二面角的计算(方法加经典题型)
- 格式:doc
- 大小:164.50 KB
- 文档页数:2
二面角的作与求求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。
下面就对求二面角的方法总结如下:1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。
2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。
斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。
3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。
4、投影法:利用s投影面=s被投影面θcos 这个公式对于斜面三角形,任意多边形都成立,是求二面角的好方法。
尤其对无棱问题5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos例1:若p 是ABC ∆所在平面外一点,而PBC ∆和ABC ∆都是边长为2的正三角形,PA=6,求二面角P-BC-A 的大小。
分析:由于这两个三角形是全等的三角形, 故采用定义法解:取BC 的中点E ,连接AE 、PEAC=AB ,PB=PC ∴AE ⊥ BC ,PE ⊥BC∴PEA ∠为二面角P-BC-A 的平面角在PAE ∆中AE=PE=3,PA=6PCBAE∴PEA ∠=900∴二面角P-BC-A 的平面角为900。
例2:已知ABC ∆是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。
[思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。
解1:(三垂线定理法)取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC由三垂线定理知BF ⊥PC∴BFE ∠为二面角A-PC-B 的平面角设PA=1,E 为AC 的中点,BE=23,EF=42∴tan BFE ∠=6=EFBE∴BFE ∠=arctan 6解2:(三垂线定理法)取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FMAB=AC,PB=PC ∴AE ⊥BC,PE ⊥BC∴ BC ⊥平面PAE,BC ⊂平面PBC∴平面PAE ⊥平面PBC, 平面PAE 平面PBC=PE由三垂线定理知AM ⊥PCPC BAEF MEPCBAF图1图2∴FMA ∠为二面角A-PC-B 的平面角设PA=1,AM=22,AF=721.=PE AE AP∴sin FMA ∠=742=AM AF ∴FMA ∠=argsin742解3:(投影法)过B 作BE ⊥AC 于E,连结PE ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC∴PEC ∆是PBC ∆在平面PAC 上的射影设PA=1,则PB=PC=2,AB=141=∆PEC S ,47=∆PBC S由射影面积公式得,77cosarg ,77=∴==∆∆θθPBC PEC S S COS , 解4:(异面直线距离法)过A 作AD ⊥PC,BE ⊥PC 交PC 分别于D 、E 设PA=1,则AD=22,PB=PC=2 ∴BE=PC S PBC 21∆=414,CE=42,DE=42由异面直线两点间距离公式得 AB 2=AD 2+BE 2+DE 2-2ADBE θCOS ,θCOS =77cos arg ,77=∴θ [点评]本题给出了求平面角的几种方法,应很好掌握。
αβa O A B 二面角题型归纳及解题方法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。
求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,我们分为三类问题六种解题方法。
从而给出二面角的通性通法。
第一类:有棱二面角的平面角的方法方法1、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1、(全国卷Ⅰ理)如图,四棱锥中,底面为矩形,底面,,,点M 在侧棱上,=60°(I )证明:M 在侧棱的中点 (II )求二面角的余弦值。
证(I )略解(II ):利用二面角的定义。
在等边三角形中过点作交于点,则点为AM 的中点,过F 点在平面ASM 内作,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM S ABCD -ABCD SD ⊥ABCD 2AD =2DC SD ==SC ABM ∠SC S AM B --ABM B BF AM ⊥AM F F GF AM ⊥F GFB ∠FG∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角的大小为)36arccos(-举一反三:空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B -PC -A 的大小。
二面角大小的求法二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例、如图,已知二面角α-а-β等于120°,PA⊥α,A∈α,PB⊥β,B∈β. 求∠APB的大小.PA=AB=a,求二面角B-PC-D的大小。
二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。
