初三数学上册春季班培优讲义.第17讲 托勒密定理-测试题(含答案)【精品】
- 格式:docx
- 大小:1.08 MB
- 文档页数:8
第三章 托勒密定理及应用习题A1.由CDE BAE △∽△和CBE DAE △∽△,有4BE AB CE =,4DEAD CE=,对四边形ABCD 应用托勒密定理,有()()416BE DEBD AE CE AB AD CE+⋅+=+=⋅.令CE x =,得方程26160x x +-=,求得2x =(舍去了负值).于是12BE DE CE AE ⋅=⋅=.又8BD BC DC <+=,求得3BE =,4DE =或4BE =,3DE =,总之7BD =为所求.2.连EF ,DF ,由FBC FBD FED FAC ∠=∠=∠=∠,ABF EBF EDF ACF ∠=∠=∠=∠,知EDF EDF △∽△,即EF DE DFAF AC CF==.设其比值为k (k 为参数),则EF kAF =,DE kAC DF kCF =⋅=,对四边形BEFD 应用托勒密定理.有()BE EF DF BF DE +=⋅,即()BE k AF k CF BF k AC ⋅+⋅=⋅⋅注意到BE AC =,消去k ,得BF AF CF =+.3.连AC ,在四边形APCD 中应用托勒密定理,有PA PC AC PB AB += 4.连11l l 11,,B D DC B C ,设CAD α∠=,BAD β∠=,O ⊙的半径为R .由AD 为BC 上中线,可令12ABC ACD ABC S S S k ===△△△.由正弦定理有112sin B D R β=⋅,112sin()C D R αβ=⋅+.对四边形111AB D C 应用托勒密定理,有1112sin 2sin 2sin()AB R αAC R βAD R αβ⋅⋅+⋅⋅=⋅⋅+,消去2R ,两边同乘以 12AB AC AD ⋅⋅得111122ACD ABD ABC AB AB S AC AC S AD AD S ⋅⋅+⋅⋅=⋅⋅△△△,亦即 1112AB AB AC AC AD AD ⋅+⋅=⋅,由此即证.5.连1535,A A A A ,则1514A A A A =,3513A A A A =.对四边形1345A A A A 应用托勒密定理,有 3413151435()A A A A A A A A A A ⋅+=⋅,即1213141413()A A A A A A A A A A +=⋅,由此整理即证.6.对四边形AB A B ''应用托勒密定理,有11a b cc AB A B '''=+⋅,即11111a b c cc c AB A B c '''=+⋅⋅,同理,对四边形B CA C ''',AB BC '',AA BC ''分别应用托勒密定理,有1AB A B c AB B C b AB A C a '''''''⋅⋅=⋅⋅+⋅⋅,1AB B C b abc bb b '''⋅⋅=+,1AB A C a a b c aa a '''''''⋅⋅=+.由此四式即证得结论.7.设圆心O 到AB ,BC ,CA 的距离分别为1x ,2x ,3x ,连接BO 并延长与O ⊙交于D ,连AD ,DC ,则12AD x =,22CD x =,对四边形ABCD 应用托勒密定理有12222x a x c Rb +=.同理,23222x b x a Rc +=,13222x b x c Ra +=.加之1232()2()2()2()x a b x b c x c a R a b c +=+++=++,但123()cx ax bx r a b c ++=++,以上两式相加得123x x x R r ++=+.但11x R h =-,22x R h =-,33x R h =-,由此即证.8.作一直径(11)AB x x =≥的圆,在B 的两侧分别取C ,D 二点,使2BC =,11BD =,于是AC =,AD =,对四边形ABCD 应用托勒密定理,有211CD x ⋅=,将此式与原方程比较得CD =BCD △中,由余弦定理,有1cos 2CBD ∠==-,知120CBD ∠=︒,故14sin120CDx AB ===︒为所求.9.作直径1AC =的圆,并作弦AB b =,AD a =的圆内接四边形ABCD,则DC =BC =.应用托勒密定理,有AD BC AB CD AC BD ⋅+⋅=⋅,即1a b BD =⋅,由此得1BD =,即BD 也是圆的直径,故221a b +=.10.当0x =时,1y =,当0x ≠时,作代换222x t x +=,1122x x t x x =+=+≥sin cos t θy t θ+=+,即1sin cos yt θy θ-=-⋅,以1AB =为直径作圆,作弦sin AC θ=,作弦AD =,则BD =cos BC θ=.由托勒密定理及1CD AB ≤=,有sin cos θy θ+,亦有sin cos sin cos yt t θy θθy θ-=-≤+11t y y ⋅-≤-≤,故22y ≤≤+11.连AC ,CE ,AE ,对四边形APCE 应用托勒密定理,有AC PE AE PC CE PA ⋅=⋅+⋅,而AC AE CE ==,有PE PA PC =+.同理,PD PB PF =+,由此即证. 12.不失一般性,令P 点位于OBF △内部(其中O 为C AB △中心),作1PP AD ⊥于1P ,2PP BE ⊥于2P ,3PP CF ⋅于3P .由P ,O ,1P ,2P 四点共圆,有23180PP O PPO ∠+=︒,知1P ,3P ,O ,2P 四点共圆,即P ,3P ,O ,l P ,2P 共圆,推知l 23PP P △是正三角形,在312PP PP 中,有123213312PP P P PP PP PP PP ⋅=⋅+⋅,即123PP PP PP =+,故PAD PCF S S +△△.13.作ABC △外接圆的直径CF ,并设AF x =,BF y =,则60BFC A ∠=∠=︒,直径2CF d y ==.对四边形BCAF 应用托勒密定理,有cd ax by =+.从而tan tan tan tan 2221tan tan tan tan 2a b A B BFC AFC ax by ax by by cd by by c by x a b A B BFC AFC ax by ax by cd c y cy x--∠-∠-+-=-======-=+∠+∠++⋅+.14.令AB AC a ==,对四边形ABPC 应用托勒密定理,有a PB a PC BC PA ⋅+⋅=⋅,即有PA aPB PC BC =+.对四边形BCAQ 应用托勒密定理,有QA BC a QB a QC ⋅+⋅=⋅,即QA aQC QB BC=-. 15.对四边形ABCD 应用托勒密定理,BC AD BD AC AB CD ⋅+⋅=⋅,即AD AC BC BD CD AB AB ⋅+⋅=.又ABD MCP △∽△及ABC MDQ △∽△,有AD MPAB MC =,AC MQ AB MD =,于是MP MQBC BD CD MC MD⋅+⋅=,注意到=22CD MC MD =即证.16.连EG ,FG 和EF ,对四边形BFGE 应用托勒密定理,有BE FG BF EG BG EF ⋅+⋅=⋅,又FEG FBG ADB ∠=∠=∠,EFG EBG ∠=∠,则EFG ABD △∽△,有FG EG EFAB AD BD==,令其比值为t ,则t BE AB t BF AD t BG BD ⋅⋅+⋅⋅=⋅⋅,消去t ,注意到AD BC =即证.17.作DG AF ∥交1O ⊙于G ,则AG FD =,GF AD =.对四边形AGDF 应用托勒密定理,AD FG AG FD AF GD ⋅=⋅+⋅.由AD 平分BAF ∠,知FD BD =,即AG BD =,由此知GB DA ∥,有GD AB =.故 222AD FD AF GD FD AF AB =+⋅=+⋅. 同理,有22AE FE AF AC =+⋅.此两式相减有2222DA EA DF EF -=-,故DE AF ⊥.18.在直径2AB x =>的圆中,在两个半圆上分别取点C 和,使2AC =,1AD =,则BC =,BD =CD x ⋅,与原方程比较得CD =.在ACD △中,由余弦定理,有1cos 2CAD ∠=-,则120CAD ∠=︒,故sin CD x CAD =∠.19.由222+=,在直径AB =的圆中,在一半圆上取点C ,使AC BC D ,则AD BD =.连CD ,知CD AB ≤2AB CD =⋅≤,即y =又在ABC △中,AC BC AB +≥(当C 与A 或B 重合时,取等号)y ≤≤ 20.设222x y a +=,则01a ≤≤.当0a =时,命题显然成立,当01a <≤时,在直径AB a =的一半圆上取点C ,使AC x =,BC y =,因2222x y a +=+=,则可在另一半圆上取点D ,使BD =,AD =,由托勒密定理,有2x y AB CD a +=⋅≤,即2()()x x y y x y ++-≤≤但222()()()()x xy y x x y y x y x x y y x y +-=++-≤++-21.设点T 在劣弧AB 上,连AT ,BT ,CT ,分别交小圆于点D ,E ,F .连DE ,EF ,FD ,过点T 作公切线RQ .由DFT RTD RTA ACT ∠=∠=∠=∠,有AC DF ∥,有AD ATCF CT=.又 2AM AD AT =⋅,2CP CF CT =⋅,有2222AM AD AT AT CP CF CT CT =⋅=,即AM AT CP CT=.同理,BN BTCP CT=.对圆内接四边形ATBC 应用托勒密定理,有AT BC BT AC TC AB ⋅+⋅=⋅,而AB BC CA ==,则AT BT CT +=,故AM BN CP ++.22.令BC a =,AC b =,AB c =.由BE 平分ABC ∠,有AE AB EC BC =,亦有AE ABAC BC AB=+,即bc AE a c =+.同理,bcAF a b=+.由AE PQ ∥,有AEF Q ∠=∠,从而AEF PCB ∠=∠,注意到FAE BPC ∠=∠,有AEF PCB △∽△,即PB AF a cPC AE a b+==+,即()PB b PC a c PB a ⋅=⋅+-⋅.在圆内接四边形PABC 中,应用托勒密定理,有PB b PC c PA a ⋅=⋅+⋅,故()PC a c PB a PC c PA a +-⋅=⋅+⋅,因此,PC PA PB ++. 23.由()BE AC AF FC AC ⋅=+⋅,AC ,()()AF BC AB FC AF BD CD FC BE AE AF ⋅+⋅=⋅++-=⋅()()AC AF CD FC AC FC AE AF FC AC AF CD FC AE +⋅+⋅-⋅=+⋅+⋅-⋅,又AF CD FC AE ⋅=⋅,则BF AC AF BC AB FC ⋅=⋅+⋅,由托勒密定理之逆,知ABCF 有外接圆.24.连EA ,ED ,由BAE ECD ∠=∠,且CDE EAD ABE ∠=∠=∠,有ABE CDE △∽△,亦有AE AB EC CD=, 即EC AB EA CD ⋅=⋅.在圆内接四边形AEBC 中,应用托勒密定理,有EA BC EB AC EC AB⋅+⋅=⋅,于是222111EB AC EA BC EA BC BC BD BD BD EC AB EC AB EA CD CD CD BD CD DA ⋅⋅⋅=-=-=-===⋅⋅⋅⋅.又ABD CAD ∠=∠,ADB ADC ∠=∠,有ABD CAD △∽△,有AB BDAC AD=.于是22EB AC AB EC AB AC ⋅=⋅,故33EB AB EC AC =. 习题B1.在弧ADC 上取点H ,使AH CD c ==,连HC ,HB ,令AC m =,BD n =,BH p =,易证AHC CDA △∽△,即HC AD d ==.对四边形ABCD ,ABCH 分别应用托勒密定理,有ac bd mn +=,ad bc pm +=.又在弧BCH 上取点K ,使BK CH d ==,由CHB KBH △∽△,有HK BC b ==对四边形ABKH 应用托勒密定理,有ab cd AK p +=⋅.又由KHA BCD =,有AK BD n ==.于是2()()ac bd ad bc m ab cd ++=+,2()()ac bd ab cd n ad bc++=+,由此即求得AC ,BD .2.作AGH △的外接圆1O ,分别截AC ,AD AB 于点H ,Q ,G .易证BCD APE △∽△,即DC BC PE AP =,BD BC AE AP =,即PE AK CD BC BC AP AP =⋅=⋅,AE BD BC AP =⋅.对四边形ABDC 应用托勒密定理,有AE AKAD BC BD AC DC AB BC BC AB AP AP⋅=⋅+⋅=⋅+⋅⋅,故AP AD AE AE AK AB ⋅=⋅+⋅.(*) 同理,由托勒密定理,有AP AQ AE AE AK AG ⋅=⋅+⋅.于是2()AP AQ AP AP PQ AP AP PQ AE AH AK AG ⋅=+=+⋅=⋅+⋅, 即22AP PG PH AP AP PQ AE AH AK AG +⋅++⋅=⋅+⋅从而2AP AE AH AK AG PG PH =⋅+⋅-⋅.由(*)式减去上式,有()()() AP AD AP AE AC AH AK AB AG PG PH -=-+-+⋅,即PA PD PK PI PE PF PG PH ⋅=⋅+⋅+⋅.又22221()24PK PI EF KI KI++≤≤,214PE PF EF ⋅≤,214PG PH GH ⋅≤,故224EF KI GH PA PD ++≥⋅,其中等号当且仅当P 为ABCV △的中心时取得.3.设四边形1234A A A A 内接于以O 为圆心,半径为R 的圆,设点O 在弦13A A ,12A A ,23A A ,34A A ,41A A ,上的射影分别为点0H ,1H ,2H ,3H ,4H .记(0,1,,4)i i h OH i ==…,1S ,2S 与1p ,2p 为123A A A △与34l A A A △的面积与半周长,1r ,2r 为它们的内切圆半径. 考虑含点O 的三角形,不妨设O 在123A A A △内,分别对四边形302A H OH ,110A H OH ,221A H OH ,应用托勒密定理,并注意02H H ,01H H ,12H H 是123A A A △的中位线,有1102()R r p R H H +=⋅.01121023203011102121()()(R H H R H H S h H A h H A h H A h H A h H A h +⋅+⋅+=⋅+⋅+⋅+⋅+⋅+⋅2211222003112011)()()2H A h A A h A A h A A h h h p +⋅+⋅+⋅=++⋅,故1120R r h h h +=++.考虑O 在三角形外部的情形,考虑341A A A △,对四边形140A H H O ,330A H H O ,413A H OH 应用托勒密定理,有220404033434010413()()(R r p R H H R H H R H H R H H S h H A h H A h +=⋅+⋅+⋅+⋅+=⋅-⋅+⋅0303343434433444101334021)()()()2H A h H A h H A h H A h A A h A A h A A h h h p -⋅+⋅-⋅+⋅+⋅-⋅=+-⋅,故2340R r h h h +=+-.在上述情形下,1212342r r h h h h R +=+++-.对一般情形,所求内切圆半径之和等于1h ,2h ,3h ,4h ,2R 并赋以一定的符号之和,这些符号只与点O 相对四边形1234A A A A 的位置有关.因此,这个和与对角线的选取无关. 4.设圆1C 的圆心为O ,半径为r ,连i OA ,(1,2,,)i OB i n =…,在四边形112OA B B 中应用托勒密不等式,有112211112OA B B CO A B OB A B ⋅+⋅≥⋅,即1211222()r B B λr A B λr A A A B →⋅+⋅≥+),故12111222()B B λA B λA A A B +≥+. 同理,迭用托勒密不等式,有23222333()B B λA B λA A A B '+≥+;34333444()B B λA B λA A A B +⋅≥+;…;1111()n n n n n n n B λA B λA A A B ----+⋅≥+,1111()n n n n B B λA B λA A A B +≥+. 将上述几个同向不等式相加,得1223111223-11()n n n n n B B B B B B B B λA A A A A An A A -+++≥+++……+,故21p λp ≥.由托勒密不等式中等号成立的条件是当且仅当四边形112OA B B ,223OA B B ,…,1n n OA B B ,都是圆内接四边形,由圆内接四边形性质,知2323OA A OB B ∠=∠,2132OA A OB B ∠=∠,但2332OB B OB O ∠=∠,则2123OA A OA A ∠=∠,从而1223OA A OA A △∽△,因此1223A A A A =.同理, 23341n A A A A A A ===…,即n 边形12n A A A …为正n 边形.反之,若12n A A A …为正n 边形,将其绕点O 逆时针方向旋转2πn,知12A A →,23A A →,…,1n A A →,从而12B B →,23B B →,…,1n B B →.于是知12n B B B …也是正n 边形,因此有122312n A A A A A A r ===⋅…πsin n,12231π2sin n B B B B B B λr n ====⋅….此时有21p λp =.5.作1O ⊙,O ⊙的公共直径GMK ,其中GM 是1O ⊙的直径,GK 是O ⊙的直径,连CG 交1O ⊙于点N .显然MN KC ∥,于是CN KM KG =,222CN KMf CN CG CG CG CG KG=⋅=⋅=⋅,即f CG =d AG =e BG =ABGC 中应用托勒密定理,有b BGc CG a AG ⋅+⋅=⋅bd ce af +=. 6.首先证EF GH =,MN PQ =.由切线长定理,有()()()()AC BC BD DA AF BF BE AE -+-=-+-=()()2AF AE BE BF EF-+-=,()()()()()AC DA BD BC CH DH DG CG CH CG -+-=-+-=-+()2DG DH GH -=,而()()()()AC B BD DA AC DA BD BC -+-=-+-,故EF GH =.同理MN PQ =.连1O A ,1O E ,3O C ,3O G ,由BAD ∠与BCD ∠互补,知1O AE ∠与3O CG ∠互余,有 13390O AE O CG CO G ∠=︒-∠=∠,即13AE CO G △∽△.于是1313AE CG O E O G R R ⋅=⋅=⋅.同理,24BM DP R R ⋅=⋅.令AE AQ a ==,BM BF b ==,CG CN c ==,DP DH d ==,EF GH m ==,MN PQ n ==.于是,AB a b m =++,CD c d m =++,BC b c n =++,DA d a n =++,()()AC AF CM a m c n =+=+++,()()BD BE DQ b m d n =+=+++.对ABCD 应用托勒密定理,有AC BD AB CD BC DA⋅=⋅+⋅,即()()()()()()a c m nb d m n a b mcd m b c n d a n +++⋅+++=+++++++++,亦即mn ac bd =+.即证.7.设BAN NAC a ∠=∠=,对AB ,AN ,AC 应用三弦定理,则有2cos AN αAB AC ⋅=+,因1sin ()2ABC ABL ACL S S S AL αAB AC ++=⋅⋅+△△△,则cos sin ABC AN AL αα=⋅⋅⋅△S .又在Rt ALK △中,cos AL αAK ⋅=,则sin 2ANK S ABC AN AK αS =⋅⋅=△△.又易知AK AM =,即知ANK ANM △∽△,于是12ANK ANM AKNM S S S ==△△四边形,即证.8.必要性:连OB ,OC ,知EAB △,FAC △均为等腰三角形,且2()2BPC AEP CFD BAD CAD BAC BOC ∠=∠+∠=∠+∠=∠=∠,知B ,C ,P ,O 共圆,由托勒密定理,有PB OC PC OB OP BC ⋅=⋅+⋅,由PB PC PO =+得OC BC =,即OBC △为正三角形,推得1302BAC BOC ∠=∠=︒.充分性:由30BAC ∠=︒,知OBC △为正三角形,且由BPC BOC ∠=∠知B ,C ,P ,O 共圆,由托勒密定理,有PB OC PC OB PO BC ⋅=⋅+⋅,及OC OB BC ==,即得PB PC PO =+. 9.对四边形1ACA B 应用托勒密定理,有111AA BC AB AC AC A B ⋅=⋅+⋅,令11A B AC x ==,注意112x A B ACK BC =+>,有11222()ABx AC x AA AB AC AB AC BC BC+==+⋅>+,即11()2AA AB AC >+.同理,11()2BB BA BC >+,11()2CC CA CB >+,此三式相加即证.10.令AC a =,CE b =,AE c =.对四边形ACEF 应用托勒密不等式,有AC EF CE AF AE CF ⋅+⋅≥⋅,注意EF AF =,有FA c FC a b ≥+.同理。
