2018年硕士研究生入学考试自命题科目考试大纲-819-高等代数
- 格式:docx
- 大小:16.47 KB
- 文档页数:1
2018年数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分。
2018年考研数学一大纲及解析今年大纲知识点无论数学一、数学二还是数学三都没有变化。
这样的话从知识本身来说同学们可以按照原计划进行。
大家知道考研数学历来是整个考研所有学科当中最为稳定的一门,考研数学的知识经过多年考察已经达到了非常稳定的命题结构、知识,不会有巨大的变化。
尤其在考前一百多天时间里。
考研数学有三个科目构成,高等数学、线性代数与概率论与数理统计,高等数学占比很大,她是考研数学的半壁江山,因此复习周期很长,且需要将基础打牢。
许多考生在复习数学时,对高数的复习都很重视。
但不少考生却对线代与概率的复习重视不够。
事实上相比高数来看,线代与概率更容易拿分。
但从历年考试数据来看,线代与概率得分率偏低,平均分通常在十几分。
这个原因,一方面由于高数在考试中花费时间太多,后面的线代与概率大题没时间作答,而更重要在于,概率与线代复习不到位,题目不会做。
许多同学在刚一开始学习线性代数和概率论与数理统计时有难处,认为看书举步维艰,对此我想谈一下我的看法,希望对那些还在这两门课上迷茫的同学能有一些启发。
首先谈一下我的看法:事实上线性代数应该是考研数学三门课中最好拿分的,但是这门课有一个特点,就是入门难,但是一旦入门就一通百通,这门课由于思维上与高数大不相同,所以一上来会很不适应,总体而言6章内容环环相扣,所以很多同学一上来看第一章发现内容涉及到第五章,看到第二章发现竟有第4章的知识点,无法形成完整的知识网络,自然无法入门,总的来说线代6章内容可分为三个部分逐个攻破,首先行列式和矩阵,这是基础,第二向量与方程组,第三特征值与特征向量,这三个内容联系得相当紧密,必须逐个攻破,这样以两章为单位,每个单位中出现的知识点定理罗列出来,找到他们彼此的关系,构建属于你的知识网络,这一部分有哪些板块,每个板块有哪些定义知识点,比如行列式的定义,矩阵的定义各是什么,你是怎么理解的,向量与方程组有什么联系与区别,这些最基础的一定要搞清。
2018年全国硕士研究生入学考试数学(一)考试大纲考试科目:数学高等数学、线性代数、概率论与数理统计试卷结构(一)题分及考试时间试卷满分为150分,考试时间为180分钟。
(二)内容比例高等教学约60%线性代数约20%概率论与数理统计约20%(三)题型比例填空题与选择题约40%解答题(包括证明题)约60%一、函数、极限、连续考试内容函数的概念及表示法函数的有界性(有界和收敛的关系存在正数M 使f(x)<M 恒成立则有界,不存在M 则无界,注意与无穷大的区别-如振荡型函数)、单调性、周期性(注意周期函数的定积分性质)和奇偶性(奇偶性的前提是定义域关于原点对称)复合函数(两个函数的定义域值域之间关系)、反函数(函数必须严格单调,则存在单调性相同的反函数且与其原函数关于y=x 对称)、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立(应用题)0sin lim 1x x x →=1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭数列极限(转化为函数极限单调有界定积分夹逼定理)与函数极限(四则变换无穷小代换积分中值定理洛必塔法则泰勒公式-要齐次展开)的定义及其性质(局部保号性)函数的左极限与右极限(注意正负号)无穷小(以零为极限)和无穷大(大于任意正数)的概念及其关系无穷小的性质(和性质积性质)及无穷小的比较(求导定阶)极限的四则运算(要在各自极限存在的条件下)极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念(点极限存在且等于函数值)函数间断点的类型(第一型(有定义):可去型,跳跃型第二型(无定义):无穷型,振荡型)初等函数的连续性闭区间上连续函数的性质(零点定理介值定理)考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念(点可导与域可导的关系)导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数(数学归纳法赖布妮子公式法)一阶微分形式的不变性微分中值定理(闭区间连续开区间可导ζ不是常数)洛必达(L’Hospital)法则(注意使用条件洛必塔求解不存在时,原极限可能存在)函数单调性的判别(利用导数)函数的极值(极值的判定:定义一阶去心邻域可导且左右邻域导数异号二阶可导且该点一阶导为零)函数图形的凹凸性(证明)、拐点及渐近线(求解步骤:垂直水平斜)函数图形的描绘函数最大值和最小值弧微分曲率的概念(有绝对值注意参数方程公式)曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分(后面要加上dx).3.了解高阶导数的概念,会求简单函数的n阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理(典型函数的展开),了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.