考试题)分析:在对这些式子进行规律探索的时候,要找出哪些数是不变的,哪些数是随式子的序号变化而逐步变化的.然后就可以用n来表示这些逐步变化的数.解:(1)100×7(7+1)+25;100×8(8+1)+25.(2)100n2+100n+25100n(n+1)+25.(3) 100×199(199+1)+25=3980025.说明:本题不仅要求归纳猜想和探索规律,而且要运用归纳猜想得出的结论解决问题.例6.如图4—3,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P',使得OP·OP'=r 2 ,这种把点P变为点P'的变换叫做反演变换,点P与点P'叫做互为反演点.图4—3 图4—4(1) 如图4—4,⊙O 内外各一点A 和B ,它们的反演点分别为A '和B '.求证:∠A '=∠B ; (2) 如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线l 与⊙O 相交,那么它关于⊙O 的反演图形是( ). (A)一个圆 (B)一条直线 (C)一条线段 (D)两条射线 ②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .(2001年江苏省南京市中考试题)分析:求解本题首先要理解“反演变换”的意义,并理解圆内的点的反演点在圆外,圆上的点的反演点在圆上,圆外的点的反演点在圆内;其次,第(2)题的第①小题,由于直线与圆的交点的反演点是它本身,因此只要在该直线的圆内、圆外部分各取几点,画出反演点,便可推测该直线的反演图形.另外,第(2)题的第②小题,由于直线与圆的切点的反演点是它本身,因此只要在该直线上取几点,画出反演点,便可推测该直线的反演图形.(1)证明:∵A 、B 的反演点分别是A’、B’,∴OA ·OA’=r 2,OB ·OB’=r 2. ∴OA ·OA’=OB ·OB’,即''OA OBOB OA . ∵∠O =∠O ,∴△ABO ∽△B’A’O . ∴∠A’=∠B .. (2)解:①A .②圆;内切.说明:本题主要考查学生通过观察、分析,从特殊的点的研究归纳、推测图形形状的合情推理能力.另外,还可以研究下列问题:如果直线⊙O’与⊙O 相切,那么它关于⊙O 的反演图形是什么?该图形与圆O 的位置关系是是什么?例7.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.例如:图4—5中的三角形被一个圆所覆盖,图4—6中的四边形被两个圆所覆盖.回答下列问题:(1)边长为1cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是 cm ; (2)边长为1cm 的等边三角形被一个半径为r 的圆所覆盖,r 的最小值是 cm ; (3)长为2cm ,宽为1cm 的矩形被两个半径为r 的圆所覆盖,r 的最小值是 cm , 这两个圆的圆心距是 cm.(2003年江苏省南京市中考试题)图4—5图4—6分析:本题首先要理解图形被圆所覆盖的定义,其次,可以推测正方形、等边三角形被一个半径为r 的圆所覆盖,r 取最小值时,显然这个圆就是正方形、等边三角形的外接圆.而第(3)题可把长为2cm ,宽为1cm 的矩形分割成两个边长为1 cm 的正方形,根据第(1)题,不难得到结论.解:(1)22; (2)33; (3)22,1. 说明:本题的合情推理是建立在空间想象的基础上,并把问题转化为多边形的外接圆问题.另外,还可以研究下列问题:1.如果边长为1cm ,有一个锐角是60°的菱形被一个半径为r 的圆所覆盖,那么r 的最小值是多少?2.如果上低和腰长都是1cm ,下低长是2cm 的梯形被一个半径为r 的圆所覆盖,那么r 的最小值是多少?【习题4】1.观察下列各式,你会发现什么规律?3×5=15,而15=42-1; 5×7=35,而35=62-1;11×13=143,而143=122-1; ……请你猜想到的规律用只含一个字母的式子表示出来: .(2000年山东省济南市中考试题)2.观察下列顺序排列的等式:9×0+1=1, 9×1+2=11, 9×2+3=21, 9×3+4=31, 9×4+5=41, ……猜想:第n 个等式(n 为正整数)应为 .(2003年北京市中考试题)3.观察下列各式: 1×3=12+2×1, 2×4=22+2×2, 3×5=32+2×3,……请你将猜想到的规律用自然数n (n ≥1)表示出来: .(2003年福建省福州市中考试题)4.观察以下等式:1×2=31×1×2×3;1×2+2×3=31×2×3×4;1×2+2×3+3×4=31×3×4×5;1×2+2×3+3×4+4×5=31×4×5×6;……根据以上规律,请你猜测:1×2+2×3+3×4+4×5+…+n ×(n +1)= .(2001年山东省威海市中考试题)5.将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 …… …… 28 26根据上面的排列规律,则2000应在( ).A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列(2001年湖北省荆州市中考试题)6.细心观察图形4—7,认真分析各式,然后解答问题. 