【定理内容】圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.即:若四边形ABCD内接于圆,则有AB CD AD BC AC BD .[评]等价叙述:四边形的两组对边之积的线之积的充要条件是四顶点共圆。
【证法欣赏】托勒密定理证明:如图,过C作CP交BD于P,使12,3 4, • ACD s BCP ,• AC AD,即AC BP BC BP又ACB DCP, 5 AC AB,即AC DP DC DPBC ADAB DCACB s DCP,•••① + ②得:AC(BPDP) BC AD AB DC即AB CD AD BC AC BD【定理推广】托勒密定理的推广:在四边形ABCD中,有AB CD AD BC AC BD ;当且仅当四边形ABCD内接于圆时,等式成立。
[证]在四边形ABCD内取点E,使BAE CAD,ABE ACD贝9 ABE s ACD• AB BE AEAC CD AD• AB CD AC BE ;…AB AE• AC AD 且BAC EAD和等于两对角ABDABC s AED• •• AB CD AD BC AC (BE ED)••• AB CD AD BC AC BD当且仅当E 在BD 上时“二”成立, 即当且仅当A 、B 、C 、D 四点共圆时成立;【定理推广】 托勒密定理的推论:等腰梯形一条对角线的平方等于一腰的平方加上两底之积. 即:若四边形ABCD 是等腰梯形,且AD // BC ,贝U AC 2 AB 2 AD BC .分析:因为等腰梯形必内接于圆,符合托勒密定理的条件,其对角线相等,两 腰相等,结论显然成立。
【定理应用】【例1】 如图,P 是正 ABC 外接圆的劣弧BC 上任一点(不与B 、C 重合),题多解欣赏》【定理应用】【例2】证明“勾股定理”:已知:在Rt ABC 中,B 90, 求证:AC 2 AB 2 BC 2。
证明:如图,以Rt ABC 的斜边AC 为对角 线作矩形ABCD ,则ABCD 是圆内接四边形.BCACAD ,即AD BCAC ED ;求证:PA PB PC . 证明: 由托勒密定理得:••• AB BC CA ••• PA PB PC .[注]此例证法甚多,如“截长”、“补短”等,详情参看《初中数学一由托勒密定理,得 AC BD AB CD AD BC ① ••• ABCD 是矩形,【定理应用】【定理应用】[例 4】若 a 、b 、x 、y 是实数,且 a 2 b 21,x 2 y 21 .求证:ax by 1 . 1的圆,在 AB 两侧任作Rt ACB和Rt ADB ,使 AC a ,BC b ,BD x ,AD y .由勾股定理知a 、b 、x 、y 是满足题设条件的. 据托勒密定理,有 AC BD AD BC AB CD . ••• CD AB 1,【定理应用】求证: A 2 B .证明:••• a 2 b(b c),二 a a b b be ,由托勒密定理,构造圆内接四边形【例3】如图,在ABC 中, A 的平分线交外接圆于 求证:AD BC BD(AB AC).证明:连结CD ,由托勒密定理,得AD BC ABCD AC BD . BAD CAD ,二 BD CD .D,故 AD BCBD(AB AC).二 AC BD AD BCAB CD 1,即 ax by 1 .[例 5】已知a 、b c 是ABC 的三边,且a 2b(b c), ••• AB CD , ADBCAC BD ②把②代人①,得:AC 2 2 2AB BC .证明:如图,作直径AB如图,ABC的外接圆, 以A为圆心,BC为半径作弧交圆于D,连结BD、CD、AD .••• AD BC ABD BAC,贝U 12,••• BD AC由托勒密定理得: BC AD AB CD BD AC即 a a c DC又T a2 b(b c),比较①②得CD BD b,BAC 2 ABC【定理应用】【例6】在ABC中,已知A: B: 1:2:4证明:如图,作ABC的外接圆, 作弦BD BC1 1 1求证:AB AC BC,连结AD、CD .A: B: C 1:2:4,CAD CBA CDA,ABD ADB 3 CAB ••• AB AD,CD AC,在圆内接四边形ADBC中,由托勒密定理,得: •••ACBC则—AB 【定理应用】ACBC AB AB AC,1BC .【例7】由PN,求证: ABC外接圆的弧BC上一点P分别向边BC AC AB PK PL PM .AC与AB作垂线PK、PL和证:连接PA、PB、PC,四边形ABPC,由托勒密定理得: 即匹APPKPK AC BP PLKBP LAP,••• Rt KBP s Rt LAP唱PA」APPK BC 、PL 墮CP PM ① PM BP PL ②同理可得BP PL CP PM③②③代人①得:BC AC ABPK PL PM【练习】[1]已知ABC 中, B 2 C 。
模型介绍1.托勒密定理:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和.翻译:在四边形ABCD 中,若A 、B 、C 、D 四点共圆,则AC BD AB CD AD BC ⋅=⋅+⋅.证明:在线段BD 上取点E ,使得∠BAE=∠CAD ,易证△AEB ∽△ADC ,∴AB BE AC CD=,即AC BE AB CD ⋅=⋅,当∠BAE=∠CAD 时,可得:∠BAC=∠EAD ,易证△ABC ∽△AED ,∴AD DE AC CB=,即AC DE AD BC ⋅=⋅,∴AC BE AC DE AB CD AD BC ⋅+⋅=⋅+⋅,∴AC BD AB CD AD BC ⋅=⋅+⋅.2.(托勒密不等式):对于任意凸四边形ABCD ,有AC BD AB CD AD BC⋅≤⋅+⋅证明:如图1,在平面中取点E 使得∠BAE=∠CAD ,∠ABE=∠ACD ,易证△ABE ∽△ACD ,∴AB BE AC CD=,即AC BE AB CD ⋅=⋅①,连接DE ,如图2,∵AB AE AC AD =,∴AB AC AE AD=,又∠BAC=∠BAE+∠CAE=∠DAC+∠CAE=∠DAE ,∴△ABC ∽△AED ,∴AD DE AC BC =,即AC DE AD BC ⋅=⋅②,将①+②得:AC BE AC DE AB CD AD BC ⋅+⋅=⋅+⋅,∴()AC BD AC BE DE AB CD AD BC⋅≤⋅+=⋅+⋅即AC BD AB CD AD BC ⋅≤⋅+⋅,当且仅当A 、B 、C 、D 共圆时取到等号.3.托勒密定理在中考题中的应用(1)当△ABC是等边三角形时,⋅=⋅+⋅,如图1,当点D在弧AC上时,根据托勒密定理有:DB AC AD BC AB CD=+.又等边△ABC有AB=AC=BC,故有结论:DB DA DC证明:在BD上取点E使得DE=DA,易证△AEB∽△ADC,△AED∽△ABC,利用对应边成比例,可得:DB DA DC=+.如图2,当点D在弧BC上时,结论:DA=DB+DC.【小结】虽然看似不同,但根据等边的旋转对称性,图1和图2并无区别.(2)当△ABC是等腰直角三角形,⋅=⋅+⋅,如图3,当点D在弧BC上时,根据托勒密定理:AD BC AB CD AC BD=+.又::1:1:2AB AC BC=,代入可得结论:2AD BD CD如图4,当点D在弧AC上时,根据托勒密定理:AD BC AB CD AC BD⋅=⋅+⋅,又::1:1:2BD AD CD=+.AB AC BC=,代入可得结论:2(3)当△ABC是一般三角形时,若记BC:AC:AB=a:b:c,根据托勒密定理可得:a AD b BD c CD⋅=⋅+⋅例题精讲【例1】.如图,正五边形ABCDE内接于⊙O,AB=2,则对角线BD的长为.变式训练【变式1-1】.先阅读理解:托勒密(Ptolemy古希腊天文学家)定理指出:圆内接凸四边形两组对边乘积的和等于两条对角线的乘积.即:如果四边形ABCD内接于⊙O,则有AB•CD+AD•BC=AC•BD.再请完成:(1)如图1,四边形ABCD内接于⊙O,BC是⊙O的直径,如果AB=AC=,CD=1,求AD的长.(2)在(1)的条件下,如图2,设对边BA、CD的延长线的交点为P,求PA、PD的长.【变式1-2】.如图1,已知⊙O内接四边形ABCD,求证:AC•BD=AB•CD+AD•BC.证明:如图1,在BD上取一点P,连接CP,使∠PCB=∠DCA,即使∠1=∠2.∵在⊙O中,∠3与∠4所对的弧都是,∴∠3=∠4.∴△ACD∽△BCP.∴=.∴AC•BP=AD•BC.①又∵∠2=∠1,∴∠2+∠7=∠1+∠7.即∠ACB=∠DCP.∵在⊙O中,∠5与∠6所对的弧都是,∴∠5=∠6.∴△ACB∽△DCP.…(1)任务一:请你将“托勒密定理”的证明过程补充完整;(2)任务二:如图2,已知Rt△ABC内接于⊙O,∠ACB=90°,AC=6,BC=8,CD平分∠ACB交⊙O于点D,求CD的长.【例2】.托勒密定理:圆的内接四边形两对对边乘积的和等于两条对角线的乘积.已知:如图1,四边形ABCD内接于⊙O.求证:AB⋅DC+AD⋅BC=AC⋅BD.证明:如图2,作∠BAE=∠CAD,交BD于点E,……∴△ABE∽△ACD,∴AB•DC=AC•BE,……∴△ABC∽△AED,∴AD•BC=AC•ED,∴AB•DC+AD•BC=AC•BE+AC•ED=AC(BE+ED)=AC•BD.(1)请帮这位同学写出已知和求证,并完成证明过程;(2)如图3,已知正五边形ABCDE内接于⊙O,AB=1,求对角线BD的长.变式训练【变式2-1】.已知:如图1,四边形ABCD内接于⊙O.求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵=,∠ABE=∠ACD,∴△ABE∽△ACD,∴,∴AB•CD=AC•BE;∵=,∴∠ACB=∠ADE(依据1),∵∠BAE=∠CAD,∴∠BAC=∠EAD,∴△ABC∽△AED(依据2),∴,∴AD•BC=AC•ED;∴AB•CD+AD•BC=AC•(BE+ED),即AB•CD+BC•AD=AC•BD.(1)上述证明过程中的“依据1”是指;“依据2”是指.(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们熟知的定理.(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C是的中点,求AC的长.【变式2-2】.圆的内接四边形的两条对角线的乘积等于两组对边乘积的和.即:如图1,若四边形ABCD内接于⊙O,则有________.任务:(1)材料中划横线部分应填写的内容为.(2)已知,如图2,四边形ABCD内接于⊙O,BD平分∠ABC,∠COD=120°,求证:BD=AB+BC.1.如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,对角线交于点O,连接AO,如果AB=4,AO=4,那么AC的长等于()A.12B.16C.4D.82.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.3.如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD 所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为.4.如图,P是正方形ABCD内一点,CP=CD,AP⊥BP,则的值为.5.如图,正方形ABCD的边长是6,对角线的交点为O,点E在边CD上且CE=2,CF⊥BE,连接OF,则:(1)∠OFB°;(2)OF=.6.如图,在Rt△ABC中,∠BAC=90°,D为BC的中点,过点D作DE⊥DF,交BA的延长线于点E,交AC的延长线于点F.若CF=,AC=4,AB=2.则AE=.7.设△ABC是正三角形,点P在△ABC外,且与点A在直线BC异侧,∠BPC=120°,求证:PA=PB+PC.8.⊙O半径为2,AB,DE为两条直线.作DC⊥AB于C,且C为AO中点,P为圆上一个动点.求2PC+PE的最小值.9.如图,点P为等边△ABC外接圆,劣弧为BC上的一点.(1)求∠BPC的度数;(2)求证:PA=PB+PC.10.如图,⊙O的直径AB的长为10,弦BD的长为6,点C为上的一点,过点B的切线EF,连接AD,CD,CB;(1)求证:∠CDB=∠CBF;(2)若点D为的中点,求CD的长.11.阅读下列材料,并完成相应的任务.托勒密定理:托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.已知:如图1,四边形ABCD内接于⊙O,求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵∴∠ABE=∠ACD∴△ABE∽△ACD∴∴AB•CD=AC•BE∵∴∠ACB=∠ADE(依据1)∵∠BAE=∠CAD∴∠BAE+∠EAC=∠CAD+∠EAC即∠BAC=∠EAD∴△ABC∽△AED(依据2)∴AD•BC=AC•ED∴AB•CD+AD•BC=AC•(BE+ED)∴AB•CD+AD•BC=AC•BD任务:(1)上述证明过程中的“依据1”、“依据2”分别是指什么?(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:.(请写出)(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.12.在学习了《圆》和《相似》的知识后,小明自学了一个著名定理“托勒密定理:圆内接四边形对角线的乘积等于两组对边乘积之和.”(1)下面是小明对托勒密定理的证明和应用过程,请补充完整.已知:四边形ABCD内接于⊙O.求证:AC•BD=AB•CD+AD•BC.证明:作∠CDE=∠BDA,交AC于点E,∵⊙O中,∠1=∠2,∴△ABD∽△ECD().∴.∴AB•CD=BD•EC①,.又∵∠BDA+∠3=∠CDE+∠3,即∠ADE=∠BDC,∴△DAE∽△DBC().∴.∴AD•BC=BD•AE②.,∴AB•CD+AD•BC=AC•BD.(2)利用托勒密定理解决问题:是否存在一个圆内接四边形,它的两条对角线长为5和,一组对边长为1和3,另一组对边的和为4.若存在,求出未知的两边;若不存在,说明理由.13.阅读下列相关材料,并完成相应的任务.布拉美古塔定理婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈多定理”,也称“布拉美古塔定理”.定理的内容是:若圆内接四边形的对角线互相垂直,则垂直于一边且过对角线交点的直线平分对边.某数学兴趣小组的同学写出了这个定理的已知和求证.已知:如图,在圆内接四边形ABCD中,对角线AC⊥BD,垂足为P,过点P作AB的垂线分别交AB,DC于点H,M.求证:M是CD的中点任务:(1)请你完成这个定理的证明过程.(2)该数学兴趣小组的同学在该定理的基础上写出了另外一个命题:若圆内接四边形的对角线互相垂直,则一边中点与对角线交点的连线垂直于对边请判断此命题是命题.(填“真”或“假”)(3)若PD=2,HP=,BP=3,求MH的长.14.已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.15.问题探究:(1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.(2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC外接圆的劣弧BC上任一点(不与B、C重合),请你根据托勒密(Ptolemy)定理证明:PA=PB+PC.问题解决:(3)如图③,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使P到A、B、C三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.16.(1)方法选择如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,并证明你的结论.【探究2】如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是.(3)拓展猜想如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是.17.数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.18.问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE =CD,从而得出结论:AC+BC =CD.简单应用:(1)在图①中,若AC =,BC=2,则CD=.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是或.21。