例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.ABCDA 1B 1C 1D 1EO例、ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°。
求(1)二面角P—BC—A的大小;(2)二面角C—PB—A的大小例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=2,求:二面角A1-AB-B1的大小.图4 B1AαβA1B LE F三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.四、射影法:(面积法)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。
v1.0 可编辑可修改五法求二面角一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
例1如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AMB --的大小。
练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。
例2. 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB111111ABCD P -ABCD60,22,2,2,3=∠====PAB PD PA AD AB ⊥AD PABPC AD A BD P -- (Ⅰ)证明:平面PBE ⊥平面PAB ;(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小.练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。
(1)求证:AC 1⊥BC ;(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。
四、射影面积法(coss S射影)凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜射S S =θ)求出二面角的大小。
C A B DA A 1B DC C 1 B 1 解二面角问题(一)寻找有棱二面角的平面角的方法和求解。
(1)定义法:利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。
要注意用二面角的平面角定义的三个“主要特征”来找出平面角,当然这种找出的角要有利于解决问题。
下面举几个例子来说明。
例1:如图,立体图形V -ABC 的四个面是全等的正三角形,画出二面角V -AB -C 的平面角并求出它的度数。
例2:在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。
这样的类型是不少的,如下列几道就是利用定义法找出来的:1、在正方体ABCD -A 1B 1C 1D 1中,找出二面角B -AC -B 1的平面角并求出它的度数。
2、.边长为a 的菱形ABCD ,∠ACB=600,现沿对角线BD 将其折成才600的二面角,则A 、C 之间的距离为 。
(菱形两条对角线互相垂直,对折后的一条对角线成两条线段仍都垂直于另一条对角线,则所成的角是二面角的平面角)3、正三棱柱ABC —A 1B 1C 1的底面边长是4,过BC 的一个平面与AA 1交于D ,若AD =3,求二面角D ―BC ―A 的正切值。
总之,能用定义法来找二面角的平面角的,一般是图形的性质较好,能够较快地找到满足二面角的平面角的三个主要特征。
并且能够很快地利用图形的一些条件来求出所要求的。
在常见的几何体有正四面体,正三棱柱,正方体,以及一些平面图形,正三角形,等腰三角形,正方形,菱形等等,这些有较好的一些性质,可以通过它们的性质来找到二面角的平面角。
至于求角,通常是把这角放在一个三角形中去求解。
由图形及题目的已知条件来求这个三角形的边长或者角,再用解三角形的知识去求解。
(2)三垂线法:是利用三垂线的定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法。
(1)二面角定义的回顾:从一条直线出发的两个半平面所组成的图形就叫做二 面角。
二面角的大小是用二面角的平面角来衡量的。
而二 面角的平面角是指在二面角βα--l 的棱上任取一点O , 分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠βα--l 的平面角。
(2)二面角的通常求法a.由定义作出二面角的平面角;b.作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。
c.利用三垂线定理(逆定理)作出二面角的平面角;d.空间坐标求二面角的大小;(法向量法)e .射影面积法例1:在正三角形ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B-AD-C 后,BC=21AB ,求二面角B-AD-C 的大小。
证明:连结BC ,在等边三角形ABC 中设AB=AC=a ,则BD=CD= a例2:(2006年广东高考题)如图右所示,DE AF ,分别是⊙o 、⊙1O 的直径,AD 与两圆所在的平面均垂直,8=AD ,BC 是⊙o的直径,6==AC AB ,AD OE //(1)求二面角F AD B --的大小; 解:(法一)AD 均与两圆所在的平面垂直AF AD AB AD ⊥⊥∴,故BAF ∠是二面角F AD B --的平面角。
