【数学试题】浙江省湖州市2019学年第一学期期末考试
- 格式:pdf
- 大小:732.46 KB
- 文档页数:19
2023学年第一学期期末调研测试卷高二数学(答案在最后)注意事项:1.本科目考试分试题卷和答题卷,考生须在答题纸上作答.2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项时符合题目要求的.1.已知集合{}31,A x x n n ==+∈Z ,()(){}650B x x x =+-<,则A B = ()A.{}2,1,4- B.{}8,5,2,1--- C.{}5,2,1-- D.{}5,2,1,4--【答案】D 【解析】【分析】求出集合B ,然后令31n B +∈求出n 即可.【详解】()(){}{}65065B x x x x x =+-<=-<<,令6315n -<+<,解得7433n -<<,又n ∈Z ,所以2,1,0,1n =--,所以{}5,2,1,4A B ⋂=--.故选:D.2.在复平面上,复数5i 2-(i 为虚数单位)对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】【分析】求出复数的代数形式,然后确定其对应的点即可.【详解】()()()()5i+25i 252i i 2i 2i 25+===----+-,其在复平面上对应的点为()2,1--,在第三象限,故选:C.3.已知向量(),1,2a k = ,(),0,2b k =- ,则“2k =”是“a b ⊥”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据空间向量垂直的坐标表示结合充分、必要条件分析求解.【详解】若a b ⊥,则240a b k ⋅=-=r r,解得2k =±,显然“2k =”可以推出“2k =±”,“2k =±”不可以推出“2k =”,所以“2k =”是“a b ⊥”的充分不必要条件.故选:A.4.双曲线2221x y -=的渐近线方程是()A.y =B.2y x =±C.12y x =±D.2y x=±【答案】B 【解析】【分析】令2220x y -=,化简整理即得渐近线方程.【详解】由双曲线2221x y -=,令2220x y -=,解得22y x =±,所以渐近线方程为22y x =±.故选:B.5.已知数列{}n a 的前n 项和为n S ,若11a =,且13n n a S +=(*n ∈N ),则()A.{}n S 为等比数列B.{}n S 为等差数列C.{}n a 为等比数列 D.{}n a 为等差数列【答案】A 【解析】【分析】利用1nn n a S S -=-求出{}n a 的通项公式并求和,然后逐一判断选项即可.【详解】由13n n a S +=得当2n ≥时,13n n a S -=,两式相减得13n n n a a a +-=,即14n n a a +=,又当1n =时,211333a S a ===,所以数列{}n a 即不是等比数列也不是等差数列,CD 错误;所以21,134,2n n n a n -=⎧=⎨⨯≥⎩,当2n ≥时,()113141414n n nS ---=+=-所以当1n =时,11S =,符合14n n S -=,所以14n n S -=,又2n ≥时14nn S S -=,所以{}n S 为等比数列,A 正确,B 错误.故选:A.6.已知圆1C :22264480x y x my m ++-++=(0m ≠,R m ∈)与圆2C :222240x y my m +-+-=,则圆1C 与圆2C 的位置关系是()A.相交B.相切C.外离D.与m 的取值有关【答案】C 【解析】【分析】求出两圆心距离,判断其与两圆半径和的大小即可得答案.【详解】圆1C :22264480x y x my m ++-++=,即()()22321x y m ++-=,圆心()13,2C m -,半径11r =,圆2C :222240x y my m +-+-=,即()224x y m +-=,圆心()20,C m ,半径22r =,所以当0m ≠时,12123C C r r =>=+所以圆1C 与圆2C 的位置关系是外离.故选:C .7.已知空间内三点()1,1,2A ,()1,2,0B -,()0,3,1C ,则点A 到直线BC 的距离是().A.B.1C.3D.3【答案】A 【解析】【分析】根据空间向量数量积的坐标表示求出cos ABC ∠,利用同角三角函数的关系求出sin ABC ∠,结合sin d AB ABC ∠=⋅计算即可求解.【详解】空间内三点(1,1,2)A ,(1,2,0)B -,(0,3,1)C ,所以=3AB,BC = (1,1,1)BC =uu u r,(2,1,2)BA =-uu r ,由cos 3||||BA BC ABC BA BC ∠⋅===uu r uu u r uu r uu u r,所以sin 3ABC ∠=,所以点A 到直线BC的距离3sin 3d AB ABC ∠=⋅=⨯=故选:A.8.已知1F ,2F 分别是椭圆22221x y a b+=(0a b >>)的左,右焦点,椭圆上一点P 满足12PF PF ⊥,且2115PF F PF F ∠=∠,则该椭圆的离心率等于() A.62B.3 C.32D.3【答案】D 【解析】【分析】先求出21sin PF F ∠,1sin PF F ∠,然后利用正弦定理求出12,PF PF 的关系,再利用12,PF PF 关系求出,a c 后即可得离心率.【详解】设1PF F x ∠=,则215PF F x ∠=,又12PF PF ⊥,则590x x += ,得15x =o ,即21175,15PF F PF F ∠=∠=,又()211sin sin 453022224PF F ∠=+=⨯+⨯= ,()11sin sin 453022224PF F ∠=-=⨯-⨯=,由正弦定理得12121sin sin PF PF F PF PF F ∠==∠,设12,,PF k PF k ==,则1222a PF PF k k =+=+=,即a =,又()2222216c k k k ⎡⎤⎡⎤=++=⎣⎦⎣⎦,所以2c k =,所以离心率63c e a ===.故选:D.【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,结合222b a c =-转化为,a c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()y f x =是定义在R 上的奇函数,则下列说法正确的是()A.()()22f f -=B.()00f =C.若()f x 在(),0∞-上有最小值2-,则()f x 在()0,∞+上有最大值2D.若()f x 在(),0∞-上单调递增,则()f x 在()0,∞+上单调递减【答案】BC 【解析】【分析】由奇函数的定义和图象的对称性可依次判断各个选项.【详解】对于A ,由奇函数定义可得()()22f f -=-,若()20f ≠,则()()22f f -=不成立,故A 错误;对于B ,由奇函数定义可得()()00f f =-,得()00f =,故B 正确;对于C ,由奇函数图象关于原点对称,可知C 正确;对于D ,由奇函数图象关于原点对称,可知()f x 在()0,∞+上单调递增,故D 错误.故选:BC.10.对于直线l :30mx ny m +-=(220m n +≠,,R m n ∈),下列说法正确的是()A.直线l 的一个方向向量为(),n m -B.直线l 恒过定点()3,0C.当m =时,直线l 的倾斜角为60°D.当2m =-且0n >时,l 不经过第二象限【答案】ABD 【解析】【分析】由直线方程的相关性质逐一判断即可.【详解】对于A :直线l 的一个方向向量为(),n m -,A 正确;对于B :直线l 的方程可化为()30m x ny -+=,所以直线l 恒过定点()3,0,B 正确;对于C :当m =时,直线l 的斜率为,此时倾斜角为120 ,C 错误;对于D :当2m =-且0n >时,直线l 为()23y x n=-,所以l 不经过第二象限,D 正确.故选:ABD .11.设n S 是公差为()d d ≠0的等差数列{}n a 的前n 项和,则下列命题正确的是()A.若0d <,则数列{}n S 有最大项B.若数列{}n S 有最大项,则0d <C.若数列{}n S 是递增数列,则对任意N n +∈,均有0n S >D.若对任意+n N ∈,均有0n S >,则数列{}n S 是递增数列【答案】ABD 【解析】【分析】由题意21()22n dn dS a n =+-,分0d <、0d >分别讨论对应的函数性质可判断A ,B ;若数列{}n S 是递增数列,则10(2)n n n a S S n -=->≥,若数列{}n S 是递减数列,则10(2)n n n a S S n -=-<≥分析可判断C ,D.【详解】因为21(22n dn dS a n =+-,若0d <,对应二次函数开口向下,由二次函数的性质可知,数列{}n S 有最大项,A 正确;若0d >,二次函数开口向上,无最大项故若数列{}n S 有最大项,有0d <,B 正确;若数列{}n S 是递增数列,则10(2)n n n a S S n -=->≥,若10a <,则10S <,故不一定对任意N n +∈,均有0n S >,C 错误;若数列{}n S 是递减数列,则10(2)n n n a S S n -=-<≥,一定存在实数k ,当n k >时,之后所有项都为负数,不能保证对任意+n N ∈,均有0n S >故若对任意N n +∈,均有0n S >,有数列{}n S 是递增数列,D 正确.故选:ABD12.在正方体1111ABCD A B C D -中,点E ,F 满足111A F x A D = ,AE y AD z AB =+,且x ,y ,()0,1z ∈.记EF 与1AA 所成角为α,EF 与平面ABCD 所成角为β,则()A.若13z =,三棱锥E -BCF 的体积为定值B.若12x y z ===,则AE BF ⊥C.(),,0,1x y z ∀∈,π2αβ+=D.()0,1x ∀∈,总存在y z =,使得//EF 平面11BDD B 【答案】ACD 【解析】【分析】对于A :确定EBC S 以及点F 到面EBC 的距离的取值情况即可判断;对于B :假设AE BF ⊥,找出矛盾即可判断;对于C :过F 作1//FG AA 交AD 于G ,连接GE ,找到α和β即可判断;对于D :作图,然后证明//EF 平面11BDD B 即可.