(洛必达法则受阻时:拆项积分中值中值定理)7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法(一阶导定点二阶导定性),掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念(被积函数的要求连续只是原函数存在的充分条件)不定积分的基本性质(线性和差与求导互逆)基本积分公式定积分的概念(求极限的应用)和基本性质(注意上下限的位置线性分区间上限大于下限时比大小估值定理)定积分中值定理用定积分表达和计算质心积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法(换元要彻底,不要忘了dx定积分换元要注意上下限也要换)与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分概定积分的应用考试要求1.理解原函数概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法(常见代换:倒代换三角换元万能代换不要跳步计算,以免出现毁灭性的低级失误).3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数(用处远非于此,常与罗尔定理结合解决零点问题),掌握牛顿一莱布尼茨公式.5.了解广义积分的概念,会计算广义积分(用极限的观点).6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值等.四、向量代数和空间解析几何考试内容向量的概念(自由移动)向量的线性运算向量的数量积(是数可交换)和向量积(是向量交换后变号)向量的混合积(交换的性质与行列式性质相同几何意义用于求异面直线的距离)两向量垂直(数量积为零)、平行(向量积与零向量)的条件两向量的夹角(面面线线线面)向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程(点法式截距式一般式平面束方程)、直线方程(对称式参数式一般式)平面与平面、平面与直线、直线与直线的以及平行、垂直的条件(转化为向量之间的关系)点到平面和点到直线的距离(利用平行四边形)球面母线平行于坐标轴的柱面旋转轴为坐标轴的旋转曲面的方程常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示。
2018年硕士研究生招生考试大纲019 基础教学中心目录初试考试大纲 1637专业基础综合 1659专业史论基础 2936 和声分析与曲式作品分析错误!未指定书签。
333教育综合错误!未指定书签。
937 教学设计错误!未指定书签。
942 教育管理学错误!未指定书签。
945 综合英语21复试考试大纲23复试专业综合23音乐文学创作24音乐文学理论24现场演奏科目:音乐文学与音乐表演(弦乐科目)25现场演奏科目:音乐文学与音乐表演(钢琴科目)错误!未指定书签。
现场演奏科目:音乐文学与音乐表演(声乐科目)错误!未指定书签。
现场演奏科目:音乐文学与音乐表演(萨克斯科目)错误!未指定书签。
教育技术学综合28管理学原理29课程与教学论错误!未指定书签。
音乐文学创作错误!未指定书签。
音乐文学理论错误!未指定书签。
现场演奏科目:弦乐科目36现场演奏科目:钢琴科目37现场演奏科目:声乐科目38现场演奏科目:萨克斯科目错误!未指定书签。
同等学力加试科目考试大纲错误!未指定书签。
教育学错误!未指定书签。
教育研究方法44初试考试大纲637专业基础综合一、考试性质体育综合包括运动生理学和运动训练学两部分内容。
是体育教育训练学专业硕士研究生入学考试的专业基础课程。
二、考察目标要求考生能系统理解运动生理学和运动训练学的基本概念和基本原理,能过运用基本理论合理地解释体育教学和运动训练中现象和问题。
三、考试形式本考试为闭卷考试,满分为300分,考试时间为180分钟。
四、考试内容(一)运动生理学(50%)考试内容:骨骼肌机能、血液、循环机能、呼吸机能、物质与能量代谢、肾脏机能、内分泌机能、感觉与神经机能、运动技能、身体素质、运动过程中人体机能状态变化的规律、运动训练原则的生理学分析、运动机能的生理学评定、儿少生长发育与体育运动。
(二)运动训练学(50%)考试内容:竞技体育与运动训练、运动成绩与竞技能力、运动训练原则、运动训练方法与手段、运动员体能及其训练、运动员技术能力及其训练、运动员的战术能力及其训练、运动员心理能力与运动智能及其训练、运动训练计划、运动队伍管理。
2018年考研数一大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟二、答题方式答题方式为闭卷、笔试三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系2.了解函数的有界性、单调性、周期性和奇偶性3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念4.掌握基本初等函数的性质及其图形,了解初等函数的概念5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法3.会求有理函数、三角函数有理式和简单无理函数的积分4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式5.