ABCA的中点为BC D CDAD BD AD ⊥⊥∴,为二面角C AD B BDC --∠∴21ABBC 21= 又a BC 21=∴为等边三角形BCD ∆∴∠∴060的大小为二面角C AD B --∴BC 是⊙o 的直径,AB=AC∴ BC AO ⊥又AF 是⊙o 的直径∴四边形ABCF 是正方形∴BAF ∠=450即二面角F AD B --的大小为450(法二)运用空间向量坐标运算以A 为原点建立空间直角坐标系A-XYZ ,如图所示: 由(法一)可知:四边形ABCF 是正方形 则A (0,0,0),D (0,0,8) ,B (6,0,0),C (0,6,0),F (6,6,0))0,6,6(),0,6,0(-==∴→→BC AC O DA 圆⊥ ,AC DA ⊥∴又AB AC ⊥ ,→∴AC 是面DAB 的法向量 同理,O DA 圆⊥ , BC DA ⊥∴ 又BC AF ⊥ →∴BC 是面DAF 的法向量2226636||||,cos =⨯=⋅⋅>=<∴→→→→→→BC AC BCAC BC AC∵二面角F AD B--所成的角为锐角 ∴二面角F AD B --的大小为450***(法三)以A 为原点建立空间直角坐标系A-XYZ ,如图所示: 由(法一)可知:四边形ABCF 是正方形 则A (0,0,0),D (0,0,8) ,B (6,0,0),C (0,6,0),F (6,6,0))0,6,6(),8,0,0(),0,0,6(===∴→→→AF AD AB ,设),,(z y x n =→为面DAB 的法向量,则0,0=⋅=⋅→→→→AB n AD n即⎩⎨⎧==⇒⎩⎨⎧==00608y z y z ,令1=x ,则)0,0,1(=→n同理:设),,(z y x m =→为面DAF 的法向量,则)0,1,1(-=→m22211||||,cos =⨯=⋅⋅>=<∴→→→→→→m n mn m n ∵二面角F AD B --所成的角为锐角 ∴二面角F AD B --的大小为450***例3:射影面积法如图5,二面角l αβ--为锐二面角, △ABC 在半 平面α内, △ABC 在平面β内的射影为△A 1B 1C 1,那么二面角l αβ--的大小111 cos A B C ABCS S θθ∆∆=应满足.(思考例题2用射影面积法)。
求二面角的五种方法一、定义法:由图形的特殊条件按定义直接作出. 如在空间四边形ABCD 中, AB =AC , DB =DC , 求二面角A -BC -D 的大小.例1如图, 过正方形ABCD 的顶点A 作PA ⊥平面ABCD , 设PA =A B=a ,求二面角B -PC -D 的大小.例2二面角α-BC -β大小为120°, A ∈α,B ∈β, 且AB ⊥BC , BC ⊥CD ,AB =BC =CD =1, 求二面角A -BD -C 的正切值.例3如图, 已知四面体SABC 中, ∠ASB =2π,∠ASC =α(0<α<2π), ∠CSB =β(0<β<2π), 二面角A -SC -B 的大小为θ, 求证:θ=π-arccos(cos α·cot β).二、垂面法:通过作二面角棱的垂面, 此垂面与二面角的两个面所交的两条射线构成的角就是这个二面角的平面角.例4⑴空间三条射线PA ,PB ,PC 不共面, 若∠APC =∠APB =60°,∠BPC =90°, 则二面角B -PA -C 的大小是______;⑵已知∠AOB =90°, 过O 点引∠AOB 所在平面的斜线OC , 使它与OA ,OB 分别成45°,60°的角, 则二面角A -OC -B 的余弦值为______.例5如图, 在△ABC 中, AB ⊥BC , SA ⊥平面ABC , DE 垂直平分SC , 且分别交AC ,SC 于D ,E , 又SA =AB , SB =BC , 求二面角E -BD -C 的大小.三、延伸法:若所求的两个面只有一个公共点是已知的, 因此要把两个面延伸面得到二面角的棱, 然后再求出它的平面角.例6直角梯形ABCD 中, AB ⊥AD , AD ⊥CD , AB =2, CD =4, 平面PAD ⊥平面ABCD , △PBC 是边长为10的正三角形, 求平面PAD 和平面PBC 所成二面角的大小.例7设正方体ABCD-A1B1C1D1中, E为AA1中点, 求平面B1DE和底面ABCD所成二面角的大小.四、垂线法:利用三垂线定理或其逆定理作出平面角.例8已知由O点出发的三条射线OA,OB,OC不共面,且∠AOB=∠AOC, 求证:二面角A-OB-C与二面角A-OC-B相等.例9二面角M-CD-N中, A为平面M上一定点, △ADC的面积为定值S, DC=a,B为平面N内一点, AB⊥CD, 若AB与平面N成30°角, 求面积△BCD的最大值, 并求此时二面角M-CD-N的大小.五、射影法:若多边形面积为S, 它在一个平面上的射影的面积为S0, 则多边形所在平面与这个平面所成的二面角θ, 满足S0=S cosθ, 利用这个公式求二面角的方法称“射影法”, 射影法对于解决棱不太明显的二面角问题有独特的作用.例10过正方形ABCD的顶点A作线段PA⊥平面ABCD, 若AB=PA, 则平面ABP与平面CDP所成的二面角为( )A. 30°B. 45°C. 60°D. 90°例11 P是正方形ABCD所在平面外一点, △PAB是正三角形, 且平面PAB⊥平面ABCD,求二面角P-AC-B的大小.友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
典型例题:方法一:定义法1.已知 AOB角,求二面角 900,过点O 引 AOB 所在平面的斜线 A OC B 的大小。
OC 与 OA , OB 分别成 45° ,60°二面角二面角的平面角的定义: 以二面角的棱上任意一点为端点,在两个面分别作垂直于棱的 两条射线,这两条射线所成的角叫做二面角的平面角二面角的平面角的特点: ① 顶点在棱上;② 两条边分别在两个平面; ③ 与棱都垂直。