【详解】对于A :若13z =,点E 在过线段AB 的三等分点(靠近A 点)并且与AD 平行的线MN 上,因为点E 在线段MN 上,且//BC MN ,所以点E 到线段BC 的距离为定值,则EBC S 为定值,又点F 到面ABCD ,即面EBC 的距离不变,所以13F EBC EBC F EBC V S h --=⋅ 为定值,A 正确;对于B :若12x y z ===,则点F 为线段11A D 的中点,点E 为线段,AC BD 的交点,若AE BF ⊥,又AE BD ⊥,且,BF BD ⊂面BFD ,BF BD B ⋂=,所以⊥AE 面BFD ,又EF ⊂面BFD ,所以AE EF ⊥,设正方体的棱长为a ,则255,,222AE a AF a EF a =====,此时222AF EF AE ≠+,即90AEF ∠≠ ,与AE EF ⊥矛盾,故AE BF ⊥不正确,B 错误;对于C :(),,0,1x y z ∀∈,则点F 在线段11A D 上(不含端点),点E 在正方形ABCD 内(不含边界),过F 作1//FG AA 交AD 于G ,连接GE ,则GFE ∠为EF 与1AA 所成角,即GFE α=∠,因为1AA ⊥面ABCD ,1//FG AA ,所以FG ⊥面ABCD ,则FEG ∠为EF 与平面ABCD 所成角,即FEG β=∠,因为EGF △为直角三角形,所以π2αβ+=,C 正确;对于D :过F 作1//FG AA 交AD 于G ,过G 作//GE BD 交AC 于E ,连接EF ,此时满足111A F x A D = ,AE y AD z AB =+,()0,1x ∈,y z =,接下来只需要证明//EF 平面11BDD B 即可,因为11////FG AA DD ,FG ⊄面11BDD B ,1DD ⊂面11BDD B ,所以//FG 面11BDD B ,又//GE BD ,GE ⊄面11BDD B ,BD ⊂面11BDD B ,所以//GE 面11BDD B ,又GE FG G = ,且,GE FG ⊂面GEF ,所以面//GEF 面11BDD B ,又EF ⊂面GEF ,所以//EF 平面11BDD B ,所以()0,1x ∀∈,总存在y z =,使得//EF 平面11BDD B ,D 正确.故选:ACD.三、填空题:本题共4小题,每小题5分,共20分.13.盒中有四个大小、形状完全相同的小球,分别编号为1、2、3、4,现从中任取两个小球,则取出的小球中至少有一个号码为奇数的概率为_____________.【答案】56【解析】【分析】求出总的基本事件数,然后求出符合题目要求结果的基本事件数,再利用古典概型的公式求解即可.【详解】首先从中任取两个小球有()()()()()(){}1,2,1,3,1,4,2,3,2,4,3,4共6个基本事件,取出的小球中至少有一个号码为奇数有()()()()(){}1,2,1,3,1,4,2,3,3,4共5个基本事件,所以取出的小球中至少有一个号码为奇数的概率为56.故答案为:56.14.已知O 为坐标原点,过抛物线()2:20C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(),0M p ,若AF AM =,则直线AB 的斜率为______.【答案】【解析】【分析】由条件可得2M FA x x x +=,然后求出点A 的坐标,然后由AB AF k k =可得答案.【详解】因为AF AM =,(),0M p ,,02p F ⎛⎫⎪⎝⎭,所以324M F A x x x p +==,所以22322A A y px p ==,2A y p =,所以02342AB AFp k k p p -===-,故答案为:15.已知n S 为等差数列{}n a 的前n 项和,若424S S =,221n n a a =+,则2023a =_____________.【答案】4045【解析】【分析】先根据条件列方程组求出首项和公差,再利用等差数列的通项公式求解即可.【详解】设等差数列{}n a 的公差为d ,由424S S =得()114642a d a d +=+,整理得120a d -=①由221n n a a =+得()()1121211a n d a n d ⎡⎤+-=+-+⎣⎦,整理得11a d -=-②,由①②得11,2a d ==,所以2023120221220224045a a d =+=+⨯=.故答案为:4045.16.在三棱锥O ABC -中,6OA OB OC === ,3πAOB AOC BOC ∠=∠=∠=,点M 在OA 上,2OM MA = ,N 为BC 中点,则MN = _____________.【答案】【解析】【分析】将向量MN 用向量,,OA OB OC 表示出来,然后平方求解即可.【详解】由已知得211322MN MO ON OA OB OC =+=-++ ,则22211322MN OA OB OC ⎛⎫=-++ ⎪⎝⎭222411221944332OA OB OC OA OB OC OB OC =++-⋅⋅+-⋅ 41121211136363666666619944323222=⨯+⨯+⨯-⨯⨯⨯-⨯⨯⨯+⨯⨯⨯=,所以MN = .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 是公差不为0的等差数列,数列{}n b 是各项均为正数的等比数列,且112a b ==,22a b =,43a b =.(1)求数列{}n a 和{}n b 的通项公式;(2)设n n n c b a =-,求数列{}n c 的前10项和.【答案】(1)2,2nn n a n b ==(2)1936【解析】【分析】(1)直接利用等差等比数列的通项公式列方程求解即可;(2)通过分组求和,利用等差等比的求和公式求解.【小问1详解】设数列{}n a 是公差为d ,等比数列{}n b 的公比为q ,由已知得212a a d d =+=+,212b b q q =⋅=,41323a a d d =+=+,22312b b q q =⋅=,所以222232d q d q +=⎧⎨+=⎩,解得10q d =⎧⎨=⎩(舍去)或22q d =⎧⎨=⎩,所以2,2n n n a n b ==;【小问2详解】由(2)的22n n c n =-,所以数列{}n c 的前10项和为()()10212220101936122-+⨯-=-.18.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B b A =,且边AB 上的高等于14AB .(1)求角A 的值;(2)若ABC 的面积为18,求边BC 的长.【答案】(1)π4A =(2)【解析】【分析】(1)根据题意运用正弦定理边化角,即可得结果.(2)根据面积关系可得,b c ,再利用余弦定理运算求解.【小问1详解】因为sin cos a B b A =,由正弦定理可得:sin sin sin cos A B B A =,且()0,πB ∈,则sin 0B ≠,可得sin cos A A =,即tan 1A =,且()0,πA ∈,所以π4A =.【小问2详解】由ABC 的面积可得1sin 21124ABC ABC S bc A S AB AB ⎧=⎪⎪⎨⎪=⨯⎪⎩,即2118221188bc c ⎧⨯=⎪⎪⎨⎪=⎪⎩,解得12b c ⎧=⎪⎨=⎪⎩由余弦定理可得22222cos 181********a b c bc A =+-=+-⨯⨯,即a =所以边BC的长为.19.已知圆O :224x y +=,直线:4l y kx =+.(1)若直线l 与圆O 交于不同的两点A ,B ,当90AOB ∠=︒时,求k 的值;(2)若12k =时,点P 为直线l 上的动点,过点P 作圆O 的两条切线PC ,PD ,切点分别为C ,D ,求四边形OCPD 的面积的最小值.【答案】(1)k =(2)5【解析】【分析】(1)根据垂径定理得圆心到直线距离,再利用点到直线距离公式求解;(2)将四边形OCPD 的面积的最小值转化为求OPD S △的面积最小值,根据12OPD S OD PD =⋅= 求其最小值即可.【小问1详解】当90AOB ∠=︒时,由垂径定理得圆心O 到直线:4l y kx =+的距离为,则2421k =+,解得7k =±;【小问2详解】当12k =时,直线1:42l y x =+,即280x y -+=由已知得22211422OPD S OD PD OD OP OD OP =⋅=⋅-=- 又min 88145OP ==+,所以OPD S △的最小值为28211455⎛⎫-= ⎪⎝⎭,又因为四边形OCPD 的面积的为2OPD S ,所以其最小值为41145555=20.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点,11BF A B ⊥.(1)求证:BF DE ⊥:(2)当11B D =时,求平面11BB C C 与平面DEF 所成锐二面角的余弦值.【答案】(1)证明见解析(2)14【解析】【分析】(1)取线段BC 的中点G ,连接1,EG B G ,通过证明BF ⊥面11EGB A 可得结论;(2)通过证明出1,,AB BC BB 两两垂直,然后建立空间直角坐标系,利用向量法求面面角.【小问1详解】取线段BC 的中点G ,连接1,EG B G ,由,E G 分别时线段,CA CB 的中点可得11////EG AB A B 所以11,,,E G B A 四点共面,在直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,则侧面11CBB C 也为正方形,且112EC BG BC BB ==,所以1Rt Rt FCB GBB ,则190FBC BGB FBC BFC ∠+∠=∠+∠=,所以1BF GB ⊥,又11BF A B ⊥,1111111,,GB A B B GB A B =⊂ 面11EGB A ,所以BF ⊥面11EGB A ,又DE ⊂面11EGB A ,所以BF DE ⊥;【小问2详解】由(1)得BF ⊥面11EGB A ,又11A B ⊂面11EGB A ,所以11BF A B ⊥,又111BB A B ⊥,11,,BB BF B BB BF =⊂ 面11CBB C ,所以11A B ⊥面11CBB C ,又11//A B AB ,所以AB ⊥面11CBB C ,又BC ⊂面11CBB C ,所哟AB BC ⊥,故1,,AB BC BB 两两垂直,如图建立空间直角坐标系,()()()1,0,2,1,1,0,0,2,1D E F ,则()()0,1,2,1,1,1DE EF =-- 设平面DEF 的一个法向量为(),,n x y z =,则200DE n y z EF n x y z ⎧⋅=-=⎪⎨⋅=-++=⎪⎩ ,取1z =可得()3,2,1n = ,又平面11BB C C 的一个法向量为()1,0,0m = ,设平面11BB C C 与平面DEF 所成锐二面角为θ所以cos 14m n m n θ⋅===⋅.21.