了解反常积分的概念,会计算反常积分6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法4.掌握平面方程和直线方程及其求法5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题6.会求点到直线以及点到平面的距离7.了解曲面方程和空间曲线方程的概念8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性4.理解方向导数与梯度的概念,并掌握其计算方法5.掌握多元复合函数一阶、二阶偏导数的求法6.了解隐函数存在定理,会求多元隐函数的偏导数7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程8.了解二元函数的二阶泰勒公式9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系4.掌握计算两类曲线积分的方法5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分7.了解散度与旋度的概念,并会计算8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件2.掌握几何级数与级数的收敛与发散的条件3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法4.掌握交错级数的莱布尼茨判别法5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系6.了解函数项级数的收敛域及和函数的概念7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和9.了解函数展开为泰勒级数的充分必要条件10.掌握,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念2.掌握变量可分离的微分方程及一阶线性微分方程的解法3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程4.会用降阶法解下列形式的微分方程5.理解线性微分方程解的性质及解的结构6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程8.会解欧拉方程9.会用微分方程解决一些简单的应用问题线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质2.会应用行列式的性质和行列式按行(列)展开定理计算行列式二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法5.了解分块矩阵及其运算三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5.了解维向量空间、子空间、基底、维数、坐标等概念6.了解基变换和坐标变换公式,会求过渡矩阵7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法8.了解规范正交基、正交矩阵的概念以及它们的性质四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法4.理解非齐次线性方程组解的结构及通解的概念5.掌握用初等行变换求解线性方程组的方法五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法3.掌握实对称矩阵的特征值和特征向量的性质六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用5.会求随机变量函数的分布三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算3.了解正态总体的常用抽样分布七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误2.掌握单个及两个正态总体的均值和方差的假设检验。
2018年考研数学(二)考试大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试试卷试卷满分为150分,考试试卷为180分钟二、答题方式答题方式为闭卷、笔试。
三、试卷内容结构高等数学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限于右极限无穷小量和无穷大量的概念及其关系无穷小量及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上连续函数的性质.3.了解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全积分,了解隐函数的存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元一次函数极值存在的充分条件,会求二元函数的极值,会有拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直接坐标、极坐标).八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和4理解线性微分方程解的性质及解的结构.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.会用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性Born to win第 11 页 共 11 页 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。