第三章 托勒密定理及应用【基础知识】托勒密定理 圆内接四边形的两组对边乘积之和等于两对角线的乘积. 证明 如图3-1,四边形ABCD 内接于O ,在BD 上取点P ,使PAB CAD =∠∠,则△ABP ∽△ACD ,于是A图3-1AB BPAB CD AC BP AC CD=⇒⋅=⋅. 又ABC △∽△APD ,有BC AD AC PD ⋅=⋅. 上述两乘积式相加,得 AB CD BC AD AC BP PD AC BD ⋅+⋅=+=⋅().①注 此定理有多种证法,例如也可这样证:作AE BD ∥交o 于E ,连EB ,ED ,则知BDAE 为等腰梯形,有EB AD =,ED AB =,ABD BDE θ==∠∠,且180EBC EDC +=︒∠∠,令BAC ϕ=∠,AC 与BD 交于G ,则111sin sin()sin 222ABCD S AC BD AGD AC BD AC BD EDC θϕ=⋅⋅=⋅⋅+=⋅⋅∠∠,11sin sin 22EBCD EBC ECD S S S EB BC EBC ED DC EDC =+=⋅⋅+⋅⋅△△∠∠()()11sin sin 22EB BC ED DC EDC AD BC AB DC EDC =⋅+⋅⋅=⋅+⋅⋅∠∠. 易知 ABCD EBCD S S =,从而有AB DC BC AD AC BD ⋅+⋅=⋅.推论1(三弦定理) 如果A 是圆上任意一点,AB ,AC ,AD 是该圆上顺次的三条弦,则sin sin sin AC BAD AB CAD AD CAB ⋅=⋅+⋅∠∠∠.② 事实上,由①式,应用正弦定理将BD ,DC ,BC 换掉即得②式.推论2(四角定理) 四边形ABCD 内接于O ,则sin sin sin sin ADC BAD ABD BDC ⋅=⋅∠∠∠∠sin sin ADB DBC +⋅∠∠.③ 事实上,由①式,应用正弦定理将六条线段都换掉即得③式.直线上的托勒密定理(或欧拉定理) 若A ,B ,C ,D 为一直线上依次排列的四点,则AB CD BC AD AC BD ⋅+⋅=⋅.注 由直线上的托勒密定理有如下推论:若A ,B ,C ,D 是一条直线上顺次四点,点P 是直线AD 外一点,则sin sin sin sin sin sin APB CPD APD BPC APC BPD ⋅+⋅=⋅∠∠∠∠∠∠. 事实上,如图3-2,设点P 到直线AD 的距离为h ,DC BA P图3-2由AB CD AD BC AC BD ⋅+⋅=⋅,有 PAB PCD PAD PBC PAC PBD S S S S S S ⋅+⋅=⋅△△△△△△,用两边及夹角正弦形式的三角形面积表示上式后,两边同除以14PA PB PC PD ⋅⋅⋅即得推论.由上述推论也可证明圆内接四边形中的托勒密定理.证明 如图3-3,在图上取一点P ,连PA 、PB 、PC 、PD ,设PB 交AD 于B ',PC 交AD 于C '. 由正弦定理 sin 2AB APB R =∠,sin 2CD CPD R =∠,sin 2AD APD R =∠,sin 2BC BPC R =∠,sin 2AC APC R=∠,sin 2BDBPD R=∠,其中R 为圆的半径. B'C 'DCBAP图3-3对A 、B '、C '、D 应用直线上的托勒密定理的推论,有sin sin sin sin sin sin sin sin APB CPB APD BPC APB C PD APD B PC ''''⋅+⋅=⋅+⋅∠∠∠∠∠∠∠∠sin sin sin sin APC B PD APC BPD ''=⋅=⋅∠∠∠∠. 故AB CD AD BC AC BD ⋅+⋅=⋅.四边形中的托勒密定理(或托勒密不等式) 设ABCD 为任意凸四边形,则AB CD BC AD ⋅+⋅≥ AC BD ⋅,当且仅当A ,B ,C ,D 四点共圆时取等号.证明 如图3-4,取点E 使BAE CAD =∠∠,ABE ACD =∠∠,则△ABE ∽△ACD ,即有AD ACAE AB=,且AC CDAB BE=,即CB图3-4AB CD AC BE ⋅=⋅.①又DAE CAB =∠∠,有△ADE ∽△ACB ,亦有AD BC AC ED ⋅=⋅.② 由①式与②式,注意到BE ED BD +≥,有AB CD BC AD AC BE ED AC BD ⋅+⋅=⋅+⋅()≥.其中等号当且仅当E 在BD 上,即ABD ACD =∠∠时成立.此时A ,B ,C ,D 四点共圆.由此,即有托勒密定理的逆定理 在凸四边形ABCD 中,若AB CD BC AD AC BD ⋅+⋅=⋅,则A ,B ,C ,D 四点共圆.【典型例题与基本方法】1.恰当地作出或选择四边形,是应用托勒密定理的关键例 1 在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 的大小成等比数列,且22b a ac =-,则角B 的弧度数等于多少?(1985年全国高中联赛题) 解 如图3-5,过点C 作CD AB ∥交ABC △的外接圆于D ,连AD ,则四边形ABCD 为等腰梯形.由托勒密定理,有22b a c CD =+⋅.cbaDCBA图3-5由已知有22b a c a =+⋅,则CD a =,从而AD DC CB ==,即2ADC BC =,亦即2B BAC =∠∠.又因为在ABC △中,角A ,B ,C 的大小成等比数列,则公比2Bq A==∠∠,从而A B C ++=∠∠∠ 247πA A A A ++==∠∠∠∠,故π7A =∠,2π7B =∠为所求. 例2 凸四边形ABCD 中,60ABC =︒∠,90BAD BCD ==︒∠∠,2AB =,1CD =,对角线AC ,BD 交于点O .如图3-6,求sin AOB ∠. (1996年北京中学生竞赛题)DC BAPO图3-6解 因90BAD BCD ==︒∠∠,则A ,B ,C ,D 四点共圆.延长BA ,CD 交于P ,则ADP ABC =∠∠ 60=︒.设AD x =,有AP =,2DP x =,由割线定理,有(2)2(12)x x +⋅=+.求得2AD x ==,42BPBC == 对ABCD 应用托勒密定理,有(42)2112BD AC ⋅=+⋅=-.又ABCD ABD BCD S S S =+△△12)(42=-+=.从而,112)sin 2AOB ⋅=∠.故sin AOB =∠例3 如图3-7,已知在ABC △中,AB AC >,A ∠的一个外角的平分线交ABC △的外接圆于点E ,过E 作EF AB ⊥,垂足为F .求证:2AF AB AC =-. (1989年全国高中联赛题)H GF EDCBA图3-7证明 在FB 上取点D ,使FD FA =,连ED 并延长交圆于G ,连AG ,EC ,则ACE AGD =∠∠,180180ADG ADE EAH EAC =︒-=︒-=∠∠∠∠(H 在CA 的延长线上),从而△ADG ∽△EAC ,且BC AG =.于是,注意BC AG =,有C AE B AD EC ⋅=,故2AE BCAF EC⋅=. 连EB ,对四边形AEBC 应用托勒密定理,有AB EC AE BC BE AC ⋅=⋅+⋅,即AE BC AB EC BE AC ⋅=⋅-⋅.于是2AB EC BE ACAF AB AC EC⋅-⋅==-.其中EC BE =可由EAB EAH EBC ==∠∠∠推得. 注 (1)也可应用三弦定理证明.设DAE EAB α==∠∠,则180FAC α=︒-∠,1802BAC α=︒-∠.对AB ,AE ,AC 应用三弦定理,得sin 180sin 1802sin AB AE AC ααα⋅︒-=⋅︒-+⋅()(),即sin22cos sin AE AB AC AE ααα⋅-==⋅.又在Rt AEF △中,cos AE AF α⋅=,故2AF AB AC =-.(2)也可以应用阿基米德折弦定理证明.由BF FA AC ==,有AB AF FA AC -=+,即2AF AB AC =-. 例4 如图3-8,在锐角ABC △的BC 边上有两点E ,F ,满足BAE CAF =∠∠,作FM AB ⊥于M ,FN AC ⊥于N ,延长AE 交ABC △的外接圆于点D .证明:四边形AMDN 与ABC △的面积相等.(2000年全国高中联赛题) F E DCBAMN图3-8证明 设BAE CAF α==∠∠,EAF β=∠,有11sin()sin 22ABC S AB AF AC AF αβα=⋅⋅++⋅⋅=△ ()4AFAB CD AC BD R⋅+⋅,其中R 为外接圆半径. 又11sin sin()22AMDN S AM AD AD AN ααβ=⋅⋅+⋅⋅+四边形 1[cos()sin cos sin()]2AD AF AF αβαααβ=⋅+⋅+⋅⋅+ 1sin(2)24AF AD AF AD BC Rαβ=⋅⋅+=⋅. 由托勒密定理,有AB CD AC BD AD BC ⋅+⋅=⋅,例5 如图3-9,在ABC △中,60A =︒∠,AB AC >,点O 是外心,两条高BE ,CF 交于H 点,点M ,N 分别在线段BH ,HF 上,且满足BM CN =.求MH NHOH+的值.(2002年全国高中联赛题)O HF EBAMN图3-9解法 1 连OB ,OC ,由三角形外心及垂心性质,知2120BOC A ==︒∠∠,180BHC =︒-∠ 180(90)(90)180120HBC HCB C B A -=︒-︒--︒-=︒-=︒∠∠∠∠∠,即B ,C ,H ,O 四点共圆.在此圆中对四边形BCHO 应用托勒密定理,有 BO CH OH BC BH OC ⋅+⋅=⋅.设ABC △的外接圆半径为R ,则BO OC R ==,且由60A =︒∠,知BC =,即有R CH ⋅+OH BH R =⋅,亦即BH CH H -.而()()MH NH BH BM CN CH BH CH +=-+-=-,故MH NHOH+解法2 同解法1,知B ,C ,H ,O 四点共圆,有OBH OCH =∠∠,而BO OC =,BM CN =,则△OBM OCN ≌△,从而OM ON =,BMO CNO =∠∠,由此知O ,M ,H ,N 四点共圆,且等腰△OMN 的顶角120MON NHE ==︒∠∠,即知sin120sin30MN OM ︒=︒对四边形OMHN ,应用托勒密定理,有MH ON NH OM OH MN ⋅+⋅=⋅,故MH NH MNOH OM+==为所求.注 此例的其他证法可参见第四章例2,第十五章例17.例6 已知ABC △内切圆I 分别与边AB 、BC 切于点F 、D ,直线AD 、CF 分别与I 交于另一点H 、K .求证:3FD HKFH DK⋅=⋅. (2010年东南奥林匹克题) 证明 设内切圆AC 于点Q ,联结FQ 、DQ 、KQ 、HQ (图略).由△CDK ∽△CFD 及△CQK ∽CFQ △,有DK DCFD FC=及QC QK FC FQ =. 注意到DC QC =,有DK FQ FD QK ⋅=⋅. 同理,有FH DQ FD HQ ⋅=⋅.分别对四边形FDKQ 及FDQH 应用托勒密定理,有 2KF DQ DK FQ ⋅=⋅,2HD FQ FH DQ ⋅=⋅.这两式相乘,有4KF HDFH DK⋅=⋅.又由托勒密定理,有KF HD DF HK FH DK ⋅=⋅+⋅.故43KF HD FD HKFH DK FH DK⋅⋅=⇔=⋅⋅.2.注意托勒密定理逆定理的应用和拓广的托勒密定理或托勒密定理推论的应用例7 若右四个圆都与第五个圆内切,第一个与第二个圆的外公切线的长用12l 表示,其他前四个圆中的两两的外公切线也用同样的方法来标记,且前四个圆以顺时针的顺序排列,试证明依次以12l ,23l ,34l ,41l 为边长,以13l ,24l 为对角线所构成的凸四边形的四个顶点共圆.(《中等数学》1999年第5期高中奥林匹克题)证明 如图3-10,设前四个圆分别为1O ,2O ,3O ,4O ,第五个圆为O ,前四个圆与O 分别内切于A ,B ,C ,D ,则易知A ,1O ,O 三点共线.类似地,有B ,2O ,O ;C ,3O ,O ;D ,4O ,O 三点共线.D图3-10设五个圆的半径分别为1r ,2r ,3r ,4r ,R ;AOB α=∠,BOC β=∠,COD γ=∠,DOA δ=∠;1OO a =,2OO b =,3OO c =,4OO d =,则1a R r =-,2b R r =-,3c R r =-,4d R r =-.从而,2222222121212()2cos ()4sin 2l OO r r a b ab a b ab αα=--=+---=⋅.故12sin2l α=.同理,可求得23l ,34l ,41l ,13l ,24l .要证明以12l ,23l ,34l ,41l 为边长,以13l ,24l 为对角线所构成的凸四边形的四个顶点共圆,只要证明123423411324l l l l l l ⋅+⋅=⋅,化简后只要证明sinsinsinsinsinsin222222αγβδαββγ++⋅+⋅=⋅,①即sin sin sin sin sin sin ADB DBC BDC ABD ADC BAD ⋅+⋅=⋅∠∠∠∠∠∠.这由托勒密定理的推论2即证.注 对于①也可由正弦定理2sin2AB R α=转换成AB CD BC DA AC BD ⋅+⋅=⋅即证.此例是一个富有应用价值的问题.托勒密定理是这个问题中四个圆均变为点(过该点线成了“点圆”的切线)的情形.例8 经过XOY ∠的平分线上的一点A ,任作一直线与OX 及OY 分别相交于P ,Q .求证:11OP OQ +为定值.证明 如图3-11,过O ,P ,Q 三点作圆,交射线OA 于B .设POA QOA α==∠∠,对四边形OPBQ中的三条弦OP ,OB ,OQ 应用托勒密定理的推论1,有BAPQO图3-11sin 2sin sin BO OP OQ ααα⋅=⋅+⋅.即sin 22sin cos 2cos sin sin BO BO OP OQ BO αααααα⋅⋅⋅+===⋅.①连BQ ,由△OPA ∽△OBQ ,有OP OQ OA OB ⋅=⋅.由①式除以上式,得112cos OP OQ OA α+=(定值). 注 类似于此例,应用托勒密定理的推论1,也可求解如下问题:过平行四边形ABCD 的顶点A 作一圆分别与AB ,AC ,AD 相交于E ,F ,G ,则有AE AB AG AD AF AC ⋅+⋅⋅=.事实上,若设BAC α=∠,CAD β=∠,则有sin sin sin()AE AG AF βααβ⋅+⋅=⋅+.对此式两边同乘AB AC AD ⋅⋅,利用三角形的面积公式有ADC ABC ABD AE AB S AG AD S AF AC S ⋅⋅+⋅⋅=⋅⋅△△△.而在ABCD 中,有ADC ABC ABD S S S ==△△△,由此即证.例9 设D 为锐角ABC △内部一点,且满足条件:DA DB AB DB DC BC DC DA CA ⋅⋅+⋅⋅+⋅⋅ AB BC CA =⋅⋅.试确定D 点的几何位置,并证明你的结论.(1998年CMO 试题)此题我们改证比其更强的命题如下:设D 为锐角ABC △内部一点,求证:DA DB AB DB DC BC DC DA CA AB BC CA ⋅⋅+⋅⋅+⋅⋅⋅⋅≥,并且等号当且仅当D 为ABC △的垂心时才成立.证明 如图3-12,作ED BC ∥,FA ED ∥,则BCDE 和ADEF 均是平行四边形.连BF 和AE ,显然BCAF也是平行四边形,于是AF ED BC ==,EF AD =,EB CD =,BF AC =.对四边形ABEF 和四边形AEBD ,应用四边形中的托勒密定理(或托勒密不等式)有AB EF AF BE AE BF ⋅+⋅⋅≥,BD AE AD BE AB ED ⋅+⋅⋅≥,即AB AD BC CD AE AC ⋅+⋅⋅≥,BD AE AD CD AB BC ⋅+⋅⋅≥.① 对上述①式中前一式两边同乘DB 后,两边同加上DC DA AC ⋅⋅,然后注意到上述①式中的后一式,有 DB DA AB DB DC BC DC DA AC DB AE AC DC DA AC ⋅⋅+⋅⋅+⋅⋅⋅⋅+⋅⋅≥.FEDCBA图3-12即 ()()DB AB AD BC CD DC DA CA AC DB AE DC AD AC AB BC ⋅+⋅+⋅⋅⋅+⋅⋅⋅≥≥. 故 DA DB AB DB DC BC DC DA CA AB BC CA ⋅⋅+⋅⋅+⋅⋅⋅⋅≥.其中等号成立的充分必要条件是①式中两个不等式中的等号同时成立,即等号当且仅当ABEF 及AEBD 都是圆内接四边形时成立,亦即AFEBD 恰是圆内接五边形时等号成立.由于AFED 为平行四边形,所以条件等价于AFED 为矩形(即AD BC ⊥)且90ABE ADE ==︒∠∠,亦等价于AD BC ⊥且CD AB ⊥,所以所证不等式等号成立的充分必要条件是D 为ABC △的垂心. 【解题思维策略分析】1.推导某些重要结论的工具例10 圆内接六边形ABCDEF 的对角线共点的充要条件是1AB CD EFBC DE FA⋅⋅=.(见第一角元形式的塞瓦定理的推论) 证明 必要性:如图3-13,设AD ,BE ,CF 交于一点P ,则易知△APB ∽△EPD ,△CPD ∽△APF ,△EPF ∽△CPB ,从而,,AB BP CD DP EF FPDE DP FA FP BC BP===.此三式相乘即证. P(C ')FEDC BA图3-13充分性:设1AB CD EFBC DE FA⋅⋅=,AD BE ⋅交于P ,连FP 并延长交圆于C ',连BC ',C D ',则由必要性知1AB C D EF BC DE FA '⋅⋅=',和已知式比较得CD C D BC BC '=',即CD BC BC C D ''⋅=⋅.连BD ,CC ',对四边形BCC D '应用托勒密定理,得BC C D BD CC CD BC '''⋅+⋅=⋅,由此得0BD CC '⋅=.因0BD >,所以0CC '=,即C '与C 重合,于是AD ,BE ,CF 三线共点.例11 O 是ABC △的外接圆,I 是ABC △的内心,射线AI 交O 于D .求证:AB ,BC ,CA 成等差数列的充要条件是IBC DBC S S =△△.证明 如图3-14,由5123242BID DBI ==+=+=+=∠∠∠∠∠∠∠∠∠,知DI BD DC ==.D图3-14必要性:若AB ,BC ,CA 成等差数列,即2AB AC BC +=,而△IBA ,△ICA ,IBC △有相等的高,则2IAB IAC IBC S S S +=△△△.又由托勒密定理,有AB DC AC BD AD BC ⋅+⋅=⋅,即()AB AC DI +⋅AD BC =⋅,2AD AB ACDI BC +==,即I 是AD 的中点,于是AIB IBD S S =△△,IAC ICD S S =△△,2IBC IAB S S =+△△ IAC IBD ICD BDC IBC BDC S S S S S S =+==+△△△△△△,故IBC DBC S S +△△.充分性:若IBC DBC S S =△△,即1111sin sin 2222IB BC B DB BC A ⋅⋅=⋅⋅∠∠,有11sin sin 22IB DB A B =∶∠∶∠.比较上述两式,得IA BD =,但DI DB =,即知2AD DI =,仿前由托勒定理知2AB AC ADBC DI+==,即2AB AC BC +=,故AB ,BC ,CA 成等差数列.例12 如图3-15,设I 为ABC △的内心,角A ,B ,C 所对的边长分别为a ,b ,c .求证:22IA IB bc ac ++21IC ab=. FEDCBAI图3-15证明 设I 在三边上的射影分别为D ,E ,F .设ABC △的外接圆半径及内切圆半径分别为R ,r ,则ID IE IF r ===.由B ,D ,I ,F 四点共圆,且IB 为其圆的直径,应用托勒密定理,有DF IB ID BF IF BD ⋅=⋅+⋅ ()r BD BF =+.由正弦定理,有sin 2bDF IB B IB R=⋅=⋅∠,即有()22b IB Rr BD BF ⋅=+.同理,有22()a IB Rr AF AE ⋅=+,22()c IC Rr CD CE ⋅=+,从而2222()a IA b IB c IC Rr a b c ⋅+⋅+⋅=++.又由1()24ABC abc S r a b c R =++=△,有2()Rr a b c abc ++=,故222a IA b IB c IC abc ⋅+⋅+⋅=,即2221IA IB IC bc ac ab++=. 例13 如图3-16,若ABC △与△A B C '''的边长分别为a ,b ,c 与a ',b ',c ',且B B '=∠∠,180A A '+=︒∠∠,则aa bb cc '''=+.A′B'C 'c'b'a'bcbaDCBA图3-16证明 作ABC △的外接圆,过C 作CD AB ∥交圆于D ,连AD ,BD .因180A A A D '+=︒=+∠∠∠∠,BCD B B '==∠∠∠,则A D '=∠∠,B BCD '=∠∠,从而△A B C DCB '''∽△,有A B B C A C DC CB DB ''''''==,即 c a b DC a DB '''==,故ab DC a '='. 又AB CD ∥,知BD AC b ==,AD BC a ==.由托勒密定理,得AD BC AB DC AC BD ⋅=⋅+⋅,即2ac ab a c b a a ''=⋅+⋅''. 故 aa bb cc '''=+.例14 已知O 的内接锐角ABC △,点O 到ABC △的三边a ,b ,c 的距离分别为a H ,b H ,c H .试证:O 的半径R 为方程3222()20ab c a b c x H H H x H H H -++-=的根. (《数学通报》1991年第11期问题征解题)证明 如图3-17,设AO ,BO ,CO 的延长线分别交O 于M ,N ,P .连AP ,BP ,BM ,MC ,NC ,NA .因O 在ABC △内部,则2c BM H =,2b MC H =,2a NC H =,2c NA H =,2b PA H =,2a PB H =.H aH b cb a CBAMNOP图3-17在O 的内接四边形ABMC ,ABCN ,APBC 中分别应用托勒密定理,得 222b c R a c MC b BM H c H b ⋅=⋅+⋅=⋅+⋅, 222c a R b a NA c NC H a H c ⋅=⋅+⋅=⋅+⋅, 222b a R c a PA b PB H a H b ⋅=⋅+⋅=⋅+⋅.即有 000c b c a ba b R a H b H c H a R b H c H a H R c ⋅⎧⋅-⋅-⋅=⎪⋅-⋅+⋅=⎨⎪⋅+-⋅=⎩,,.显然,该方程组关于a ,b ,c 有非零解,于是有 0c bc a baRH H H R H H H R---=-.展开整理,得关于R 的方程为 322220a b c a b c R H H H R H H H ++-=-(),命题获证.例15 如图3-18,在ABC △中,1B ,1C 分别是AB ,AC 延长线上的点,1D 为11B C 的中点,连1AD 交ABC △外接圆于D .