21,21)1(12==+S ; 22,31)2(22==+S ; 23,41)3(32==+S ; ……(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 1 2+S 2 2+S 3 2+…+S 10 2的值.(2003年山东省烟台市中考试题)7.(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB |.当A 、B 两点中有一点在原点时,不妨设点A 在原点, 如图4—8,|AB |=|OB |=|b |=|a -b |; 当A 、B 两点都不在原点时,①如图4—9,当点A 、B 都在原点右边时,则 |AB |=|OB |-|OA |=|b |-|a |=b -a =|a -b |; ②如图4—10,当点A 、B 都在原点左边时,则O (A ) B图4—8O B A图4—9O A B 图4—10O A 2 A 4A 1 …1 A 5S 3 S 5 S 2S 1 S 41 1 1A 6 A 3…图4—7|AB |=|OB |-|OA |=|b |-|a |=-b -(-a )=|a -b |;③如图4—11,当点A 、B 在原点的两边时,则 |AB |=|OA |+|OB |=|a |+|b |=a +(-b )=|a -b |. 综上,数轴上A 、B 两点之间的距离|AB |=|a -b |.(2)回答相应问题:①数轴上表示2和5的两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 . ②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果|AB |=2,那么x 为 . ③当代数式|x +1|+|x -2|取最小值时,x 相应的取值范围是 .(2002年江苏省南京市中考试题)8.如图4—12,在正方形ABCD 中,E 是AD 的中点,F 是 BA 延长线上一点, AF =21AB . (1)求证:△ABE ≌△ADF . (2)阅读下面材料:如图4—13,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置; 如图4—14,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置; 如图4—15,以点A 为中心,把△ABC 旋转180°,可以变到△AED 的位置.象这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换. (3)回答下列问题:①在图4—12中,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 变到 △ADF 的位置?答: . ②指出图4—12中线段BE 与DF 之间的关系.答: .(2000年江苏省南京市中考试题)9.在△ABC 中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O .某学生研究这一问题时,发现了如下事实.EDCBADCBAEDCA图4—13 图4—14 图4—15FABC D E图4—12OA B a 图4—11图4—16E A B C O D图4—17 B C A D EOB C A 图4—18 D E O C A 图4—19 D F EO①当11121+==AC AE 时,有21232+==AD AO (如图4-16); ②当21131+==AC AE 时,有22242+==AD AO (如图4-17); ③当31141+==AC AE 时,有32252+==AD AO (如图4-18). 在图4-19中,当n AC AE +=11时,参照上述研究结论,请你猜想用n 表示ADAO的一般结论,并给出证明(其中n 是正整数).(2001年河北省中考试题)10.某厂要制造能装250毫升(1毫升=1厘米3 )饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部的厚度都是0.02厘米,顶部厚度是底部厚度的3倍,这是为了防止“呯”的一声打开易拉罐时把整个顶盖撕下来.设一个底面半径是x 厘米的易拉罐的用铝量是y 厘米3. (1)利用用铝量=底圆面积×底部厚度+顶圆面积×顶部厚度+侧面积×侧壁厚度)求y 与x 之间的函数关系式;(2②根据上表推测:要使用铝量y (厘米)的值尽可能小,底面半径x (厘米)的值所在范围是( ).A .1.6≤x ≤2.4B .2.4<x <3.2C .3.2≤x ≤4(2002年江苏省南京市中考试题)11.如图20,正方形ABCD 和正方形EFGH 对角线BD 、FH 都在直线l 上.O 1、O 2 分别是正方形的中心,O 1D =2,O 2F =1,线段O 1O 2的长叫做两个正方形的中心距....当中心O 2在直线l 上平移时,正方形EFGH 也随之平移,在平移时正方形EFGH 的形状、大小没有改变.(1)当中心O 2在直线l 上平移到两个正方形只有一个公共点时,中心距O 1O 2 = . (2)随着中心O 2在直线l 上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程 ).