2018年硕士研究生入学考试自命题考试大纲第一篇:2018年硕士研究生入学考试自命题考试大纲2018年硕士研究生入学考试自命题考试大纲考试科目代码:考试科目名称:概率论与数理统计一、试卷结构1、试卷成绩及考试时间本试卷满分为150分,考试时间为120分钟。
2、答题方式:闭卷、笔试3、试卷内容结构概率论占60%,数理统计占40%4、题型结构填空题:10小题,每小题5分,共50分计算题:6小题,每小题10分,共60分证明题:2小题,每小题 20分,共40分二、考试内容与考试要求●考试目标:1、要求对概率论与数理统计的基本概念有深入的理解,能计算一些常见分布的期望、方差。
2、了解假设检验、点估计及区间估计的统计意义,能解决一些经典模型的检验问题、区间估计、点估计及方差分析。
3、理解大数定律及中心极限定理。
●考试内容1 概率论与数理统计(一)基本概念1、概率、条件概率、 Bayes 公式2、古典概型、几何概型3、独立性、伯努利试验(二)离散随机变量1、离散随机变量的定义2、经典的离散随机变量的分布 a.二项分布 b.几何分布 c.泊松分布d.超几何分布3、离散随机变量的期望、公差4、离散随机变量的特征函数5、离散随机变量相互独立的概念6、二维离散随机变量的联合分布、条件分布、边缘分布及二个离散随机变量的相关系数(三)连续随机变量1、连续随机变量的概念22、密度函数3、分布函数4、常见的连续分布 a.正态分布 b.指数分布 c.均匀分布 d.t分布 e. 2分布 f.F分布5、连续随机变量的期望、方差6、连续随机变量独立的定义7、二维连续随机变量的联合密度、条件密度、边缘分布及二个连续随机变量的相关系数8、连续随机变量的特征函数(四)独立随机变量和的中心极限定理和大数定律1、依概率收敛2、以概率 1 收敛(或几乎处处收敛)3、依分布收敛4、伯努利大数定律35、利莫弗林德伯格中心极限定理(五)点估计1、无偏估计,克拉美 - 劳不等式2、矩估计3、极大似然估计(六)区间估计1、置信区间的概念2、一个正态总体的期望的置信区间3、大样本区间估计4、两个正态总体期望之差的置信区间(方差已知)(七)假设检验1、检验问题的基本要素:第一类错误的概率、第二类错误的概率、检验的功效、功效函数、检验的拒绝域、原假设、备择假设2、一个正态总体的期望的检验问题3、大样本检验4、基于成对数据的检验( t 检验)5、两个正态总体期望之差的检验4(八)方差分析1、理解方差分析的思想,掌握单因素方差分析方法2、了解双因素方差分析方法(九)简单线性回归模型1、简单线性回归模型定义2、回归线的斜率的最小二乘估计3、回归线的截距的最小二乘估计4、随机误差(随机标准差)的估计5第二篇:2019年硕士研究生入学考试自命题考试大纲2019年硕士研究生入学考试自命题考试大纲考试科目代码:[ ] 考试科目名称:企业战略管理(复试)一、试卷结构1、试卷成绩及考试时间本试卷满分为150分,考试时间为120分钟。
2018年硕士研究生招生考试大纲002 信息科学与工程学院目录初试考试大纲 1610高等数学 1638 量子力学 1953 声学基础 3806 普通物理 5807数据结构7808地理信息系统8810数字电子技术10341农业知识综合三11910高级程序设计12911软件工程14912数据结构和软件工程16930程序设计基础19940 计算机网络与安全 21946 信号与系统23954计算机基础综合24复试考试大纲28现代物理基础28科技英语(光学、凝聚态物理) 30现代光学基础31电子技术基础33科技英语(光学工程专业(学术型080300和专业型085202)34 电子技术A 35通信原理36计算机系统结构38面向对象的程序设计40数据库系统41程序设计实践43保密概论45安全程序设计实践47农业信息化概论50数字信号处理52C++语言编程54科技英语(地图学与地理信息系统、测绘工程)56 光学电磁学57信号与系统59数字电子技术61科技英语(海洋探测技术、摄影测量与遥感)62同等学力加试科目考试大纲63数据结构63软件工程65初试考试大纲610高等数学一、考试性质高等数学是理、工科专业硕士研究生入学考试的专业基础课程。
高等数学入学考试是为招收理、工科专业硕士研究生而实施的具有选拔功能的水平考试,它的指导思想是既要为国家选拔具有较强分析问题与解决问题能力的高层次人才,又要有利于促进高等学校高等数学课程教学质量的提高。
二、考察目标要求考生能系统理解高等数学的基本概念和基本原理,掌握高等数学的基本思想与方法,具有较好的逻辑推理能力、空间想象能力、计算能力以及运用所学知识分析问题和解决问题的能力。
三、考试形式本考试为闭卷考试,满分为150分,考试时间为180分钟。
试卷结构:高等数据75%,线性代数25%。
四、考试内容(一)高等数学(75%)考试内容:函数的极限与连续,一元函数微积分及其应用,向量代数与空间解析几何,多元函数微积分及其应用,场论,含参变量积分,无穷级数,常微分方程及其应用。