求证:1112AB AB AC AC AD AD ⋅+⋅=⋅.(《中等数学》2001年第4期高中训练题) αβD 1B 1C 1DCBA图3-18证明 连BD ,CD .设BAD α=∠,CAD β=∠,ABC △外接圆的半径为R .因1D 为11B C 的中点,知11111112AB D AC D AB C S S S ==△△△.在△BCD 中,由正弦定理,有2sin BD R α=⋅,2sin CD R β=⋅,2sin()BC R αβ=⋅+.在圆内接四边形ABCD 中,由托勒密定理得AB CD AC BD AD BC ⋅+⋅=⋅,即2sin 2AB R AB R β⋅⋅+⋅ sin 2sin()AD R ααβ⋅=⋅⋅+, 两边同乘以11114AB AC AD R⋅⋅⋅,得 111111111AC D AB D AB C AB AB S AC AC S AD AD S ⋅⋅+⋅⋅=⋅⋅△△△,即 1112AB AB AC AC AD AD ⋅+⋅=⋅.例16 如图3-19,设1C ,2C 是同心圆,2C 的半径是1C 半径的2倍.四边形1234A A A A 内接于1C ,将41A A 延长交圆2C 于1B ,12A A 延长交圆2C 于2B ,23A A 延长交圆2C 于3B ,34A A 延长交圆2C 于4B .试证四边形1234B B B B 的周长2⨯≥四边形1234A A A A 的周长,并请确定等号成立的条件.(1988年第三届冬令营试题)C 图3-19证明 设同心圆圆心为O ,连1OA ,1OB ,2OB .在四边形112OA B B 中应用推广的托勒密定理,有 112112211OB A B OA B B OB A B ⋅⋅+⋅≤.因1212OB OB OA ==,则12121122A B B B A B +≤, 从而 12122211222B B A A A B A B +-≥.①同理,23233322222B B A A A B A B +-≥,34344433222B B A A A B A B +-≥,41411144222B B A A A B A B +-≥. 以上四式相加,得12233441122334412()B B B B B B B B A A A A A A A A ++++++≥.②为使②式中等号成立,当且仅当所加的四式均为等式.而①式等号成立,当且仅当四边形112OA B B 内接于圆.这时,12122141O OA A OB B OB B A A ===∠∠∠∠,即1OA 为412A A A ∠的平分线.同理,2OA ,3OA ,4OA 分别为123A A A ∠,234A A A ∠,341A A A ∠的平分线.这意味着O 为四边形1234A A A A 的内切圆的圆心,故知四边形1234A A A A 为正方形,即当且仅当四边形1234A A A A 为正方形时②式等号成立.例17 如图3-20,设ABCDEF 是凸六边形,满足AB BC CD ==,DE EF FA ==,BCD EFA =∠∠ 60=︒.设G 和H 是这六边形内部的两点,使得120AGB DHE ==︒∠∠.试证:AG GB GH DH +++HE CF +≥.(第36届IMO 试题) F'C 'FE DC BAGH图3-20证明 以直线BE 为对称轴,作C 和F 关于该直线的轴对称点C '和F ',于是C F CF ''=,且ABC '△和△DEF '都是正三角形,G 和H 分别在这两个三角形的外接圆上.由托勒密定理,有 C G AB AG C B GB C A '''⋅=⋅+⋅,即有C G AG GB '=+,同理,HF DH HE '=+.于是 AG GB GH DH HE C G GH HF C F CF ''''++++=++=≥.例18 如图3-21,设M ,N 是ABC △内部的两个点,且满足MAB NAC =∠∠,MBA NBC =∠∠.证明:1AM AN BM BN CM CN AB AC BA BC CA CB⋅⋅⋅++=⋅⋅⋅.(第39届IMO 预选题) KCBAMN图3-21证明 设K 是射线BN 上的点,且满足BCK BMA =∠∠.因BMA ACB >∠∠,则K 在ABC △的外部.又MBA CBK =∠∠,则△ABM ∽△KBC ,即有AB BM AMBK BC CK==. 由ABK MBC =∠∠,AB BM KB BC =,知ABK MBC △≌△,于是AB BK AKBM BC CM==.由CKN MAB NAC ==∠∠∠,知A ,N ,C ,K 四点共圆.应用托勒密定理,有AC NK AN KC ⋅=⋅+CN AK ⋅,或()AC BK BN AN KC CN AK ⋅-⋅+⋅∶,将AM BC KC BM ⋅=,BK CM AK BM ⋅=,AB BCBK BM⋅=代入,得AB BC AN AM BC CN BK CMAC BN BM BM BM ⋅⋅⋅⋅⋅⎛⎫-=+ ⎪⎝⎭,即 1AM AN BM BN CM CN AB AC BA BC CA CB ⋅⋅⋅++=⋅⋅⋅.例19 如图3-22,在ABC △中,AB AC =.线段AB 上有一点D ,线段AC 延长线上有一点E ,使得DE AC =.线段DE 与ABC △的外接圆交于T ,P 是线段AT 延长线上的一点.证明:点P 满足PD PE AT +=的充分必要条件是点P 在△ADE 的外接圆上.(2000年国家集训队选拔试题) T ED CBAP图3-22证明 充分性:连BT ,CT .由A ,B ,T ,C ;A ,D ,P ,E 分别四点共圆,知CBT CAT EDP ==∠∠∠,BCT BAT DEP ==∠∠∠,于是△BTC ∽△DPE ,可设DP PE DEk BT CT BC===. 对四边形ABTC 应用托勒密定理,有 AC BT AB CT BC AT ⋅+⋅=⋅.将上式两边同乘以k ,并用前一比例式代入,得 AC DP AB PE DE AT ⋅+⋅=⋅.注意到AB AC DE ==,即得PD PE AT +=.必要性:以D ,E 为两个焦点,长轴长等于AT 的椭圆与直线AT 至多有两个交点,而其中在DE 的一侧,即线段AT 延长线上的交点至多一个,由前面的充分性证明,知AT 的延长线与△ADE 的外接圆的交点Q 在这个椭圆上;而依题设点P 同时在AT 的延长线上和椭圆上,故点P 与点Q 重合,命题获证.2.求解代数问题的一条途径例20 若0a b c >≥≥,且a b c <+,解方程ax =.(1993年南昌市竞赛题)解 因0a b c >≥≥,且a b c <+,所以a ,b ,c 为边可以作一个三角形.作ABC △,使BC a =,AC b =,AB c =,分别作AC ,AB 的垂线,它们交于点D .则四边形ABDC 内接于圆,如图3-23.此时,AD为直径,sin BDBAD AD==∠,sin CDCAD AD==∠,sin aCAB AD=∠.DC图3-23对AD ,AC ,AB 应用托勒密定理推论1或三弦定理,有sin sin AC BAD AB CAD AD ⋅+⋅=⋅∠∠sin CAB ∠,即ab c ADAD⋅+=⋅,即b c a AD ⋅. 由1sin 22ABC abcS bcCAB AD =⋅=△∠,而ABC S =△,其中1()2P a b c =++,从而AD =例21已知a ,b 是不相等的正数,求函数()f x =CA图3-24解因222+=,则可以AC 为直径作圆,且作AB =,BC =.如图3-24,在另一半圆上取中点D ,则CD AD==ABCD 应用托勒密定理,有 ())f x AB CD BC AD AC BD =⋅+⋅=⋅=.不妨取a b>,则,即AB.而当AB CD==()maxf x=.AB()f x是AB的单调递增函数,()minf x==AB时,()f x是AB的单调递减函数,从而当AB,BC,()minf x==故()f x在定义域上,()minf x=()f x的值域为,.注对于一般的函数,()()()f x a A x b B x=⋅+⋅,只要()()22A xB x+=定值,就可以构造圆的内接四边形,灵活运用托勒密定理求其极值或值域.3.注意广义托勒密定理的应用前面给出的例6是一个很有价值的问题,甚至,我们可以称之为广义托勒密定理.当一个圆的半径无限趋近于0时,圆就趋近于一点,过该点的直线就成了“点圆”的切线.托勒密定理就是例6中内切于O的四个圆均变为点的情形.利用广义托勒密定理可以处理如下问题:例22 已知1O与2O分别与O内切,作1O 和2O的两条内公切线交O 于A,B ,作1O和2O的外公切线,切点为E和F.求证:EF AB∥.证明如图3-25,设G,H 分别为1O与2O的内公切线的切点,EF交O于C,D 两点,记1O和2O的内公切线长为d .用[]****表示一组与O内切的“圆”,并应用广义托勒密定理,则C'D图3-25对于1[]A C O D,,,,有AG CD AC DE CE AD⋅=⋅+⋅,①对于2[]B D C O ,,,,有 BH CD BD CF DF BC ⋅=⋅+⋅ ()BD CE EF DF BC =++⋅.②对于2[]A C D O ,,,,有()()AG d CD AC DF AD CE EF +⋅=⋅+⋅+. ③对于1[]B D C O ,,,,有()()BH d CD BD CE BC DF EF +⋅=⋅++.④ 由①,③得()()AC DF AD CE EF DC d AC EF FD CE AD ⋅+⋅+-⋅=⋅++⋅,即AD EF DC d AC EF ⋅-⋅=⋅.⑤ 由②,④得()()BD CE BC DF EF DC d BD CE EF DF BC ⋅+⋅+-⋅=⋅++⋅,即BC EF DC d BD EF ⋅-⋅=⋅.⑥ 由⑤与⑥得 ()EF AD AC DC d -=⋅,()EF BC BD DC d -=⋅.故 BC BD AD AC -=-.若四边形ABCD 中不含圆心O ,那ABC ∠,BAD ∠均为锐角.不妨设ABC BAD >∠∠,则AC BD >. 又BDC ACD >∠∠,则BC AD >.所以BC BD AD AC ->-,矛盾.故一定有ABC BAD =∠∠.此时AB DC ∥.若四边形中含圆心,则与之“对称”的四边形A B C D ''''(A ',B ',C ',D '的定义方式与A ,B ,C ,D 的定义方式相似)不含圆心.设CD 交AA '于Y ,C D ''交BB '于X .由已证结论A B C D ''''∥,因为A B B A AB '''=∠∠,C XB DYA ''=∠∠,A B B C XB '''=∠∠,所以DYA A AB ''=∠∠,故AB DC ∥. 例23 如图3-26,1G 和2G 内切于G 的一段弧,并且两圆彼此外切于点W .设A 是1G 和2G 的内公切线与该段弧的交点,而B 和C 是G 中1G 与2G 的外公切线弦的端点,证明:W 是ABC △的内切圆圆心.(IMO -33预选题)图3-26证明 设AW 与BC 的交点为D ,1G ,2G 与BC 的切点分别为E ,F ,并设各线段之长为BE x =,CF y =,BD k =,CD h =,AD d =,于是,有DE k x =-,DF h y =-.又因DE DW DF ==,故k x h y -=-,AW d k x d h y =-+=-+.用(A ,1G )表示点圆A 与1G 的公切线的长,则()1,A d k x G =-+.同理,(),A b c =,(),A c b =,()1,B x G =,()1,C a x G =-,(),B C a =.对1[,,,]A B C G 应用广义托勒密定理,有()()d k x a b x c a x -+⋅+⋅=⋅-,令()12p a b c =++,则由上式,有()2a x k c d p =+-.同理,对[B ,C ,2G ,A ],有()2ay h b d P=+-, 注意到k x h y -=-,则()()22a ak k c d h h b d p p -+-=-+-,即有()()b c k ac b c h ab +⋅-=+⋅-,亦即()()()b c k h a c b +-=⋅-.而BD DC BC +=,即k h a +=,于是,()()()()b c k h k h c b +-=+-,即c h b k ⋅=⋅,亦即k ch b=. 此表明BD AB CD AC =,即知AD 平分BAC ∠.所以ac k b c =+,abh b c=+. 得 22ac a ac adk x c d b c p b c p ⎛⎫-=-+-=⎪++⎝⎭. 因而22d d p a b cad k x a ap++===-,于是 111AW AD d a b c b c c BAac DW DW k x a a BD b c+++=-=-=-===-+.由此,即知BW 平分ABC ∠.故W 是ABC △的内心. 【模拟实战】习题A1.A ,B ,C ,D 四点在同一圆周上,且4BC CD ==,E 为AC 与BD 的交点,且6AE =,线段BE 和DE 的长都是整数,则BD 的长等于多少? (1988年全国初中联赛题) 2.在ABC △中,AB AC BC <<,D 在BC 上,E 在BA 的延长线上,且BD BE AC ==,△BDE 的外接圆与ABC △的外接圆交于F 点.求证:BF AF CF =+. (1991年全国初中联褰题) 3.已知P 是正方形ABCD 的外接圆AD 上任一点,求PA PCPB+的值. 4.O 过ABC △的顶点A ,且分别与AB ,AC 和BC 上的中线AD 相交于1B ,1C ,1D ,则1AB AB ⋅,1AD AD ⋅,1AC AC ⋅成等差数列.5.已知正七边形12A A …7A ,求证:121314111A A A A A A =+. (第21届全俄奥林匹克题)6.在圆内接六边形AB CA BC '''中,令BC a '=,B C a ''=,CA b =,C A b ''=,AB c '=,A B c ''=,1AA a '=,1BB b '=,1CC c '=.求证:111111a b c abc a b c aa a bb b cc c ''''''=++++.7.R ,r 分别为ABC △的外接圆和内切圆的半径,m ,n ,p 分别在弧AB ,BC ,CA 上,1h ,2h ,3h 分别为弓形AmB ,BnC 和CPA 的高.求证:1232h h h R r ++=-.8.解方程=.9.已知1=,且01a ≤≤,01b ≤≤.求证:221a b +=. 10.求函数222sin 22cos 2x x y x x θθ+⋅+=+⋅+的值域(θ为参数).11.已知ABC △中,最大角B 与最小角C 的差为AB 上任一点.求证:PD PE PA PB PC PF +=+++. 12.AD ,BE ,CF 是正ABC △的三条高,任取一点P .试证:在△PAD ,△PBE ,△PCF 中,最大一个的面积等于其余两个的面积之和.13.已知ABC △的60A =︒∠,令BC a =,CA b =,AB c =.求证:tan tan tan tan A B c bA B c--=+. 14.已知P 为等腰ABC △(AB AC =)外接圆BC 上的一点,Q 为AB 上一点.求证:PAPB PC=+QAQC QB-.15.已知AB 为O 的直径,圆周上的点C ,D 分别在AB 的两侧,过CD 中点M 分别作AC ,AD 的垂线,垂足为P ,Q .求证:22BC MP BD MQ MC ⋅+⋅=.16.已知平行四边形ABCD 中,过B 的圆分别交AB ,BC ,BD 于E ,F ,G 求证:BE AB BF BC ⋅+⋅ BG BD =⋅.17.设AF 为1O 与2O 的公共弦,点B ,C 分别在1O ,2O 上,且AB AC =,BAF ∠,CAF ∠的平分线交1O ,2O 于点D ,E 求证:DE AF ⊥.18=.19.求函数,)y a b +=∈R 的值域.20.已知221(,)x y x y ++∈R ≤.求证:222x xy y +-21.已知两圆内切于点T ,ABC △是大圆的内接正三角形,过A ,B ,C 作小圆的切线AM ,BN ,CP ,且M ,N ,P 为切点.求证:CP ,AM ,BN 三条线段中,一条线段等于另外两条线段之和.22.在ABC △中,BC AC AB >>,外接圆为Γ.三条内角平分线分别交BC ,CA 和AB 于点D ,E 和F ,通过点B 的直线平行于EF 交圆Γ于点Q ,点P 在圆Γ上,且QP AC ∥.求证:PC PA PB =+. 23.在四边形ABCF 中,BF AF FC +=.点D 在BC 上,点E 在BA 的延长线上,且BD BE AC ==,AF CD FC AE ⋅=⋅.求证:四边形ABCF 有外接圆.24.1O 与2O 相交于A ,E 两点,1O 的一条弦BC 与2O 相切于点D ,且AD 与1O 相切于点A .求证:33EB AB EC AC=. 习题B1.设圆内接四边形ABCD 的四边AB a =,BC b =,CD c =,DA d =.求对角线AC 和BD 的长(用a ,b ,c ,d 表示). 2.已知ABC △内接于O ,P 为ABC △内任一点,过点P 引AB ,AC ,BC 的平行线,分别交BC ,AC 于F ,E ,交AB ,BC 于K ,I ,交AB ,AC 于G ,H ,AD 为O 过点P 的弦.试证:2224EF KI GH PA PD ++⋅≥.(《数学通报》1991年第9期问题)3.圆内接四边形被它的一条对角线分成两个三角形,证明:这两个三角形的内切圆半径之和与对角线的选取无关. (IMO -23预选题) 4.设1C ,2C 是同心圆,2C 的半径是1C 的半径的λ(1λ>)倍.n 边形12A A …n A 内接于1C ,延长1n A A .12A A ,…,1n n A A -分别交圆2C 于1B ,2B ,…n B ,若n 边形12A A …n A ,12B B …n B 的周长分别为1p ,2p .试证:21p p λ≥,其中等号当且仅当n 边形12A A …n A 是正n 边形时成立.(IMO -21预选题) 5.已知边长分别为a ,b ,c 的ABC △内接于O ,1O 内切于O ,切点G 在BC 上,由点A ,B ,C 分别引1O 的切线长顺次为d ,e ,f .证明:ad be cf =+.6.在圆内接四边形ABCD 中,1O ,2O ,3O ,4O 分别是△ABD ,△BCA ,△CDB ,△DAC 的内切圆.设AB ,BC ,CD ,DA 上的切点依次是E ,F ,M ,N ,G ,H ,P ,Q ,设i O 的半径为i R (i =1,2,3,4).求证:1324EF MN R R R R ⋅=+.7.设锐角ABC △的A ∠的平分线交BC 于L ,交外接圆于N ,自点L 分别向AB 和AC 作垂线LK 和LM ,垂足为K 和M .求证:ABC △的面积等于四边形AKNM 的面积.(IMO -28试题) 8.ABC △为O 内接三角形,AB AC BC >>.点D 在BC 上,从O 点分别作AB ,AC 的垂线交AD 于E 、F ,射线BE ,CF 交于P 点.则PB PC PO =+的充要条件是30BAC =︒∠.9.证明:设ABC △中,A ∠,B ∠与C ∠的三条角平分线分别交ABC △的外接圆于1A ,1B ,1C ,则111AA BB CC AB BC CA ++>++.(1982年澳大利亚竞赛题)10.设ABCDEF 是凸六边形,且AB BC =,CD DE =,EF FA =.证明:32BC DE FA BE DA FC ++≥,并指出等式在什么条件下成立. (IMO -38预选题) 11.在ABC △中,90A =︒∠,A C <∠∠,过A 点作ABC △的外接圆O 的切线,交直线BC 于D ,设点A 关于BC 的对称点为E ,作AX BE ⊥于X ,Y 为AX 的中点,BY 与O 交于Z .证明:BD 为△ADZ 的外接圆的切线. (IMO -39预选题)12.O 为正ABC △的外接圆,AD 为O 的直径,在BC 上任取一点P (P B ≠,P C ≠),设E ,F 分别为△PAB ,PAC △的内心.证明PD PE PF =-.13.设G 为ABC △的重心,在ABC △所在平面上确定点P 的位置,使得PA AG BP BG CP CG ⋅+⋅+⋅有最小值,并用ABC △的边长表示这个最小值.(IMO -42预选题)14.设12A A …n A (4n ≥)为凸n 边形.证明:12A A …n A 为圆内接多边形的充分必要条件是对每个顶点j A 对应一组实数()j j b c ,1,2,,j n =…,满足(1)i j j i i j A A b c b c i j n =-<≤≤.