2016年广东省中考数学试卷(含答案精校解析版)
- 格式:doc
- 大小:528.50 KB
- 文档页数:47
秘密★启用前2016年广州市初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第三面、第五面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;同时填写考场室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共30分)一、选择题(本大题共10题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2016·广东广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数、如果收入100元记作+100,那么-80元表示()A、支出20元B、收入20元C、支出80元D、收入80元[难易]较易[考点]正数与负数的概念与意义[解析]题中收入100元记作+100,那么收入就记为正数,支出就记为负数,所以-80就表示支出80元,所以答案C正确[参考答案]C2.(2016·广东广州)图1所示几何体的左视图是()[难易]较易[考点]视图与投影——三视图[解析]几何体由两个圆锥组合而成,根据圆锥的三视图就可以得到题中图的左视图为A[参考答案] A3.(2016·广东广州)据统计,2015年广州地铁日均客运量约为6590000.将6590000用科学记数法表示为()A、6.59´104B、659´104C、65.9´105D、6.59´106[难易]较易[考点]科学计数法[解析]由科学记数法的定义可知6590000=6.59´106,所以D正确[参考答案] D4.(2016·广东广州)某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A、110 B、19 C、13D、12[难易]较易[考点]概率问题[解析]根据题意可知有10种等可能的结果,满足要求的可能只有1种,所以P(一次就能打该密码)=1 10[参考答案] A5.(2016·广东广州)下列计算正确的是()A、x2y2=xy(y¹0) B、xy2¸12y=2xy(y¹0)C、x³0,y³o)D、(xy3)2=x2y6[难易]较易[考点] 代数式的运算[解析] A 、显然错误; B 、xy 2¸12y=xy 2·2y =2xy 3;C 、D 、根据幂的乘方运算法则就可以得出答案. [参考答案] D6.(2016·广东广州)一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地。
数学试题第1页(共4页)2016年广东省初中毕业生学业考试说明;1・全卷共4页,满分为120分,考试用时为】00分钟.2. 答卷前.考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓 名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3・选择题毎小题选出答案后.用2B 铅笔把答題卡上对应题目选项的答案信息点涂 黑.如需改动.用橡皮擦干净后.再选涂其他答案,答案不能答在试题上.4. 非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区 域内相应位置上;如需改动,先划掉原来的答案,然后再写匕新的答案;不准使 用铅笔和涂改液.不按以上要求作答的答案无效.5・考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题■毎小题3分,共30分)在毎小題列出的四个选项中■只有一个是正 确的,请把答题卡上对应题目所选的选项涂黑- 1.-2的相反数是4・摇广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27 700 000人,将 27 700 000用科学记数法表示为 A. 0. 277 x 10? B. 0. 277 x 2 C. 2. 77 x 1075. 如题5图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为 A. 72 B. 2y/2 C ・ Q + 1D. 2j2 + \6・某公司的拓展部有五个员工,他们毎月的工资分別是3000元. 4000元,5000 X,7000元和10000元,那么他们工资的中位数是 A. 4000 元 B. 5000 元 C. 7000 元 D. 10000 元 7・在平面直角坐标系中,点P (・2,・3)所在的象限是A.第-・象限B.第二象限C.第三象限机密*启用的A. 2B. - 22. 如题2图所示,a 与6的大小关系是 A. a < b B. a > 6 C ・ a = bD ・ b = 2a3. 下列所述图形中,是中心对称图形的趕A.直角三角形B.平行四边形D-41 1 1a0 b x题2图C.正五边形D.正三角形 D.第四象限题5图8.如题8图•衽平面直角坐标系中,点人的坐标为(4,3), 那么cosa 的值是 A A49・巳知方程才-2y + 3 = 8,则整式x-2y 的值为A. 5B. 10C. 12 10.如题10图,在正方形肋C 〃中■点P 从点人岀发,沿着正方形的边顺时针方向运动一周,则△/1PC 的面积y 与点P 运动的路程x 之间形成的函数关系图象大致是y >r\r\ 一X FA二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11・9的算术平方根是.12. 分解因式肿・4二_・x - 1 W 2 ■ 2%.13. 不等式组,空 口 的解集是—・3 > 214. 如题14图•把一个圆锥沿母线0A 剪开,展开后得到扇形AOC.已知圆锥的高h 为12c 叫0A = 13cm •则甸形AOC 中处 的长是—cm (计算结果保留”)・15. 如题15图,矩形肋CD 中.对角线AC^2j39E 为必边上一点.BC = 3BE.将矩形ABCD 沿4£所在的貢线折叠"点恰好落在对角线AC 上的H 处.则4« = —•16. 如题16图■点P 是四边形MCD 外接圆OO 上任意一点点不与四边形顶点重合.若初是题15图数学试题第2页(共4页)D. 15題10图•>题14图题16图数学试题第3页(共4页)三、解答题(一)(本大题3小题,毎小题6分,共18分) 17•计算(2016 + 9in30°)° - (-y)"1.18-先化简,再求值:字・齐养*貯,其和"八19.如题19图,已知△MC 中,。
2016年广东省初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:100分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-2的相反数是( )A.2B.-2C.12D.-122.如图所示,a与b的大小关系是( )A.a<bB.a>bC.a=bD.b=2a3.下列所述图形中,是中心对称图形的是( )A.直角三角形B.平行四边形C.正五边形D.正三角形4.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27 700 000人,将27 700 000用科学记数法表示为( )A.0.277×107B.0.277×108C.2.77×107D.2.77×1085.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为( )A.√2B.2√2C.√2+1D.2√2+16.某公司的拓展部有五个员工,他们每月的工资分别是3 000元,4 000元,5 000元,7 000元和10 000元,那么他们工资的中位数是( )A.4 000元B.5 000元C.7 000元D.10 000元7.在平面直角坐标系中,点P(-2,-3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cos α的值是( )A.34B.43C.35D.459.已知方程x-2y+3=8,则整式x-2y的值为( )A.5B.10C.12D.1510.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( )第Ⅱ卷(非选择题,共90分)二、填空题(本大题6小题,每小题4分,共24分) 11.9的算术平方根是 . 12.分解因式:m 2-4= .13.不等式组{x -1≤2-2x ,2x 3>x -12的解集是 .14.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC,已知圆锥的高h 为12 cm,OA=13 cm,则扇形AOC 中AC⏜的长是 cm(计算结果保留π).15.如图,矩形ABCD 中,对角线AC=2√3,E 为BC 边上一点,BC=3BE.将矩形ABCD 沿AE 所在的直线折叠,B 点恰好落在对角线AC 上的B'处,则AB= .16.如图,点P 是四边形ABCD 外接圆☉O 上任意一点,且不与四边形顶点重合.若AD 是☉O 的直径,AB=BC=CD,连接PA,PB,PC.若PA=a,则点A 到PB 和PC 的距离之和AE+AF= .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:|-3|-(2 016+sin 30°)0-(-12)-1.18.先化简,再求值:a+3a·6a 2+6a+9+2a -6a 2-9,其中a=√3-1.19.如图,已知△ABC 中,D 为AB 的中点.(1)请用尺规作图法作边AC 的中点E,并连接DE(保留作图痕迹,不要求写作法); (2)在(1)的条件下,若DE=4,求BC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某工程队修建一条长1 200 m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米;(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?21.如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.22.某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题:(1)这次活动一共调查了名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;(4)若该学校有1 500人,请你估计该学校选择足球项目的学生人数约是人.五、解答题(三)(本大题3小题,每小题9分,共27分)(x>0)相交于点P(1,m).23.如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=2x(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q( );),求该抛物线的函数解析式,并求出抛物线的对(3)若过P、Q二点的抛物线与y轴的交点为N(0,53称轴方程.24.如图,☉O是△ABC的外接圆,BC是☉O的直径,∠ABC=30°.过点B作☉O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E.过点A作☉O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=√3,求DE的长;4(3)连接EF,求证:EF是☉O的切线.25.如图,BD是正方形ABCD的对角线,BC=2.边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形;(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.。