2018硕士研究生入学考试大纲考试科目名称:高等代数一、考试要求:1.一元多项式理论:①掌握多项式的整除理论;② 会求最大公因式与最小公倍式;③ 掌握复系数、实系数与有理系数多项式的因式分解理论。
2.行列式理论:①理解行列式的定义、熟悉行列式的性质;②掌握有特殊结构的n阶行列式的计算;③会用Laplace展开定理。
3.线性方程组理论:①会用Cramer法则进行方程组求解;②掌握向量的线性相关与线性无关的定义及判别;③掌握线性方程组有解的判别法;④掌握线性方程组解的结构。
4.矩阵理论:①熟悉矩阵的各种运算与运算律;②会求矩阵的逆;③理解矩阵分块与分块矩阵;④掌握初等矩阵的性质与基本用法;5. 二次型理论:①掌握二次型的化简与标准型;②掌握正定、半正定矩阵的定义与基本性质;③熟悉惯性定理。
6. 线性空间理论:①掌握线性空间的基底和维数的定义与性质;②掌握线性空间基变换与坐标变换;③掌握子空间以及它们的交与直和的性质;④理解线性空间的同构。
7. 线性变换理论:①掌握线性变换的运算及其矩阵表示;②会求线性变换与矩阵的特征值与特征向量;③掌握相似矩阵与某些矩阵的对角化;④掌握线性变换的值域与核及其性质;⑤理解不变子空间;8. 欧式空间理论:①掌握内积空间与欧式空间的定义与性质;②掌握正交变换与正交矩阵的性质;③理解对称变换;④掌握实对称矩阵及其对角化理论。
二、考试内容:1) 一元多项式理论a: 多项式的整除,b: 最大公因式与最小公倍式,c: 复系数、实系数与有理系数多项式的因式分解理论。
2) 行列式a: 行列式的定义、性质与计算,b: Laplace展开定理。
3) 线性方程组理论a: Cramer法则,b: 线性相关与线性无关,c: 线性方程组有解的判别,d: 线性方程组解的结构。
4) 矩阵a: 矩阵的各种运算与运算律,b: 矩阵的逆,c: 分块矩阵,d: 初等矩阵,5) 二次型a: 二次型的化简与标准型,b: 正定二次型与正定矩阵,半定阵。
硕士研究生入学考试大纲考试科目名称:高等代数一、考试要求:.一元多项式理论:①掌握多项式的整除理论;② 会求最大公因式与最小公倍式;③ 掌握复系数、实系数与有理系数多项式的因式分解理论。
.行列式理论:①理解行列式的定义、熟悉行列式的性质;②掌握有特殊结构的n阶行列式的计算;③会用展开定理。
.线性方程组理论:①会用法则进行方程组求解;②掌握向量的线性相关与线性无关的定义及判别;③掌握线性方程组有解的判别法;④掌握线性方程组解的结构。
.矩阵理论:①熟悉矩阵的各种运算与运算律;②会求矩阵的逆;③理解矩阵分块与分块矩阵;④掌握初等矩阵的性质与基本用法;. 二次型理论:①掌握二次型的化简与标准型;②掌握正定、半正定矩阵的定义与基本性质;③熟悉惯性定理。
. 线性空间理论:①掌握线性空间的基底和维数的定义与性质;②掌握线性空间基变换与坐标变换;③掌握子空间以及它们的交与直和的性质;④理解线性空间的同构。
. 线性变换理论:①掌握线性变换的运算及其矩阵表示;②会求线性变换与矩阵的特征值与特征向量;③掌握相似矩阵与某些矩阵的对角化;④掌握线性变换的值域与核及其性质;⑤理解不变子空间;. 欧式空间理论:①掌握内积空间与欧式空间的定义与性质;②掌握正交变换与正交矩阵的性质;③理解对称变换;④掌握实对称矩阵及其对角化理论。
二、考试内容:) 一元多项式理论: 多项式的整除,: 最大公因式与最小公倍式,: 复系数、实系数与有理系数多项式的因式分解理论。
) 行列式: 行列式的定义、性质与计算,: 展开定理。
) 线性方程组理论: 法则,: 线性相关与线性无关,: 线性方程组有解的判别,: 线性方程组解的结构。
) 矩阵: 矩阵的各种运算与运算律,: 矩阵的逆,: 分块矩阵,: 初等矩阵,) 二次型: 二次型的化简与标准型,: 正定二次型与正定矩阵,半定阵。
) 线性空间: 线性空间的基底和维数,: 基变换与坐标变换,: 子空间以及它们的交与直和,: 线性空间的同构。
2018年硕士研究生入学考试自命题考试大纲考试科目代码:[802] 考试科目名称:管理学一、试卷结构1、试卷成绩及考试时间本试卷满分为150分,考试时间为180分钟。
2、答题方式:闭卷、笔试3、试卷内容结构管理学原理占75分(50%)和管理经济学占75分(50%)4、题型结构名词解释题:5小题,每小题5分,共25分简答题:4小题,每小题10分,共40分论述题:3小题,每小题15分,共45分材料分析题:2小题,每小题20分,共40分二、考试内容与考试要求●考试目标:1、系统掌握管理学原理的基本知识、基本概念和基本理论。
2、理解企业管理运营的规律,理解管理学理论体系中的基本工具与方法。
3、能够运用管理学的基本理论、工具以及方法,分析和解决现实中的企业经营管理问题。
●考试内容管理学原理部分(一)管理与管理学1、管理的概念及其特征;2、管理的基本职能;3、管理二重性的基本内涵和意义;4、管理的科学性与艺术性。
(二)管理思想的发展1、泰罗的科学管理理论;2、法约尔的经营管理理论;3、梅奥的霍桑试验和人际关系学说;4、马斯洛的需要层次理论;5、赫茨伯格的双因素理论;6、西蒙的决策理论;7、圣吉的学习型组织理论;8、中国现代管理思想发展的新趋势。
(三)管理的基本原理1、管理原理的主要特征和意义;2、系统原理、人本原理、责任原理和效益原理的基本内容;3、责、权、利和能力四者之间的关系。
