光纤光学2-1
- 格式:pdf
- 大小:1.99 MB
- 文档页数:31
---------------------------------------------------------------最新资料推荐------------------------------------------------------光纤光学课件第一章1幻灯片 1 光纤光学第一章光纤传输的基本理论 W-C Chen Foshan Univ. 幻灯片 2 1. 前言低损耗光纤的问世导致了光波技术领域的革命,开创了光纤通信的时代。
光纤在工程上的使用促使人们需要对光纤进行深入研究,形成一门新的学科光纤光学。
幻灯片 3 光纤的分类幻灯片 4 2实用光纤主要的三种基本类型 (a) 突变型多模光纤; (b) 渐变型多模光纤;(c )单模光纤横截面2a2brn折射率分布纤芯包Ait(a)输入脉冲光线传播路径~多模光纤幻灯片 5 阶跃折射率光纤剖面测量图(华工光通信研究所)3 单模光纤多模光纤幻灯片 6 光纤结构光纤(Optical Fiber)是由中心的纤芯(Core)和外围的包层(Cladding)同轴组成的圆柱形细丝。
纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。
包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。
设纤芯和包层的折射率分别为 n1 和 n2,光能量在光纤中传输的必要条件是n1n2。
幻灯片 7 主要用途:1 / 15突变型多模光纤只能用于小容量短距离系统。
渐变型多模光纤适用于中等容量中等距离系统。
单模光纤用在大容量长距离的系统。
特种单模光纤大幅度提高光纤通信系统的水平 1.55 m 色散移位光纤实现了 10 Gb/s 容量的 100 km 的超大容量超长距离系统。
色散平坦光纤适用于波分复用系统,这种系统可以把传输容量提高几倍到几十倍。
偏振保持光纤用在外差接收方式的相干光系统,这种系统最大优点是提高接收灵敏度,增加传输距离。
4幻灯片 8 2.光纤的研究方法光线理论几何光学方法波动光学方法适用条件研究对象光线模式基本方程射线方程波导场方程研究方法折射/反射定理边值问题主要特点约束光线模式幻灯片 9 光线理论光线分类子午光线倾斜光线射线方程几何光学法分析问题的两个出发点数值孔径时间延迟幻灯片 10 设纤芯和包层折射率分别为 n1 和 n2,空气的折射率 n0=1,纤芯中心轴线与 z 轴一致。
光纤光学》《光纤光学第二章光纤光学的基本理论南开大学张伟刚教授第2 章光纤光学的基本理论2.1 引论2.2 光纤的光线理论222.3光纤的波动理论2.1引论2.1.1光线理论可以采用几何光学方法分析光线的入1.优点:的多模光纤时2.不足:2.1.2波动理论2.不足:2.1.3分析思路麦克斯韦方程光线理论波动理论2.2光纤的光线理论 2.2.1程函方程问题2.1:(r , t )z y x e z e y ex r ˆˆˆ++=G ),(t r E G G ),(t r H G G G G G G G G )0,0(0===t r E E )0,0(0===t r H H )(r G φφ=(2.1) 00ik i t E E e ϕω−+=G G (2.2)00ik i t H H e ϕω−+=G G 000)()()(000E e e E e E E ik ik ik G G G G ×∇+×∇=×∇=×∇−−−φφφik ik −−G G []φφφ00000)()(e E ik e E ×∇−×∇=φ0ik e E ik E −×∇−×∇=G G (2.3)[]φ000)((2.3)G G G G (24)[]φφφ000000)()(ik ik e H ik H e H H −−×∇−×∇=×∇=×∇(2.4) (21)(22)(25)(28)(2.1)(2.2)(2.5)(2.8)B ∂G G t E ∂−=×∇G (2.5)(26)t D H ∂∂=×∇G (2.6)G G 0=⋅∇D (2.7)(28)0=⋅∇B (2.8)(2.9)(2.10)(2.9)E D G G ε=G G (210))HB μ=(2.10) 因光纤为透明介质(无磁性),于是0μμ≈ωi t =∂∂φμωμ0000ik e H c ik H i E −−=−=×∇G G G (2.11) φεωε0ik e E i c ik E i H −==×∇G G G (2.12) 00()(2.32.3))(2.112.11))(2.42.4))(2.122.12))G G G −=−000000)(H c ik E ik E μφ×∇×∇00000)(E c ik H ik H G G G εφ=×∇−×∇1G G G ∇=−(213)00000)(E ik H c E ××∇μφ1H k E c H G G G ×∇=+×∇ε(2.13) (2.14) 0000)(ik φ()H G 0[]000200)(1)(1)(1)(E c E E E G G G G εφφφφμφ−=∇−∇⋅∇=×∇×∇000c c c μμ(2.15)λ→0000)(H c E G G μφ=×∇(2.16) 00)(E c H G G εφ−=×∇(2.17)问题2.2:(2.15)(2.16)000E H ϕϕ⋅∇=⋅∇=G G (2.18a) (218b)∇∇G G (2.18b)0E H ϕϕ⋅∇=⋅∇=G G 、、三个矢量相互垂直三个矢量相互垂直!!0E 0H ϕ∇(2.1(2.188)(2.1(2.155)r c εεμεμφ===∇00221)((2.19)22(220)με00)(n =∇φ(2.20)G G =)()(r n r ∇φ(2.21)221)G (2.21)“程函方程” ()r φ程函方程的物理意义:讨论讨论:r G ∇()φ)(r G φ∇“”n r G 场源()(2.2.2121))),,(),,(),,(),,(2222z y x n z z y x y z y x x z y x =⎥⎦⎤⎢⎣⎡∂∂+⎥⎤⎢⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂φφφ(2.22)⎦⎣问题2.3:(2.2.2121))2.2.2 光线方程根据折射率分布,可由程函方程求出光程函()r Gφ为此,可从程函方程出发推导光线方程。
光纤原理:光纤实际是指由透明材料做成的纤芯和在它周围采用比纤芯的折射率稍低的材料做成的包层,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。
一般是由纤芯、包层和涂敷层构成的多层介质结构的对称圆柱体。
光纤有两项主要特性:即损耗和色散。
光纤每单位长度的损耗或者衰减(dB/km),关系到光纤通信系统传输距离的长短和中继站间隔的距离的选择。
光纤的色散反应时延畸变或脉冲展宽,对于数字信号传输尤为重要。
每单位长度的脉冲展宽(ns/km),影响到一定传输距离和信息传输容量。
光纤的结构:光纤的结构:纤芯材料的主体是二氧化硅,里面掺极微量的其他材料,例如二氧化锗、五氧化二磷等。
掺杂的作用是提高材料的光折射率。
纤芯直径约5~~75μm。
光纤外面有包层,包层有一层、二层(内包层、外包层)或多层(称为多层结构),但是总直径在100~200μm上下。
包层的材料一般用纯二氧化硅,也有掺极微量的三氧化二硼,最新的方法是掺微量的氟,就是在纯二氧化硅里掺极少量的四氟化硅。
掺杂的作用是降低材料的光折射率。
这样,光纤纤芯的折射率略高于包层的折射率。
两者席位的区别,保证光主要限制在纤芯里进行传输。
包层外面还要涂一种涂料,可用硅铜或丙烯酸盐。
涂料的作用是保护光纤不受外来的损害,增加光纤的机械强度。
光纤的最外层是套层,它是一种塑料管,也是起保护作用的,不同颜色的塑料管还可以用来区别各条光纤。
光纤的折射率:光纤的结构一般用折射率沿光纤径向的分布函数来表征,这种分布函数成为光纤的折射率刨面。
在圆柱坐标系(λ、Φ、z)中n(λ)来表示。