2016年广东省广州市中考数学试卷一、选择题.(本大题共10小题,每小题3分,满分30分.)1.(3分)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.(3分)如图所示的几何体左视图是()A.B.C. D.3.(3分)据统计,2015年广州地铁日均客运量均为6 590 000人次,将6 590 000用科学记数法表示为()A.6.59×104B.659×104C.65.9×105D.6.59×1064.(3分)某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.5.(3分)下列计算正确的是()A.B.xy2÷C.2D.(xy3)2=x2y66.(3分)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=7.(3分)如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD=()A.3 B.4 C.4.8 D.58.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.ab>0 B.a﹣b>0 C.a2+b>0 D.a+b>09.(3分)对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7) D.图象与x轴有两个交点10.(3分)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关二.填空题.(本大题共六小题,每小题3分,满分18分.)11.(3分)分解因式:2a2+ab=.12.(3分)代数式有意义时,实数x的取值范围是.13.(3分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.14.(3分)分式方程的解是.15.(3分)如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=12,OP=6,则劣弧AB的长为.16.(3分)如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是.三、解答题17.(9分)解不等式组并在数轴上表示解集.18.(9分)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD 的度数.19.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:小组研究报告小组展示答辩甲918078乙817485丙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?20.(10分)已知A=(ab≠0且a≠b)(1)化简A;(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.21.(12分)如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)22.(12分)如图,某无人机于空中A处探测到目标B,D,从无人机A上看目标B,D的俯角分别为30°,60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续飞行30m到达A′处,(1)求A,B之间的距离;(2)求从无人机A′上看目标D的俯角的正切值.23.(12分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.24.(14分)已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.25.(14分)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.2016年广东省广州市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,满分30分.)1.(3分)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)如图所示的几何体左视图是()A.B.C. D.【分析】根据几何体的左视图的定义判断即可.【解答】解:如图所示的几何体左视图是A,故选A.【点评】本题考查了由几何体来判断三视图,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.3.(3分)据统计,2015年广州地铁日均客运量均为6 590 000人次,将6 590 000用科学记数法表示为()A.6.59×104B.659×104C.65.9×105D.6.59×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将6 590 000用科学记数法表示为:6.59×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.【分析】最后一个数字可能是0~9中任一个,总共有十种情况,其中开锁只有一种情况,利用概率公式进行计算即可.【解答】解:∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码的只有1种情况,∴一次能打开该密码的概率为.故选A.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.5.(3分)下列计算正确的是()A.B.xy2÷C.2D.(xy3)2=x2y6【分析】分别利用二次根式加减运算法则以及分式除法运算法则和积的乘方运算法则化简判断即可.【解答】解:A、无法化简,故此选项错误;B、xy2÷=2xy3,故此选项错误;C、2+3,无法计算,故此选项错误;D、(xy3)2=x2y6,正确.故选:D.【点评】此题主要考查了二次根式加减运算以及分式除法运算和积的乘方运算,正确掌握相关运算法则是解题关键.6.(3分)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.【解答】解:由题意vt=80×4,则v=.故选B.【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.7.(3分)如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD=()A.3 B.4 C.4.8 D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC==5.故选:D.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD的长是解题关键.8.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.ab>0 B.a﹣b>0 C.a2+b>0 D.a+b>0【分析】首先判断a、b的符号,再一一判断即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴ab<O,故A错误,a﹣b<0,故B错误,a2+b>0,故C正确,a+b不一定大于0,故D错误.故选C.【点评】本题考查一次函数与不等式,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.9.(3分)对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7) D.图象与x轴有两个交点【分析】先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.【解答】解:∵二次函数y=﹣+x﹣4可化为y=﹣(x﹣2)2﹣3,又∵a=﹣<0∴当x=2时,二次函数y=﹣x2+x﹣4的最大值为﹣3.故选B.【点评】本题考查了二次函数的性质,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.10.(3分)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关【分析】(方法一)由根与系数的关系可找出a+b=1,根据新运算找出b⋆b﹣a⋆a=b (1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.(方法二)由根与系数的关系可找出a+b=1,根据新运算找出b⋆b﹣a⋆a=(a﹣b)(a+b﹣1),代入a+b=1即可得出结论.(方法三)由一元二次方程的解可得出a2﹣a=﹣m、b2﹣b=﹣m,根据新运算找出b⋆b﹣a⋆a=﹣(b2﹣b)+(a2﹣a),代入后即可得出结论.【解答】解:(方法一)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.(方法二)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1.∵b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b﹣b2﹣a+a2=(a2﹣b2)+(b﹣a)=(a+b)(a﹣b)﹣(a﹣b)=(a﹣b)(a+b﹣1),a+b=1,∴b⋆b﹣a⋆a=(a﹣b)(a+b﹣1)=0.(方法三)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a2﹣a=﹣m,b2﹣b=﹣m,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=﹣(b2﹣b)+(a2﹣a)=m﹣m=0.故选A.【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.二.填空题.(本大题共六小题,每小题3分,满分18分.)11.(3分)分解因式:2a2+ab=a(2a+b).【分析】直接把公因式a提出来即可.【解答】解:2a2+ab=a(2a+b).故答案为:a(2a+b).