(四)管理的基本方法1、管理的法律方法的内容与实质、的特点与作用及正确运用法律方法;2、管理的行政方法的内容与实质、特点与作用及如何正确运用行政方法;3、管理的经济方法的内容与实质、特点及如何正确运用经济方法。
(八)管理决策1、决策概念和分类;2、决策的原则与过程;3、决策的影响因素;4、决策的方法。
(九)计划与计划工作1、计划的概念及其内容;2、计划的性质;3、计划的分类;4、如何编制计划;5、目标管理的基本思想;6、滚动计划法的优缺点;7、网络计划技术的基本步骤和优缺点。
2018年北京邮电大学816高等代数考研真题、考研经验、考研大纲、复习资料、考试重点一、专业课代码及名称816高等代数二、考试大纲本课程主要考核考生对《高等代数》课程的基本理论体系和知识结构的掌握情况及熟练程度,检测考生抽象思维和逻辑推理能力,以及综合运用各知识点解决问题的能力,要求考生概念清楚,对定理理解准确,扎实掌握,还要求有较强的计算能力,对高等代数的方法能灵活应用。
二、考试内容:第一章:多项式一元多项式,整除的概念,最大公因式,因式分解定理,重因式,多项式函数,复系数与实系数多项式的因式分解,有理系数多项式;第二章:行列式排列,级行列式,级行列式的性质,行列式的计算,行列式按一行(列)展开,克拉默法则,行列式的乘法规则;第三章:线性方程组消元法,维向量空间,线性相关性,矩阵的秩,线性方程组有解的判别定理,线性方程组解的结构,二元高次方程组;第四章:矩阵矩阵的概念,矩阵的运算,矩阵乘积的行列式与秩,矩阵的逆,矩阵的分块,初等矩阵,分块乘法的初等变换及应用,广义逆矩阵;第五章:二次型二次型的矩阵表示,标准形,惟一性,正定二次型;第六章:线性空间集合、映射,线性空间的定义与简单性质,维数、基与坐标,基变换与坐标变换,线性子空间,子空间的交与和,子空间的直和,线性空间的同构;第七章:线性变换线性变换的定义,线性变换的运算,线性变换的矩阵,特征值与特征向量,对角矩阵,线性变换的值域与核,不变子空间,若当(Jordan)标准形介绍,最小多项式;第八章:矩阵矩阵,矩阵在初等变换下的标准形,不变因子,矩阵相似的条件,初等因子,若当(Jordan)标准形的理论推导;第九章:欧几里得空间定义与基本性质,标准正交基,同构,正交变换,子空间,对称矩阵的标准形。
三、试题结构卷面满分为150分,基本题得分约90左右,中偏难或较难题约占60分。
主要是计算和证明题。
考研专业课复习方法1.制定科学合理的复习计划每个人的学习情况不一样,复习计划也会不同。
2018全国硕士研究生入学统一考试数学考试大纲数学三考试科目微积分、线性代数、概率论与数理统计试卷结构一、总分试卷满分为150分,考试时间180分钟二、内容比例微积分约56 %线性代数约22 %概率论与数理统计约22 %三、题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题<包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:,函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。
考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.了解数列极限和函数极限<包括左极限和右极限)的概念。
6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其无穷小量的关系。
8.理解函数连续性的概念<含左连续和右连续),会判断函数间断点的类型。
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质<有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分学考试内容导数和微分的概念,导数的几何意义和经济意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达<L’Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义<含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
2018年硕士研究生入学考试自命题考试大纲考试科目代码:[ ] 考试科目名称:发展经济学一、试卷结构1、试卷成绩及考试时间本试卷满分为150分,考试时间为120分钟。
2、答题方式:闭卷、笔试3、题型结构论述题:5小题,每小题 30分,共150分二、考试内容与考试要求●考试目标:1、掌握发展经济学的基本概念和基本理论。
2、了解发展经济学的发展现状趋势。
3、能运用发展经济学的理论分析和解决发展中国家特别是我国的经济发展问题。
●考试内容(一)发展经济学概论发展经济学的广义论与狭义论;发展中国家的特征;发展目标的含义;经济发展的实质;发展水平的度量方法;发展经济学的产生与演进;发展经济学的任务、性质与研究方法。
(二)经济增长理论经济增长的理论及其发展;发达国家经济增长的经验总结;经济落后的历史分析:劣势抑或优势;经济发展的限制因素与发动因素。
(三)公平与发展公平发展目标与不平等现象;收人分配问题;贫困问题;增长与公平并重的战略;中国的收入分配问题;收入分配与经济增长的关系。
(四)制度与经济发展什么是制度;制度的需求与供给;制度变迁理论;发展中国家经济发展中的制度问题。