(2003年江苏省徐州市中考试题)图4—20【习题4】1.解:(2n -1)(2n +1)=(2n )2-1. 2.解:9(n -1)+n =10(n -1)+1. 3.解: n (n +2)=n 2 +2n .4.解:1×2+2×3+3×4+4×5+…+n ×(n +1)=31×n ×(n +1)×(n +2).5.解:选C .6.解:(1)2,11)(2nS n n n =+=+. (2)∵OA 1=1,OA 2=2,OA 3=3,…, ∴OA 10=10.(3)S 1 2+S 2 2+S 3 2+…+S 10 2=2)21(+2)22(+2)23(+…+2)210(=41(1+2+3+…+10) =455. 7.解:(1)3,3,4;(2)∣x +1∣,-3或1; (3)-1≤x ≤2. 8.解:(1)证明:在正方形ABCD 中, ∵ AB=AD ,AD ⊥AB , ∴∠BAE =∠DAF =90°.∵AE =21AD ,AF =21AB , ∴AE =AF .∴△ABE ≌△ADF .(3)①答:△ABE 绕点A 逆时针旋转90度到△ADF 的位置. ②答:BE =DF ,且BE ⊥DF .9.解:根据题意,可以猜想:当n AC AE +=11时,有n AD AO +=22成立. 证明:过D 作DF ∥BE 交AC 于点F .∵D 是BC 的中点, ∴F 是EC 的中点. ∵n AC AE +=11, ∴n EC AE 1=. ∴nEF AE 2=.∴nAF AE +=22. ∵DF ∥BE , ∴nAF AE AD AO +==22. 10.解:(1)解:222250202.0302.0xx x x y ππππ⋅+⋅⋅+⋅=·0.02 =xx 102522+π. (2)B .11.解:.(1)2,1. (2)3.(3)①当1<O 1O 2<3时,两个正方形有2个公共点;②当O 1O 2=1时,两个正方形有无数个公共点;③当O 1O 2 <1,或O 1O 2>3时,两个正方形没有公共点.。
中考数学专题复习2:阅读理解题Ⅰ、综合问题精讲 :阅读理解型问题以内容丰富、构思新颖别致、题样多变为特点.知识的覆盖面较大,它可以是阅读课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法和思想,然后在把握本质,理解实质的基础上作出回答.这类问题 的主要题型有:阅读特殊范例,推出一般结论;阅读解题过程,总结解题思路和方法;阅读新知识,研究新问题等.这类试题要求考生能透彻理解课本中的所学内容,善于总结解题规律,并能准确阐述自己的思想和观点,考查学生对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识的迁移能力等.因此,在平时的学习和复习中应透彻理解所学内容.搞清楚知识的来龙去脉,不仅要学会数学知识,更要掌握在研究知识的过程中体现出的数学思想和方法. Ⅱ、典型例题剖析【例1】(2005,模拟,9分)如图 2-7-1所示,正方形ABCD 和正方形EFGH 的边长分别为2 2 和2 ,对角线BD 、FH 都在直线l 上,O 1、O 2分别是正方形的中心,线段O 1O 2的长叫做两个正方形的中心距.当中心O 在直线 l 上平移时,正方形 EFH 也随之平移,在平移时正方形EFGH 的形状、大小没有改变.(1)计算:O 1D=_______,O 2 F=______;(2)当中心O 2在直线 l 上平移到两个正方形只有一个公共点时,中心距O 1 O 2 =_________.(3)随着中心 O 2在直线 l 上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围.(不必写出计算过程)解:(1)O 1D=2,O 2 F=1;(2)O 1 O 2 =3;(2)当O 1 O 2>3或0≤O 1 O 2<1时,两个正方形无公共点;当O 1 O 2=1时,两个正方形有无数个公共点;当1<O 1 O 2<3时,两个正方形有2个公共点.点拨:本题实际上考查的知识点是“两圆的位置关系”,但形式有所变化.因此,可以再次经历探索两个圆之间的位置关系,认真分析并总结两圆五种位置关系所对应的圆心距d 与半径R 和r 的数量关系,五种位置关系主要由两个因素确定:①公共点的个 数;②一个圆上的点在另一个圆的外部还是内部,按这两个因素为线索来探究位置关系.然后,把这种利用平移实验直观探索方法迁移到研究“两个正方形的位置关系”上来.【例2】(2005,内江,9分)阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数。