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.(3分)代数式有意义时,实数x的取值范围是x≤9.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,9﹣x≥0,解得,x≤9,故答案为:x≤9.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.13.(3分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为13cm.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.14.(3分)分式方程的解是x=﹣1.【分析】根据解分式方程的方法可以求得分式方程的解,记住最后要进行检验,本题得以解决.【解答】解:方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.15.(3分)如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=12,OP=6,则劣弧AB的长为8π.【分析】连接OA、OB,由切线的性质和垂径定理易得AP=BP=,由锐角三角函数的定义可得∠AOP=60°,利用弧长的公式可得结果.【解答】解:连接OA、OB,∵AB为小⊙O的切线,∴OP⊥AB,∴AP=BP=,∵=,∴∠AOP=60°,∴∠AOB=120°,∠OAP=30°,∴OA=2OP=12,∴劣弧AB的长为:==8π.故答案为:8π.【点评】本题主要考查了切线的性质,垂径定理和弧长公式,利用三角函数求得∠AOP=60°是解答此题的关键.16.(3分)如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是①②③.【分析】首先证明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.【解答】证明:∵四边形ABCD是正方形,∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,∵△DHG是由△DBC旋转得到,∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,在Rt△ADE和Rt△GDE中,,∴AED≌△GED,故②正确,∴∠ADE=∠EDG=22.5°,AE=EG,∴∠AED=∠AFE=67.5°,∴AE=AF,同理△AEF≌△GEF,可得EG=GF,∴AE=EG=GF=FA,∴四边形AEGF是菱形,故①正确,∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.∵AE=FG=EG=BG,BE=AE,∴BE>AE,∴AE<,∴CB+FG<1.5,故④错误.故答案为①②③.【点评】本题考查正方形的性质、全等三角形的判定和性质、菱形的判定和性质、等腰直角三角形的性质等知识,解题的关键是通过计算发现角相等,学会这种证明角相等的方法,属于中考常考题型.三、解答题17.(9分)解不等式组并在数轴上表示解集.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(9分)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD 的度数.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.19.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:小组研究报告小组展示答辩甲918078乙817485丙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?【分析】(1)根据表格可以求得各小组的平均成绩,从而可以将各小组的成绩按照从大到小排列;(2)根据题意可以算出各组的加权平均数,从而可以得到哪组成绩最高.【解答】解:(1)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),由上可得,甲组的成绩最高.【点评】本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件.20.(10分)已知A=(ab≠0且a≠b)(1)化简A;(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.【分析】(1)利用完全平方公式的展开式将(a+b)2展开,合并同类型、消元即可将A进行化解;(2)由点P在反比例函数图象上,即可得出ab的值,代入A化解后的分式中即可得出结论.【解答】解:(1)A=,=,=,=.(2)∵点P(a,b)在反比例函数y=﹣的图象上,∴ab=﹣5,∴A==﹣.【点评】本题考查了分式的化解求值以及反比例函数图象上点的坐标特征,解题的关键是:(1)将原分式进行化解;(2)找出ab值.本题属于基础题,难度不大,解决该题型题目时,先将原分式进行化解,再代入ab求值即可.21.(12分)如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)【分析】利用尺规作∠EAC=∠ACB即可,先证明四边形ABCD是平行四边形,再证明CD∥AB即可.【解答】解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.【点评】本题考查尺规作图、平行四边形的判定和性质等知识,解题的关键是学会利用尺规作一个角等于已知角,属于基础题,中考常考题型.22.(12分)如图,某无人机于空中A处探测到目标B,D,从无人机A上看目标B,D的俯角分别为30°,60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续飞行30m到达A′处,(1)求A,B之间的距离;(2)求从无人机A′上看目标D的俯角的正切值.【分析】(1)解直角三角形即可得到结论;(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,于是得到A′E=AC=60,CE=AA′=30,在Rt△ABC中,求得DC=AC=20,然后根据三角函数的定义即可得到结论.【解答】解:(1)由题意得:∠ABD=30°,∠ADC=60°,在Rt△ABC中,AC=60m,∴AB===120(m);(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,则A′E=AC=60,CE=AA′=30,在Rt△ABC中,AC=60m,∠ADC=60°,∴DC=AC=20,∴DE=50,∴tan∠AA′D=tan∠A′DC===.答:从无人机A′上看目标D的俯角的正切值是.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.23.(12分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到或,代入数据即可得到结论.【解答】解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5∵△BOD与△BEC相似,∴或,∴==或,∴BE=2,CE=,或CE=,∵BC•EF=BE•CE,∴EF=2,CF==1,∴E(2,2),或(3,).【点评】本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.24.(14分)已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.【分析】(1)根据题意得出△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,得出1﹣4m≠0,解不等式即可;(2)y=m(x2﹣2x﹣3)+x+1,故只要x2﹣2x﹣3=0,那么y的值便与m无关,解得x=3或x=﹣1(舍去,此时y=0,在坐标轴上),故定点为(3,4);(3)由|AB|=|x A﹣x B|得出|AB|=|﹣4|,由已知条件得出≤<4,得出0<|﹣4|≤,因此|AB|最大时,||=,解方程得出m=8,或m=(舍去),即可得出结果.【解答】(1)解:当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,∴1﹣4m≠0,∴m≠,∴m的取值范围为m≠0且m≠;(2)证明:∵抛物线y=mx2+(1﹣2m)x+1﹣3m,∴y=m(x2﹣2x﹣3)+x+1,抛物线过定点说明在这一点y与m无关,显然当x2﹣2x﹣3=0时,y与m无关,解得:x=3或x=﹣1,当x=3时,y=4,定点坐标为(3,4);当x=﹣1时,y=0,定点坐标为(﹣1,0),∵P不在坐标轴上,∴P(3,4);(3)解:|AB|=|x A﹣x B|=====|| =|﹣4|,∵<m≤8,∴≤<4,∴﹣≤﹣4<0,∴0<|﹣4|≤,∴|AB|最大时,||=,解得:m=8,或m=(舍去),∴当m=8时,|AB|有最大值,此时△ABP的面积最大,没有最小值,则面积最大为:|AB|y P=××4=.【点评】本题是二次函数综合题目,考查了二次函数与一元二次方程的关系,根的判别式以及最值问题等知识;本题难度较大,根据题意得出点P的坐标是解决问题的关键.25.(14分)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.【分析】(1)要证明BD是该外接圆的直径,只需要证明∠BAD是直角即可,又因为∠ABD=45°,所以需要证明∠ADB=45°;(2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAC是等腰直角三角形即可得出结论;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,证明△AMF是等腰三角形后,可得出AM=AF,MF=AM,然后再证明△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2,AM2,BM2三者之间的数量关系.【解答】解:(1)∵=,∴∠ACB=∠ADB=45°,∵∠ABD=45°,∴∠BAD=90°,∴BD是△ABD外接圆的直径;(2)在CD的延长线上截取DE=BC,连接EA,∵∠ABD=∠ADB,∴AB=AD,∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE=90°,∵=∴∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形,∴AC=CE,∴AC=CD+DE=CD+BC;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,连接BF,由对称性可知:∠AMB=∠ACB=45°,∴∠FMA=45°,∴△AMF是等腰直角三角形,∴AM=AF,MF=AM,∵∠MAF+∠MAB=∠BAD+∠MAB,∴∠FAB=∠MAD,在△ABF与△ADM中,,∴△ABF≌△ADM(SAS),∴BF=DM,在Rt△BMF中,∵BM2+MF2=BF2,∴BM2+2AM2=DM2.【点评】本题考查圆的综合问题,涉及圆周角定理,等腰三角形的性质,全等三角形的性质与判定,勾股定理等知识,综合程度较高,解决本题的关键就是构造等腰直角三角形.。