(IMO -41预选题)第三章 托勒密定理及应用习题A1.由CDE BAE △∽△和CBE DAE △∽△,有4BE AB CE =,4DEAD CE=,对四边形ABCD 应用托勒密定理,有()()416BE DEBD AE CE AB AD CE+⋅+=+=⋅.令CE x =,得方程26160x x +-=,求得2x =(舍去了负值).于是12BE DE CE AE ⋅=⋅=.又8BD BC DC <+=,求得3BE =,4DE =或4BE =,3DE =,总之7BD =为所求.2.连EF ,DF ,由FBC FBD FED FAC ∠=∠=∠=∠,ABF EBF EDF ACF ∠=∠=∠=∠,知EDF EDF △∽△,即EF DE DF AF AC CF==.设其比值为k (k 为参数),则EF kAF =,DE kAC DF kCF =⋅=,对四边形BEFD 应用托勒密定理.有()BE EF DF BF DE +=⋅,即()BE k AF k CF BF k AC ⋅+⋅=⋅⋅注意到BE AC =,消去k ,得BF AF CF =+.3.连AC ,在四边形APCD 中应用托勒密定理,有PA PC AC PB AB +==4.连11l l 11,,B D DC B C ,设CAD α∠=,BAD β∠=,O ⊙的半径为R .由AD 为BC 上中线,可令12ABC ACD ABC S S S k ===△△△.由正弦定理有112sin B D R β=⋅,112sin()C D R αβ=⋅+.对四边形111AB D C 应用托勒密定理,有1112sin 2sin 2sin()AB R αAC R βAD R αβ⋅⋅+⋅⋅=⋅⋅+,消去2R ,两边同乘以 12AB AC AD ⋅⋅得111122ACD ABD ABC AB AB S AC AC S AD AD S ⋅⋅+⋅⋅=⋅⋅△△△,亦即 1112AB AB AC AC AD AD ⋅+⋅=⋅,由此即证.5.连1535,A A A A ,则1514A A A A =,3513A A A A =.对四边形1345A A A A 应用托勒密定理,有3413151435()A A A A A A A A A A ⋅+=⋅,即1213141413()A A A A A A A A A A +=⋅,由此整理即证.6.对四边形AB A B ''应用托勒密定理,有11a b cc AB A B '''=+⋅,即11111a b c cc c AB A B c '''=+⋅⋅,同理,对四边形B CA C ''',AB BC '',AA BC ''分别应用托勒密定理,有1AB A B c AB B C b AB A C a '''''''⋅⋅=⋅⋅+⋅⋅,1AB B C b abc bb b '''⋅⋅=+,1AB A C a a b c aa a '''''''⋅⋅=+.由此四式即证得结论.7.设圆心O 到AB ,BC ,CA 的距离分别为1x ,2x ,3x ,连接BO 并延长与O ⊙交于D ,连AD ,DC ,则12AD x =,22CD x =,对四边形ABCD 应用托勒密定理有12222x a x c Rb +=.同理,23222x b x a Rc +=,13222x b x c Ra +=.加之1232()2()2()2()x a b x b c x c a R a b c +=+++=++,但123()cx ax bx r a b c ++=++,以上两式相加得123x x x R r ++=+.但11x R h =-,22x R h =-, 33x R h =-,由此即证.8.作一直径(11)AB x x =≥的圆,在B 的两侧分别取C ,D 二点,使2BC =,11BD =,于是AC =AD =对四边形ABCD 应用托勒密定理,有211CD x ⋅=+,将此式与原方程比较得CD =BCD △中,由余弦定理,有1cos 2CBD ∠==-,知120CBD ∠=︒,故14sin120CDx AB ===︒为所求.9.作直径1AC =的圆,并作弦AB b =,AD a =的圆内接四边形ABCD ,则DC =,BC =AD BC AB CD AC BD ⋅+⋅=⋅,即1a b BD =⋅,由此得1BD =,即BD 也是圆的直径,故221a b +=.10.当0x =时,1y =,当0x ≠时,作代换222x t x +=,1122x x t x x =+=+≥sin cos t θy t θ+=+,即1sin cos yt θy θ-=-⋅,以1AB =为直径作圆,作弦sin AC θ=,作弦AD =,则BD =cos BC θ=.由托勒密定理及1CD AB ≤=,有sin cos θy θ+,亦有sin cos sin cos yt t θy θθy θ-=-≤+,即11t y ⋅--,故22y ≤≤+11.连AC ,CE ,AE ,对四边形APCE 应用托勒密定理,有AC PE AE PC CE PA ⋅=⋅+⋅,而AC AE CE ==,有PE PA PC =+.同理,PD PB PF =+,由此即证. 12.不失一般性,令P 点位于OBF △内部(其中O 为C AB △中心),作1PP AD ⊥于1P ,2PP BE ⊥于2P ,3PP CF ⋅于3P .由P ,O ,1P ,2P 四点共圆,有23180PP O PPO ∠+=︒,知1P ,3P ,O ,2P 四点共圆,即P ,3P ,O ,l P ,2P 共圆,推知l 23PP P △是正三角形,在312PP PP 中,有123213312PP P P PP PP PP PP ⋅=⋅+⋅,即123PP PP PP =+,故PAD PCF S S +△△.13.作ABC △外接圆的直径CF ,并设AF x =,BF y =,则60BFC A ∠=∠=︒,直径2CF d y ==.对四边形BCAF 应用托勒密定理,有cd ax by =+.从而tan tan tan tan 2221tan tan tan tan 2a b A B BFC AFC ax by ax by by cd by by c by x a b A B BFC AFC ax by ax by cd c y cy x--∠-∠-+-=-======-=+∠+∠++⋅+.14.令AB AC a ==,对四边形ABPC 应用托勒密定理,有a PB a PC BC PA ⋅+⋅=⋅,即有PA aPB PC BC=+.对四边形BCAQ 应用托勒密定理,有QA BC a QB a QC ⋅+⋅=⋅,即QA a QC QB BC =-. 15.对四边形ABCD 应用托勒密定理,BC AD BD AC AB CD ⋅+⋅=⋅,即AD ACBC BD CD AB AB⋅+⋅=.又ABD MCP △∽△及ABC MDQ △∽△,有AD MP AB MC =,AC MQ AB MD =,于是MP MQBC BD CD MC MD⋅+⋅=,注意到=22CD MC MD =即证.16.连EG ,FG 和EF ,对四边形BFGE 应用托勒密定理,有BE FG BF EG BG EF ⋅+⋅=⋅,又FEG FBG ADB ∠=∠=∠,EFG EBG ∠=∠,则EFG ABD △∽△,有FG EG EFAB AD BD==,令其比值为t ,则t BE AB t BF AD t BG BD ⋅⋅+⋅⋅=⋅⋅,消去t ,注意到AD BC =即证.17.作DG AF ∥交1O ⊙于G ,则AG FD =,GF AD =.对四边形AGDF 应用托勒密定理,AD FG AG FD AF GD ⋅=⋅+⋅.由AD 平分BAF ∠,知FD BD =,即AG BD =,由此知GB DA ∥,有GD AB =.故 222AD FD AF GD FD AF AB =+⋅=+⋅. 同理,有22AE FE AF AC =+⋅.此两式相减有2222DA EA DF EF -=-,故DE AF ⊥.18.在直径2AB x =>的圆中,在两个半圆上分别取点C 和D ,使2AC =,1AD =,则BCBD =由托勒密定理,CD x ⋅,与原方程比较得CD =.在ACD △中,由余弦定理,有1cos 2CAD ∠=-,则120CAD ∠=︒,故sin CD x CAD ==∠.19.由222+=,在直径AB =的圆中,在一半圆上取点C ,使AC =,BC =;在另一半圆上取中点D ,则AD BD =CD ,知CD AB ≤,由托勒密定理,2AB CD =⋅≤,即y =≤ABC △中,AC BC AB +≥(当C 与A 或B 重合时,取等号),故y ≤20.设222x y a +=,则01a ≤≤.当0a =时,命题显然成立,当01a <≤时,在直径AB a =的一半圆上取点C ,使AC x =,BC y =,因2222x y a +=+=,则可在另一半圆上取点D ,使BD =,AD =,由托勒密定理,有2x y AB CD a +=⋅≤,即2()()x x y y x y ++-≤≤但222()()()()x xy y x x y y x y x x y y x y +-=++-≤++-≤21.设点T 在劣弧AB 上,连AT ,BT ,CT ,分别交小圆于点D ,E ,F .连DE ,EF ,FD ,过点T 作公切线RQ .由DFT RTD RTA ACT ∠=∠=∠=∠,有AC DF ∥,有AD ATCF CT=.又 2AM AD AT =⋅,2CP CF CT =⋅,有2222AM AD AT AT CP CF CT CT =⋅=,即AM AT CP CT =.同理,BN BT CP CT=.对圆内接四边形ATBC 应用托勒密定理,有AT BC BT AC TC AB ⋅+⋅=⋅,而AB BC CA ==,则 AT BT CT +=,故AM BN CP ++.22.令BC a =,AC b =,AB c =.由BE 平分ABC ∠,有AE AB EC BC =,亦有AE ABAC BC AB=+,即bc AE a c =+.同理,bcAF a b=+.由AE PQ ∥,有AEF Q ∠=∠,从而AEF PCB ∠=∠,注意到 FAE BPC ∠=∠,有AEF PCB △∽△,即PB AF a cPC AE a b+==+,即()PB b PC a c PB a ⋅=⋅+-⋅.在圆内接四边形PABC 中,应用托勒密定理,有PB b PC c PA a ⋅=⋅+⋅,故()PC a c PB a PC c PA a +-⋅=⋅+⋅,因此,PC PA PB ++.23.由()BE AC AF FC AC ⋅=+⋅,AC ,()()AF BC AB FC AF BD CD FC BE AE AF ⋅+⋅=⋅++-=⋅ ()()AC AF CD FC AC FC AE AF FC AC AF CD FC AE +⋅+⋅-⋅=+⋅+⋅-⋅,又AF CD FC AE ⋅=⋅, 则BF AC AF BC AB FC ⋅=⋅+⋅,由托勒密定理之逆,知ABCF 有外接圆.24.连EA ,ED ,由BAE ECD ∠=∠,且CDE EAD ABE ∠=∠=∠,有ABE CDE △∽△,亦有AE ABEC CD=, 即EC AB EA CD ⋅=⋅.在圆内接四边形AEBC 中,应用托勒密定理,有EA BC EB AC EC AB ⋅+⋅=⋅,于是222111EB AC EA BC EA BC BC BD BD BD EC AB EC AB EA CD CD CD BD CD DA ⋅⋅⋅=-=-=-===⋅⋅⋅⋅.又ABD CAD ∠=∠,ADB ADC ∠=∠,有ABD CAD △∽△,有AB BDAC AD=.于是22EB AC AB EC AB AC ⋅=⋅,故33EB AB EC AC =. 习题B1.在弧ADC 上取点H ,使AH CD c ==,连HC ,HB ,令AC m =,BD n =,BH p =,易证AHC CDA △∽△,即HC AD d ==.对四边形ABCD ,ABCH 分别应用托勒密定理,有ac bd mn +=,。
【精品】(托勒密定理)四边形ABCD 内接于圆,求证:AC BD AD BCAB CD ⋅=⋅+⋅.【解析】如图,在BD 上取一点P ,使其满足12∠=∠.∵34∠=∠,∴ACD BCP △∽△,AC ADBC BP=, 即AC BP AD BC ⋅=⋅ ① 又ACB DCP ∠=∠,56∠=∠,∴ACB DCP △∽△,AB ACDP CD=,AC DP AB CD ⋅=⋅. ② ①+②,有AC BP AC PD AD BC AB CD ⋅+⋅=⋅+⋅.即()AC BP PD AD BC AB CD +=⋅+⋅,故AC BD AD BC AB CD ⋅=⋅+⋅.【教师备课提示】这道题主要考查利用圆幂定理证明四点共圆.(1)如图2-1,点P 为等边ABC △外接圆的BC 上一点,线段PA 、PB 、PC 间的数量关系为____.(2)如图2-2,AB 为⊙O 的直径,∠ABD =45°,点C 为ABD △外接圆的AB 上一点,线段CA 、CB 、CD 间的数量关系为____________.(3)如图2-3,30ABC ACB ∠=∠=︒,点D 为ABC △外接圆的BC 上一点,线段DA 、DB 、DC 间的数量关系为_____________.图2-1 图2-2 图2-3【解析】(1)PA PB PC =+;(2)2CA CB CD +=;(3)3DB DC DA +=.【教师备课提示】这道题主要利用托勒密定理解决圆中的Y 字模型,建议讲2中方法.OD CBAABCP ODAOC D C A B D C126345PA B如图,O 的直径AB 的长为10,直线EF 经过点B ,且CBF CDB∠=∠,连接AD .(1)求证:直线EF 是O 的切线; (2)若点C 是弧AB 的中点,6BD =,求CD 的长.【解析】(1)∵AB 是O 的直径,∴90ADB ∠=︒即90ADC CDB ∠+∠=︒, ∵ADC ABC ∠=∠,CBF CDB ∠=∠, ∴90ABC CBF ∠+∠=︒,即90ABF ∠=︒, ∴AB EF ⊥∴EF 是O 的切线; (2)法1:作BG CD ⊥,垂足是G ,由题45ADC CDB ∠=∠=︒,∴32BG DG ==,∵DAB DCB ∠=∠,∴3tan 4BG DCB CG ∠==,∴42CG =,∴423272CD CG DG =+=+=.法2:由托勒密定理,214BD AD CD +==,∴72CD =.【教师备课提示】这道题主要让孩子们练习哈,注意书写过程.(1)(13年成外直升)如图4-1,ABC △内接于O ,AB AC =;当动点P 在O 上从点B 出发,按逆时针方向向点C 运动时,PB PCPA+的值( ).A .保持不变B .先减小后增大C .先增大后减小D .无法判断(2)(2013成都中考)如图4-2,A ,B ,C 为O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为O 的直径,将O 沿EF 折叠,使点A 与A'重合,点B 与B'重合,连接EB',EC ,EA'.设EB'b =,EC c =,EA'p =.先探究b ,c ,p 三者的数量关系:发现当3n =时,p b c =+.请继续探究b ,c ,p 三者的数量关系:当4n =时,p =__________;当12n =时,p =__________. (参考数据:62sin15cos754-︒=︒=,62cos15sin 754+︒=︒=)图4-1 图4-2【解析】(1)A ;(2)2p c b =+;622p c b +=+. 【教师备课提示】这道题主要考查托勒密定理中考和直升考试中的应用,等腰三角形的Y 字模型.A'FABOB'C EAD OEBCFADOEBC FGA BO P C如图,过A 的圆截平行四边形ABCD 的边和对角线分别于P ,Q ,R ,求证:AP ABAQ AD AR AC ⋅+⋅=⋅.【解析】连接PQ 、PR 、QR .在圆内接四边形APRQ 中,由托勒密定理得AP QR AQ PR AR PQ ⋅+⋅=⋅.又∵12∠=∠,34∠=∠,∴PQR CAB △∽△,于是QR PR PQAB BC CA==. 设上面的比值为k ,并考虑到BC AD =有QR k AB =⋅,PR k AD =⋅,PQ k CA =⋅, 于是可推得AP AB AQ AD AR AC ⋅+⋅=⋅.【教师备课提示】这道题主要考查托勒密定理和相似综合.如图,圆G 过坐标原点,交y 轴于点A ,交x 轴于点B ,点C 为圆上一点,且OC 平分AOB ∠交AB 于点F .CE y ⊥轴于E 交AB 于点H ,连接EG . (1)求证:CBF COB △△∽;(2)请探究OE 、AE 和EG 这三条线段之间的数量关系,写出你的结论并证明. 【解析】(1)证明:∵OC 平分AOB ∠,∴AC BC =,45AOC COB ∠=∠=︒, ∴45CBF COB ∠=∠=︒,∵OBC BCF ∠=∠(公共角), ∴CBF COB ∽△△;(2)法1:连接CG ,则290AGC AOC ∠=∠=︒,∴90AGC AEC ∠=∠=︒, ∴A 、E 、C 、G 四点共圆,由托勒密定理2CE AE EG =+,又CE OE =, ∴2OE AE EG =+;法2:在CE 上截取CQ AE =,连接GC 、GQ ,EG .∵AC BC =,∴CG AB ⊥,∴90GCQ GHC ∠=︒-∠,∵CE y ⊥轴,∴90GAE AHE ∠=︒-∠,∵AHE GHC ∠=∠,∴GAE GCQ ∠=∠, ∴EAG QCG ≌△△,∴EG GQ =,AGE CGQ ∠=∠,∴90EGQ AGE AGQ AGQ CGQ ∠=∠+∠=∠+∠=︒,∴EG GQ ⊥, ∴EGQ △是等腰直角三角形,∴2EQ EG =,又OE CE =,AE QC =, ∴2OE AE CE CQ EQ EG -=-==;∴2OE AE EG -=.【教师备课提示】这道题主要考查要用托勒密定理,先证四点共圆.D C Q A R P B D C Q A RP B 1423yxO BAE HC G F已知AB 为O 的直径,CD 为O 的一条弦,顺次连接AC 、CB 、BD 、DA .(1)当45ACD ∠=︒(如图1-1)时,线段CA 、CB 、CD 间的数量关系为_____________; (2)当30ACD ∠=︒(如图1-2)时,求证:32CA CB CD +=.图1-1 图1-2【解析】(1)2AC BC CD +=;(2)如图,过点A 作AE CD ⊥,过点O 作OF BC ⊥,连接OC 、OD .∵30ACD ∠=︒,90AEC ∠=︒,∴32CE AC =. ∵OF BC ⊥,∴12CF BC =.∵30ACD ∠=︒,∴60AOD ∠=︒.又∵OA OD =,∴AOD △为等边三角形.∴AD OC =.∵12ADC AOC ∠=∠,12OCF AOC ∠=∠,∴ADC OCF ∠=∠.在ADE △和OCF △中,AED OFC ADC OCF AD OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE OCF △≌△.∴DE CF =.∴12DE BC =. ∵CE ED CD +=,∴3122AC BC CD +=. ∴32AC CB CD +=.另解:直接用托勒密定理.演练 1A D OCBA DO CBA D OC BEF如图,A ,P ,B ,C 是O 上的四个点,60APC BPC ∠=∠=︒,过点A 作O 的切线交BP 的延长线于点D . (1)求证:ADP BDA △∽△;(2)试探究线段P A ,PB ,PC 之间的数量关系,并证明你的结论.【解析】(1)证明:作O 的直径AE ,连接PE ,∵AE 是O 的直径,AD 是O 的切线, ∴90DAE APE ∠=∠=︒,∴90PAD PAE PAE E ∠+∠=∠+∠=︒, ∴PAD E ∠=∠, ∵PBA E ∠=∠, ∴PAD PBA ∠=∠,∵PAD PBA ∠=∠,ADP BDA ∠=∠, ∴ADP BDA ∽△△; (2)PA PB PC +=,证明:在线段PC 上截取PF PB =,连接BF , ∵PF PB =,60BPC ∠=︒, ∴PBF △是等边三角形, ∴PB BF =,60BFP ∠=︒, ∴180120BFC PFB ∠=︒-∠=︒, ∵120BPA APC BPC ∠=∠+∠=︒, ∴BPA BFC ∠=∠, 在BPA △和BFC △中, PAB FCB BPA BFC PB FB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴AAS BPA BFC ()≌△△, ∴PA FC =,AB CB =, ∴PA PB PF FC PC +=+=. 另解:直接利用托勒密定理.DA P OBC点D 为Rt ACB △边BC 延长线上一点,点E 在边AC 上,点M 、N 分别为线段AB 、AE 的中点,连接DE 、DA ,90ACB ,ABC CED .(1)若45ABC ,如图3-1,求证:12MN AD =;(2)在(1)的条件下,连接BE 并延长BE 交线段AD 于点F ,连接FC ,如图3-2,请你判断线段FE 、FC 与线段FD 之间的数量关系.图3-1 图3-2【解析】(1)∵90ACB ,ABC CED ,45ABC ,∴BC AC ,CE CD ,在BCE △和ACD △中,90BC AC BCE ACD CE CD =⎧⎪∠=∠=︒⎨⎪=⎩,∴(SAS)BCE ACD △≌△,∴BEAD ,∵点M 、N 分别为线段AB 、AE 的中点,∴12MN BE =,∴12MN AD =; (2)∵BCE ACD △≌△,∴CBEEAF ,∵BEC AEF ,∴90AFB ACB ,∴A 、B 、C 、F 共圆,∴ABF ACF ,∵AEBFEC ,∴AEB FEC △∽△,∴::FE AE FC AB ,∴AEFE FC AB=⋅, ∵90BAF ABF ,90FCD ACF ,∴FCD BAD ,∵FDC BDA ,∴FCD BDA △∽△,∴,::FD BD FC AB ,∴BD FD FC AB =⋅,∴AE BDFE FD FC AB++=⋅,∵AC BC ,CE CD ,∴2AE BD AC EC BC CD AC ﹣,∵在Rt ABC △中,2AB AC =,∴2222AE BD AC ACAB AB AC +===,∴2FE FD FC +=; 另解:直接利用托勒密定理.ABCDF ME NABC DF MEN。