中考数学复习《阅读理解问题》经典题型及测试题(含答案)阅读与理解阅读理解问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.该类问题一般是提供一定的材料或介绍一个概念或给出一种解法等,让考生在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是“阅读→分析→理解→解决问题”.类型一新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或定义),然后再根据新概念提出要解决的相关问题.主要目的是考查学生的自学能力和对新知识的理解与运用能力.解决这类问题:要求学生准确理解题目中所构建的新概念,将学习的新概念和已有的知识相结合,并进行运用.例1 (2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【自主解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.变式训练1.(2016·常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”.现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是 ______________2.(2016·荆州) 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.类型二新公式应用型新公式应用型是指通过对所给材料的阅读,从中获取新的数学公式、定理、运算法则或解题思路等,进而运用这些知识和已有知识解决题目中提出的数学问题.解决这类问题,一是要所运用的思想方法、数学公式、性质、运算法则或解题思路与阅读材料保持一致;二是要创造条件,准确、规范、灵活地解答.例2(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.(0,0)到直线4x+3y﹣3=0的距离.例如:求点P解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,(0,0)到直线4x+3y﹣3=0的距离为d==.∴点P根据以上材料,解决下列问题:问题1:点P(3,4)到直线y=﹣x+的距离为 4 ;1问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S的最大值和最小值.△ABP【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.(3,4)到直线3x+4y﹣5=0的距离d=【自主解答】解:(1)点P1=4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1, 解得b=或.(3)点C (2,1)到直线3x+4y+5=0的距离d==3, ∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.变式训练3.一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P(A)= .如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是____ .4.(2016·随州)如图1,PT 与⊙O 1相切于点T ,PB 与⊙O 1相交于A ,B 两点,可证明△PTA ∽△PBT ,从而有PT 2=PA ·PB .请应用以上结论解决下列问题:如图2,PAB ,PCD 分别与⊙O 2相交于A ,B ,C ,D 四点,已知PA =2,PB =7,PC=3,则CD =______.类型三 新方法应用型新方法应用型是指通过对所给材料的阅读,从中获取新的思想、方法或解题途径,进而运用这些知识和已有的知识解决题目中提出的问题.例3 (2017·毕节)D M 93 35)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017= .【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【自主解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.变式训练5、仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n ∴n+3=-4m=3n 解得:n=-7,m=-21∴另一个因式为(x-7),m的值为-21.问题:(1)若二次三项式x2-5x+6可分解为(x-2)(x+a),则a=______;(2)若二次三项式2x2+bx-5可分解为(2x-1)(x+5),则b=______;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x-k有一个因式是(2x-3),求另一个因式以及k的值.解:(1)∵(x-2)(x+a)=x2+(a-2)x-2a=x2-5x+6,∴a-2=-5,解得:a=-3;(2)∵(2x-1)(x+5)=2x2+9x-5=2x2+bx-5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,则2n-3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k 的值为12.故答案为:(1)-3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分). 6、(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++. 令111234t ++=,则 原式=11(1)()(1)55t t t t -+--- =22114555t t t t t +---+ =15 问题:(1)计算1111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++。