机幣*启用前2016年广东省初中毕业生学业考试数学说明:1•全卷共4页,满分为120分,若试用时为100分钟.2-答卷前,希生务必用黑色字迹的鳖字笔或钢笔在答题卡填写自己的准考证号、姓 名、考场号、座位号.用2B 铅笔把对应该号码的标号涂然” 3+选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂 黑,如需改动,用橡皮擦干净后,再选涂苴他答案,答案不能答在试题上.4- 非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区 域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使 用铅笔和涂改液.不按以上要求作答的答案无效.5- 考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分■拄30分)在毎小题列出的四个选项中,只有一个是正确的,请把答题咔上对应题目所选的选项涂專. 1. -2的相反数是 A. 2-2C 丄22. 如题2图所示工与启的大小关系是A. a < bB. a > bC. a — bD. b = 2a3. 下列所述图形中,是中心对称图形的是 A.直角三甬形 B.平行四边形 G 正五边形4.据广东省旅游局统计显示*2016年4月全省旅游住猪设施接待过夜游客约27 700 000人,将27 700 000用科学记数法表示为 A. 0. 277 x ID 7 B. 0+277 x 10BU 2. 77 x 1075. 如题5图,正方形初CD 的面积为!,则以相邻两边中点连线EF 为 边的正方形EFCH 的周快为 扎72 B. 2血 匚血十1 II 2^/2 + 1 6-某公司的拓展部有五个员工,他们每月的工资分别是3000元’ 4000元2000元,7000元和10000元,那么他们工资的中位数是 A. 4000 元 B. 5000 元 C. 7000 元 0 10000 元 7・在平面直角坐标系中,点P ( -2,-3)所在的象限是九第煥限&第二象限C 第三象限D.第四象限D.•I I|]0 0 b题2图D.正三角形题5图数学试题第1页(共4页》8-如题8图,在平面直角坐标系中,点A 的坐标为(4,3)t 那么COSOf 的值是鱼已知方程X - 2y + 3 = 8,则整式x-2y 的值为A. 5 B* 10 C. 12二、填空题(本大题召小题,毎小题4分,共24分)请将下列各题的正确答案填写在答题卡相应 的位置上.11. 9的算术平方根是 12. 分解因式:亦-4 = _______ +X — 1 C 2 - 2x, 2x 口的解集是_*T >14,如题14图,把一个圆锥沿母线0A 剪开,展开后得到扇形AOC,已知圆锥的髙h 为12cm, 0A = I3cm t则扇形AOf 中紀 的长是 _______________ 吋(计算结果保留"15.如题15图,矩形ABCD .对角线AC 二込E 为BC 边上一点上C = 3RE.将矩形ABCD 沿 AE 所在的直线折叠上点恰好落在对角线AC 上的訓处.则— +16”如题16图,点P 是四边形ABCD 外接圆00上任意一点’且不与四边形顶点重合.若AD 是 O0的直径,AB = RC = CD,连接PAH,PG 若PA 则点*到PB 和PC 的距离之和 AE + AF = *{D. 1510如题10图,在正方形ABCD 中,点P 从点M 出发,沿着正方形的边顺时针方向运动一周,则 △APC的面积y 与点P 运动的路程弟之间形成的函数关系图象大致是题10图 AB C D题16图三、解答题(一)(本大题3小题,每小题6分,共18分) 17,计算:|-3|- (2016 + sin30°)°(2) 补全条形统计图;(3) _______________________________________________________ 在扇形统计图中,选择篮球项目的人数所在扇形的圖心角等于 _____________________________ ___ # ;(4) 若该学校有1500人,请你估计该学校选择足球项目的学生人数约是 _________ 人•数学试题第3页(共4页)先化简,再求值:心 a6 a 1+ 6a + 9琴二吕其中“冷-1.a * 919.如题19图,已知△ARC 中Q 为AB 的中点.(1) 请用尺规作图法作边AC 的中点&并连结DE (保留作图痕 迹,不要求写作法);(2) 在(1)的条件下,若DE = 4,求目的长• 四、解答题(二)(本大题3小题,每小题7分,共21分) 26某工程队修成任务+(1) 求这个工程队原计划每天修建道路多少米?(2) 在这项工程中,如果要求工程队提前2天完成任务,那么实 际平均每天修建道路的工效比原计划增加百分之几?21. 如题 21 图.Ri^ABC 中,乙B = 30% LACB = 90%C5 丄 AH 交A 召于D.以CD 为较短的直角边向ACDB 的同侧作 Rt^DEC,満足二30°,^DCE= 90S 再用同样的方法作 RthFGC, LFCG = 90\继续用同样的方法作R 仏H1C 、 LHCI = 90°.若皿二a,求C7的长.22. 某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项+为了解选择各种体育活动项目的学生人数,随机 抽取了部分学生进行调查,并将通过调査获得的数据进行整理,绘制出以下两幅不完整的 统计图+请棍据统计图回答问题:各项目人数扇形统计图五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 如题23图’在直角坐标系中,直线y 二滋十1(去护0)与双2曲线—(实> 0)相交于点P (1N )・ (1) 求A 的值;(2) 若点Q 与点P 关于直线y 二X 成轴对称,则点Q 的坐标是 Q( _______ );(3) 若过P 、Q 二点的抛物线与y 轴的交点为N(0,*),求该 抛物线的函数解析式,并求出抛物线的对称轴方程■24■如题24图QO 是△ARC 的外接圆,叱是OO 的直径,^ABC = 30°.过点R 作。
2016年广东省初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:100分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-2的相反数是( )A.2B.-2C.12D.-122.如图所示,a与b的大小关系是( )A.a<bB.a>bC.a=bD.b=2a3.下列所述图形中,是中心对称图形的是( )A.直角三角形B.平行四边形C.正五边形D.正三角形4.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27 700 000人,将27 700 000用科学记数法表示为( )A.0.277×107B.0.277×108C.2.77×107D.2.77×1085.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为( )A.√2B.2√2C.√2+1D.2√2+16.某公司的拓展部有五个员工,他们每月的工资分别是3 000元,4 000元,5 000元,7 000元和10 000元,那么他们工资的中位数是( )A.4 000元B.5 000元C.7 000元D.10 000元7.在平面直角坐标系中,点P(-2,-3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cos α的值是( )A.34B.43C.35D.459.已知方程x-2y+3=8,则整式x-2y的值为( )A.5B.10C.12D.1510.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( )第Ⅱ卷(非选择题,共90分)二、填空题(本大题6小题,每小题4分,共24分) 11.9的算术平方根是 . 12.分解因式:m 2-4= .13.不等式组{x -1≤2-2x ,2x 3>x -12的解集是 .14.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC,已知圆锥的高h 为12 cm,OA=13 cm,则扇形AOC 中AC⏜的长是 cm(计算结果保留π).15.如图,矩形ABCD 中,对角线AC=2√3,E 为BC 边上一点,BC=3BE.将矩形ABCD 沿AE 所在的直线折叠,B 点恰好落在对角线AC 上的B'处,则AB= .16.如图,点P 是四边形ABCD 外接圆☉O 上任意一点,且不与四边形顶点重合.若AD 是☉O 的直径,AB=BC=CD,连接PA,PB,PC.若PA=a,则点A 到PB 和PC 的距离之和AE+AF= .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:|-3|-(2 016+sin 30°)0-(-12)-1.18.先化简,再求值:a+3a·6a 2+6a+9+2a -6a 2-9,其中a=√3-1.19.如图,已知△ABC 中,D 为AB 的中点.(1)请用尺规作图法作边AC 的中点E,并连接DE(保留作图痕迹,不要求写作法); (2)在(1)的条件下,若DE=4,求BC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某工程队修建一条长1 200 m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米;(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?21.如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.22.某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题:(1)这次活动一共调查了名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;(4)若该学校有1 500人,请你估计该学校选择足球项目的学生人数约是人.五、解答题(三)(本大题3小题,每小题9分,共27分)(x>0)相交于点P(1,m).23.如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=2x(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q( );),求该抛物线的函数解析式,并求出抛物线的对(3)若过P、Q二点的抛物线与y轴的交点为N(0,53称轴方程.24.