已知等比数列{}n a 的公比1q >,且234117a a a ++=,318a +是2a ,4a 的等差中项.数列{}n b 满足11b =,数列(){}1n n n b b a +-⋅的前n 项和等于2n .(1)求数列{}n a 的前n 项和n S ;(2)求数列{}n b 的通项公式.【答案】(1)()11332n n S +=-(2)123n n n b -=-【解析】【分析】(1)利用等比数列的通项公式列方程求出首项和公比,然后利用求和公式求和即可;(2)先利用()()2211n n n b b a n n +-=--⋅,求出1n n b b +-,然后构造关于数列{}n b 的常数数列求解即可.【小问1详解】由已知()231234117a q a q q a a ++++==①,又()324218a a a +=+,即()23111218a q a q a q +=+②由①②得13,3a q ==,所以113n n n a a q -==,所以()111331331132n n n n S a a q q ++--===---;【小问2详解】因为数列(){}1n n n b b a +-⋅的前n 项和等于2n ,所以当2n ≥时,()()122121n n n n b b a n n +=---=-⋅,所以1213n n n b b n +--=,又()()2112131b b a b b =-⋅=-,即2113b b -=,符合1213n n n b b n +--=,所以当1n ≥时,11211333n n nn n b n n n b -+--+==-,即11133n n n n b n b n +-++=+,所以数列13n n b n -⎧⎫+⎨⎬⎩⎭为常数数列,所以11111233n n b b n --+=+=,则123n n n b -=-.22.设双曲线C :22221x y a b-=(0a >,0b >)的右焦点为F ,点O 为坐标原点,过点F 的直线l 与C 的右支相交于A ,B 两点.(1)当直线l 与x 轴垂直,且,A B 两点的距离等于双曲线C 的实轴长时,求双曲线C 的离心率;(2)若双曲线C 的焦距为4,且090AOB ︒<∠<︒恒成立,求双曲线C 的实轴长的取值范围.【答案】(1(2)()2,4【解析】【分析】(1)直接根据通径等于实轴长列式计算即可;(2)设直线l 的方程为2x my =+,与双曲线联立,利用韦达定理计算0OA OB ⋅> 恒成立即可.【小问1详解】当直线l 与x 轴垂直时,令x c =得22221c y a b -=,解得2b y a=,所以,A B 两点的距离为为22b a,根据题意可得222b a a=,所以2222a b c a ==-,整理得c e a==【小问2详解】双曲线C 的焦距为4,则2c =,即()2,0F ,2204b a =->由于直线l 的斜率不为零,设其方程为2x my =+,联立2222214x my x y a a =+⎧⎪⎨-=⎪-⎩,消去x 得()()()2222222144440a m m y m a y a ⎡⎤+---⎣-+=⎦,设()()1122,,,A x y B x y ,则()()2122224414m a y y a m m --+=+-,()()2212222414a y y a m m --=+-,由于,A B 两点均在双曲线的右支上,所以()()22122224014a y y a m m --=<+-,所以()222140a m m +->,即22204a m a ≤<-所以()()1212121222OA OB x x y y my my y y ⋅=+=+++ ()()21212124m y y m y y =++++()()()()()22222222224441241414a m a m m a m m a m m ----=+⋅+⋅++-+-()()222242224121614m a a a aa m m =++----,由090AOB ︒<∠<︒恒成立,得2224a m a <-时,均有0OA OB ⋅> ,并且,OA OB 不可能同向,即()22242412160m a a a a --+->,由于()2240a a ->,因为不等式左边是关于2m 的增函数,所以只需20m =时,4212160a a -+->成立即可,11a <<+,又02a <<,12a <<,所以双曲线C的实轴长的取值范围为()2,4-.【点睛】关键点点睛:本题关键点是将090AOB ︒<∠<︒恒成立转化为0OA OB ⋅> 恒成立,从而可以利用韦达定理来解决.。
2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。
2022-2023学年四上数学期末模拟试卷一、填空题1.李老师购买了12幅乒乓球拍,每幅售价108元,李老师一共花了多少元?……表示买(________)幅乒乓球拍花了216元……表示买(________)幅乒乓球拍花了(________)元2.甲数÷乙数=16,如果甲数乘2,乙数除以2,商为(_____)。
3.手电筒发出的光是一条________。
4.两条平行线之间的距离处处(______),正方形相邻的两条边互相(________)5.用下面的五个数字按要求组成五位数,注意每个数里同一个数字不能重复使用.最接近十万的数是________;最接近一万的数是________.6.六亿七千零五十三万写作___,省略亿位后面的尾数约等于___亿.7.下图中一共有(______)条线段,(______)条射线。
8.如下图所示:按照这样的方法继续摆下去,第5个正方形图中,圆点的个数是(________)。
9.5瓶饮料有2升,1瓶饮料有________毫升.10.六千零三十亿零四百写作:________二、选择题11.下图表示的是甲班和乙班男、女生人数的情况.如果每个班都是36人,那么甲班的男生比乙班多()人.A.4 B.11 C.18 D.4312.四(1)班共有38名学生,五月份的体检调查到这些同学中身高最高的是1.60米,最矮的1.32米,四(1)班学生平均身高可能是()米A.1.45 B.1.31 C.1.6013.一块长方形草地的面积是5公顷,它的宽是200米,长是()米。
A.250 B.1000 C.4014.下面各数最接近8万的是()。
A.7999 B.800000 C.8003015.下面算式中,商不是两位数的是()。
A.325÷31 B.920÷46 C.598÷60 D.370÷30三、判断题16.两个角拼成一个平角,其中一个角是锐角,另一个角一定是钝角。
浙江省湖州市南浔区2022-2023学年七年级上学期期末检测数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2023的相反数是( ) A .2023 B .2023-C .12023D .12023-【答案】B【分析】根据相反数定义:只有符号不同的两个数叫做互为相反数,直接得出答案. 【详解】解:根据相反数定义,2023的相反数是2023-, 故选:B .【点睛】本题考查相反数定义,熟记符号不同的两个数互为相反数是解决问题的关键. 2.下列几个实数中,无理数的是( )A.0.3 B .C .0D3.12月4日晩上,神舟14号飞船即将从空间站返回东风着陆场.中国的空间站离地球的距离约320000米.320000用科学记数法表示为( ) A .43210⨯ B .60.3210⨯C .53.210⨯D .53210⨯【答案】C【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:5320000 3.210=⨯. 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.23ab-的系数是 ( ) A .-2 B .23-C .23D .25.已知1∠与2∠互余,若22920∠=︒',则1∠的度数等于( ) A .6140︒' B .6080︒'C .6040︒'D .2920'︒【答案】C【分析】根据互余两角之和为90︒计算,即可求解. 【详解】解:∵1∠与2∠互余,22920∠=︒', ∵19026040'∠=︒-∠=︒, 故选C .【点睛】本题考查了余角的知识,属于基础题,掌握互余两角之和等于90︒是解答本题的关键.6 ) A .1-到0之间 B .0到1之间C .1到2之间D .2到3之间【点睛】本题主要考查了无理数的估算,熟练掌握无理数的估算方法是解题的关键. 7.下列各组数中,运算结果相等的是( ) A .()35-与35- B .32与23C .22-与()22-D .234⎛⎫ ⎪⎝⎭与2348.下列各项式子是同类项的为( ) A .25x y 与23xy - B .23x y -与23x yC .xyz 与4xy -D .23-与2x【答案】B【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同,判断即可. 【详解】解:A .25x y 与23xy -,相同字母的指数不相同,不是同类项,故不符合题意; B .23x y -与23x y ,所含字母相同,相同字母的指数相同,是同类项,故符合题意; C .xyz 与4xy -,所含字母不同,不是同类项,故不符合题意; D .23-与2x ,所含字母不同,不是同类项,故不符合题意; 故选:B .【点睛】本题考查了同类项,熟练掌握同类项的意义是解题的关键.9.如图,是一副特制的三角板,用它们可以画出一些特殊角.在54︒,60︒,63︒,99︒,120︒的角中,能借助特制三角板画出的角有( )A.2个B.3个C.4个D.5个【答案】B【分析】一副三角板中的度数,用三角板画出角,无非是用角度加减法,逐一分析即可.【详解】解:549036︒=︒-︒,则54︒角能画出;60︒不能写成36︒、72︒和45︒、90︒的和或差的形式,不能画出;︒=︒-︒+︒,则63︒可以画出;63907245︒=︒+︒-︒,则99︒角能画出;99904536120︒不能写成36︒、72︒和45︒、90︒的和或差的形式,不能画出;∵能画出的角有3个.故选:B.【点睛】此题考查的知识点是角的计算,关键是利用三角板的已知度数,进行加减的计算.10.世界杯的小组赛比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则战胜丁的球队是()A.