中考数学专题复习—— 阅读理解问题我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?(1)阅读与证明: 对于这两个三角形均为直角三角形,显然它们全等. 对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:△ABC 、△A 1B 1C 1均为锐角三角形,AB=A 1B 1,BC=B 1C l ,∠C=∠C l . 求证:△ABC ≌△A 1B 1C 1. (请你将下列证明过程补充完整.)证明:分别过点B ,B 1作BD ⊥CA 于D ,B 1D 1⊥C 1A 1于D 1. 则∠BDC=∠B 1D 1C 1=900,∵BC=B 1C 1,∠C=∠C 1, ∴△BCD ≌△B 1C 1D 1, ∴BD=B 1D 1.(2)归纳与叙述: 由(1)可得到一个正确结论,请你写出这个结论.A D CB 11A 1B 11、在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x)·x -(3⊕x)的值为 (“·”和“-”仍为实数运算中的乘号和减号).2、我们已经学习了相似三角形,也知道:如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形。
比如两个正方形,它们的边长,对角线等所有元素都对应成比例,就可以称它们为相似图形。
现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形。
请指出其中哪几对是相似图形,哪几对不是相似图形_______________________.例1、阅读下面的材料:解方程x 4-6x 2+5=0。
这是一个一元四次方程,根据该方程的特点,它的通常解法是:设x 2=y ,那么 x 4=y 2,于是原方程变为y 2-6y +5=0,解这个方程,得y 1=1,y 2=5.当y =1时,x 2=1,解得x =±1;当y =5时,x 2=5,解得x =∴原方程的解为:x 1=1,x 2=-1,x 3=5,x 4=-5. 请用上面的方法解答下列问题:解方程(x 2-x)2-4(x 2-x)-12=0. 例2、阅读下面的材料: ∵ 1111-13213⎛⎫= ⎪⨯⎝⎭,1111-35235⎛⎫= ⎪⨯⎝⎭,1111-57257⎛⎫= ⎪⨯⎝⎭,1111-171921719⎛⎫= ⎪⨯⎝⎭ ∴11111335571719+++⋅⋅⋅+⨯⨯⨯⨯ 111111111111----21323525721719⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111119----1-2133557171921919⎛⎫⎛⎫=+++⋅⋅⋅+== ⎪ ⎪⎝⎭⎝⎭ 请用上面的方法解答下列问题:(1)在和式1111447710+++⋅⋅⋅⨯⨯⨯中,第5项为__________,可化为__________. (2)当n = _______时,()111231223124n n ++⋅⋅⋅+=⨯⨯-⨯想一想:阅读下面的材料:如图,正方形ABCD 和正方形EFGH 对角线BD 、FH都在直线l 上.O 1、O 2分别是正方形的中心,O 1D =2,O 2F=1,线段O 1O 2的长叫做两个正方形的中心距.当中心O 2在直线l 上平移时,正方形EFGH 也随之平移,在平移时正方形EFGH 的形状、大小没有改变.请回答下列问题:(1)当中心O 2在直线l 上平移到两个正方形只有一个公共点时,中心距O 1O 2=_____.(2)随着中心O 2在直线l 上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程 ).如果成立,请给出证明;如果不成立,请说明理由。
初三中考初中数学阅读理解专题训练含答
案
阅读理解是中考数学考试中常见的题型之一。
在这种题型中,
学生需要通过阅读一篇数学相关的文章,并回答相关的问题。
以下
是一些初三中考初中数学阅读理解专题训练题目及其答案,供同学
们练。
题目一:
某公司为两位员工A和B购买了一套办公设备,设备总价为元。
公司决定按照员工A的工作量和贡献度,将设备总价分成两份。
员工A参与公司工作的时间为8个月,员工B参与公司工作的时间为4个月。
设员工A和B分别支付的费用为X元和Y元,则X+Y
的值为多少?
A. 4000元
B. 6000元
C. 8000元
D. 元
答案:C. 8000元
题目二:
某学校举行篮球比赛,共有12名学生参加。
其中有7名男生
和5名女生。
学校规定,要选出一支由至少3名男生和至少2名女
生组成的比赛队。
则符合要求的不同组队方式有多少种?
A. 50种
B. 60种
C. 70种
D. 80种
答案:C. 70种
题目三:
某商店打折出售一种商品,原价120元,现在打8折出售。
同时,商店还提供会员折扣,会员购买可再打7折。
某消费者是该商
店的会员,他购买了两件该商品。
则他需要支付的总费用是多少元?