如图,☉O是△ABC的外接圆,BC是☉O的直径,∠ABC=30°.过点B作☉O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E.过点A作☉O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=√3,求DE的长;4(3)连接EF,求证:EF是☉O的切线.25.如图,BD是正方形ABCD的对角线,BC=2.边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形;(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.答案全解全析:一、选择题1.A -2的相反数是2,故选A.评析 本题考查相反数的概念,属简单题.2.A 因为数轴上右边的点表示的数总是比左边的点表示的数大,所以由题图可知b>a,故选A. 评析 本题考查由数轴上的点的位置比较相应数的大小.3.B 由中心对称图形旋转180°后与原图形重合,可知直角三角形、正五边形和正三角形都不是中心对称图形,只有平行四边形是中心对称图形.故选B.4.C 27 700 000=2.77×107 ,故选C.5.B 如图,连接BD,由题可知BC=CD=1, ∴BD=√2.∵E,F 分别为BC,CD 的中点, ∴EF=12BD=√22,∴正方形EFGH 的周长为2√2. 故选B.评析 本题考查正方形的性质,三角形的中位线等.6.B 将数据由小到大排列,最中间的数据是5 000,∴他们工资的中位数是5 000元,故选B. 评析 本题考查中位数,求中位数时,易忽略排序而导致错误.7.C ∵点P 的横坐标与纵坐标都是负数, ∴点P 在第三象限.8.D 过点A 作AB 垂直x 轴于B,则AB=3,OB=4. 由勾股定理得OA=5. ∴cos α=OB OA =45.故选D.9.A 把x-2y 看成一个整体,移项得x-2y=8-3=5.评析 本题主要考查整体思想,整体代入法是解决此类问题的常用方法,属容易题.10.C 设正方形的边长为a,则当点P 在AB 上时,y=12·AP ·CB=12·x ·a=12ax,显然y 是x 的正比例函数,且12a>0,排除A 、B 、D,故选C. 二、填空题 11.答案 3解析 9的算术平方根为3. 12.答案 (m+2)(m-2)解析 m 2-4=m 2-22=(m+2)(m-2). 评析 本题考查因式分解、平方差公式. 13.答案 -3<x ≤1解析 解x-1≤2-2x,得x ≤1. 解2x 3>x -12,得x>-3.所以原不等式组的解集为-3<x ≤1.14.答案 10π解析 根据勾股定理可知,圆锥的底面半径为√132-122=5 cm.所以扇形AOC 中AC⏜的长为2π×5=10π cm. 15.答案 √3解析 由折叠和矩形的性质,可知BE=B'E,∠AB'E=∠ABE=90°,∴∠EB'C=90°.∵BC=3BE,∴EC=2BE=2B'E,∴∠ACB=30°,∴AB=12AC.∵AC=2√3,∴AB=√3.评析 本题考查折叠和矩形的性质等知识.属中档题.16.答案 1+√32 a解析 如图,连接OB 、OC,∵AB=BC=CD,∴AB⏜=BC ⏜=CD ⏜. 又∵AD 是☉O 的直径,∴∠AOB=∠BOC=∠COD=60°,∴∠CPB=∠APB=30°,∴AE=12PA=12a,∠APC=60°,Rt △APF 中,AF=APsin 60°=√32a,∴AE+AF=1+√32 a.评析 本题主要考查圆的有关性质与锐角三角函数.三、解答题(一)17.解析 原式=3-1-(-2)(3分)=2+2(5分)=4.(6分)评析 本题主要考查绝对值、零指数幂和负整数指数幂的相关计算.18.解析 原式=a+3a ×6(a+3)2+2(a -3)(a+3)(a -3)(2分)=6a (a+3)+2a+3=6a (a+3)+2aa (a+3)(3分)=2a .(4分)当a=√3-1时,原式=√3-1=√3+1.(6分)评析 本题主要考查分式的化简、求值、因式分解和分母有理化运算.19.解析 (1)如图.(2分)E 点,DE 即为所求.(3分)(2)∵DE 是△ABC 的中位线,且DE=4,∴BC=2DE=2×4=8.(6分)评析 本题主要考查平面几何中尺规作图的基本方法(中点的作法),以及三角形中位线的性质.四、解答题(二)20.解析 (1)设原计划每天修建道路x m,则实际平均每天修建道路为(1+50%)x m.(1分)由题意得,1 200x -1 200(1+50%)x =4.(2分)解得x=100.经检验,x=100是原方程的解.(3分)答:这个工程队原计划每天修建道路100米.(4分)(2)设实际平均每天修建道路的工效比原计划增加y,由题意得,100(1+y)(1 200100-2)=1 200.解得y=0.2,即y=20%.(6分)答:如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加20%.(7分) 评析 本题主要考查分式方程、一元一次方程的解法和应用,考查运用方程思想解决实际问题的能力.21.解析 ∵Rt △ABC 中,∠B=30°,∠ACB=90°,∴∠A=60°.(1分)∵CD ⊥AB,∴∠ADC=90°,∠ACD=30°.(2分)∵AC=a,∴Rt △ADC 中,AD=12AC=a 2,CD=√3AD=√32a.(4分)同理可得,Rt △DFC 中,DF=12CD=√34a,CF=√3DF=34a.(5分)Rt △FHC 中,FH=12CF=38a,CH=√3FH=3√38a,(6分)Rt △CHI 中,CI=√3CH=98a.(7分) 评析 本题考查直角三角形的基本性质与运算.22.解析 (1)250.(1分)(2)图形正确得满分.(3分)(3)108.(5分)(4)480.(7分)评析 本题主要考查条形统计图和扇形统计图的相关计算,以及通过样本推算总体的数据分析能力.五、解答题(三)23.解析 (1)把P(1,m)代入y=2x ,得m=21=2,(1分)∴P(1,2).把P(1,2)代入y=kx+1,得2=k+1,∴k=1.(2分)(2)(2,1).(4分)(3)由N (0,53),可设抛物线的函数解析式为y=ax 2+bx+53,(5分) 把P(1,2)和Q(2,1)代入上式可得{2=a +b +53,1=4a +2b +53.(6分)解得{a =-23,b =1.(7分) ∴抛物线的解析式为y=-23x 2+x+53.(8分) 对称轴方程为x=-b 2a =-1-43=34.(9分) 评析 本题考查一次函数、反比例函数和二次函数的图象及性质,考查待定系数法和函数方程思想的运用能力.24.解析 (1)证明:∵BC 是☉O 的直径,∴∠BAC=∠BAD=90°.∵∠ABC=30°,OA=OB=OC,∴∠OAB=∠OBA=30°,∴∠OAC=∠OCA=∠AOC=60°,∴∠ACF=∠DAE=120°.(1分)∵AF 是☉O 的切线,∴OA ⊥AF,∴∠OAF=90°,∴∠CAF=90°-∠OAC=90°-60°=30°.(2分)∵BD 是☉O 的切线,∴∠D=90°-∠BCD=90°-60°=30°,∴∠D=∠CAF,∴△ACF ∽△DAE.(3分)(2)设OC=r,∵△OAC 是等边三角形,∴S △AOC =12·r ·√32r=√34r 2,(4分)∴√34r 2=√34,∴r=1或r=-1(舍去),∴OC=1.∴AB=√3,BD=2√3.(5分)∵∠BEO=180°-∠DAE-∠D=180°-120°-30°=30°,∴∠BEO=∠BAO,∴BE=AB=√3,∴DE=BD+BE=3√3.(6分)(3)证明:过点O 作OG ⊥EF,垂足为G.∵∠AFB=∠ACB-∠CAF=30°,∴AC=FC=1.∴BF=3,OF=2.(7分)在Rt △BEF 中,EF=√BE 2+BF 2=√(√3)2+32=2√3,∵∠EBF=∠OGF=90°,∠OFG=∠EFB,∴Rt △OFG ∽Rt △EFB,(8分)∴OG EB =OF EF , ∴√3=2√3,∴OG=1,∴OG=OC,∴EF 是☉O 的切线.(9分)评析 本题考查直角三角形、等腰三角形、等边三角形及圆的相关知识.25.解析 (1)四边形APQD 是平行四边形.(1分)(2)OA=OP 且OA ⊥OP.证明如下:①当BC 向右平移时,如图,∵四边形ABCD 是正方形,∴AB=BC,∠ABD=∠CBD=45°.∵PQ=BC,∴AB=PQ.∵QO ⊥BD,∴∠BOQ=90°,∴∠BQO=90°-∠CBD=45°,∴∠BQO=∠CBD=∠ABD=45°,∴OB=OQ.在△ABO 和△PQO 中,{AB =PQ ,∠ABO =∠PQO ,OB =OQ ,∴△ABO ≌△PQO(SAS).(3分)∴OA=OP,∠AOB=∠POQ.∵∠POQ+∠BOP=∠BOQ=90°,∴∠AOB+∠BOP=90°,即∠AOP=90°.∴OA ⊥OP,∴OA=OP 且OA ⊥OP.(4分)②当BC 向左平移时,如图,同理可证,△ABO ≌△PQO(SAS).∴OA=OP,∠AOB=∠POQ,∴∠AOP+∠POB=∠POB+∠BOQ,∴∠AOP=∠BOQ=90°,∴OA ⊥OP,∴OA=OP 且OA ⊥OP.(5分)(3)过点O 作OE ⊥BC 于E.在Rt △BOQ 中,OB=OQ,∴OE=12BQ.①当BC 向右平移时,如图,(6分)BQ=BP+PQ=x+2,∴OE=12(x+2).∵y=S △OPB =12BP ·OE=12x ·12(x+2),∴y=14x 2+12x(0≤x ≤2).当x=2时,y 有最大值2.(7分)②当BC 向左平移时,如图,BQ=PQ-PB=2-x,∴OE=12(2-x).∵y=S △OPB =12BP ·OE =12x ·12(2-x),∴y=-14x 2+12x(0≤x ≤2). 当x=1时,y 有最大值14.(8分)综上所述,线段BC 在其所在直线平移过程中,△OPB 的面积能够取得最大值,最大值为2(参考下图).(9分)评析 本题考查对正方形、直角三角形和平行四边形基本性质的理解与应用,考查数形结合思想和分类讨论思想.。