甲B.甲和乙C.丙D.甲和丙二、填空题11___.12.方程210x =-的解为x =___________. 【答案】5-【分析】方程中x 系数化为1,即可求出解. 【详解】解:方程210x =-, 解得:5x =-, 故答案为:5-.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13.如图,已知直线AB 与直线CD 相交于点O ,60AOC ∠=︒,OE AB ⊥,则EOD ∠=_______.【答案】150︒##150度【分析】先根据垂线的定义得到90AOE ∠=︒,再求出30COE ∠=︒,最后根据平角的定义即可得到180150EOD COE =︒-=︒∠∠. 【详解】解:∵OE AB ⊥, ∵90AOE ∠=︒, ∵60AOC ∠=︒,∵30COE AOE AOC =-=︒∠∠∠, ∵180150EOD COE =︒-=︒∠∠, 故答案为:150︒.【点睛】本题主要考查了几何图形中角度的计算,垂线的定义,正确求出30COE ∠=︒是解题的关键.14.某种商品标价为130元.若以标价的8折出售,仍可获利14元,则该商品的进价为___________. 【答案】90元【分析】设该商品的进价为x 元,根据售价减进价等于利润列出方程,解之即可. 【详解】解:设该商品的进价为x 元, 由题意可得:1300.814x ⨯-=, 解得:90x =,∵该商品的进价为90元, 故答案为:90元.【点睛】本题考查一元一次方程在解决实际问题中的应用,得到售价的等量关系是解决本题的关键.15.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______. 【详解】解:AC 2BC =,AC 2x =,在线段AB 上,则点的中点, 3x 2,CO ∴点16.某班要在一面墙上(墙足够大)同时展示数张形状、大小均相同的长方形绘画作品,将这些作品排成一个长方形(作品不完全重合).现需要在每张作品的四个角都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉.例如,如图1为用9枚图钉将4张作品钉在墙上的实物图,图2为几何示意图.现有34枚图钉可供选用,则最多可以展示绘画作品___________张.【答案】21【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行、六行、七行的时候,34枚图钉最多可以展示的画的数量,比较后即可得出结论. 【详解】解:∵如果所有的画展示成一行,()3411116÷+-=张, ∴34枚图钉最多可以展示16张画;∵如果所有的画展示成两行,()3421111÷+=,11110-=,21020⨯=张,∴34枚图钉最多可以展示20张画;∵如果所有的画展示成三行,()343182÷+=,817-=,3721⨯=张,∴34枚图钉最多可以展示21张画;∵如果所有的画展示成四行,()344164÷+=,615-=,4520⨯=张,∴34枚图钉最多可以展示20张画;∵如果所有的画展示成五行,()345154÷+=,514-=,4520⨯=张,∴34枚图钉最多可以展示20张画;∵如果所有的画展示成六行,()346146÷+=,413-=,1863=⨯张,∴34枚图钉最多可以展示30张画;∵如果所有的画展示成七行,()347142÷+=,413-=,3721⨯=张,,∴34枚图钉最多可以展示21张画;综上所述:34枚图钉最多可以展示21张画. 故答案为:21.【点睛】本题考查了规律型中图形的变化类,观察图形,求出展示的绘画作品展示成一行、二行、三行、四行、五行、六行、七行时,最多可以展示的画的数量是解题的关键.三、解答题17.计算:()()22023341-+--【答案】10【分析】先算绝对值,乘方和开方,再算除法,最后算加减. 【详解】解:原式31621=+÷-381=+- =10【点睛】此题主要考查了实数的混合运算,正确化简各数是解题关键. 18.以下是欣欣解方程:221132x x +--=的解答过程: 解:去分母,得()()223211x x +--=;……………………∵ 去括号:22631x x +-+=;………………………………… ∵ 移项,合并同类项得:44x -=-;………………………………∵ 解得:1x =.…………………………………………………………∵ (1)欣欣的解答过程在第几步开始出错?(请写序号即可) (2)请你完成正确的解答过程.19.先化简,再求值:()()223323a a +--,其中12a =-.【答案】215a -+,1620.如图,已知平面上有A、B、C、D四点,按要求进行作图(保留作图痕迹不必写作法)(1)作过C,D两点的直线l;(2)过点B作直线l的垂线段BE;(3)画一点P,使得PA PB PC PD+++的和最小,标出点P的位置.【答案】(1)见解析(2)见解析(3)见解析【分析】(1)根据直线向两方无限延伸画图即可;(2)过点B作CD的垂线,与CD交于E即可;(3)连接AC、BD,两线的交点就是P.【详解】(1)解:如图,直线l即为所求;(2)如图,线段BE即为所求;(3)如图,点P即为所求.【点睛】此题主要考查了作图,解题的关键是掌握两点之间,线段最短,以及掌握过一点作已知直线的垂线的作法.21.如图,OC是∵AOB的平分线,∵COD=20°.(1)若∵AOD=30°,求∵AOB的度数.(2)若∵BOD=2∵AOD,求∵AOB的度数.22.小林房间窗户的窗帘如图1所示,它是由两个半径相同的四分之一圆组成的.(1)用代数式表示窗户能射进阳光的面积.(结果保留)π(2)出于美观考虑,小林重新将房间的窗帘设计成如图2所示(由两个半径相同的四分之一圆和一个半圆组成),请用代数式表示该种设计下窗户能射进阳光的面积.(结果保留)πa=时,比较哪种设计射进阳光的面积更大,大多少.(π取3)(3)当10∴设计后射进阳光的面积更大,大6.【点睛】本题考查列代数式和整式加减的应用,解题的关键是用代数式表示出装饰物的面积.23.我校七年级数学兴趣小组成员们自主开展数学微项目研究.结合本阶段学内容特点,他们决定研究数的一些“神秘”性质.我们还发现以下规律:已知2m ≥,3n ≥,且m ,n 均为正整数,如果将nm 进行如图所示的“分解”:若nm (且m ,n 均为不大于7的正整数)的分解中有奇数31,则nm 的值为 .+++;规律总结:49,99,101;综合应用:4356;拓展延伸:【答案】素材:13151719此时36216n m ==, 故答案为:64或216.【点睛】本题考查了数字的变化规律,有理数的加法运算,指数方程,利用方程思想是解题的关键.24.在东西走向的适园路上,有A 、B 两个共享单车投放点,A 在B 的西面.(1)某天小明骑共享自行车从A 地出发行驶,他行驶里程记向东为正,向西为负,单位:千米如下:4+,1+,3-,2-,2+.问最后小明停下的C 地距离A 地多远?(2)现从甲、乙两厂家向A 、B 两地运送自行车.已知甲有14辆自行车,乙有22辆自行车;A 地需20辆自行车,B 地需16辆自行车.甲、乙两家向A 、B 两地的运费如下表.当甲、乙两厂家各运往A 、B 两地多少辆自行车时,总运费等于703元?(3)已知A ,B 两处相距12km ,小明在(1)中的C 处自行车出现损坏,只能下车以4km /h 的速度从C 向B 推行,此时在A 处南南借了一辆自行车以10km/h 的速度从A 到B 骑行,同时在B 处的浔浔借了一辆电动车以20km /h 的速度从B 到A 骑行,问:在浔浔到达A 处前,其中一人位置是另外两人位置中点时,浔浔行驶了多少时间。
2019-2020学年九年级(上)期末数学试卷一.选择题(共10小题)1.抛物线y=4x2﹣3的顶点坐标是()A.(0,3)B.(0,﹣3)C.(﹣3,0)D.(4,﹣3)2.下列各组中得四条线段成比例的是()A.4cm、2cm、1cm、3cm B.1cm、2cm、3cm、5cmC.3cm、4cm、5cm、6cm D.1cm、2cm、2cm、4cm3.如图,⊙O的半径为5,弦心距OC=3,则弦AB的长是()A.4 B.6 C.8 D.54.在△ABC中,∠C=Rt∠,AC=6,BC=8,则cos B的值是()A.B.C.D.5.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=6.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是()A.B.C.D.17.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.8.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0 B.﹣1 C.1 D.29.已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF 长为半径画圆弧交于点P.以下说法正确的是()①∠PAD=∠PDA=60°;②△PAO≌△ADE;③PO=r;④AO:OP:PA=1::.A.①④B.②③C.③④D.①③④10.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.B.C.D.二.填空题(共6小题)11.一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m 的值约为.12.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是.13.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为度.14.如图,在▱ABCD中,点E在DC边上,若,则的值为.15.如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N 分别是AB,BC的中点,则MN长的最大值是.16.定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是.三.解答题(共8小题)17.计算:2cos30°+sin45°﹣tan260°.18.已知:如图,在△ABC中,AD是∠BAC的平分线,∠ADE=∠B.求证:(1)△ABD∽△ADE;(2)AD2=AE•AB.19.现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶,分别写着:有害垃圾、厨余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小丽投放了两袋垃圾.(1)直接写出小明投放的垃圾恰好是“厨余垃圾”的概率;(2)求小丽投放的两袋垃圾不同类的概率.20.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB 所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)21.如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.22.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?23.如图1,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,=,BE分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE 于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若BG=26,BD﹣DF=7,求AB的长.24.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.。