托勒密定理题目摘要:1.托勒密定理的背景和起源2.托勒密定理的定义和表述3.托勒密定理的证明方法4.托勒密定理的应用领域5.托勒密定理的历史意义和影响正文:1.托勒密定理的背景和起源托勒密定理,是数学史上著名的几何定理之一,起源于古希腊时期。
它的名字来源于古希腊著名天文学家、地理学家和数学家托勒密(Ptolemy),他在其著作《天文学大成》中阐述了这一定理。
托勒密定理是数学史上第一个被证明的关于三角形的定理,对后世的数学研究产生了深远的影响。
2.托勒密定理的定义和表述托勒密定理的表述如下:在三角形中,任意一边所对的角大于其邻边所对的角。
用数学符号表示就是:对于三角形ABC,如果角A、B、C 所对的边分别是a、b、c,那么有角A 所对的边a 大于角B 所对的边b,角B 所对的边b 大于角C 所对的边c,即a > b > c。
3.托勒密定理的证明方法托勒密定理的证明方法有多种,其中比较常见的方法是利用平行线和相似三角形。
首先,通过作图将三角形ABC 转化为两个相似三角形,然后利用相似三角形的性质,证明角A 所对的边a 大于角B 所对的边b,角B 所对的边b 大于角C 所对的边c。
4.托勒密定理的应用领域托勒密定理在数学领域具有广泛的应用,尤其是在几何学、三角形学以及相关领域的研究中。
此外,托勒密定理在实际生活中的应用也相当广泛,如在测量、航海、建筑等领域,都需要运用到托勒密定理来解决实际问题。
5.托勒密定理的历史意义和影响托勒密定理是数学史上的重要里程碑,它的发现和证明对后世数学研究产生了深远的影响。
托勒密定理的发现,使得人们对三角形的认识更加深入,为三角形学的发展奠定了基础。
第17课时欧姆定律中考回顾1.(2022·四川自贡中考)右图是一种自动测定油箱内油面高度的装置,R是转动式变阻器,它的金属滑片P是杠杆的一端,杠杆可绕支点O自由转动,下列说法正确的是()A.油位越高,流过R的电流越大B.油位越高,R两端的电压越大C.R、R0在电路中是并联的D.油量表是由电流表改装而成的答案:B2.(2021·青海中考)如图所示,已知电源电压恒定不变,闭合开关S,将滑片P由图示位置向下滑动的过程中,下列说法正确的是()A.电流表A1的示数变小B.电流表A2的示数变大C.电压表V的示数变大D.灯泡L的亮度不变答案:D3.(2021·四川攀枝花中考)如图甲所示的电路,电源电压为9 V,小灯泡L的额定电压为4 V,图乙是小灯泡L的电流I随其电压U变化的图像。
当S闭合,将滑片P移到滑动变阻器R的中点时,小灯泡L 恰好正常发光,则滑动变阻器R的最大阻值为Ω。
移动滑片P,当小灯泡L的功率为1 W时,滑动变阻器R接入的阻值为Ω。
答案:2016.254.(2022·云南中考)小明用“伏安法”测量未知电阻R的阻值。
甲乙(1)根据图甲所示的电路图,用笔画线代替导线,将图乙所示的实物图补充完整。
要求滑动变阻器滑片向右滑动时它的电阻增大、电压表选择合适的量程。
(2)闭合开关前要将滑动变阻器的滑片调到(选填“A”或“B”)端。
(3)电压表的示数为1.5 V时,电流表的示数如图丙所示为 A,可算出电阻R的阻值为Ω。
(4)他接着移动滑动变阻器的滑片测出多组电压和电流的值,算出对应的电阻值及电阻的平均值,计算电阻的平均值的目的是。
(5)测出电阻R的阻值后,小明还对标有2.5 V的小灯泡的电阻进行了测量,他测量了多组数据,如下表所示。
小明发现5次测量的电阻值相差较大,和其他小组交流后,发现都存在类似情况,且小灯泡的电阻随电压减小而减小,亮度也变暗。
同学们认为这种情况不是误差造成的,而是小灯泡电阻受影响;亮度越来越暗,是小灯泡两端电压越来越小,实际功率变的缘故。
托勒密定理巧解四边形对角互补问题托勒密定理:四边形ABCD 内接于圆,求证:AC BD AD BC AB CD ⋅=⋅+⋅.证明 :如图,在BD 上取一点P ,使其满足12∠=∠.∵34∠=∠,∴ACD BCP △∽△,AC ADBC BP=, 即AC BP AD BC ⋅=⋅ ① 又ACB DCP ∠=∠,56∠=∠,∴ACB DCP △∽△,AB ACDP CD=,AC DP AB CD ⋅=⋅. ② ①+②,有.即()AC BP PD AD BC AB CD +=⋅+⋅,故AC BD AD BC AB CD ⋅=⋅+⋅.定理推广-托勒密不等式推广(托勒密不等式):对于任意凸四边形ABCD ,AC ·BD ≤AB ·CD+AD ·BC证明:如图1,在平面中取点E 使得∠BAE=∠CAD ,∠ABE=∠ACD , 易证△ABE ∽△ACD ,∴AB:AC=BE:CD , 即AC ·BE=AB ·CD ①,D C A B D C126345P A B连接DE ,如图2,∵AB/AC=AE/AD ,∴AB/AE=AC/AD ,∠BAC=∠BAE+∠CAE=∠DAC+∠CAE=∠DAE ,∴△ABC ∽△AED ,∴AD/AC=DE/BC ,即AC ·DE=AD ·BC ②,将①+②得:AC ·BE+AC ·DE=AB ·CD+AD ·BC ,∴AC ·BD ≤AC(BE+DE)=AB ·CD+AD ·BC 即AC ·BD ≤AB ·CD+AD ·BC ,当且仅当A 、B 、C 、D 共圆时取到等号.下列四边形对角互补问题,题目均可巧解(自己试一试)【例1】(1)如图2-1,点P 为等边ABC △外接圆的BC 上一点,线段PA 、PB 、PC 间的数量关系为____.(2)如图2-2,AB 为⊙O 的直径,∠ABD =45°,点C 为ABD △外接圆的AB 上一点,线段CA 、CB 、CD 间的数量关系为____________.(3)如图2-3,30ABC ACB ∠=∠=︒,点D 为ABC △外接圆的BC 上一点,线段DA 、DB 、DC 间的数量关系为_____________.图2-1 图2-2 图2-3【解析】(1)PA PB PC =+;(2)CA CB +;(3)DB DC +=.ABCP ODAOC【例2】(2013成都中考)如图4-2,A ,B ,C 为O 上相邻的三个n 等分点,AB BC =,点E在弧BC 上,EF 为O 的直径,将O 沿EF 折叠,使点A 与A'重合,点B 与B'重合,连接EB',EC ,EA'.设EB'b =,EC c =,EA'p =.先探究b ,c ,p 三者的数量关系:发现当3n =时,p b c =+.请继续探究b ,c ,p 三者的数量关系:当4n =时,p =__________; 当12n =时,p =__________.(参考数据:sin15cos75︒=︒=cos15sin 75︒=︒=)图4-1 图4-2【解析】(1)A ;(2)p c =+;2p c =+. 【例3】(2013成都27改)如图3,在菱形ABCD 中,120ABC ∠=︒,在ABC ∠内作射线BM , 作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF . ①证明CEF ∆是等边三角形;②若5AE =,2CE =,求BF 的长.解:①证明:如图3中,作BH AE ⊥于H ,连接BE .四边形ABCD 是菱形,120ABC ∠=︒, ABD ∴∆,BDC ∆是等边三角形,A'F AB OB'C E A BO P CBA BD BC ∴==,E 、C 关于BM 对称,BC BE BD BA ∴===,FE FC =, A ∴、D 、E 、C 四点共圆, 120ADC AEC ∴∠=∠=︒, 60FEC ∴∠=︒,EFC ∴∆是等边三角形,②解:5AE =,2EC EF ==, 2.5AH HE ∴==, 4.5FH =, 在Rt BHF ∆中,30BFH ∠=︒, ∴cos30HF BF=︒,BF ∴==【例4】(2019•天门)已知ABC ∆内接于O ,BAC ∠的平分线交O 于点D ,连接DB ,DC .(1)如图①,当120BAC ∠=︒时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式: ; (2)如图②,当90BAC ∠=︒时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论; (3)如图③,若5BC =,4BD =,求ADAB AC+的值.解:(1)如图①在AD 上截取AE AB =,连接BE , 120BAC ∠=︒,BAC ∠的平分线交O 于点D ,60DBC DAC ∴∠=∠=︒,60DCB BAD ∠=∠=︒,ABE ∴∆和BCD ∆都是等边三角形,DBE ABC ∴∠=∠,AB BE =,BC BD =, ()BED BAC SAS ∴∆≅∆, DE AC ∴=,AD AE DE AB AC ∴=+=+;故答案为:AB AC AD +=.(2)AB AC +=.理由如下:如图②,延长AB 至点M ,使BM AC =,连接DM , 四边形ABDC 内接于O , MBD ACD ∴∠=∠,45BAD CAD ∠=∠=︒, BD CD ∴=,()MBD ACD SAS ∴∆≅∆,MD AD ∴=,45M CAD ∠=∠=︒,MD AD ∴⊥.AM ∴,即AB BM +,AB AC ∴+;(3)如图③,延长AB 至点N ,使BN AC =,连接DN , 四边形ABDC 内接于O , NBD ACD ∴∠=∠, BAD CAD ∠=∠, BD CD ∴=,()NBD ACD SAS ∴∆≅∆,ND AD ∴=,N CAD ∠=∠,N NAD DBC DCB ∴∠=∠=∠=∠, NAD CBD ∴∆∆∽, ∴AN AD BC BD =, ∴AD BD AN BC=, 又AN AB BN AB AC =+=+,5BC =,4BD =,∴45AD BD AB AC BC ==+. 【例5】(2019•威海) (1)方法选择 如图①,四边形ABCD 是O 的内接四边形,连接AC ,BD ,AB BC AC ==.求证:BD AD CD =+. 小颖认为可用截长法证明:在DB 上截取DM AD =,连接AM ⋯小军认为可用补短法证明:延长CD至点N,使得DN AD=⋯请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是O的内接四边形,连接AC,BD,BC是O的直径,AB AC=.试用等式表示线段AD,BD,CD之间的数量关系,并证明你的结论.【探究2】如图③,四边形ABCD是O的内接四边形,连接AC,BD.若BC是O的直径,30∠=︒,ABC则线段AD,BD,CD之间的等量关系式是.(3)拓展猜想如图④,四边形ABCD是O的内接四边形,连接AC,BD.若BC是O的直径,=,则线段AD,BD,CD之间的等量关系式是.::::BC AC AB a b c【解答】解:(1)方法选择:AB BC AC==,ACB ABC∴∠=∠=︒,60=,连接AM,如图①,在BD上截取DM AD∠=∠=︒,60ADB ACB∴∆是等边三角形,ADM∴=,AM ADABM ACD∠=∠,∠=∠=︒,AMB ADC120∴∆≅∆,ABM ACD AAS()∴=,BM CDBD BM DM CD AD∴=+=+;(2)类比探究:如图②,BC是O的直径,∴∠=︒,BAC90=,AB AC∴∠=∠=︒,ABC ACB45⊥交BD于M,过A作AM AD45∠=∠=︒,ADB ACB∴∆是等腰直角三角形,ADM∴=,45AM AD∠=︒,AMD∴=,DM∴∠=∠=︒,135AMB ADC∠=∠,ABM ACD()ABM ACD AAS ∴∆≅∆, BM CD ∴=,BD BM DM CD ∴=+=+;【探究2】如图③,若BC 是O 的直径,30ABC ∠=︒, 90BAC ∴∠=︒,60ACB ∠=︒, 过A 作AM AD ⊥交BD 于M , 60ADB ACB ∠=∠=︒, 30AMD ∴∠=︒, 2MD AD ∴=,ABD ACD ∠=∠,150AMB ADC ∠=∠=︒, ABM ACD ∴∆∆∽,∴BM AB CD AC==,BM ∴=,2BD BM DM AD ∴=++;故答案为:2BD AD +;(3)拓展猜想:c aBD BM DM CD AD b b=+=+;理由:如图④,若BC 是O 的直径, 90BAC ∴∠=︒,过A 作AM AD ⊥交BD 于M , 90MAD ∴∠=︒, BAM DAC ∴∠=∠, ABM ACD ∴∆∆∽, ∴BM AB c CD AC b==, cBM CD b∴=,ADB ACB ∠=∠,90BAC MAD ∠=∠=︒, ADM ACB ∴∆∆∽, ∴AD AC b DM BC a==, aDM AD b∴=,c aBD BM DM CD AD b b ∴=+=+.故答案为:c aBD CD AD b b=+【例6】(2017•临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若60∠=∠=∠=∠=︒,则线段BC,CD,AC三者之间有何等量关系?ACB ACD ABD ADB经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE CD=,连接AE,证得=+.=,所以AC BC CD ABE ADC∆≅∆,从而容易证明ACE∆是等边三角形,故AC CE小亮展示了另一种正确的思路:如图3,将ABC∆绕着点A逆时针旋转60︒,使AB与AD重合,从而容易证明ACF=,所以AC BC CD=+.∆是等边三角形,故AC CF在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“60∠=∠=∠=∠=︒”ACB ACD ABD ADB改为“45∠=∠=∠=∠=︒”,其它条件不变,那么线段BC,CD,AC三者之间ACB ACD ABD ADB有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“60ACB ACD ABD ADB∠=∠=∠=∠=︒”改为“ACB ACD ABD ADBα∠=∠=∠=∠=”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【解答】解:(1)BC CD+=;理由:如图1,延长CD 至E ,使DE BC =,连接AE , 45ABD ADB ∠=∠=︒,AB AD ∴=,18090BAD ABD ADB ∠=︒-∠-∠=︒, 45ACB ACD ∠=∠=︒, 90ACB ACD ∴∠+∠=︒, 180BAD BCD ∴∠+∠=︒, 180ABC ADC ∴∠+∠=︒, 180ADC ADE ∠+∠=︒, ABC ADE ∴∠=∠,在ABC ∆和ADE ∆中,AB AD ABC ADE BC DE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴∆≅∆,45ACB AED ∴∠=∠=︒,AC AE =, ACE ∴∆是等腰直角三角形,CE ∴,CE CD DE CD BC =+=+,BC CD ∴+=;(2)2cos BC CD AC α+=.理由:如图2,延长CD 至E ,使DE BC =, ABD ADB α∠=∠=,AB AD ∴=,1801802BAD ABD ADB α∠=︒-∠-∠=︒-, ACB ACD α∠=∠=, 2ACB ACD α∴∠+∠=, 180BAD BCD ∴∠+∠=︒, 180ABC ADC ∴∠+∠=︒, 180ADC ADE ∠+∠=︒, ABC ADE ∴∠=∠,在ABC ∆和ADE ∆中,AB AD ABC ADE BC DE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴∆≅∆,ACB AED α∴∠=∠=,AC AE =, AEC α∴∠=,过点A 作AF CE ⊥于F ,2CE CF ∴=,在Rt ACF ∆中,ACD α∠=,cos cos CF AC ACD AC α=∠=, 22cos CE CF AC α∴==, CE CD DE CD BC =+=+, 2cos BC CD AC α∴+=. 【例7】(2016•淮安)问题背景:如图①,在四边形ADBC 中,90ACB ADB ∠=∠=︒,AD BD =,探究线段AC ,BC ,CD 之间的数量关系.小吴同学探究此问题的思路是:将BCD ∆绕点D ,逆时针旋转90︒到AED ∆处,点B ,C 分别落在点A ,E 处(如图②),易证点C ,A ,E 在同一条直线上,并且CDE ∆是等腰直角三角形,所以CE =,从而得出结论:AC BC +=.简单应用:(1)在图①中,若AC =BC =CD = .(2)如图③,AB 是O 的直径,点C 、D 在上,AD BD =,若13AB =,12BC =,求CD 的长. 拓展规律:(3)如图④,90ACB ADB ∠=∠=︒,AD BD =,若A C m =,()BC n m n =<,求CD 的长(用含m ,n 的代数式表示)(4)如图⑤,90ACB ∠=︒,AC BC =,点P 为AB 的中点,若点E 满足13AE AC =,CE CA =,点Q 为AE 的中点,则线段PQ 与AC 的数量关系是 .解:(1)由题意知:AC BC +,∴+=, 3CD ∴=;(2)连接AC 、BD 、AD , AB 是O 的直径, 90ADB ACB ∴∠=∠=︒,AD BD =,AD BD ∴=,将BCD ∆绕点D 顺时针旋转90︒到AED ∆处,如图③,EAD DBC ∴∠=∠,180DBC DAC ∠+∠=︒,180EAD DAC ∴∠+∠=︒,E ∴、A 、C 三点共线,13AB =,12BC =,∴由勾股定理可求得:5AC =,BC AE =,17CE AE AC ∴=+=,EDA CDB ∠=∠,EDA ADC CDB ADC ∴∠+∠=∠+∠, 即90EDC ADB ∠=∠=︒,CD ED =,EDC ∴∆是等腰直角三角形,CE ∴,CD ∴=;(3)以AB 为直径作O ,连接OD 并延长交O 于点1D , 连接1D A ,1D B ,1D C ,如图④由(2)的证明过程可知:1AC BC C +=,1D C ∴=, 又1D D 是O 的直径, 190DCD ∴∠=︒,AC m =,BC n =,∴由勾股定理可求得:222AB m n =+, 22221D D AB m n ∴==+,22211D C CD D D +=,22222()()22m n m n CD m n +-∴=+-=, m n <,CD ∴=;(4)当点E 在直线AC 的左侧时,如图⑤,连接CQ ,PC ,AC BC =,90ACB ∠=︒,点P 是AB 的中点,AP CP ∴=,90APC ∠=︒,又CA CE =,点Q 是AE 的中点, 90CQA ∴∠=︒,设AC a =, 13AE AC =, 13AE a ∴=, 1126AQ AE a ∴==,由勾股定理可求得:CQ =,由(2)的证明过程可知:AQ CQ +=,∴16a =,∴=;当点E 在直线AC 的右侧时,如图⑥,连接CQ 、CP ,同理可知:90AQC APC ∠=∠=︒,设AC a =,1126AQ AE a ∴==,由勾股定理可求得:CQ =,由(3)的结论可知:)PQ CQ AQ =-,∴AC =.综上所述,线段PQ 与AC 16AC +=16AC -=.。