2015年中考数学试卷及参考答案一、选择题(本大题10小题,每小题3分,共30分) 1.2-=( ) A.2 B.2- C.12 D.12- 2.据国家统计局2014年12月4日发布消息,2014年省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( ) A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )A.2B.4C.5D.64. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形6. 2(4)x -=( )A.28x -B.28xC.216x -D.216x 7. 在0,2,0(3)-,5-这四个数中,最大的数是( )A.0B.2C. 0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值围是( ) A.2a ≥ B.2a ≤ C.2a > D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为( )A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)11. 正五边形的外角和等于 (度). 12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 .13. 分式方程321x x=+的解是 . 14. 若两个相似三角形的周长比为2:3,则它们的面积比是 .15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 . 16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题 20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2) 求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B 型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数kyx=(0k≠,0x>)的图象与直线3y x=相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3B D.(1) 求k的值;(2) 求点C的坐标;(3) 在y轴上确实一点M,使点M到C、D两点距离之和d=MC+MD,求点M的坐标.24. ⊙O是△ABC的外接圆,AB是直径,过»BC的中点P作⊙O的直径PG交弦BC于点D,连接AG,CP,P B.(1) 如题24﹣1图;若D是线段OP的中点,求∠BAC的度数;(2) 如题24﹣2图,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3) 如题24﹣3图;取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点 运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值. (参考数据:sin 75°=624+,sin 15°=624-)2015年省初中毕业生学业考试参考答案一、选择题1.【答案】A.2.【答案】B.3.【答案】B.4.【答案】C.5.【答案】A.6.【答案】D.7. 【答案】B.8.【答案】C.9.【答案】D. 【略析】显然弧长为6,半径为3,则16392S =⨯⨯=扇形. 10.【答案】D.二、填空题11. 【答案】360. 12.【答案】6. 13.【答案】2x =. 14.【答案】4:9.15.【答案】1021. 16.【答案】4.【略析】由中线性质,可得AG =2GD , 则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=△△△△△,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.三、解答题(一)17.【答案】解:(1)(2)0x x --=∴10x -=或20x -=∴11x =,22x =18. 【答案】解:原式=1(1)(1)x x x x x-⋅+-=11x + 当21x =+时,原式=122211=-+. 19. 【答案】(1) 如图所示,MN 为所作; (2) 在Rt △ABD 中,tan ∠BAD =34AD BD =, ∴344BD =, ∴BD =3,∴DC =AD ﹣BD =5﹣3=2.四、解答题(二)20. 【答案】(1) 如图,补全树状图;(2) 从树状图可知,共有9种可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P (积为奇数)=4921. 【答案】(1) ∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB ,由折叠的性质可知AD =AF ,∠AFE =∠D =90°,∴∠AFG =90°,AB =AF ,∴∠AFG =∠B ,又AG =AG ,∴△ABG ≌△AFG ;(2) ∵△ABG ≌△AFG ,∴BG =FG ,设BG =FG =x ,则GC =6x -,∵E 为CD 的中点,∴CF =EF =DE =3,∴EG =3x +,∴2223(6)(3)x x +-=+,解得2x =, ∴BG =2.22. 【答案】(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,解得x=42,y=56, 答:A ,B 两种型号计算器的销售价格分别为42元,56元;(2) 设最少需要购进A 型号的计算a 台,得3040(70)2500a a +-≥解得30x ≥ 答:最少需要购进A 型号的计算器30台.五、解答题(三)23. 【答案】(1) ∵A (1,3),∴OB =1,AB =3,又AB =3BD ,∴BD =1,∴B (1,1), ∴111k =⨯=;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y x y x =⎧⎪⎨=⎪⎩,得333x y ⎧=⎪⎨⎪=⎩或333x y ⎧=-⎪⎨⎪=-⎩(舍去), ∴点C 的坐标为(33,3);(3) 如图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为y kx b =+,则3331k b k b ⎧+=⎪⎨⎪-+=⎩,解得233k =-,232b =-, ∴直线CE 的解析式为(233)232y x =-+-,当x =0时,y =232-, ∴点M 的坐标为(0,232-).24. 【答案】(1) ∵AB 为⊙O 直径,»»BPPC =, ∴PG ⊥BC ,即∠ODB =90°,∵D 为OP 的中点,∴OD =1122OP OB =, ∴cos ∠BOD =12OD OB =, ∴∠BOD =60°,∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACB =∠ODB ,∴AC ∥PG ,∴∠BAC =∠BOD =60°;(2) 由(1)知,CD =BD ,∵∠BDP =∠CDK ,DK =DP ,∴△PDB ≌△CDK ,∴CK =BP ,∠OPB =∠CKD ,∵∠AOG =∠BOP ,∴AG =BP ,∴AG =CK∵OP =OB ,∴∠OPB =∠OBP ,又∠G =∠OBP ,∴AG ∥CK ,∴四边形AGCK 是平行四边形;(3) ∵CE =PE ,CD =BD ,∴DE ∥PB ,即DH ∥PB∵∠G =∠OPB ,∴PB ∥AG ,∴DH ∥AG ,∴∠OAG =∠OHD ,∵OA =OG ,∴∠OAG =∠G ,∴∠ODH =∠OHD ,∴OD =OH ,又∠ODB =∠HOP ,OB =OP ,∴△OBD ≌△HOP ,∴∠OHP =∠ODB =90°,∴PH ⊥A B.25.【答案】(1) 26;22; (2) 如图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°,∴∠NCF =75°,∠FNC =15°,∴sin 15°=FC NC ,又NC =x , ∴624FC x -=, ∴NE =DF =62224x -+. ∴点N 到AD 的距离为62224x -+cm ; (3) ∵sin 75°=FN NC,∴624FN x +=, ∵PD =CP =2,∴PF =6224x -+, ∴162621162(26)(22)(26)2(2)244224y x x x x x +--=+-+--⨯-+·。
2016年广东省初中毕业生学业考试数学一、选择题(本大题10小题,每小题3分,共30分)1、-2的绝对值是( )A 、2B 、-2C 、12D 、1-2答案:A解析:-2的绝对值是2,故选A 。
2、如图1所示,a 和b 的大小关系是( )baA 、a <bB 、a >bC 、a=bD 、b =2a答案:A解析:数轴上从左往右的点表示的数是从小往大的顺序,由图可知b >a ,选A 。
3、下列所述图形中,是中心对称图形的是( )A 、直角三角形B 、平行四边形C 、正五边形D 、正三角形答案:B解析:直角三角形既不是中心对称图形也不轴对称图形,正五边形和正三角形是轴对称图形,只有平行四边是中心对称图形。
4、据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为( )A 、70.27710⨯B 、80.27710⨯C 、72.7710⨯D 、82.7710⨯答案:C解析:科学记数的表示形式为10n a ⨯形式,其中1||10a ≤<,n 为整数,27700000=72.7710⨯。
故选C 。
5、如图,正方形ABCD 的面积为1,则以相邻两边中点连接EF 为边的正方形EFGH 的周长为( ) A B DCH FEA 2B 、22C 、21D 、221答案:B解析:连结BD ,由勾股定理,得BD 2E 、F 为中点,所以,EF =22,所以,正方形EFGH 的周长为226、某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数为( )A、4000元B、5000元C、7000元D、10000元答案:B解析:数据由小到大排列,最中间或最中间的两个数的平均数为中位数,所以,中位数为5000元。
7、在平面直角坐标系中,点P(-2,-3)所在的象限是()A、第一象限B、第二象限C、第三象限D、第四象限答案:C解析:因为点P的横坐标与纵坐标都是负数,所以,点P在第三象限。