人教版2019-2020学年第一学期七年级期末模拟试题(B卷)数学试卷考试时间:100分钟满分:120分姓名:__________ 班级:__________考号:__________注意事项:1、填写试题的答案请用黑色签字笔填写;2、班级、姓名、考号字迹务必填写工整.一、选择题(共10题;共30分)1.下列各数中,绝对值最小的数是()A.0B.1C.-3D.2.下列各图形中,不是正方体表面展开图的是( )A. B. C. D.3.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()A.a+b>0B.ab >0C.a-b>0D.<4.下列说法正确的是()A.不是单项式B.单项式的系数是1C.﹣7ad的次数是2D.3x﹣2y不是多项式5.方程的解是().A. B. C. D.6.将方程去分母,下面变形正确的是( )A. B. C. D.7.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为()A.0.7a元B.0.3a元C.元D.元8.如图,点B在点A的方位是()A.南偏东B.北偏西C.西偏北D.东偏南9.多项式合并同类项后不含xy项,则k的值是()A. B. C. D.010.分数, , , , , , , , ,…将这列数排成如图形式,那么第8行第7个数是()A. B. C. D.二、填空题(共8题;共32分)11.如图,是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,摆第5个图形时,需要的火柴棍为___________根.12.p在数轴上的位置如图所示,化简:=___________.13.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是__________℃.14.计算:=___________.15.已知关于x的一元一次方程a(x-3)=2x-3a的解是x=3,则a=___________.16.若2x|m|-1 =5是一元一次方程,则m的值为____________.17.多项式是___________次__________项式.18.单项式的次数是_________________.三、解答题(一)(共3题;共20分)19.(8分)解方程:(1)(2)20.(6分)有理数a、b、c在数轴上的位置如图,化简:|a+b|-|b-1|-|a-c|-|1-c|.21.(6分)已知如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,求∠AOD的度数.22.(6分)如图A在数轴上所对应的数为-2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到-6所在的点处时,求A,B两点间距离.23.(7分)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.24.(7分)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?25.(9分)如图,在平面内有A、B、C三点,(1)画直线AC,线段BC,射线AB;(2)在(1)的条件下,在线段BC上任取一点D(不同于B、C),连接线段AD;(3)在(1)(2)的条件下,数数看,此时图中线段共有________条。
2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。
2019-2020学年浙江省杭州市余杭区七年级(上)期末数学试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)―17的绝对值是( )A.17B.―17C.7D.﹣72.(3分)下列各数中,属于无理数的是( )A.3.14159B.0.09C.13D.2π3.(3分)已知某冰箱冷藏室的温度为5℃,冷冻室的温度比冷藏室的温度要低15℃,则冷冻室的温度为( )A.10℃B.﹣10℃C.20℃D.﹣20℃4.(3分)用四舍五入法把106.49精确到个位的近似数是( )A.107B.107.0C.106D.106.55.(3分)下列各组数比较大小,判断正确的是( )A.﹣6>﹣4B.﹣3>+1C.﹣9>0D.―23>―576.(3分)下列计算正确的是( )A.5a﹣2a=3B.2a+3b=5abC.3a+2a=5a2D.﹣3ab+ba=﹣2ab7.(3分)估计21的大小应在( )A.3.5与4之间B.4与4.5之间C.4.5与5之间D.5与5.5之间8.(3分)今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄比儿子年龄的4倍还大1岁,设今年儿子x岁,则可列方程为( )A.4x+1+5=3(x+5)B.3x﹣5=4(x﹣5)+1C.3x+5=4(x+5)+1D.4x﹣5=3(x﹣5)+19.(3分)点A,B,C,D在数轴上的位置如图所示,点A,D表示的数是互为相反数,若点B所表示的数为a,AB=2,则点D所表示的数为( )A.2﹣a B.2+a C.a﹣2D.﹣a﹣210.(3分)已知有理数a≠1,我们把11―a称为a的差倒数,如:2的差倒数是11―2=―1,﹣2的差倒数是11―(―2)=13,如果a1=﹣4,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…以此类推,则a1+a2+a3+a4+…+a61的值是( )A.﹣55B.55C.﹣65D.65二、填空题:本题有6个小题,每小题4分,共24分.11.(4分)单项式﹣2ab2的系数是 ,次数是 .12.(4分)太阳中心的温度可达15500000℃,数据15500000用科学记数法表示为 .13.(4分)计算:25= ,3―27= .14.(4分)若∠α=25°42′,则它余角的度数是 .15.(4分)如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30cm,容器内的水深为8cm,现把一块长,宽,高分别为15cm,10cm,10cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高 cm.16.(4分)已知点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,则线段BC的长为 (用含a,b的代数式表示).三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)计算:(1)﹣5+7﹣8(2)(―6)2×(12―53)+32÷(―34)18.(8分)解方程:(1)2﹣x=3x+8(2)x―3x―14=x619.(8分)如图,已知点A,B,C,D,请按要求画出图形.(1)画直线AB和射线CB;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC;(要求保留作图痕迹)(3)在直线AB上确定一点P,使PC+PD的和最短,并写出画图的依据.20.(10分)(1)先化简.再求值:3(a 2﹣ab )﹣2(12a 2﹣3ab ),其中a =﹣2,b =3; (2)设A =2x 2﹣x ﹣3,B =﹣x 2+x ﹣25,其中x 是9的平方根,求2A +B 的值. 21.(10分)学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人. (1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处? (2)为了尽快完成植树任务,现调m 人去两处支援,其中90<m <100,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人?22.(12分)自2016年1月1日起,某市居民生活用水实施年度阶梯水价,具体水价标准见下表:类别水费价格 (元/立方米)污水处理费 (元/立方米)综合水价 (元/立方米)第一阶梯≤120(含)立方米 3.5 1.5 5 第二阶梯120~180(含)立方米5.25 1.56.75 第三阶梯>180立方米10.51.512例如,某户家庭年用水124立方米,应缴纳水费:120x 5+(124﹣120)x 6.75=627(元).(1)小华家2017年共用水150立方米,则应缴纳水费多少元?(2)小红家2017年共用水m 立方米(m >200),请用含m 的代数式表示应缴纳的水费.(3)小刚家2017年,2018年两年共用水360立方米,已知2018年的年用水量少于2017年的年用水量,两年共缴纳水费2115元,求小刚家这两年的年用水量分别是多少? 23.(12分)直线AB 与直线CD 相交于点O ,OE 平分∠BOD . (1)如图①,若∠BOC =130°,求∠AOE 的度数; (2)如图②,射线OF 在∠AOD 内部.①若OF ⊥OE ,判断OF 是否为∠AOD 的平分线,并说明理由;②若OF平分∠AOE,∠AOF=53∠DOF,求∠BOD的度数.2019-2020学年浙江省杭州市余杭区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)―17的绝对值是( )A.17B.