三、解答题(本大题共6小题,共60分)19. (8分)如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米. (1)此时梯子顶端离地面多少米?那么梯子底端将向左滑动多少米?2(). (10分)如图有一块直角三角形纸片,两直角边AC = 6cm, BC = 8cm,现将直角边AC 沿AD折叠,使点C落在斜边AB上的点E处,试求CD的长.21.(10 分)如图,在"5。
中,A5=30 cm, BC=35 cm, ZB=60o,有一动点M 自A 向8以1 cm/s的速度运动,动点N自8向。
以2cm∕s的速度运动,若M, N同时分别从A, B 出发.(1)经过多少秒,ABMN为等边三角形;(2)经过多少秒,A BMN为直角三角形.22.(10分)如图,在zi A3C中,ZBAC = 90o, AB = AC,点。
是区。
上一动点、连接AQ, 过点A作AEJ.AD,并且始终保持AE = AD,连接CE,(1)求证:aA8O=AACEι(2)若A尸平分ND4£交5C于产,①探究线段80, DF,/C之间的数量关系,并证明;②若BD = 3, CF = 4f求AO的长,23.(10 分)如图,Zk4BC 中,ZC=90o, Aβ=10cm, 5C=6cm,动点P 从点。
出发,以每秒2 cm的速度按C-M的路径运动,设运动时间为f秒.(2)当/为何值时,8P恰好平分NA6C?(1)出发2秒时,aA3P的面枳为cm2;22.(10分)如图,在zi A3C中,ZBAC = 90o, AB = AC,点。
是区。
上一动点、连接AQ, 过点A作AEJ.AD,并且始终保持AE = AD,连接CE,(1)求证:aA8O=AACEι(2)若A尸平分ND4£交5C于产,①探究线段80, DF,/C之间的数量关系,并证明;②若BD = 3, CF = 4f求AO的长,23.(10 分)如图,Zk4BC 中,ZC=90o, Aβ=10cm, 5C=6cm,动点P 从点。
【例题求解】【例1】如图,已知电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,如果CD与地面成45°,∠A=60°,CD=4m,BC=(24-)m,则电线杆AB的长为.62思路点拨延长AD交BC于E,作DF⊥BC于F,为解直角三角形创造条件.【例2】如图,在四边形ABCD中,AB=24-,BC-1,CD=3,∠B=135°,∠C=90°,则∠D等于( ) A.60° B.67.5° C.75° D.无法确定思路点拨通过对内分割或向外补形,构造直角三角形.注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除.在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解.【例3】 如图,在△ABC 中,∠=90°,∠BAC=30°,BC=l ,D 为BC 边上一点,tan ∠ADC 是方程2)1(5)1(322=+-+x x x x 的一个较大的根?求CD 的长. 思路点拨 解方程求出 tan ∠ADC 的值,解Rt △ABC 求出AC 值,为解Rt △ADC 创造条件.【例4】 如图,自卸车车厢的一个侧面是矩形ABCD ,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米) 思路点拨 作辅助线将问题转化为解直角三角形,怎样作辅助线构造基本图形,展开空间想象,就能得到不同的解题寻路【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?思路点拨 (1)设甲楼最高处A 点的影子落在乙楼的C 处,则图中CD 的长度就是甲楼的影子在乙楼上的高;(2)设点A 的影子落在地面上某一点C ,求BC 即可.注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.学历训练1.如图,在△ABC 中,∠A=30°,tanB=31,BC=10,则AB 的长为 .2.如图,在矩形ABCD 中.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH =34,四边形EFGH 的周长为40cm ,则矩形ABCD 的面积为 .3.如图,旗杆AB ,在C 处测得旗杆顶A 的仰角为30°,向旗杆前北进10m ,达到D ,在D 处测得A 的仰角为45°,则旗杆的高为 .4.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,那么B 处船与小岛M 的距离为( )A .20海里B .20海里C .315海里D .3205.已知a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边,若关于x 的方程02)(2=-+-+b c ax x c b有两个相等的实根,且sinB ·cosA —cosB ·sinA =0,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C . 4D .67.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=1,已知AD 、BD 的长是关于x 的方程02=++q px x 的两根,且tanA —tanB=2,求p 、q 的值.8.如图,某电信部门计划修建一条连结B 、C 两地的电缆,测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 地测得C 地的仰角为60°.已知C 地比A 地高200米,则电缆BC 至少长多少米?(精确到0.1米)9.如图,在等腰Rt △ABC 中,∠C=90°,∠CBD =30,则DCAD = .10.如图,正方形ABCD 中,N 是DC 的中点.M 是AD 上异于D 的点,且∠NMB=∠MBC ,则tan ∠ABM = .11.在△ABC 中,AB=26-,BC=2,△ABC 的面积为l ,若∠B 是锐角,则∠C 的度数是 .12.已知等腰三角形的三边长为 a 、b 、c ,且c a =,若关于x 的一元二次方程022=+-c bx x 的两根之差为2,则等腰三角形的一个底角是( )A . 15°B .30°C .45°D .60°13.如图,△ABC 为等腰直角三角形,若AD=31AC ,CE=31BC ,则∠1和∠2的大小关系是( ) A .∠1>∠2 B .∠1<∠2 C .∠1=∠2 D .无法确定14.如图,在正方形ABCD 中,F 是CD 上一点,AE ⊥AF ,点E 在CB 的延长线上,EF 交AB 于点G .(1)求证:DF ×FC =BG ×EC ;(2)当tan ∠DAF=31时,△AEF 的面积为10,问当tan ∠DAF=32时,△AEF 的面积是多少?15.在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.16.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正在以15千米/时的速度沿北偏东30°方向往C 处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?17.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD ,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD 和高度DC 都可直接测得,从A 、D 、C 三点可看到塔顶端H .可供使用的测量工具有皮尺、测角器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案.具体要求如下: ①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A 、D 间距离,用m 表示;如果测D 、C 间距离,用n 表示;如果测角,用α、β、γ等表示.测角器高度不计).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示).参考答案。
初三数学培优试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 22/7答案:B2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 8答案:B3. 已知函数y=2x+3,当x=2时,y的值是多少?A. 7B. 5C. 4D. 3答案:A4. 一个圆的半径为4,那么这个圆的面积是多少?A. 16πB. 32πC. 64πD. 100π答案:C5. 下列哪个是二次函数的一般形式?A. y=ax^2+bx+cB. y=ax^3+bx^2+cx+dC. y=ax+bD. y=a(x-h)^2+k答案:A6. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A7. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 0D. 以上都有可能答案:D8. 一个数的立方根是2,那么这个数是多少?A. 8B. 2C. 4D. 1/8答案:A9. 一个数的平方根是3,那么这个数是多少?A. 9B. 3C. -3D. 6答案:A10. 一个数的倒数是1/3,那么这个数是多少?A. 3B. 1/3C. -3D. -1/3答案:A二、填空题(每题3分,共30分)1. 一个数的平方是25,那么这个数是______。
答案:±52. 一个数的立方是-8,那么这个数是______。
答案:-23. 一个角的补角是120°,那么这个角是______。
答案:60°4. 一个角的余角是30°,那么这个角是______。
答案:60°5. 一个等腰三角形的顶角是100°,那么它的底角是______。
答案:40°6. 一个直角三角形的两个锐角的度数之和是______。
答案:90°7. 一个等差数列的首项是3,公差是2,那么第5项是______。
初中数学勾股定理培优教材初中数学勾股定理培优教材一、探索勾股定理【知识点1】勾股定理定理内容:在RT△中,勾股定理的应用:在RT△中,知两边求第三边,关键在于确定斜边或直角典型题型1、对勾股定理的理解〔1〕直角三角形的两条直角边长分别为a,b,斜边长c,那么以下关于a,b,c的关系不成立的是〔〕A、c2-a2=b2B、c2-b2=a2C、a2-c2=b2D、a2+b2=c22〕在直角三角形中,∠A=90°,那么以下各式中不成立的是〔〕A、BC2-AB2=AC2B、BC2-AC2=AB2C、AB2+AC2=BC2D、AC2+BC2=AB22、应用勾股定理求边长〔3〕在直角三角形ABC中,AB=10cm,BC=8cm,求AC的长.4〕在直角△中,假设两直角边长为a、b,且满足,那么该直角三角形的斜边长为.3、利用勾股定理求面积5〕以直角△的三边为直径作半圆,其中两个半圆的面积为25π,16π,求另一个半圆的面积。
〔6〕如图〔1〕,图中的数字代表正方形的面积,那么正方形A的面积为。
〔7〕如图〔2〕,三角形中未知边x与y的长度分别是x=,y=。
8〕在Rt△ABC中,∠C=90°,假设AC=6,BC=8,那么AB的长为〔〕A、6B、8C、10D、12〔9〕在直线l上依次摆放着七个正方形〔如图4所示〕。
斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,那么S1S2S3S4=_____________。
【知识点2】勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进行推导。
〔等积法〕拼图法推导一般步骤:拼出图形---找出图形面积的表达式---恒等变形—推出勾股定理。
10〕用四个相同的直角三角形〔直角边为a、b,斜边为c〕按图拼法。
问题:你能用两种方法表示下图的面积吗?比照两种不同的表示方法,你发现了什么?11〕用两个完全相同的直角三角形〔直角边为a、b,斜边为c〕按以下图拼法,论证勾股定理:a2b2c23、运用勾股定理进行计算〔重难点〕12〕如图,一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,旗杆折断前有多高?初中数学勾股定理培优教材〔13〕两棵之间的距离为 8m ,两棵树的高度分别为 8m 、 【培优突破】 2m ,一只小鸟从一棵树的树顶飞到另一棵树的树顶, 这1、折叠问题只小鸟至少要飞多少米?〔1〕如图是一张直角三角形的纸片, 两直角边AC=6cm 、 BC=8cm ,现将△ABC 折叠,使点 B 与点A 重合,折痕为 DE ,那么BE 的长为〔〕A 、4cmB 、5cmC 、6cmD 、10cm〔2〕如图,折叠长方形的一边 AD ,使点D 落在BC 边【根底检测】 上的点F 处, AB=8cm ,BC=10cm ,求线段 EC 的值1、在Rt △ABC 中,∠C =90°,假设AB =13,BC =5,那么AC 的长为〔 〕2、Rt △ABC 中,∠C =90°,假设ab 14cm ,c10cm ,那么Rt △ABC 的面积为〔〕A.24cm2B.36cm 2C. 48cm2D.60cm23、假设△ABC 中,∠C=90°,〔1 〕假设a=5,b=12,那么c=; 〔2 〕假设a=6,c=10,那么b=;〔3 〕假设a ∶b=3∶4,c=10,那么a=,b= 。
托勒密定理例题托勒密定理的例题:1.题目:圆内接四边形ABCD中,已知∠A=60°,∠B=90°,BC=12,AD=8,则CD的长为_______.【分析】本题考查了托勒密定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.由托勒密定理得:AC⋅BD=AB⋅CD+AD⋅BC,把已知条件代入求出CD即可.【解答】解:∵圆内接四边形ABCD中,∠A = 60∘,∠B = 90∘,BC = 12,AD = 8,∴由托勒密定理得:AC⋅BD=AB⋅CD+AD⋅BC,即:BD=ACAC⋅CD+AD⋅BC=1212×8+8×12=8,∴CD=BD2−AD2=64−64=0.故答案为:0.2.题目:已知圆内接四边形ABCD中,对角线AC与BD交于点E,则下列结论中正确的是( )A.若AC与BD的和为定值,则四边形ABCD是矩形B.若AC的平方与BD的平方和为定值,则四边形ABCD是菱形C.若AC与BD的积为定值,则四边形ABCD是正方形D.若AC与BD的积为定值,则四边形ABCD是等腰梯形【分析】本题考查了圆内接四边形的性质,属于基础题.由托勒密定理和圆内接四边形的性质得A项和C项正确.【解答】解:由托勒密定理得:AB⋅CD+AD⋅BC=AC⋅BD,A项:若AC+BD=k为定值且k>0时,则AB⋅CD+AD⋅BC>AC⋅BD恒成立,不能构成四边形;B项:若AC2+BD2=k为定值且k>0时,则有(AB+BC)2+(AD−BC)2=k恒成立,不能构成四边形;C项:若AC⋅BD=k为定值且k>0时,则有(AB+BC)2−(AD−BC)2=k恒成立,所以四边形ABCD是矩形;D项:若AC⋅BD=k为定值且k>0时,则有(AB+BC)2−(AD−BC)2=k恒成立,所以四边形ABCD是矩形或等腰梯形.故选AC.。
学而思托勒密定理小测(原创实用版)目录1.学而思托勒密定理简介2.学而思托勒密定理小测的意义3.学而思托勒密定理小测的难度和考察内容4.学而思托勒密定理小测的备考策略5.总结正文【学而思托勒密定理简介】学而思托勒密定理,又称托勒密定理,是欧拉公式在凸多面体上的推广。
它是一个关于凸多面体表面和体积的定理,描述了凸多面体的表面和体积与它的顶点、棱和面之间的关系。
该定理由古希腊数学家托勒密提出,后被学而思网校引入,成为中学数学竞赛的重要内容之一。
【学而思托勒密定理小测的意义】学而思托勒密定理小测是学而思网校组织的一次针对托勒密定理的专项测验,旨在帮助学生巩固和提高对托勒密定理的理解和运用能力。
此次小测不仅有助于学生检验自己的学习效果,还能激发学生学习数学的兴趣,培养学生的逻辑思维和空间想象能力。
【学而思托勒密定理小测的难度和考察内容】学而思托勒密定理小测的难度适中,适合已经学习过托勒密定理的学生参加。
小测主要考察学生对托勒密定理的理解和运用,包括定理的证明、公式的推导和实际应用等方面。
此外,小测还可能涉及与托勒密定理相关的拓展知识,如空间几何体的性质、欧拉公式等。
【学而思托勒密定理小测的备考策略】要想在学而思托勒密定理小测中取得好成绩,学生需要做好以下几点准备:1.熟练掌握托勒密定理的定义、证明和公式,了解其应用场景和实际意义;2.复习相关知识点,如空间几何体的性质、欧拉公式等;3.多做练习题,加强实战经验,提高解题速度和准确率;4.及时总结自己的学习成果,查漏补缺,确保每个知识点都掌握到位。
【总结】学而思托勒密定理小测是一次对学生掌握托勒密定理情况的专项测验,对于提高学生的数学素养和培养学生的逻辑思维能力具有重要意义。
托勒密相关题1.阅读下列材料,并完成相应的任务.托勒密定理:托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.已知:如图1,四边形ABCD内接于⊙O,求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵∴∠ABE=∠ACD∴△ABE∽△ACD∴∴AB•CD=AC•BE∵∴∠ACB=∠ADE(依据1)∵∠BAE=∠CAD∴∠BAE+∠EAC=∠CAD+∠EAC即∠BAC=∠EAD∴△ABC∽△AED(依据2)∴AD•BC=AC•ED∴AB•CD+AD•BC=AC•(BE+ED)∴AB•CD+AD•BC=AC•BD任务:(1)上述证明过程中的“依据1”、“依据2”分别是指什么?(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:.(请写出)(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.2.请阅读下列材料,并完成相应的任务.克罗狄斯•托勒密(约90年﹣168年),古希腊天文学家、地理学家和光学家.在数学方面,他还论证了四边形的特性,即有名的托勒密定理,托勒密定理的内容如下:圆的内接四边形的两条对角线的乘积等于两组对边乘积的和.即:如图1,若四边形ABCD 内接于⊙O,则有________.任务:(1)材料中划横线部分应填写的内容为.(2)已知,如图2,四边形ABCD内接于⊙O,BD平分∠ABC,∠COD=120°,求证:BD=AB+BC.3.阅读与探究请阅读下列材料,完成相应的任务:下面是该定理的证明过程.已知:如图1,四边形ABCD内接于⊙O.求证:AB•DC+AD•BC=AC•BD证明:如图2,作∠BAE=∠CAD,交BD于点E,∵=,∴∠ABE=∠ACD,∴△ABE∽△ACD,∴=,∴AB•DC=AC•BE,∵=,∴∠ACB=∠ADE.()※∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∴△ABC∽△AED,∵AD•BC=AC•ED,∴AB•DC+AD•BC=AC•BE+AC•ED=AC(BE+ED)=AC•BD.任务:(1)托勒密定理的逆命题是.(2)将上面证明过程中标“※“这一步的理由写在下面的横线上.(3)如图3,已知正五边形ABCDE内接于⊙O,AB=1,求对角线BD的长.4.问题探究:(1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.(2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC外接圆的劣弧BC上任一点(不与B、C重合),请你根据托勒密(Ptolemy)定理证明:P A=PB+PC问题解决:(3)如图③,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使P到A、B、C三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.5.