A. 82.4元
B. 86.4元
C. 89.6元
D. 93.6元
答案:B. 86.4元
通过完成以上的阅读理解训练题目,同学们可以提高自己的阅读理解能力,并更好地应对中考数学考试。
中考专题(阅读理解题) 姓名 学号1.阅读以下材料:对于三个数a b c ,,,用{}M a b c ,,表示这三个数的平均数,用{}min a b c ,,表示这三个数中最小的数.例如:{}123412333M -++-==,,;{}min 1231-=-,,;{}(1)min 121(1).a a a a -⎧-=⎨->-⎩≤;,,解决下列问题:(1)填空:{}min sin30cos 45tan30=,, ;如果{}min 222422x x +-=,,,则x 的取值范围为x ________≤≤_________. (2)①如果{}{}212min 212M x x x x +=+,,,,,求x ;②根据①,你发现了结论“如果{}{}min M a b c a b c =,,,,,那么 (填a b c ,,的大小关系)”.证明你发现的结论;③运用②的结论,填空:若{}{}2222min 2222M x y x y x y x y x y x y +++-=+++-,,,,, 则x y += .(3)在同一直角坐标系中作出函数1y x =+,2(1)y x =-,2y x =-的图象(不需列表描点).通过观察图象,填空:{}2min 1(1)2x x x +--,,的最大值为.2.(05陕西省) 阅读:我们知道,在数轴上,1x =表示一个点.而在平面直角坐标系中,1x =表示一条直线;我们还知道,以二元一次方方程210x y -+=的所有解为坐标的点组成的图形就是一次函数21y x =+的图象,它也是一条直线,如图2-4-10可以得出:直线1x =与直线21y x =+的交点P 的坐标(1,3)就是方程组13x y =⎧⎨=⎩x在直角坐标系中,1x≤表示一个平面区域,即直线1x=以及它左侧的部分,如图2-4—11;21y x≤+也表示一个平面区域,即直线21y x=+以及它下方的部分,如图2—4—12.回答下列问题:在直角坐标系(图2-4—13)中,(1)用作图象的方法求出方程组222xy x=-⎧⎨=-+⎩的解.(2)用阴影表示222xy xy≥-⎧⎪≤-+⎨⎪≥⎩,所围成的区域.图2-4-12图2-4-11图2-4-10yxOy=2x+1yxO13y=2x+11P(1,3)O x y3。
中考数学总复习阅读理解题第一部分真题精讲【例1】请阅读下列材料问题:如图1,在等边三角形ABC内有一点P,且PA=2, PB=3, PC=1.求∠BPC 度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′P B是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′C=150°,而∠BPC=∠AP′C=150°.进而求出等边△ABC的边长为7.问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=5,BP=2,PC=1.求∠BPC度数的大小和正方形ABCD的边长.【分析】首先仔细阅读材料,问题中小明的做法总结起来就是通过旋转固定的角度将已知条件放在同一个(组)图形中进行研究。
旋转60度以后BP就成了BP`,PC成了P`A,借助等量关系BP`=PP`,于是△APP`就可以计算了.至于说为什么是60°,则完全是因为大图形是等边三角形,需要用60度去构造另一个等边三角形。
看完这个,再看所求的问题,几乎是一个一模一样的问题,只不过大图形由三角形变成了正方形。
那么根据题中所给的思路,很自然就会想到将△BPC旋转90度看看行不行。
旋转90度之后,成功将PC挪了出来,于是很自然做AP`延长线,构造出一个直角三角形来,于是问题得解。
说实话如果完全不看材料,在正方形内做辅助线,当成一道普通的线段角计算问题也是可以算的。
但是借助材料中已经给出的旋转方法做这道题会非常简单快捷。
大家可以从本题中体会一下领会材料分析方法的重要性所在。