二面角的平面角的围: 0°,180°2 . D 是 ABC 所在平面外一点,连接AD,BD,CD,AB . 2a ,AC BC AD BD CD a ,则二面角 A CD B 的余弦值是 _______________________________ .3.如图,正方体ABCD A 1B 1C 1D 1中,E 为棱CC i 的中点,那么截面A i BD 和截面EBD1.定义法(或垂面法)2•三垂线法3.射影面积法C所成的二面角为 ________________4•在 ABC 中,AB BC,SA 平面ABC ,DE 垂直平分SC ,且分别交AC,SC 于D,E ,又SA AB, SB BC ,求二面角E BD C 的大小。
5.如图,正方体ABCD A i B i C i D i 的棱长为1,P 是AD 的中点,求二面角A BD i P的大小。
6.如图,已知点P 为正方体ABCD A i B i C i D i 的棱A i B i 的中点,求二面角P AC D i的余弦值。
ABD 向上折起,使点A&如图,矩形ABCD 中,AB 6,BC 23,沿对角线BD 将 移至点P ,且P 在平面BCD 的射影0在DC 上。
1(1 )求二面角P DB C 的平面角的余弦值。
(一)3J2(2)求直线DC 与平面PBD 所成角的正弦值。
(鼻)3方法二:三垂线法:7•如图所示,平面 ABC 平面ABD, ACB 90°,CA CB,面角C BD A 的平面角的正切角为ABD 是正三角形,则二 2 3、 --- ) 3 CB大小。
二面角大小的求法(例题)二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.O OA PA OB PAOB OAAOB AOB=120APB=60OB PB PB βαβ⊥⊥∴⊥⊥⊥∴⊥∴⊥∠∠︒∠︒做交线,交于点,连接平面交线同理交线又交线交线面交线即可得为面的二面角,所以例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。
提示:PAB PCD ≅,而且是直角三角形二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的tag 大小。
A AH BC BC H PH ABCD PA AB PA BC PHA PHA H ABH=30AB=a AH=a/2tag PHA 2PA BC AB ⊥⊥∴⊥⊥∴⊥∴∠∠︒∴∴∠=过做,交于,连接面,面为二面角在中,例:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.提示:CO ⊥DE ,而且是长方体!!!ABCDA 1B 1C 1D 1EO例、ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°。
求(1)二面角P—BC—A的大小;(2)二面角C—PB—A的大小提示:角PAB是二面角,找到每个面的直角!!!射影,那么PM为面ABC的垂线!例、如图4,平面α⊥平面β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=2,求:二面角A1-AB-B1的大小.提示:AA1与BB1互相垂直AF是辅助线且垂直AB,FE平行BB1图4 B1AαβA1B LE F四、射影法:(面积法)利用面积射影公式S射=S原cosθ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,PA =AB=a,求平面PBA与平面PDC所成二面角的大小。
六种方法求二面角从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份,并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。
一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
证(I )略解(II ):利用二面角的定义。
在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG FG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。
二面角问题求解方法大全本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March五法求二面角一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
例1如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AMB --的大小。
练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。
例2. 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 111111ABCD P -ABCD60,22,2,2,3=∠====PAB PD PA AD AB ⊥AD PABPC AD A BD P -- (Ⅰ)证明:平面PBE ⊥平面PAB ;(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小.练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。
(1)求证:AC 1⊥BC ;(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。
αβa O A B 二面角题型归纳及解题方法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。