在理论分析中,折射率剖面n(r)就是光纤的数学模型:对于单包层光纤,纤芯直径为d,设纤芯轴心处的折射率n(0)=n1,包层折射率为n2,为了简略地表示的剖面特征,引入纤芯包层相对折射率差作为剖面参数Δ,其中定义为n1 2 ─n22 n1─ n2Δ = ──────≈─────2 n1 2 n1射线理论认为,光在光纤中传播主要是依据全反射原理。
光纤光学课后答案【篇一:光纤应用习题解第1-7章】>1.详述单模光纤和多模光纤的区别(从物理结构,传播模式等方面)a:单模光纤只能传输一种模式,多模光纤能同时传输多种模式。
单模光纤的折射率沿截面径向分布一般为阶跃型,多模光纤可呈多种形状。
纤芯尺寸及纤芯和包层的折射率差:单模纤芯直径在10um左右,多模一般在50um以上;单模光纤的相对折射率差在0.01以下,多模一般在0.01—0.02之间。
2.解释数值孔径的物理意义,并给出推导过程。
a::na的大小表征了光纤接收光功率能力的大小,即只有落入以m为半锥角的锥形区域之内的光线,才能够为光纤所接收。
3.比较阶跃型光纤和渐变型光纤数值孔径的定义,可以得出什么结论?a:阶跃型光纤的na与光纤的几何尺寸无关,渐变型光纤的na是入射点径向坐标r的函数,在纤壁处为0,在光纤轴上为最大。
4.相对折射率差的定义和物理意义。
n12-n22n1-n2a:d=2n12n1d的大小决定了光纤对光场的约束能力和光纤端面的受光能力。
5.光纤的损耗有哪几种?哪些是其固有的不能避免,那些可以通过工艺和材料的改进得以降低?a:固有损耗:光纤材料的本征吸收和本征散射。
非固有损耗:杂质吸收,波导散射,光纤弯曲等。
6.分析多模光纤中材料色散,模式色散,波导色散各自的产生机理。
a:材料色散是由于不同的光源频率所对应的群速度不同所引起的脉冲展宽。
波导色散是由于不同的光源频率所对应的同一导模的群速度不同所引起的脉冲展宽。
多模色散是由于不同的导模在某一相同光源频率下具有不同的群速度所引起的脉冲展宽。
7.单模光纤中是否存在模式色散,为什么?a:单模光纤中只传输基模,不存在多模色散,但基模的两个偏振态存在色散,称为偏振模色散。
8.从射线光学的观点计算多模阶跃光纤中子午光线的最大群时延差。
a:设光纤的长度为l,光纤中平行轴线的入射光线的传输路径最短,为l;以临界角入射到纤芯和包层界面上的光线传输路径最长,为linfc。
光纤光学知识总结1. 引言光纤光学是一门研究光传输和操控的学科,它是现代通信、医学和工业等领域中不可或缺的关键技术。
光纤光学利用光纤作为传输介质,通过光的折射和全反射实现信号传输。
本文将对光纤光学的基本原理、传输性能和应用领域进行总结和介绍。
2. 光纤的基本原理光纤是一种通过内部光的全反射实现光信号传输的介质。
它由一个中心芯和一个外包层组成。
中心芯是光信号传输的主要部分,通常由高折射率的玻璃或塑料材料构成。
外包层则是低折射率的材料,用于包裹和保护中心芯。
光纤通过光的折射和全反射,实现将光信号沿着光纤传输的目的。
3. 光纤的传输性能3.1 传输带宽光纤的传输带宽是指光纤能够传输的最大频率信号的能力。
它受到光纤的材料特性、设计和制造工艺等因素的影响。
高质量的光纤能够支持更高的传输带宽,从而实现更高速率、更大容量的数据传输。
3.2 传输损耗传输损耗是光信号在光纤中传输过程中的能量损失。
它由散射、吸收和弯曲等因素引起。
传输损耗通常以每单位长度的衰减值(dB/km)来表示。
光纤的传输损耗越低,传输距离就越长,信号质量就越好。
3.3 色散色散是指光信号在光纤中传输过程中,不同频率的光信号由于折射率的差异而传播速度不同的现象。
色散会导致光脉冲的展宽和失真,限制了光信号的传输距离和速率。
4. 光纤光学的应用领域4.1 光通信光通信是光纤光学的主要应用之一。
光纤光学的高带宽和低损耗特性使得光纤成为主流的长距离通信传输介质。
光纤通信系统通过调制光信号来传输数据,实现了高速率、大容量的信息传输。
4.2 医学影像光纤光学在医学影像领域有广泛的应用。
通过光纤的灵活性和小尺寸,可以将光信号传输到人体内部,实现光学成像和激光手术等应用。
例如,内窥镜和激光手术器械中都使用了光纤。