2016年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C. D.﹣2.(3分)如图所示,a与b的大小关系是()A.a<b B.a>b C.a=b D.b=2a3.(3分)下列所述图形中,是中心对称图形的是()A.直角三角形B.平行四边形C.正五边形D.正三角形4.(3分)据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A.0.277×107B.0.277×108C. 2.77×107 D.2.77×1085.(3分)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+16.(3分)某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是()A.4000元B.5000元C.7000元D.10000元7.(3分)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A. B. C. D.9.(3分)已知方程x﹣2y+3=8,则整式x﹣2y的值为()A.5 B.10 C.12 D.1510.(3分)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)9的算术平方根是.12.(4分)分解因式:m2﹣4= .13.(4分)不等式组的解集是.14.(4分)如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是cm(计算结果保留π).15.(4分)如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .16.(4分)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA、PA、PC,若PA=a,则点A到PB 和PC的距离之和AE+AF= .三、解答题(共3小题,每小题6分,满分18分)17.(6分)计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1.18.(6分)先化简,再求值:•+,其中a=﹣1.19.(6分)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.四、解答题(共3小题,每小题7分,满分21分)20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?21.(7分)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.22.(7分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是人.五、解答题(共3小题,每小题9分,满分27分)23.(9分)如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m ).(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q();(3)若过P、Q二点的抛物线与y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程.24.(9分)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.25.(9分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.2016年广东省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•黔东南州)﹣2的相反数是()A.2 B.﹣2 C. D.﹣【考点】相反数.菁优网版权所有【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(3分)(2016•广东)如图所示,a与b的大小关系是()A.a<b B.a>b C.a=b D.b=2a【考点】有理数大小比较.菁优网版权所有【分析】根据数轴判断出a,b与零的关系,即可.【解答】根据数轴得到a<0,b>0,∴b>a,故选A【点评】此题是有理数大小的比较,主要考查了识别数轴上的点表示的数,也是解本题的难点.3.(3分)(2016•广东)下列所述图形中,是中心对称图形的是()A.直角三角形B.平行四边形C.正五边形D.正三角形【考点】中心对称图形.菁优网版权所有【分析】根据中心对称图形的定义对各选项分析判断即可得解.【解答】解:A、直角三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、正五边形不是中心对称图形,故本选项错误;D、正三角形不是中心对称图形,故本选项错误.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2016•广东)据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A.0.277×107B.0.277×108C. 2.77×107 D.2.77×108【考点】科学记数法—表示较大的数.菁优网版权所有【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将27700000用科学记数法表示为2.77×107,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2016•广东)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+1【考点】正方形的性质.菁优网版权所有【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【解答】解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键.6.(3分)(2016•广东)某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是()A.4000元B.5000元C.7000元D.10000元【考点】中位数.菁优网版权所有【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:3000元,4000元,5000元,7000元,10000元,5000元处在第3位为中位数,故他们工资的中位数是5000元.故选B.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)(2016•广东)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣2,﹣3)所在的象限是第三象限.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)8.(3分)(2016•广东)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A. B. C. D.【考点】锐角三角函数的定义;坐标与图形性质.菁优网版权所有【分析】利用勾股定理列式求出OA,再根据锐角的余弦等于邻边比斜边列式即可.【解答】解:由勾股定理得OA==5,所以cosα=.故选D.【点评】本题考查了锐角三角函数的定义,坐标与图形性质,勾股定理,熟记概念并准确识图求出OA的长度是解题的关键.9.(3分)(2016•广东)已知方程x﹣2y+3=8,则整式x ﹣2y的值为()A.5 B.10 C.12 D.15【考点】等式的性质.菁优网版权所有【分析】根据等式的性质1:等式两边同时加上﹣3,可得x ﹣2y=5.【解答】解:由x﹣2y+3=8得:x﹣2y=8﹣3=5,故选A【点评】本题考查了等式的性质,非常简单,属于基础题;熟练掌握等式的性质是本题的关键,也运用了整体的思想.10.(3分)(2016•广东)如图,在正方形ABCD中,点P 从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.【考点】动点问题的函数图象.菁优网版权所有【专题】动点型;函数思想.【分析】分P在AB、BC、CD、AD上四种情况,表示出y 与x的函数解析式,确定出大致图象即可.【解答】解:设正方形的边长为a,当P在AB边上运动时,y=ax;当P在BC边上运动时,y=a(2a﹣x)=﹣ax+a2;当P在CD边上运动时,y=a(x﹣2a)=ax﹣a2;当P在AD边上运动时,y=a(4a﹣x)=﹣ax﹣2a2,大致图象为:故选C.【点评】此题考查了动点问题的函数图象,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2016•广东)9的算术平方根是 3 .【考点】算术平方根.菁优网版权所有【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.12.(4分)(2016•广东)分解因式:m2﹣4= (m+2)(m﹣2).【考点】因式分解-运用公式法.菁优网版权所有【专题】计算题.【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.13.(4分)(2016•广东)不等式组的解集是﹣3<x≤1.【考点】解一元一次不等式组.菁优网版权所有【专题】计算题.【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3<x≤1.故答案为﹣3<x≤1.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.(4分)(2016•广东)如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是10πcm(计算结果保留π).【考点】圆锥的计算;弧长的计算.菁优网版权所有【分析】根据的长就是圆锥的底面周长即可求解.【解答】解:∵圆锥的高h为12cm,OA=13cm,∴圆锥的底面半径为=5cm,∴圆锥的底面周长为10πcm,∴扇形AOC中的长是10πcm,故答案为:10π.【点评】本题考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于展开扇形的弧长,难度不大.15.(4分)(2016•广东)如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .【考点】矩形的性质;翻折变换(折叠问题).菁优网版权所有【分析】先根据折叠得出BE=B′E,且∠AB′E=∠B=90°,可知△EB′C是直角三角形,由已知的BC=3BE 得EC=2B′E,得出∠ACB=30°,从而得出AC与AB的关系,求出AB的长.【解答】解:由折叠得:BE=B′E,∠AB′E=∠B=90°,∴∠EB′C=90°,∵BC=3BE,∴EC=2BE=2B′E,∴∠ACB=30°,在Rt△ABC中,AC=2AB,∴AB=AC=×2=,故答案为:.【点评】本题考查了矩形的性质和翻折问题,明确翻折前后的图形全等是本题的关键,同时还运用了直角三角形中如果一条直角边是斜边的一半,那么这条直角边所对的锐角是30°这一结论,是常考题型.16.(4分)(2016•广东)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA、PA、PC,若PA=a,则点A 到PB和PC的距离之和AE+AF= a .【考点】圆周角定理;勾股定理;解直角三角形.菁优网版权所有【分析】如图,连接OB、OC.首先证明∠AOB=∠BOC=∠COD=60°,推出∠APB=∠AOB=30°,∠APC=∠AOC=60°,根据AE=AP•sin30°,AF=AP•sin60°,即可解决问题.【解答】解:如图,连接OB、OC.∵AD是直径,AB=BC=CD,∴==,∴∠AOB=∠BOC=∠COD=60°,∴∠APB=∠AOB=30°,∠APC=∠AOC=60°,在Rt△APE中,∵∠AEP=90°,∴AE=AP•sin30°=a,在Rt△APF中,∵∠AFP=90°,∴AF=AP•sin60°=a,∴AE+AF=a.