探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时P A+PB+PC的值为△ABC的费马距离;②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=P A;②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.托勒密相关题参考答案与试题解析一.解答题(共5小题)1.阅读下列材料,并完成相应的任务.托勒密定理:托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.已知:如图1,四边形ABCD内接于⊙O,求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵∴∠ABE=∠ACD∴△ABE∽△ACD∴∴AB•CD=AC•BE∵∴∠ACB=∠ADE(依据1)∵∠BAE=∠CAD∴∠BAE+∠EAC=∠CAD+∠EAC即∠BAC=∠EAD∴△ABC∽△AED(依据2)∴AD•BC=AC•ED∴AB•CD+AD•BC=AC•(BE+ED)∴AB•CD+AD•BC=AC•BD任务:(1)上述证明过程中的“依据1”、“依据2”分别是指什么?(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:勾股定理.(请写出)(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.【分析】(1)根据圆周角定理,相似三角形的判定即可解决问题.(2)利用矩形的性质以及托勒密定理即可判断.(3)连接BD,作CE⊥BD于E.首先证明BD=2DE=CD,由托勒密定理,构建方程求出AC即可.【解答】解:(1)上述证明过程中的“依据1”是同弧所对的圆周角相等.“依据2”是两角分别相等的两个三角形相似.(2)当圆内接四边形ABCD是矩形时,则AB=CD,AD=BC,AC=BD,∵AB•CD+AD•BC=AC•BD,∴AB2+AD2=BD2,托勒密定理就是我们非常熟知的一个定理:勾股定理,故答案为勾股定理.(3)连接BD,作CE⊥BD于E.∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,∵∠BAD=60°,∴∠BCD=120°,∵=,∴CD=CB,∴∠CDB=30°,在Rt△CDE中,cos30°=,∴DE=CD,∴BD=2DE=CD,由托勒密定理:AC•BD=AD•BC+CD•AB,∴AC•CD=3CD+5CD,∴AC=,答:AC的长为.【点评】本题属于圆综合题,考查了相似三角形的判定和性质,勾股定理,圆周角定理,锐角三角函数,托勒密定理等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题,属于中考压轴题.2.请阅读下列材料,并完成相应的任务.克罗狄斯•托勒密(约90年﹣168年),古希腊天文学家、地理学家和光学家.在数学方面,他还论证了四边形的特性,即有名的托勒密定理,托勒密定理的内容如下:圆的内接四边形的两条对角线的乘积等于两组对边乘积的和.即:如图1,若四边形ABCD 内接于⊙O,则有________.任务:(1)材料中划横线部分应填写的内容为AC•BD=AB•CD+BC•AD.(2)已知,如图2,四边形ABCD内接于⊙O,BD平分∠ABC,∠COD=120°,求证:BD=AB+BC.【分析】(1)由托勒密定理可直接求解;(2)连接AC,通过证明△ACD是等边三角形,可得AC=AD=CD,由AC•BD=AB•CD+BC•AD,可求解.【解答】解:(1)由托勒密定理可得:AC•BD=AB•CD+BC•AD故答案为:AC•BD=AB•CD+BC•AD(2)如图,连接AC∵∠COD=120°,∴∠CBD=∠CAD=60°∵BD平分∠ABC∴∠ABD=∠CBD=60°∴∠ACD=60°,∴△ACD是等边三角形∴AC=AD=CD,∵四边形ABCD是圆内接四边形∴AC•BD=AB•CD+BC•AD∴BD=AB+BC【点评】本题考查了圆的内接四边形的性质,圆的有关知识,阅读理解题意是本题的关键.3.阅读与探究请阅读下列材料,完成相应的任务:下面是该定理的证明过程.已知:如图1,四边形ABCD内接于⊙O.求证:AB•DC+AD•BC=AC•BD证明:如图2,作∠BAE=∠CAD,交BD于点E,∵=,∴∠ABE=∠ACD,∴△ABE∽△ACD,∴=,∴AB•DC=AC•BE,∵=,∴∠ACB=∠ADE.(同弧所对的圆周角相等)※∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∴△ABC∽△AED,∵AD•BC=AC•ED,∴AB•DC+AD•BC=AC•BE+AC•ED=AC(BE+ED)=AC•BD.任务:(1)托勒密定理的逆命题是如果四边形两对对边乘积的和等于两条对角线的乘积,那么这个四边形是圆内接四边形.(2)将上面证明过程中标“※“这一步的理由写在下面的横线上同弧所对的圆周角相等.(3)如图3,已知正五边形ABCDE内接于⊙O,AB=1,求对角线BD的长.【分析】(1)根据托勒密定理写出其逆命题即可得出结论;(2)由=,利用同弧所对的圆周角相等可得出∠ACB=∠ADE;(3)连接AD、AC,根据正多边形的性质可得出△ABC≌△DCB≌AED,根据全等三角形的性质可设BD=AC=AD=x,在圆内接四边形ABCD中,利用托勒密定理可得关于x 的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)托勒密定理的逆命题是:如果四边形两对对边乘积的和等于两条对角线的乘积,那么这个四边形是圆内接四边形.故答案为:如果四边形两对对边乘积的和等于两条对角线的乘积,那么这个四边形是圆内接四边形.(2)∵=,∴∠ACB=∠ADE.(同弧所对的圆周角相等)故答案为:同弧所对的圆周角相等.(3)在图3中,连接AD、AC.∵五边形ABCDE是正五边形,∴△ABC≌△DCB≌AED,∴设BD=AC=AD=x.在圆内接四边形ABCD中,由托勒密定理可得:AB•CD+AD•BC=AC•BD,即1×1+x•1=x2,解得:x1=,x2=(舍去).∴对角线BD的长为.【点评】本题考查了命题、逆命题、圆周角定理、正多边形的性质、全等三角形的性质以及解一元二次方程,解题的关键是:(1)根据托勒密定理找出其逆命题;(2)熟练掌握圆周角定理的应用;(3)利用托勒密定理找出关于x的一元二次方程.4.问题探究:(1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.(2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC外接圆的劣弧BC上任一点(不与B、C重合),请你根据托勒密(Ptolemy)定理证明:P A=PB+PC问题解决:(3)如图③,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使P到A、B、C三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.【分析】(1)根据垂线段最短、利用尺规作图作出点P;(2)根据等边三角形的性质得到AB=BC=AC,根据托勒密定理计算,即可证明;(3)以BC为边作正△BCD,使点D与点A在BC两侧,作△BCD的外接圆,连接AD 交圆于P,连接PB,作DE⊥AC交AC的延长线于E,根据勾股定理、直角三角形的性质计算,得到答案.【解答】解:(1)利用尺规作图,过点A作BC的垂线,交BC于D,则点D即为所求;(2)由托勒密定理得,P A•BC=PB•AC+PC•AB,∵△ABC为正三角形,∴AB=BC=AC,∴P A•BC=PB•BC+PC•BC,∴P A=PB+PC;(3)以BC为边作正△BCD,使点D与点A在BC两侧,作△BCD的外接圆,连接AD交圆于P,连接PB,作DE⊥AC交AC的延长线于E,则点P即为所求,由(2)得,PD=PB+PC,∴P到A、B、C三点的距离之和=DA,且距离之和最小,∵CD=BC=30,∠DCE=∠BCE﹣∠BCD=30°,∴DE=CD=15,由勾股定理得,CE==15,则AD==30,答:P到A、B、C三点的距离之和最小值为30m.【点评】本题考查的是直角三角形的性质、勾股定理、线段的性质,掌握直角三角形的性质、正确理解托勒密定理是解题的关键.5.探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时P A+PB+PC的值为△ABC的费马距离;②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=P A;②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+P′D;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段AD的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.【分析】(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证.②问,借用①问结论,及线段的性质“两点之间线段最短”数学容易获解.(3)知识应用,在(2)的基础上先画出图形,再求解.【解答】(2)①证明:由托勒密定理可知PB•AC+PC•AB=P A•BC∵△ABC是等边三角形∴AB=AC=BC,∴PB+PC=P A,②P′D、AD,(3)解:如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD 的长即为最短距离.∵△BCD为等边三角形,BC=4,∴∠CBD=60°,BD=BC=4,∵∠ABC=30°,∴∠ABD=90°,在Rt△ABD中,∵AB=3,BD=4,∴AD===5(km),∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.【点评】此题是一个综合性很强的题目,主要考查等边三角形的性质、三角形相似、解直角三角形等知识.难度很大,有利于培养同学们钻研问题和探索问题的精神.。
【精品】(托勒密定理)四边形ABCD 内接于圆,求证:AC BD AD BCAB CD ⋅=⋅+⋅.【解析】如图,在BD 上取一点P ,使其满足12∠=∠.∵34∠=∠,∴ACD BCP △∽△,AC ADBC BP=, 即AC BP AD BC ⋅=⋅ ① 又ACB DCP ∠=∠,56∠=∠,∴ACB DCP △∽△,AB ACDP CD=,AC DP AB CD ⋅=⋅. ② ①+②,有AC BP AC PD AD BC AB CD ⋅+⋅=⋅+⋅.即()AC BP PD AD BC AB CD +=⋅+⋅,故AC BD AD BC AB CD ⋅=⋅+⋅.【教师备课提示】这道题主要考查利用圆幂定理证明四点共圆.(1)如图2-1,点P 为等边ABC △外接圆的BC 上一点,线段PA 、PB 、PC 间的数量关系为____.(2)如图2-2,AB 为⊙O 的直径,∠ABD =45°,点C 为ABD △外接圆的AB 上一点,线段CA 、CB 、CD 间的数量关系为____________.(3)如图2-3,30ABC ACB ∠=∠=︒,点D 为ABC △外接圆的BC 上一点,线段DA 、DB 、DC 间的数量关系为_____________.图2-1 图2-2 图2-3【解析】(1)PA PB PC =+;(2)2CA CB CD +=;(3)3DB DC DA +=.【教师备课提示】这道题主要利用托勒密定理解决圆中的Y 字模型,建议讲2中方法.OD CBAABCP ODAOC D C A B D C126345PA B如图,O 的直径AB 的长为10,直线EF 经过点B ,且CBF CDB∠=∠,连接AD .(1)求证:直线EF 是O 的切线; (2)若点C 是弧AB 的中点,6BD =,求CD 的长.【解析】(1)∵AB 是O 的直径,∴90ADB ∠=︒即90ADC CDB ∠+∠=︒, ∵ADC ABC ∠=∠,CBF CDB ∠=∠, ∴90ABC CBF ∠+∠=︒,即90ABF ∠=︒, ∴AB EF ⊥∴EF 是O 的切线; (2)法1:作BG CD ⊥,垂足是G ,由题45ADC CDB ∠=∠=︒,∴32BG DG ==,∵DAB DCB ∠=∠,∴3tan 4BG DCB CG ∠==,∴42CG =,∴423272CD CG DG =+=+=.法2:由托勒密定理,214BD AD CD +==,∴72CD =.【教师备课提示】这道题主要让孩子们练习哈,注意书写过程.(1)(13年成外直升)如图4-1,ABC △内接于O ,AB AC =;当动点P 在O 上从点B 出发,按逆时针方向向点C 运动时,PB PCPA+的值( ).A .保持不变B .先减小后增大C .先增大后减小D .无法判断(2)(2013成都中考)如图4-2,A ,B ,C 为O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为O 的直径,将O 沿EF 折叠,使点A 与A'重合,点B 与B'重合,连接EB',EC ,EA'.设EB'b =,EC c =,EA'p =.先探究b ,c ,p 三者的数量关系:发现当3n =时,p b c =+.请继续探究b ,c ,p 三者的数量关系:当4n =时,p =__________;当12n =时,p =__________. (参考数据:62sin15cos754-︒=︒=,62cos15sin 754+︒=︒=)图4-1 图4-2【解析】(1)A ;(2)2p c b =+;622p c b +=+. 【教师备课提示】这道题主要考查托勒密定理中考和直升考试中的应用,等腰三角形的Y 字模型.A'FABOB'C EAD OEBCFADOEBC FGA BO P C如图,过A 的圆截平行四边形ABCD 的边和对角线分别于P ,Q ,R ,求证:AP ABAQ AD AR AC ⋅+⋅=⋅.【解析】连接PQ 、PR 、QR .在圆内接四边形APRQ 中,由托勒密定理得AP QR AQ PR AR PQ ⋅+⋅=⋅.又∵12∠=∠,34∠=∠,∴PQR CAB △∽△,于是QR PR PQAB BC CA==. 设上面的比值为k ,并考虑到BC AD =有QR k AB =⋅,PR k AD =⋅,PQ k CA =⋅, 于是可推得AP AB AQ AD AR AC ⋅+⋅=⋅.【教师备课提示】这道题主要考查托勒密定理和相似综合.如图,圆G 过坐标原点,交y 轴于点A ,交x 轴于点B ,点C 为圆上一点,且OC 平分AOB ∠交AB 于点F .CE y ⊥轴于E 交AB 于点H ,连接EG . (1)求证:CBF COB △△∽;(2)请探究OE 、AE 和EG 这三条线段之间的数量关系,写出你的结论并证明. 【解析】(1)证明:∵OC 平分AOB ∠,∴AC BC =,45AOC COB ∠=∠=︒, ∴45CBF COB ∠=∠=︒,∵OBC BCF ∠=∠(公共角), ∴CBF COB ∽△△;(2)法1:连接CG ,则290AGC AOC ∠=∠=︒,∴90AGC AEC ∠=∠=︒, ∴A 、E 、C 、G 四点共圆,由托勒密定理2CE AE EG =+,又CE OE =, ∴2OE AE EG =+;法2:在CE 上截取CQ AE =,连接GC 、GQ ,EG .∵AC BC =,∴CG AB ⊥,∴90GCQ GHC ∠=︒-∠,∵CE y ⊥轴,∴90GAE AHE ∠=︒-∠,∵AHE GHC ∠=∠,∴GAE GCQ ∠=∠, ∴EAG QCG ≌△△,∴EG GQ =,AGE CGQ ∠=∠,∴90EGQ AGE AGQ AGQ CGQ ∠=∠+∠=∠+∠=︒,∴EG GQ ⊥, ∴EGQ △是等腰直角三角形,∴2EQ EG =,又OE CE =,AE QC =, ∴2OE AE CE CQ EQ EG -=-==;∴2OE AE EG -=.【教师备课提示】这道题主要考查要用托勒密定理,先证四点共圆.D C Q A R P B D C Q A RP B 1423yxO BAE HC G F已知AB 为O 的直径,CD 为O 的一条弦,顺次连接AC 、CB 、BD 、DA .(1)当45ACD ∠=︒(如图1-1)时,线段CA 、CB 、CD 间的数量关系为_____________; (2)当30ACD ∠=︒(如图1-2)时,求证:32CA CB CD +=.图1-1 图1-2【解析】(1)2AC BC CD +=;(2)如图,过点A 作AE CD ⊥,过点O 作OF BC ⊥,连接OC 、OD .∵30ACD ∠=︒,90AEC ∠=︒,∴32CE AC =. ∵OF BC ⊥,∴12CF BC =.∵30ACD ∠=︒,∴60AOD ∠=︒.又∵OA OD =,∴AOD △为等边三角形.∴AD OC =.∵12ADC AOC ∠=∠,12OCF AOC ∠=∠,∴ADC OCF ∠=∠.在ADE △和OCF △中,AED OFC ADC OCF AD OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE OCF △≌△.∴DE CF =.∴12DE BC =. ∵CE ED CD +=,∴3122AC BC CD +=. ∴32AC CB CD +=.另解:直接用托勒密定理.演练 1A D OCBA DO CBA D OC BEF如图,A ,P ,B ,C 是O 上的四个点,60APC BPC ∠=∠=︒,过点A 作O 的切线交BP 的延长线于点D . (1)求证:ADP BDA △∽△;(2)试探究线段P A ,PB ,PC 之间的数量关系,并证明你的结论.【解析】(1)证明:作O 的直径AE ,连接PE ,∵AE 是O 的直径,AD 是O 的切线, ∴90DAE APE ∠=∠=︒,∴90PAD PAE PAE E ∠+∠=∠+∠=︒, ∴PAD E ∠=∠, ∵PBA E ∠=∠, ∴PAD PBA ∠=∠,∵PAD PBA ∠=∠,ADP BDA ∠=∠, ∴ADP BDA ∽△△; (2)PA PB PC +=,证明:在线段PC 上截取PF PB =,连接BF , ∵PF PB =,60BPC ∠=︒, ∴PBF △是等边三角形, ∴PB BF =,60BFP ∠=︒, ∴180120BFC PFB ∠=︒-∠=︒, ∵120BPA APC BPC ∠=∠+∠=︒, ∴BPA BFC ∠=∠, 在BPA △和BFC △中, PAB FCB BPA BFC PB FB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴AAS BPA BFC ()≌△△, ∴PA FC =,AB CB =, ∴PA PB PF FC PC +=+=. 另解:直接利用托勒密定理.DA P OBC点D 为Rt ACB △边BC 延长线上一点,点E 在边AC 上,点M 、N 分别为线段AB 、AE 的中点,连接DE 、DA ,90ACB ,ABC CED .(1)若45ABC ,如图3-1,求证:12MN AD =;(2)在(1)的条件下,连接BE 并延长BE 交线段AD 于点F ,连接FC ,如图3-2,请你判断线段FE 、FC 与线段FD 之间的数量关系.图3-1 图3-2【解析】(1)∵90ACB ,ABC CED ,45ABC ,∴BC AC ,CE CD ,在BCE △和ACD △中,90BC AC BCE ACD CE CD =⎧⎪∠=∠=︒⎨⎪=⎩,∴(SAS)BCE ACD △≌△,∴BEAD ,∵点M 、N 分别为线段AB 、AE 的中点,∴12MN BE =,∴12MN AD =; (2)∵BCE ACD △≌△,∴CBEEAF ,∵BEC AEF ,∴90AFB ACB ,∴A 、B 、C 、F 共圆,∴ABF ACF ,∵AEBFEC ,∴AEB FEC △∽△,∴::FE AE FC AB ,∴AEFE FC AB=⋅, ∵90BAF ABF ,90FCD ACF ,∴FCD BAD ,∵FDC BDA ,∴FCD BDA △∽△,∴,::FD BD FC AB ,∴BD FD FC AB =⋅,∴AE BDFE FD FC AB++=⋅,∵AC BC ,CE CD ,∴2AE BD AC EC BC CD AC ﹣,∵在Rt ABC △中,2AB AC =,∴2222AE BD AC ACAB AB AC +===,∴2FE FD FC +=; 另解:直接利用托勒密定理.ABCDF ME NABC DF MEN。