【解析】(1)如图,将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP=BP′=2.连结P P′,在Rt△BP′P中,∵BP=BP′=2,∠PBP′=90°,∴P P′=2,∠BP′P=45°.在△AP′P中,AP′=1,P P′=2,AP=5,∵22212(5)+=,即AP′ 2 + PP′ 2 = AP2.∴△AP′P是直角三角形,即∠A P′P=90°.图3图1图2∴ ∠AP′B=135°.∴ ∠BPC=∠AP′B=135°. … (2)过点B 作BE ⊥AP′ 交AP′ 的延长线于点E . ∴ ∠E P′ B =45°.∴ E P′=B E=1.∴ AE=2.∴ 在Rt△AB E 中,由勾股定理,得∴【例2】若12,x x 是关于x 的一元二次方程20(0)ax bx c a ++=≠的两个根,则方程的两个根12,x x 和系数,,a b c 有如下关系:1212,b cx x x x aa+=-⋅=. 我们把它们称为根与系数关系定理. 如果设二次函数2(0)y ax bx c a =++≠的图象与x 轴的两个交点为12(,0),(,0)A x B x .利用根与系数关系定理我们又可以得到A 、B 两个交点间的距离为:12AB x x =-= 请你参考以上定理和结论,解答下列问题:设二次函数2(0)y ax bx c a =++>的图象与x 轴的两个交点为12(,0),(,0)A x B x ,抛物线的顶点为C ,显然ABC ∆为等腰三角形.(1)当ABC ∆为等腰直角三角形时,求24;b ac -的值 (2)当ABC ∆为等边三角形时,24b ac -= .(3)设抛物线21y x kx =++与x 轴的两个交点为A 、B ,顶点为C ,且90ACB ∠=︒,试问如何平移此抛物线,才能使60ACB ∠=︒?【分析】本题也是较为常见的类型,即先给出一个定理或结论,然后利用它们去解决一些问题。
题干中给出抛物线与X 轴的两交点之间的距离和表达式系数的关系,那么第一问要求24b ac -取何值时△ABC 为等腰直角三角形.于是我们可以想到直角三角形的性质就是斜边中线等于斜边长的一半.斜边中线就是顶点的纵坐标,而斜边恰好就是两交点的距离.于是将24b ac -作为一个整体,列出方程求解.第二问也是一样,把握等边三角形底边与中线的比例关系即可.第三问则可以直接利用第一问求得的24b ac -值求出K,然后设出平移后的解析式,使其满足第二问的结果即可.注意左右平移是不会改变度数的,只需上下即可。
【解析】⑴ 解:当ABC △为等腰直角三角形时,过C 作CD AB ⊥,垂足为D , 则2AB CD =∵抛物线与x 轴有两个交点,∴0>△,(不要忘记这一步的论证)∴2244b ac b ac -=-∵24b acAB a -=又∵244b acCD a-=,∵0a ≠,22442b acb ac --()222444b acb ac --∴()222444b acb ac --=∴244b ac -=…⑵当ABC △为等边三角形时,24b ac -12= ⑶∵90ACB ∠=︒, ∴24b ac -4=. 即244k -=, ∴22k =± 因为向左或向右平移时,ACB ∠的度数不变,所有只需要将抛物线2221y x x =±+向上或向下平移使60ACB ∠=︒,然后向左或向右平移任意个单位即可.设向上或向下平移后的抛物线解析式为:2221y x x m =±++, ∵平移后60ACB ∠=︒,∴2412b ac -=, ∴2m =-.∴抛物线21y x kx =++向下平移2个单位后,向左或向右平移任意个单位都能使ACB ∠的度数由90︒变为60︒ 【例3】阅读下列材料:小明遇到一个问题:如图1,正方形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 和DA 边上靠近A 、B 、C 、D 的n 等分点,连结AF 、BG 、CH 、DE ,形成四边形MNPQ .求四边形MNPQ 与正方形ABCD 的面积比(用含n 的代数式表示).小明的做法是:先取2n =,如图2,将ABN △绕点B 顺时针旋转90︒至'CBN △,再将ADM △绕点D 逆时针旋转90︒至'CDM △,得到5个小正方形,所以四边形MNPQ 与正方形ABCD 的面积比是15;然后取3n =,如图3,将ABN △绕点B 顺时针旋转90︒至'CBN △,再将ADM △绕点D 逆时针旋转90︒至'CDM △,得到10个小正方形,所以四边形MNPQ 与正方形ABCD 的面积比是410,即25; ……请你参考小明的做法,解决下列问题:(1)在图4中探究4n =时四边形MNPQ 与正方形ABCD 的面积比(在图4上画图并直接写出结果); (2)图5是矩形纸片剪去一个小矩形后的示意图,请你将它剪成三块后再拼成正方形(在图5中画出并指明拼接后的正方形).【分析】本题属于典型的那种花10分钟读懂材料画1分钟就可以做出来题的类型。
材料给出的方法相当精妙,考生只要认真看过去并且理解透这个思路,那么不光是这道题可以做,以后碰见类似的题目都可以用这种方法。
材料中所给方法就是将周边的四个三角形其中的两个旋转90°,将三角形放在矩形当中去讨论面积。