故答案为a.【点评】本题考查圆周角定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用直角三角形解决问题,属于中考常考题型.三、解答题(共3小题,每小题6分,满分18分)17.(6分)(2016•广东)计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.菁优网版权所有【专题】计算题.【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1的值是多少即可.【解答】解:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1=3﹣1+2=2+2=4.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.18.(6分)(2016•广东)先化简,再求值:•+,其中a=﹣1.【考点】分式的化简求值.菁优网版权所有【专题】计算题;分式.【分析】原式第一项约分后两项通分并利用同分母分式的加法法则计算,得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•+=+==,当a=﹣1时,原式===+1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)(2016•广东)如图,已知△ABC中,D为AB 的中点.(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.【考点】三角形中位线定理;作图—基本作图.菁优网版权所有【分析】(1)作线段AC的垂直平分线即可.(2)根据三角形中位线定理即可解决.【解答】解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.(2)∵AD=DB,AE=EC,∴DE∥BC,DE=BC,∵DE=4,∴BC=8.【点评】本题考查基本作图、三角形中位线定理等知识,解题的关键是掌握线段垂直平分线的作法,记住三角形的中位线定理,属于中考常考题型.四、解答题(共3小题,每小题7分,满分21分)20.(7分)(2016•广东)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【考点】分式方程的应用.菁优网版权所有【分析】(1)设原计划每天修建道路x米,则实际每天修建道路1.5x米,根据题意,列方程解答即可;(2)由(1)的结论列出方程解答即可.【解答】解:(1)设原计划每天修建道路x米,可得:,解得:x=100,经检验x=100是原方程的解,答:原计划每天修建道路100米;(2)设际平均每天修建道路的工效比原计划增加y%,可得:,解得:y=20,经检验y=20是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.21.(7分)(2016•广东)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.【考点】勾股定理;含30度角的直角三角形.菁优网版权所有【分析】在Rt△ACD中,利用30度角的性质和勾股定理求CD的长;同理在Rt△ECD中求FC的长,在Rt△FCG 中求CH的长;最后在Rt△HCI中,利用30度角的性质和勾股定理求CI的长.【解答】解:在Rt△ACB中,∠B=30°,∠ACB=90°,∴∠A=90°﹣30°=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,在Rt△ACD中,AC=a,∴AD=a,由勾股定理得:CD==,同理得:FC=×=,CH=×=,在Rt△HCI中,∠I=30°,∴HI=2HC=,由勾股定理得:CI==,答:CI的长为.【点评】本题考查了勾股定理和直角三角形含30°角的性质,在直角三角形中,30°角所对的直角边等于斜边的一半,这一性质经常运用,必须熟练掌握;同时在运用勾股定理和直角三角形含30°角的性质时,一定要书写好所在的直角三角形,尤其是此题多次运用了这一性质.22.(7分)(2016•广东)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了250 名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于108 度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是480 人.【考点】条形统计图;用样本估计总体;扇形统计图.菁优网版权所有【分析】(1)由“足球”人数及其百分比可得总人数;(2)根据各项目人数之和等于总人数求出“篮球”的人数,补全图形即可;(3)用“篮球”人数占被调查人数的比例乘以360°即可;(4)用总人数乘以样本中足球所占百分比即可得.【解答】解:(1)这次活动一共调查学生:80÷32%=250(人);(2)选择“篮球”的人数为:250﹣80﹣40﹣55=75(人),补全条形图如图:(3)选择篮球项目的人数所在扇形的圆心角为:×360°=108°;(4)估计该学校选择足球项目的学生人数约是:1500×32%=480(人);故答案为:(1)250;(3)108;(4)480.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(共3小题,每小题9分,满分27分)23.(9分)(2016•广东)如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m ).(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q(2,1 );(3)若过P、Q二点的抛物线与y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程.【考点】反比例函数与一次函数的交点问题;待定系数法求二次函数解析式.菁优网版权所有【分析】(1)直接利用图象上点的坐标性质进而代入求出即可;(2)连接PO,QO,PQ,作PA⊥y轴于A,QB⊥x轴于B,于是得到PA=1,OA=2,根据点Q与点P关于直线y=x 成轴对称,得到直线y=x垂直平分PQ,根据线段垂直平分线的性质得到OP=OQ,根据全等三角形的性质得到QB=PA=1,OB=OA=2,于是得到结论;(3)设抛物线的函数解析式为y=ax2+bx+c,把P、Q、N (0,)代入y=ax2+bx+c,解方程组即可得到结论.【解答】解:(1)∵直线y=kx+1与双曲线y=(x>0)交于点A(1,m),∴m=2,把A(1,2)代入y=kx+1得:k+1=2,解得:k=1;(2)连接PO,QO,PQ,作PA⊥y轴于A,QB⊥x轴于B,则PA=1,OA=2,∵点Q与点P关于直线y=x成轴对称,∴直线y=x垂直平分PQ,∴OP=OQ,∴∠POA=∠QOB,在△OPA与△OQB中,,∴△POA≌△QOB,∴QB=PA=1,OB=OA=2,∴Q(2,1);故答案为:2,1;(3)设抛物线的函数解析式为y=ax2+bx+c,∵过P、Q二点的抛物线与y轴的交点为N(0,),∴,解得:,∴抛物线的函数解析式为y=﹣x2+x+,∴对称轴方程x=﹣=.【点评】本题考查了一次函数和反比例函数的交点问题,全等三角形的判定和性质,解题需把点的坐标代入函数解析式,灵活利用方程组求出所需字母的值,从而求出函数解析式,熟练掌握待定系数法求函数的解析式是解题的关键.24.(9分)(2016•广东)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.【考点】相似形综合题.菁优网版权所有【分析】(1)根据圆周角定理得到∠BAC=90°,根据三角形的内角和得到∠ACB=60°根据切线的性质得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到结论;(2)根据S△AOC=,得到S△ACF=,通过△ACF∽△DAE,求得S△DAE=,过A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,过O作OG⊥EF于G,根据全等三角形的性质得到OG=OA,即可得到结论.【解答】(1)证明:∵BC是⊙O的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切线,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴=,∵△ACF∽△DAE,∴=()2=,∴S△DAE=,过A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DE•AH=וDE2=,∴DE=;(3)∵∠EOF=∠AOB=120°,在△AOF与△BOE中,,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF与△OGF中,,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切线.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,切线的判定和性质,圆周角定理,直角三角形的性质,证得△ACF∽△DAE是解题的关键.25.(9分)(2016•广东)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.【考点】四边形综合题.菁优网版权所有【分析】(1)根据平移的性质,可得PQ,根据一组对边平行且相等的四边形是平行四边形,可得答案;(2)根据正方形的性质,平移的性质,可得PQ与AB的关系,根据等腰直角三角形的判定与性质,可得∠PQOPQO,根据全等三角形的判定与性质,可得AO与OP的数量关系,根据余角的性质,可得AO与OP的位置关系;(3)根据等腰直角三角形的性质,可得OE的长,根据三角形的面积公式,可得二次函数,根据二次函数的性质,可得到答案.【解答】(1)四边形APQD为平行四边形;(2)OA=OP,OA⊥OP,理由如下:∵四边形ABCD是正方形,∴AB=BC=PQ,∠ABO=∠OBQ=45°,∵OQ⊥BD,∴∠PQO=45°,∴∠ABO=∠OBQ=∠PQO=45°,∴OB=OQ,在△AOB和△OPQ中,∴△AOB≌△POQ(SAS),∴OA=OP,∠AOB=∠POQ,∴∠AOP=∠BOQ=90°,∴OA⊥OP;(3)如图,过O作OE⊥BC于E.①如图1,当P点在B点右侧时,则BQ=x+2,OE=,∴y=וx,即y=(x+1)2﹣,又∵0≤x≤2,∴当x=2时,y有最大值为2;②如图2,当P点在B点左侧时,则BQ=2﹣x,OE=,∴y=וx,即y=﹣(x﹣1)2+,又∵0≤x≤2,∴当x=1时,y有最大值为;综上所述,∴当x=2时,y有最大值为2;【点评】本题考查了二次函数综合题,利用平行四边形的判定是解题关键;利用全等三角形的判定与性质是解题关键;利用等腰直角三角形的性质的出OE的长是解题关键,又利用了二次函数的性质.。