求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,我们分为三类问题六种解题方法。
从而给出二面角的通性通法。
第一类:有棱二面角的平面角的方法方法1、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1、(全国卷Ⅰ理)如图,四棱锥中,底面为矩形,底面,,,点M 在侧棱上,=60°(I )证明:M 在侧棱的中点 (II )求二面角的余弦值。
证(I )略解(II ):利用二面角的定义。
在等边三角形中过点作交于点,则点为AM 的中点,过F 点在平面ASM 内作,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM S ABCD -ABCD SD ⊥ABCD 2AD =2DC SD ==SC ABM ∠SC S AM B --ABM B BF AM ⊥AM F F GF AM ⊥F GFB ∠FG∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角的大小为)36arccos(-举一反三:空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B -PC -A 的大小。
立体几何二面角大小的求法二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.例、在四棱锥P-ABCD 中,ABCD 是正方形,PA⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。
jA BCDPHPOBA二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。
例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.ABCDA 1B 1C 1D 1EO例、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC 内的射影是AB 中点M ,二面角P —AC—B 的大小为45°。
求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的大小.B 1AαA 1 LE F三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.四、射影法:(面积法)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PβαlCBA例、如图,设M为正方体ABCD-A1B1C1D1的棱CC1的中点,求平面BMD1与底面ABCD所成的二面角的大小。
二面角的求法(1)定义法——在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
注:o 点在棱上,用定义法。
(2)垂线法(三垂线定理法)——利用三垂线定理作出平面角,通过解直角三角形求角的大小。
注:o 点在一个半平面上,用三垂线定理法。
(3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角。
注:点O 在二面角内,用垂面法。
(4)射影面积法——若多边形的面积是S ,它在一个平面上的射影图形面积是S`,则二面角θ的大小为COS θ= S`÷ S A 图3 α βO B l O 图5 β α l CB A例题讲解1、(本小题满分14分)如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面,,ABCD PD CD E =是PC 的中点,作EF PB ⊥交PB 于点F 。
(I )求证://PA 平面EDB ;(II )求证:PB ⊥平面EFD ;(III )求二面角P BC D --的大小。
2、 如图1-125,PC ⊥平面ABC ,AB =BC=CA =PC ,求二面角B -PA -C 的平面角的正切值。
(三垂线定理法)3.在棱长为1的正方体1AC 中,(1)求二面角11A B D C --的大小的余弦值;(2)求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小的正切值。
18、(本题满分14分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD AC CD ⊥⊥,,60ABC ∠=°,PA AB BC ==,E 是PC 的中点. (Ⅰ)求PB 和平面PAD 所成的角的大小;(Ⅱ)证明⊥AE 平面PCD ; (Ⅲ)求二面角A PD C --的正弦值.O 1A 1C 1D 1B 1D C B A A BC DP E。
二面角问题求解方法大全(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--五法求二面角一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
例1如图,四棱锥SABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。
例2. 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 111111ABCD P -ABCD60,22,2,2,3=∠====PAB PD PA AD AB ⊥AD PABPC AD A BD P -- (Ⅰ)证明:平面PBE ⊥平面PAB ;(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小.练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。