―17C.7D.﹣7【考点】绝对值.【答案】A【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值等于它的相反数,得|―17|=17.故选:A.2.(3分)下列各数中,属于无理数的是( )A.3.14159B.0.09C.13D.2π【考点】算术平方根;无理数.【答案】D【分析】直接利用有理数和有理数的定义分析得出答案.【解答】解:A、3.14159是有理数,不合题意;B、0.09=0.3是有理数,不合题意;C、13是有理数,不合题意;D、2π是无理数,符合题意;故选:D.3.(3分)已知某冰箱冷藏室的温度为5℃,冷冻室的温度比冷藏室的温度要低15℃,则冷冻室的温度为( )A.10℃B.﹣10℃C.20℃D.﹣20℃【考点】有理数的减法.【答案】B【分析】用某冰箱冷藏室的温度减去冷冻室的温度比冷藏室的温度要低的温度,求出冷冻室的温度为多少即可.【解答】解:5﹣15=﹣10(℃)答:冷冻室的温度为﹣10℃.故选:B.4.(3分)用四舍五入法把106.49精确到个位的近似数是( )A.107B.107.0C.106D.106.5【考点】近似数和有效数字.【答案】C【分析】根据近似数的精确度求解.【解答】解:用四舍五入法把106.49精确到个位的近似数是106,故选:C.5.(3分)下列各组数比较大小,判断正确的是( )A.﹣6>﹣4B.﹣3>+1C.﹣9>0D.―23>―57【考点】有理数大小比较.【答案】D【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣6<﹣4,∴选项A不符合题意;∵﹣3<+1,∴选项B不符合题意;∵﹣9<0,∴选项C不符合题意;∵―23>―57,∴选项D符合题意.故选:D.6.(3分)下列计算正确的是( )A.5a﹣2a=3B.2a+3b=5abC.3a+2a=5a2D.﹣3ab+ba=﹣2ab【考点】合并同类项.【答案】D【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、5a﹣2a=3a,故A不符合题意;B、2a与3b不是同类项不能合并,故B不符合题意;C、3a+2a=5a,故C不符合题意;D、﹣3ab+ba=﹣2ab,故D符合题意;故选:D.7.(3分)估计21的大小应在( )A.3.5与4之间B.4与4.5之间C.4.5与5之间D.5与5.5之间【考点】估算无理数的大小.【答案】C【分析】直接利用估算无理数的方法分析得出答案.【解答】解:∵4.52=20.25,∴21的大小应在4.5与5之间.故选:C.8.(3分)今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄比儿子年龄的4倍还大1岁,设今年儿子x岁,则可列方程为( )A.4x+1+5=3(x+5)B.3x﹣5=4(x﹣5)+1C.3x+5=4(x+5)+1D.4x﹣5=3(x﹣5)+1【考点】由实际问题抽象出一元一次方程.【答案】B【分析】设今年儿子x岁,根据五年前父亲的年龄不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设今年儿子x岁,依题意,得:3x﹣5=4(x﹣5)+1.故选:B.9.(3分)点A,B,C,D在数轴上的位置如图所示,点A,D表示的数是互为相反数,若点B所表示的数为a,AB=2,则点D所表示的数为( )A.2﹣a B.2+a C.a﹣2D.﹣a﹣2【考点】数轴;列代数式.【答案】A【分析】根据两点间的距离公式求得点A表示的数为a﹣2,由相反数的定义得到点D所表示的数.【解答】解:由题意知,点A表示的数为a﹣2,因为点A,D表示的数是互为相反数,所以点D所表示的数为2﹣a.故选:A.10.(3分)已知有理数a≠1,我们把11―a称为a的差倒数,如:2的差倒数是11―2=―1,﹣2的差倒数是11―(―2)=13,如果a1=﹣4,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…以此类推,则a1+a2+a3+a4+…+a61的值是( )A.﹣55B.55C.﹣65D.65【考点】倒数;规律型:数字的变化类.【答案】A【分析】根据题意可以写出前几项,然后即可发现数字的变化规律,然后即可求得所求式子的值,本题得以解决.【解答】解:由题意可得,a1=﹣4,a2=1 5,a3=5 4,a4=﹣4,a5=1 5,a6=5 4,…,∵﹣4+15+54=―8020+420+2520=―5120,61÷3=20…1,∴a1+a2+a3+a4+…+a61=20×(―5120)+(﹣4)=﹣51+(﹣4)=﹣55,故选:A.二、填空题:本题有6个小题,每小题4分,共24分.11.(4分)单项式﹣2ab2的系数是 ﹣2 ,次数是 3 .【考点】单项式.【答案】见试题解答内容【分析】单项式的次数是所含所有字母指数的和,系数就前面的数字,由此即可求解.【解答】解:单项式﹣2ab2的系数是﹣2,次数是3.故答案为:﹣2,3.12.(4分)太阳中心的温度可达15500000℃,数据15500000用科学记数法表示为 1.55×107 .【考点】科学记数法—表示较大的数.【答案】见试题解答内容【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将15500000用科学记数法表示为1.55×107.故答案为:1.55×107.13.(4分)计算:25= 5 ,3―27= ﹣3 .【考点】算术平方根;立方根.【答案】见试题解答内容【分析】根据立方根及算术平方根的定义即可得出答案.【解答】解:①由(±5)2=25得:25的算术平方根为25=5,②由(﹣3)3=﹣27,所以3―27=―3.故答案为:5,﹣3.14.(4分)若∠α=25°42′,则它余角的度数是 64°18′ .【考点】度分秒的换算;余角和补角.【答案】见试题解答内容【分析】两角互为余角和为90°,据此可解此题.【解答】解:根据余角的定义得,25°42′的余角度数是90°﹣25°42′=64°18′.故答案为:64°18′.15.(4分)如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30cm,容器内的水深为8cm,现把一块长,宽,高分别为15cm,10cm,10cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高 1.6或1 cm.【考点】认识立体图形.【答案】见试题解答内容【分析】根据题意,得等量关系为:容器的底面积×容器中水的原来高度+实心铁块的底面积×(容器中水的高度+水增加的高度)=容器的底面积×(容器中水原来的高度+水增加的高度).【解答】解:设容器内的水将升xcm,根据题意得30×30×8+15×10×(8+x)=30×30×(8+x)或30×30×8+10×10×(8+x)=30×30×(8+x),解得x=1.6或x=1,即容器内的水将升1.6cm或1cm.故答案为:1.6或116.(4分)已知点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,则线段BC的长为 a+2b或a﹣2b或﹣a+2b. (用含a,b的代数式表示).【考点】两点间的距离.【答案】见试题解答内容【分析】根据点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,分三种情况即可求线段BC的长.【解答】解:∵点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,①如图BC=a+2b;②如图,BC=a﹣2b;③如图,BC=a﹣(2a﹣2b)=﹣a+2b.则线段BC的长为:a+2b或a﹣2b或﹣a+2b.故答案为:a+2b或a﹣2b或﹣a+2b.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)计算:(1)﹣5+7﹣8(2)(―6)2×(12―53)+32÷(―34)【考点】有理数的混合运算.【答案】见试题解答内容【分析】(1)根据有理数的加减混合运算顺序和运算法则计算可得;(2)先计算乘方和括号内的减法,再计算乘除,最后计算加减可得.【解答】解:(1)原式=2﹣8=﹣6;(2)原式=36×(―76)+32×(―43)=﹣42﹣2=﹣44.18.(8分)解方程:(1)2﹣x=3x+8(2)x―3x―14=x6【考点】解一元一次方程.【答案】见试题解答内容【分析】(1)按照解一元一次方程的步骤:移项、合并同类项、系数化为1,进行解答便可;(2)按照解一元一次方程的一般步骤进行解答便可.【解答】解:(1)﹣x﹣3x=8﹣2﹣4x=6x=﹣1.5;(2)12x﹣3(3x﹣1)=2x12x﹣9x+3=2x12x﹣9x﹣2x=﹣3x=﹣3.19.(8分)如图,已知点A,B,C,D,请按要求画出图形.(1)画直线AB和射线CB;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC;(要求保留作图痕迹)(3)在直线AB上确定一点P,使PC+PD的和最短,并写出画图的依据.【考点】直线、射线、线段;两点间的距离;作图—复杂作图.【答案】见试题解答内容【分析】(1)画直线AB和射线CB即可;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC即可;(3)在直线AB上确定一点P,使PC+PD的和最短.【解答】解:如图所示,(1)直线AB和射线CB即为所求作的图形;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC;(3)在直线AB上确定一点P,使PC+PD的和最短.20.(10分)(1)先化简.再求值:3(a2﹣ab)﹣2(12a2﹣3ab),其中a=﹣2,b=3;(2)设A=2x2﹣x﹣3,B=﹣x2+x﹣25,其中x是9的平方根,求2A+B的值.【考点】平方根;整式的加减—化简求值.【答案】见试题解答内容【分析】(1)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(2)把A与B代入2A+B中,去括号合并得到最简结果,求出x的值,代入计算即可求出值.【解答】解:(1)原式=3a2﹣3ab﹣a2+6ab=2a2+3ab,当a=﹣2,b=3时,原式=8﹣18=﹣10;(2)∵A=2x2﹣x﹣3,B=﹣x2+x﹣25,∴2A+B=2(2x2﹣x﹣3)+(﹣x2+x﹣25)=4x2﹣2x﹣6﹣x2+x﹣25=3x2﹣x﹣31,由x是9的平方根,得到x=3或﹣3,当x=3时,原式=27﹣3﹣31=﹣7;当x=﹣3时,原式=27+3﹣31=﹣1.21.