人教版同底数幂的乘法(优质课获奖作品)
- 格式:ppt
- 大小:1.65 MB
- 文档页数:20
同底数幂的乘法〔一〕教学目标知识与技能目标:●理解同底数幂乘法的性质.●掌握同底数幂乘法的运算性质.●能够熟练运用性质进行计算.过程与方法目标:●通过推导运算性质训练学生的抽象思维能力.●通过用文字概括运算性质,提高学生数学语言的表达能力.情感态度与价值观:通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度.教学重点:●同底数幂的乘法运算法那么的推导过程.●会用同底数幂的乘法运算法那么进行有关计算.教学难点:在导出同底数幂的乘法运算法那么的过程中,培养学生的归纳能力和化归思想〔二〕教学程序教学过程师生活动设计意图一、问题情境导入新课在a n这个表达式中,a是什么?n是什么?当a n作为运算结果时,又读作什么?参考答案:a是底数,n是指数,a n又读作a的n次幂问题情境导入新课有助于激发学生的学习兴趣二、新知讲解探究1:光的速度约是3×108m/s,太阳光照射到地面外表所需时间约是5×102s,那么(3×108)×(5×102)表示什么?探究2:现代天文学家认为银河系是一个由1000多亿颗大大小小的恒星和大量气体及尘埃组成的巨大盘状系统,中间厚、四周薄,就象一块“铁饼〞,“铁饼〞的直径达10光年,1光年是光在空气中1年传播的距离,那么请你算算:1光年约是多少千米?,银河系的直到约多少千米?探究3:一种电子计算机每秒可进行1014次运算,那么它工作103秒可进行多少次运算?做一做:1.计算以下各式:10×104;104×105;103×105参考答案:根据乘方的意义,可以得到:10×104 =105; 104×105=109; 103×105=108;如:103×105=(10×10×10) ×(10×10×10×10×10)=10×10×10×10×10×10×10×10=1082. 怎样计算10m•10n〔m、n是正整数〕参考答案:10m×10n=(10×10×...10×10) ×( 10×10× (10)=( 10×10×…×10)=10m+n所以:10m•10n=10m+n〔m、n是正整数〕3. 当m,n是正整数时2m•2n等于什么?参考答案:2m×2n=(2×2×...2×2×2×2) ×( 2×2× (2)通过三个探究问题让学生体会生活的周围存在着大量的较大的数据,数的世界充满着神奇,期待学生去探索研究通过3个做一做让学生在相互交流中学习新知识,培养学生的合作学习能力,独立思考能力和语言表达能力.m个10 n个10 (m+n)个10=( 2×2×…×2)=2m+n对于:a m×a n〔m,n〕都是正整数,该如何计算?a m×a n=(a×a×…a×a×a×a) ×(a×a×…×a)=( a×a×…×a)=a m+n归纳:同底数幂相乘,底数不变,指数相加推广: a m•a n•a p等于什么?〔m,n,p是正整数〕a m•a n•a p=a m+n+p 通过多方讨论最后得出: 同底数幂相乘,底数不变,指数相加.使学生对次知识点有更深的理解.探究:例题讲解:例题1:下面运用所学的知识来判断以下的计算是否正确,如果有错误,请指出产生错误的原因.〔1〕a2+a2=a4〔2〕a2•a3=a6〔3〕a2•a3=a5〔4〕x m+x m=2x m(5) x m•x m=2x m 〔6〕3m+2m=5m参考答案:〔1〕错误;a2+a2=2a2〔2〕错误;a2•a3=a2+3=a5〔3〕对〔4〕对〔5〕错误;x m•x m=x2m〔6〕错误例题2:计算〔1〕(-8)12×(-8)5 〔2〕x•x7〔3〕- a3•a6〔4〕a3m•a2m-1 (m是正整数)参考答案:〔1〕(-8)12×(-8)5=(-8)12+55=(-8)17 本例题旨在让学生真正理解同底数幂的乘法法那么.本例题是同底数m个2 n个2 (m+n)个2m个a n个a (m+n)个a〔2〕x•x 7= x1+7= x8〔3〕- a 3•a 6=-a 3+6=-a9〔4〕a 3m•a 2m-1= a3m+2m-1= a5m-1例题3:计算〔1〕10×104×103×105 〔2〕a 2•a 3•a 5参考答案:〔1〕10×104×103×105=101+4+3+5=1013〔2〕a 2•a 3•a 5= a2+3+5= a10例4:一颗卫星绕地球运行的速度是7.9×103m/s ,,求这颗卫星运行1h 的路程。