(1)求证:AC 1⊥BC ;(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。
四、射影面积法(coss S射影)凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜射S S =θ)求出二面角的大小。
二面角10种求法及判断锐钝角二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。
求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。
1.概念法顾名思义,概念法指的是利用概念直接解答问题。
例1:如图所示,在四面体ABCD 中,1AC AB ==,2CD BD ==,3AD =。
求二面角A BC D --的大小。
分析:四面体ABCD 的各个棱长都已经给出来了,这是一个典型的根据长度求角度的问题。
解:设线段BC 的中点是E ,接AE 和DE 。
根据已知的条件1AC AB ==,2CD BD ==,可以知道AE BC ⊥且DE BC ⊥。
又BC 是平面ABC 和平面DBC 的交线。
根据定义,可以得出:AED ∠即为二面角A BC D --的平面角。
可以求出32AE =,3DE =,并且3AD =。
根据余弦定理知:2222223()(3)372cos 243232AE DE ADAED AE DE+-+-∠===-⨯⨯⨯ 即二面角A BC D --的大小为7arccos4π-。
同样,例2也是用概念法直接解决问题的。
例2:如图所示,ABCD 是正方形,PB ABCD ⊥平面,1PB AB ==,求二面角A PD C --的大小。
解:作辅助线CE PD ⊥于点E ,连接AC 、AE 。
由于AD CD =,PA PC =,所以PAD PCD ≅三角形三角形。
即AE PD ⊥。
由于CE PD ⊥,所以AEC ∠即为所求的二面角的大小。
通过计算可以得到:2PC =,3PD =,又1CD =,在三角形PCD 中可以计算得到63CE =。
由此可以得到:63AE CE ==,又2AC =。
五法求二面角一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
例1如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AMB --的大小。
练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。
例2. 如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD 为等腰梯形,AB111111ABCDP -ABCD60,22,2,2,3=∠====PAB PD PA AD AB ⊥AD PABPC AD A BD P -- (Ⅰ)证明:平面PBE ⊥平面PAB ;(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小.练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。
(1)求证:AC 1⊥BC ;(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。
四、射影面积法(coss S射影)凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜射S S =θ)求出二面角的大小。
二面角的求法
(1)定义法——在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
注:o 点在棱上,用定义法。
(2)垂线法(三垂线定理法)——利用三垂线定理作出平面角,通过解直角三角形求角的大小。
注:o 点在一个半平面上,用三垂线定理法。
(3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角。
注:点O 在二面角内,用垂面法。
(4)射影面积法——若多边形的面积是S ,它在一个平面上的射影图形面积是S`,则二面角θ的大小为COS θ= S`÷ S
A 图3 α β
O B l
O
图5
β α C B A
例题讲解 1、(本小题满分14分)如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱
PD ⊥底面,,ABCD PD CD E =是PC 的中点,作EF PB ⊥交PB 于点F 。
(I )求证://PA 平面EDB ; (II )求证:PB ⊥平面EFD ;
(III )求二面角P BC D --的大小。
2、 如图1-125,
PC
⊥平面ABC ,AB =BC=CA =PC ,求二面角B -PA -C 的平面角的正切值。
(三垂线定理法)
3.在棱长为1的正方体1AC 中,
(1)求二面角11A B D C --的大小的余弦值;
(2)求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小 的正切值。
18、(本题满分14分)
如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD AC CD ⊥⊥,, 60ABC ∠=°,PA AB BC ==,E 是PC 的中点.
(Ⅰ)求PB 和平面PAD 所成的角的大小; (Ⅱ)证明⊥AE 平面PCD ; (Ⅲ)求二面角A PD C --的正弦值.
O 1
A 1
C 1
D 1
B 1
D
C
B
A
A C
D
P
E。