公共建筑能源效率与室内空气质量外文翻译中英文2018

  • 格式:doc
  • 大小:88.50 KB
  • 文档页数:17

下载文档原格式

  / 17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公共建筑能源效率与室内空气质量中英文2018

原文

Energy efficiency – indoor air quality dilemma in public buildings

Liva Asere, Andra Blumberg

Abstract

The energy efficiency –indoor air quality dilemma is a common predicament in many buildings undergoing energy efficiency improvements. The main goal of this research is to study the impact of this dilemma on national final energy consumption and greenhouse gas emission reduction. A simulation using a system dynamics model was carried out. The stock of public buildings was split into four sub-categories based on when the buildings were constructed. Natural ventilation is used in all buildings before renovation. After implementing energy efficiency measures, two scenarios are simulated: one with and one without mechanical ventilation. Buildings constructed between 1940 and 1992 exhibit the greatest increase in both floor areas with energy efficiency measures and profitability ratio. The simulation results show that if ventilation is operated according to national building standards, total energy consumption in public buildings increases by 1.3 % in 2014 and by 2 % in 2040 compared to the situation where there is no mechanical ventilation. If the implementation of the energy efficiency measures is increasing at higher rate, the difference between both

alternatives is increasing more. Energy efficiency measures in public buildings reduce national energy consumption and greenhouse gas emissions. However these measures also reduce indoor air quality thereby causing losses of productivity of the building occupants.

Keywords:energy efficiency,government,municipalities,public building,system dynamics modelling,energy savings,CO2 emissions

1. Introduction and background information

The majority of building stock in Latvia was built during the period when energy efficiency was not a priority. For the most part, these buildings do not offer the comfort and the quality of life expected today by the people who work and live in them. Due to climate change concerns, improving the energy efficiency of these buildings is a priority of the national energy policy. Energy consumption of public buildings, including both municipal and state-owned buildings represents a substantial part of Latvia’s total energy consumption. To increase energy efficiency in public buildings, EU directive 2012/27/EU on energy efficiency [1] has set a specific goal for member countries: 3 % of the total floor area of heated and/or cooled buildings owned and occupied by central governments are to be renovated each year to meet 2014 minimum energy performance standards. The same directive requires that member states set a national energy consumption and efficiency target. Improving