事实上无论是几等分点,所构造出来的四个小三角形△AMD ,△ABN ,△BPC ,△CQD 都是全等的,并且都是90度,那么他们旋转以后所对应的就是两个矩形,如图三中的BN`PC 和CM`DQ 。
而矩形的面EBAQ PN G H FED CBA M CPG DQ H M N FBEA图1图4图5积恰好和中间正方形的面积有联系(想想看,是怎样用N 等分点去证明面积比例的)于是顺理成章当N 等于4的时候,去构造一个类似的网格,第一问就出来了。
至于第二问和裁剪问题沾点边,完全就是这个技巧方法的逆向思考,重点就在于找出这个多边形是由哪几部分构成。
于是按下图,连接BC ,截外接矩形为两个全等的直角三角形,然后旋转即可。
说白了,这种带网格的裁剪题,其实最关键的地方就在于网格全是平行线,利用平行线截线段的比例性质去找寻答案。
【解析】BEADCBA四边形MNPQ 与正方形ABCD 的拼接后的正方形是正方形ABCD . 面积比是917. 【例4】阅读:如图1,在ABC ∆和DEF ∆中,90ABC DEF ∠=∠=︒,,AB DE a ==BC EF b == ()a b <,B 、C 、D 、 E 四点都在直线m 上,点B 与点D 重合.连接AE 、FC ,我们可以借助于ACE S ∆和FCE S ∆的大小关系证明不等式:222a b ab +>(0b a >>). 证明过程如下:∵.BC b BE a EC b a ===-,, 图1D 图2mFE C BA∴11(),22ACE S EC AB b a a ∆=⋅=-11().22FCE S EC FE b a b ∆=⋅=- ∵0b a >>,∴FCE S ACE S ∆∆>.即11()()22b a b b a a ->-.∴22b ab ab a ->-. ∴222a b ab +>.解决下列问题:(1)现将△DEF 沿直线m 向右平移,设()BD k b a =-,且01k ≤≤.如图2,当BD EC =时, k = .利用此图,仿照上述方法,证明不等式:222a b ab +>(0b a >>).(2)用四个与ABC ∆全等的直角三角形纸板进行拼接,也能够借助图形证明上述不等式.请你画出一个示意图,并简要说明理由.【分析】本题是均值不等式222a b ab +>的一种几何证明方法。
材料中的思路就是利用两个共底三角形的面积来构建不等式,利用0b a >>来证明。
其中需要把握的几个点就是(b-a )是什么,以及如何通过(b-a)来造出22a b 和。
首先看第一问说要平移△DEF ,在平移过程中,DE 的长度始终不变,EF 垂直于M 的关系也始终不变。
那么此时(b-a )代表什么?自然就是BD 和ED 之和了。
于是看出K 值。
接下来就是找那两个可以共底的三角形,由于材料所给提示,我们自然想到用BD 来做这个底,而高自然就是AB 和EF 。
于是连接AD ,△ABD 和△BDF 的面积就可以引出结果了。
第二问答案不唯一,总之就是先调整出(b-a )可以用什么来表达,然后去找b 和a 分别和这个(b-a )的关系,然后用面积来表达出22a b 和的式子就可以了,大家可以继这个思路多想想。
【解析】(1)12k =DmFECBA证明:连接AD 、BF .可得1()2BD b a =-.∴ ()()11112224ABD S BD AB b a a a b a ∆=⋅=⨯⨯-⋅=-, ()()11112224FBD S BD FE b a b b b a ∆=⋅=⨯⨯-⋅=-. ∵ 0b a >>,∴ ABD FBD S S ∆∆<,即 ()14a b a -()14b b a <-.∴ 22ab a b ab -<-. ∴ 222a b ab +>.(2)延长BA 、FE 交于点I.IHDGmFEC B A∵ 0b a >>,∴ IBCE ABCD S S >矩形矩形,即 ()()b b a a b a ->-.∴ 22b ab ab a ->-. ∴ 222a b ab +>.四个直角三角形的面积和11422S a b ab =⨯⋅=大正方形的面积222S a b =+. ∵ 0b a >>,∴ 21S S >. ∴ 222a b ab +>. 【例5】阅读下列材料:将图1的平行四边形用一定方法可分割成面积相等的八个四边形,如图2,再将图2中的八个四边形适当组合拼成两个面积相等且不全等的平行四边形.(要求:无缝隙且不重叠)请你参考以上做法解决以下问题:(1)将图4的平行四边形分割成面积相等的八个三角形;(2)将图5的平行四边形用不同于(1)的分割方案,分割成面积相等的八个三角形,再将这八个三角形适当组合拼成两个面积相等且不全等的平行四边形,类比图2,图3,用数字1至8标明.【思路】这种拼接裁剪题目往往都是结合在阅读理解题中考察,结合网格,对考生的发散思维要求较强。