(10分)学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m人去两处支援,其中90<m<100,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人?【考点】一元一次方程的应用.【答案】见试题解答内容【分析】(1)设应从乙处调x人去甲处,根据等量关系甲处植树的人数=3×乙处植树人数列出方程,再解即可;(2)设调往乙处y人,则调往甲处(m﹣y)人,由题意得等量关系:在甲处植树的人数=3×在乙处植树的人数,根据等量关系列出方程,再解即可.【解答】解:(1)设应从乙处调x人去甲处,则3(96﹣x)=220+x解得x=17;答:应从乙处调17人去甲处;(2)设调往乙处y人,则调往甲处(m﹣y)人,则3(96+y)=220+m﹣yy=﹣17+0.25m因为y是正整数,且90<m<100,所以m=92或m=96.当m=92时,调往甲处86人,调往乙处6人.当m=96时,调往甲处89人,调往乙处7人.22.(12分)自2016年1月1日起,某市居民生活用水实施年度阶梯水价,具体水价标准见下表:类别水费价格(元/立方米)污水处理费(元/立方米)综合水价(元/立方米)第一阶梯≤120(含)立方米 3.5 1.55第二阶梯120~180(含)立方米 5.25 1.5 6.75第三阶梯>180立方米10.5 1.512例如,某户家庭年用水124立方米,应缴纳水费:120x5+(124﹣120)x6.75=627(元).(1)小华家2017年共用水150立方米,则应缴纳水费多少元?(2)小红家2017年共用水m立方米(m>200),请用含m的代数式表示应缴纳的水费.(3)小刚家2017年,2018年两年共用水360立方米,已知2018年的年用水量少于2017年的年用水量,两年共缴纳水费2115元,求小刚家这两年的年用水量分别是多少?【考点】列代数式;代数式求值;一元一次方程的应用.【分析】(1)根据表格中规定的分段计算方法列式计算可得;(2)利用总价=单价×数量,结合阶梯水价,即可得出结论;(3)设2017年用水x立方米,则2018年用水(360﹣x)立方米.根据两年共缴纳水费2115元即可得出关于x的一元一次方程,解之即可得出结论【解答】解:(1)小华家2017年应缴纳水费为120×5+(150﹣120)×6.75=802.5(元).答:小华家2017年应缴纳水费802.5元;(2)小红家2017年共用水m立方米(m>200),则应缴纳的水费为:120×5+(180﹣120)×6.75+12(m﹣180)=(12m﹣1155)元.答:小红家2017年应缴纳的水费是(12m﹣1155)元.(3)设2017年用水x立方米,则2018年用水(360﹣x)立方米.根据两年共缴纳水费2115元可得:120×5+(180﹣120)×6.75+12(x﹣180)+120×5+(360﹣x﹣120)×6.75=2115.解得:x=200.2018年用水量:360﹣200=160(立方米).答:小刚家2017年用水200立方米,2018年用水160立方米.23.(12分)直线AB与直线CD相交于点O,OE平分∠BOD.(1)如图①,若∠BOC=130°,求∠AOE的度数;(2)如图②,射线OF在∠AOD内部.①若OF⊥OE,判断OF是否为∠AOD的平分线,并说明理由;②若OF平分∠AOE,∠AOF=53∠DOF,求∠BOD的度数.【考点】角平分线的定义;对顶角、邻补角;垂线.【分析】(1)根据∠BOC=130°,OE平分∠BOD即可求∠AOE的度数;(2)①根据OF⊥OE,OE平分∠BOD,即可判断OF是∠AOD的平分线;②根据OF平分∠AOE,∠AOF=53∠DOF,即可求∠BOD的度数.【解答】解:(1)∵∠BOC=130°,∴∠AOD=∠BOC=150°,∠BOD=180°﹣∠BOC=50°∵OE平分∠BOD,∴∠DOE=25°∴∠AOE=∠AOD+∠DOE=155°.答:∠AOE的度数为155°(2)①OF是∠AOD的平分线,理由如下:∵OF⊥OE,∴∠EOF=90°∴∠BOE+∠AOF=90°∵OE平分∠BOD,∴∠BOE=∠DOE∴∠DOE+∠AOF=90°∠DOE+∠DOF=90°∴∠AOF=∠DOF∴OF是∠AOD的平分线;②∵∠AOF=53∠DOF,设∠DOF=3x,则∠AOF=∠5x,∵OF平分∠AOE,∴∠AOF=∠EOF=5x∴∠DOE=2x∵OE平分∠BOD,∴∠BOD=4x5x+3x+4x=180°∴x=15°.∴∠BOD=4x=60°.答:∠BOD的度数为60°.。
2019学年第一学期期末调研测试卷高三数学注意事项:1.本科目考试分试题卷和答题卷,考生须在答题纸上作答.2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,全卷满分150 分,考试时间120分钟.第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A x1x 2,集合|224B x ,则A BxA.1,2B.1,2C.0,2D.0,22.已知复数42iz (i为虚数单位),则复数z的模z 12iA.1B.2C.2D.43.已知等差数列a n的公差为2,若a1,a3,a4成等比数列,则a2A.4B.6C.8D.10y 1 4.实数x、y满足约束条件y xy x 0,则目标函数zy 1x 0的取值范围是xA.(2,2)B.(,2)(2,)C.(,2][2,)D.[2,2]5.若x R,则“x31”是“x 1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知双曲线22yx 的左、右焦点分别为F,F,过1 2F的直线l交双曲线于P、Q两2116 4点.若PQ长为5,则PQF的周长是1A.13B.18C.21D.26高三数学试题卷(共四页)——第1页7.已知离散型随机变量满足二项分布且~B(3,p),则当p 在0,1内增大时,A.D()减小B.D()增大C.D()先减小后增大D.D()先增大后减小8.已知函数2x x2,x 0f x,若函数g(x)f(x)x m恰有三个零点,则实数m () 1,x 0x的取值范围是A.C.1(,2)(,0]B.41(2,][0,)D.41(2,)[0,)41(,2)[0,)49.已知实数a,b,c满足a2b22c21,则2ab c的最小值是A.3B.9C.1D. 448 310.在三棱锥S ABC 中,ABC为正三角形,设二面角S AB C,S BC A,S CA B 的平面角的大小分别为,,(,,),则下面结论正确的是2A.11 1的值可能是负数B.tan tan tan32C.D.11 1的值恒为正数tan tan tan第Ⅱ卷(非选择题部分,共110分)注意事项:用钢笔或签字笔将试题卷中的题目做在答题卷上,做在试题卷上无效.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.某几何体的三视图如图所示(单位:cm),则该几何体的体积为▲cm3,表面积为▲cm2.高三数学试题卷(共四页)——第2页12.二项式 61x 的展开式中常数项等于 ▲ ,有理项共有▲项.x2 2xy 13. 已知直线 xmy 2m R与椭圆1相交于 A, B 两点,则 AB 的最小95值为 ▲ ;若30AB,则实数 m 的值是 ▲ . 714.设 ABC 的三边 a ,b ,c 所对的角分别为 A ,B ,C . 若 b 23a 2c 2 ,则 tanC tan B▲ , tan A 的最大值是 ▲ .15.现有 5 个不同编号的小球,其中黑色球 2 个,白色球 2 个,红色球 1 个.若将其随机排 成一列,则相同颜色的球都不相邻的概率是 ▲ . 16.对任意 x[1,e] ,关于 x 的不等式 x ln x a 2ax a ln x a R 恒成立,则实数 a 的取值范围是 ▲ .17.正方形 ABCD 的边长为 2 ,E,M 分别为 BC, AB 的中点,点 P 是以C 为圆心,CE 为 半径的圆上的动点,点 N 在正方形 ABCD 的边上运动,则 PMPN 的最小值是 ▲ .三、解答题(本大题共 5 小题,共 74 分.解答应写出文字说明、证明过程或演算步骤.) 18.(本小题满分 14 分)1已知函数 fx R.xsin xsinx34(Ⅰ)求f 的值和 fx的最小正周期;3(Ⅱ)设锐角 ABC 的三边 a ,b ,c 所对的角分别为 A ,B ,C ,且A1f , a2 ,2 4 求b c的取值范围.高三数学试题卷(共四页)——第3页19.(本小题满分15分)如图,三棱锥D ABC中,AD CD,AB BC 42,AB BC.D (Ⅰ)求证:AC BD;且BD 47时,(Ⅱ)若二面角D AC B的大小为150M 求三角形DBC中线BM与面ABC所成角的正弦值.A C20.(本小题满分15分)已知S 是数列a n的前n项和,已知a11且nS n1n 2S n,n N .n(Ⅰ)求数列a n的通项公式;4an(Ⅱ)设b 1n N n,数列b nP.n n的前项和为n41 2n若1 1P n.,求正整数的最小值n2020B21.(本小题满分15分)已知点F是抛物线C :y24x的焦点,直线l 与抛物线C相切于点0,0P x y (y),00连接PF交抛物线于另一点A,过点P作l的垂线交抛物线C于另一点B. (Ⅰ)若y01,求直线l的方程;(Ⅱ)求三角形PAB面积S的最小值.22.(本小题满分15分)已知函数f x x2x x a1.log a ln(Ⅰ)求证:f x在1,+上单调递增;(Ⅱ)若关于x的方程f x t1在区间0,上有三个零点,求实数t的值;(Ⅲ)若对任意的x,x a,a1,e 1f x恒成立(e为自然对数的底1f x21 2数),求实数a的取值范围.高三数学试题卷(共四页)——第4页。
苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
2018-2019学年新人教版五年级数学第一学期期检测试卷一、选择题1、把平行四边形转化成三角形采用的方法是( ) A .割补法 B .折叠法2、一副扑克牌,摸到红桃A 的可能性是( ) A . B .C .3、下面式子中,( )是方程.A .x ﹣14>72B .35+65=100C .5x+3=234、观察正方体时,在同一个观察点一次最多可以看到它的( )个面. A .1 B .3 C .45、我国现行的身份证号码是由( )位数字组成. A .15位 B .18位 C .13位6、下面各题中,无限小数是( )A .0.5757B .2.3636…C .0.314二、填空题7、23、17、20、34、26这组数据的平均数是 ,中位数是 。