(五)市场与政府的作用对发展计划和市场作用的认识;政府与市场之间的关系;发展中国家的政府职能;发展中国家的寻租及其治理;提升政府能力的战略与途径。
(六)资源与环境自然资源的开发与利用;环境退化与环境保护;环境与经济发展的关系;可持续发展战略;资源节约型和环境友好型社会建设与经济增长方式的转变。
(七)资本形成资本形成在经济发展中的作用;储蓄与资本形成的方式;发展中国家的信贷与金融深化;资本形成的效率。
(八)人力资本的开发与利用人力资本的含义与作用;人力资本的度量;人口增长与经济发展;营养和健康与人力资本的形成;教育与人力资本的形成;人力资本形成的战略选择;人力资本收益率估算。
(九)技术进步技术进步的含义与类型;技术进步在经济增长中的作用;技术进步的实证测度;技术进步原理:创新与扩散;技术转移与技术引进;技术选择。
2018年考研数学(二)考试大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试试卷试卷满分为150分,考试试卷为180分钟二、答题方式答题方式为闭卷、笔试。
三、试卷内容结构高等数学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限于右极限无穷小量和无穷大量的概念及其关系无穷小量及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上连续函数的性质.3.了解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全积分,了解隐函数的存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元一次函数极值存在的充分条件,会求二元函数的极值,会有拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直接坐标、极坐标).八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和4理解线性微分方程解的性质及解的结构.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.会用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性百度文库- 让每个人平等地提升自我考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.11。
2018年考研数学(二)考试大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试试卷试卷满分为150分,考试试卷为180分钟二、答题方式答题方式为闭卷、笔试。
三、试卷内容结构高等数学约78%线性代数约22%四、试卷题型结构单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限于右极限无穷小量和无穷大量的概念及其关系无穷小量及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上连续函数的性质.3.了解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全积分,了解隐函数的存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元一次函数极值存在的充分条件,会求二元函数的极值,会有拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直接坐标、极坐标).八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和4理解线性微分方程解的性质及解的结构.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.会用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性.word格式.考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法..专业.专注.。
2018年全国硕士研究生入学统一考试
数学专业《高等代数》考试大纲
一、考核目标
《高等代数》考试考察考生是否具备攻读数学专业的硕士研究生所必须的代数基础和基本素养,高等代数是数学专业的一门重要的基础课程,主要包括行列式、线性方程组、矩阵、二次型、多项式理论、线性空间与线性变换等。
要求考生能准确理解高等代数中的基本思想、基本概念,熟练掌握高等代数中的各种基本计算和论证技巧,具备综合运用代数理论解决具体问题的能力。
二、考试主要范围
1.数域与排列;
2.行列式的性质与计算;
3.克莱姆法则;
4.向量组的线性相关性、极大无关组;
5.向量组的秩、矩阵的秩;
6.线性方程组及其解的结构;
7.矩阵的运算与初等变换,初等矩阵;
8.二次型及其标准型;
9.正定二次型;
10.多项式理论;
11.线性空间的基与坐标;
12.线性子空间的交与和;
13.线性变换;
14.特征值与特征向量;
15.矩阵相似与对角化、若当标准形;
16.标准正交基与正交变换
17.实对称矩阵的正交相似对角化。