4.3 工业检测光纤光学在工业检测领域也具有重要的应用价值。
光纤传感器可以通过测量光的强度、相位和波长等参数,实现对温度、压力、液位等物理量的测量。
光纤传感器具有高精度、抗干扰和耐腐蚀等特点,被广泛应用于工业自动化和安全监测等领域。
光纤光学实验报告 - 实验报告 - 书业网篇一:实验八光纤光学基本知识演示实验报告专业班级:学号:---- 姓名:成绩:12篇二:光纤光学与半导体激光特性实验指导书光纤光学与半导体激光器的电光特性由于20世纪70年代光纤制造技术和半导体激光器技术的突破性发展,光纤通信已成为现代社会最主要的通信手段之一。
本实验利用通信用单模光纤和可见光(红光)半导体激光器对光通信过程进行了一个开放的、原理性的模拟,以期通过实际操作,对光纤本身的光学特性和半导体激光器的电光特性进行一个初步的研究。
使学生对光纤和半导体激光器有一个基本的了解和认识。
一.实验目的1.理解和巩固光学的基本原理和知识;2.了解掌握光纤的使用技巧和处理方法;3.了解掌握半导体激光器的使用方法和电光特性;4、了解掌握光纤的一些光学特性和参数测量方法。
二.基本原理光纤通信的光学理论是建立在光的全反射理论和波导理论上的。
现代光通信中使用的光纤一般分为单模光纤和多模光纤两种。
它们在结构上的区别主要在于纤芯的几何尺寸上,图1是光纤结构图。
它由三层结构构成:(1)纤芯:由掺有少量其他元素的石英玻璃构成(为提高折射率),对于单模光纤,直径约9.2 mm,而对于多模光纤,纤芯直径一般为50 mm。
这是它们在结构上的最主要区别。
(2)包层:由石英玻璃构成,但由于成分的差异它的折射率比纤芯的折射率略微低一些,以形成全反射条件。
直径约为125 mm。
(3)涂覆层:为了增加光纤的强度和抗弯性、保护光纤,在包层外涂覆了塑料或树脂保护层。
其直径约245 mm。
激光主要在纤芯和包层中传播。
图1 光纤结构示意图1.光纤端面的处理为了使激光在输入光纤和输出光纤时有一个理想的状态,如较高的耦合效率,均匀对称的光斑和模式。
一般均需要对光纤的端面进行较为细致的处理。
一般光纤端面的处理有两种主要方法。
一种是使用专用刀具进行切割。
另一种为研磨处理。
在本实验中,采用较为简单的手工刀具切割,以使光纤端面较为平整。
答:传播数百到上千个模式的光纤称为多模(MultiMode ,MM )光纤。
第2章复习思考题参考答案2-1 用光线光学方法简述多模光纤导光原理答:现以渐变多模光纤为例,说明多模光纤传光的原理。
我们可把这种光纤看做由折射 率恒定不变的许多同轴圆柱薄层 n a 、n b 和n c 等组成,如图2.1.2(a)所示,而且n a . n b .n c •…。
使光线1的入射角7A 正好等于折射率为 n a 的a 层和折射率为n b 的b 层的交界面A 点发生全 反射时临界角 飞(ab) arcsin n ,然后到达光纤轴线上的0'点。
而光线2的入射角VB 却小于在a 层和b 层交界面B 点处的临界角-c (ab),因此不能发生全反射,而光线2以折射角方折射进入b 层。
如果n b 适当且小于n a ,光线2就可以到达b 和c 界面的B'点,它正好在 A 点的上方(00'线的中点)。
假如选择n c 适当且比n b 小,使光线2在B'发生全反射,即 为'> :c(bc) = arcsin(n c /n b )。
于是通过适当地选择 n a 、氐和n c ,就可以确保光线1和2通过0'。
那么,它们是否同时到达 0'呢?由于n a >n b ,所以光线2在b 层要比光线1在a 层传输得快, 尽管它传输得路经比较长,也能够赶上光线1,所以几乎同时到达 0'点。
这种渐变多模光纤 的传光原理,相当于在这种波导中有许多按一定的规律排列着的自聚焦透镜, 把光线局限在波导中传输,如图 2.1.1 ( b )所示。
图2.1.2渐变(GI )多模光纤减小模间色散的原理2-2 作为信息传输波导,实用光纤有哪两种基本类型答:作为信息传输波导, 实用光纤有两种基本类型,即多模光纤和单模光纤。
当光纤的 芯径很小时,光纤只允许与光纤轴线一致的光线通过, 即只允许通过一个基模。