8、小明捡到一张身份证,身份证号是“230921************”,这个人的出生年月日是 年 月 日,是 性。
(填“男”或“女”)9、两个完全一样的三角形可以拼成一个 形,如果每个三角形的面积为3.2平方米,拼成图形的面积是 平方米。
10、正方形的边长为m 米,它的周长是 米,面积是 平方米。
11、在含有字母的式子里,字母中间的乘号可以记作 ,也可以 ,在省略乘号时,应当把 写在 的前面。
12、在计算5.67÷0.7时,应看作 ÷ 来计算。
13、3.5×0.5的积是 .2.8×0.2的积是 位小数。
14、一个数的小数部分,从某一位起, 数字或几个 依次不断地 出现,这样的小数叫 。
三、判断题15、等底等高的两个三角形,面积一定相等。
( )16、方程3x ﹣6=12的解是6。
( )17、中位数和平均数表示的意义相同。
( )18、㎡>2m 。
( )19、含有未知数的式子叫方程。
( )四、计算题20、直接写出得数7.4﹣0.4= 0.5×60= 0÷32.7= 5.6+2.1= 4.8÷0.6= 2.5×2×0.8= 21、简便运算0.5×1060.25×4.6×4…装…………○……__姓名:___________班级:____…装…………○……22、计算,得数保留两位小数。
2019-2020学年人教版小学四年级上册期末考试数学试卷一.填空题(共9小题,满分24分)1.(3分)由2个亿,6个千万和4个百万组成的数是,读作,改写成用“万”作单位的数是万;省略亿位后面的尾数约是亿.2.(3分)在横线里填上合适的单位.某县总面积约是1417;某中学占地面积约是10,其中学校体育场占地面积约是8200.3.(3分)“248280000”中左起第一个“2”表示,第二个“2”表示,改写成用万做单位的数是万.4.(2分)小明步行去离家10千米远的叔叔家,每小时走3千米,可他走40分钟要休息10分钟,他9:00出发,到叔叔家.5.(3分)在横线里填上“>”或“<”.9910915760077700078万10011099999926625312662513.6.(2分)如果□÷△=12……7的结果中有余数,那么△最小是,这时被除数是.7.(1分)小楠陪爷爷到医院体检,体检的项目和每项所需要的时间如下表:测量身高体重B超心电图抽血等待抽血结果3分钟10分钟8分钟5分钟30分钟合理地安排以上体检顺序,需要的时间至少是分钟.8.(5分)下列各组直线中,组互相平行,组互相垂直.9.(2分)按规律写数:9×7=63,99×97=9603,999×997=996003,9999×9997=99960003……9999999×9999997=.二.判断题(共5小题,满分5分,每小题1分)10.(1分)自然数有无限个,最小的自然数是1..(判断对错)11.(1分)502×140的积中间有2个零.(判断对错)12.(1分)只要不相交就一定是平行线..(判断对错)13.(1分)两个面积单位之间的进率是100.(判断对错)14.(1分)角的两边越长,角的度数越大..(判断对错)三.选择题(共5小题,满分10分,每小题2分)15.(2分)下列各数中,只读1个“零”的数是()A.2900707B.29004000C.60708016.(2分)下面的四题中某些数字看不清了,■表示一个数字,有可能计算正确的是()A.7■×83=6300B.8■0÷4■=2■5C.506÷2■=■3D.4■×3■=20■■17.(2分)观察图,找出正方形中互相垂直的线段有()组.A.2B.3C.4D.518.(2分)洶气带了100元,买了8张儿童票和1张成人票,求花了多少钱.正确的算式是()A.100﹣8×5+8B.100﹣8×5﹣8C.8×5+8D.8×5﹣819.(2分)从7:00到7:15,分针旋转了()A.30°B.90°C.180°D.60°四.计算题(共2小题,满分26分)20.(12分)直接写得数.80×120=170×50=7200÷80=625÷25=50×80=550÷50=60×150=630÷30=802×28≈632÷70≈95×12≈240÷38≈21.(14分)列竖式计算.156×54=650×52=420÷14=967÷13=705×37=609÷29=五.操作题(共2小题,满分7分)22.(3分)先在下面的方格纸上画出一个平行四边形和一个等腰梯形,然后再分别画出它们的一条高.23.(4分)过A点作直线P的平行线和垂线,并量出A点到直线P的距离.六.解答题(共4小题,满分28分)24.(6分)某公园原有26条船,每天收入910元,照这样计算,现在又增加了6条船,每天一共可以收入多少元?25.(6分)下面是高老师和小明的一段对话:小明:高老师好!听说您们班买了25副画板,用了多少钱啊?高老师:小明啊!我们班一共用了1125元.你也想买吗?小明:是的,我们班有36位同学都想买.高老师:哦,这么多啊!那你们一共要准备多少钱啊?小明:是啊!让我算算吧!你能帮助小明算一算,他们一共要准备多少钱吗?26.(6分)某校六年级(2)班全体同学做早操,每12人站一行,或者16人站一行正好都是整数行.这个班的学生不足50人,算一算六年级(2)班究竟有多少人?27.(10分)根据统计图数据,回答下面问题.为了丰富同学们的课外生活,学校组织了一次迎元旦冬季长跑活动.如图是希望小学六个年级的学生参加长跑人数的统计图.根据统计图回答下面的问题:(1)横轴表示,纵轴表示.(2)一年级参加长跑的人数只有二年级人数的一半,一年级有人参加.请补全条形统计图.(3)五年级参加长跑的人数约是三年级的倍.(4)你还能提出其他问题并解答吗?参考答案与试题解析一.填空题(共9小题,满分24分)1.解:由2个亿,6个千万和4个百万组成的数是:264000000,读作:二亿六千四百万;264000000=26400万264000000≈9亿.故答案为:264000000,二亿六千四百万,26400,3.2.解:某县总面积约是1417 平方千米;某中学占地面积约是10 公顷;其中学校体育场占地面积约是8200 平方米;故答案为:平方千米,公顷,平方米.3.解:“248280000”中左起第一个“2”表示2个亿,第二个“2”表示20个十万,248280000=24828万故答案为:2个亿,20个十万,24828万.4.解:不休息需要的时间:10÷3=3(小时)=3小时20分钟则路上要休息的4次,休息的时间是4×10=40(分钟)所以共需要时间3小时20分钟+40分钟=4(小时)9:00+4小时=13:00答:13:00到叔叔家.故答案为:13:00.5.解:99109<157600777000<78万100110<9999992662531>2662513故答案为:<;<;<;>.6.解:除数最小为:7+1=812×8+7=96+7=103答:△最小是8,这时被除数是103;故答案为:8,103.7.解:先抽血用5分钟,然后在等待抽血结果的过程中,进行测量身高体重用3分钟,做B超10分钟,心电图8分钟,这样缩短了3+10+8=21(分钟),因为21分钟<35分钟,再等待35﹣21=14(分钟),所以需要:30+5=35(分钟).答:需要的时间至少是35分钟.8.解:根据垂直和平行的意义可知,C组互相平行,B组互相垂直.故答案为:C,B.9.解:9×7=6399×97=9603999×997=9960039999×9997=999600039999999×9999997=99999960000003.故答案为:99999960000003.二.判断题(共5小题,满分5分,每小题1分)10.解:由分析得出:自然数有无限个,最小的自然数是0.所以题干说法错误.故答案为:×.11.解:502×140=70280502×140的积中间有1个零.所以题干的说法是错误的.故答案为:×.12.解:只要不相交就一定是平行线,说法错误,前提是:在同一平面内;故答案为:错误.13.解:相邻两个面积单位之间的进率是100,原题的说法是错误的.故答案为:×.14.解:因为角的大小与边的长短没有关系,所以角的两边越长,角的度数越大,说法错误;故答案为:×.三.选择题(共5小题,满分10分,每小题2分)15.解:290 0707读作:二百九十万零七百零七;2900 4000读作:二千九百万四千;60 7080读作:六十万七千零八十.故选:C.16.解:■×83=6300,因■它与3相乘的积的末尾是0,所以■应是0,70×83=5810,所以计算不正确;■0÷4■=2■5,因一个三位数除以一个两位数商只能是两位数可一位数,商不可能是三位数,所以计算不正确;÷2■=■3,可看作是506÷23=22,■是2,计算正确;■×3■=20■■,四十几乘三十几积不可能大于2000,所以计算不正确.故选:C.17.解:如图正方形中,互相垂直的线段有5组,有8个直角;故选:D.18.解:5×8+8×1=40+8=48(元);答:花了48元钱.故选:C.19.解:30°×3=90°;答:从7:00到7:15,分针旋转了90度.故选:B.四.计算题(共2小题,满分26分)20.解:80×120=9600170×50=85007200÷80=90625÷25=2550×80=4000550÷50=1160×150=9000630÷30=21802×28≈24000632÷70≈995×12≈1000240÷38≈621.解:156×54=8424650×52=33800420÷14=30967÷13=74 (5)705×37=26085609÷29=21五.操作题(共2小题,满分7分)22.解:作图如下:23.解:作图如下:量得A点到直线P的距离为2厘米.六.解答题(共4小题,满分28分)24.解:910÷26=35(元)35×(26+6)=35×32=1120(元)答:每天一共可以收入1120元.25.解:1125÷25×36=45×36=1620(元)答:他们一共要准备1620元钱.26.解:12=2×2×316=2×2×2×212和16的最小公倍数=2×2×2×2×3=48所以这个班的学生有48人答:六(2)班有48人.27.解:(1)横轴表示年级,纵轴表示人数.(2)一年级参加长跑的人数只有二年级人数的一半,一年级有26÷2=13(人)参加.补全条形统计图(下图).(3)68÷32≈2答:五年级参加长跑的人数约是三年级的2倍.(4)平均每个年级参加长跑人数是多少?(13+26+32+47+68+83)÷6=269÷6≈45(人)答:平均每个年级参加长跑人数是45人.故答案为:年级,人数,2.。