单缝衍射大学物理实验报告
- 格式:docx
- 大小:18.93 KB
- 文档页数:1
单缝衍射实验报告
在物理学中,光的衍射是一个很常见的现象。
当光穿过一个小孔或其他细长的物体时,它会弯曲和扩散出去,形成一系列交错的亮度和暗度的带状图案。
这个现象就叫做衍射。
单缝衍射实验就是观察这个现象的一种方法。
单缝衍射实验需要的器材很简单,只需要一个狭窄的缝隙和一个光源。
在实验中,我们可以用一个光源以一定的角度照射一个狭窄的缝隙,然后用一个屏幕接收光线。
当光线穿过缝隙后,它会扩散和弯曲,从而在屏幕上形成一系列交错的亮度和暗度的带状图案。
实验中,我们可以通过调整屏幕和缝隙的距离以及改变光源的颜色和波长等因素来观察衍射现象。
观察到的结果可以被用来计算缝隙的大小和光的波长,这对于物理学和光学学科的研究和应用具有很大的意义。
单缝衍射实验是一个非常重要的物理实验,它可以帮助我们更好地理解光的性质和行为。
通过这个实验,我们可以看到光现象中最常见的一个方面,也可以通过观察结果来计算一些有用的物
理参数。
此外,这个实验还可以用于实际生产和应用领域,例如光学仪器的设计和制造。
总之,单缝衍射实验是一个有趣而重要的实验,它可以帮助我们更好地理解和应用光学原理。
在做这个实验时,我们不仅可以学习到物理学的一些基本概念,还可以发现自然界中美妙的现象和规律。
因此,我们应该积极参与到这个实验中来,不断拓展我们的知识和视野。
一、实验目的1. 理解光的衍射现象,特别是单缝衍射的基本原理。
2. 通过实验观察和测量,验证单缝衍射的规律。
3. 学会使用相关实验仪器,如激光器、单缝板、光屏等。
4. 培养实验操作能力和数据分析能力。
二、实验原理单缝衍射是光波通过一个狭缝后,在屏幕上形成的明暗相间的条纹图样。
当光波通过狭缝时,部分光波会发生衍射,形成圆形波前,进而相互干涉,产生明暗条纹。
单缝衍射的光强分布可以用以下公式表示:\[ I(\theta) = I_0 \left( \frac{\sin(\beta)}{\beta} \right)^2 \]其中,\( I(\theta) \) 是衍射角为 \( \theta \) 处的光强,\( I_0 \) 是入射光强,\( \beta \) 是与衍射角 \( \theta \) 相关的参数。
三、实验仪器1. 激光器2. 单缝板3. 光屏4. 光具座5. 米尺6. 光强计四、实验步骤1. 将激光器、单缝板和光屏依次放置在光具座上,确保三者等高共轴。
2. 调节单缝板,使激光束通过狭缝。
3. 调节光屏的位置,使衍射条纹清晰地显示在屏幕上。
4. 使用米尺测量单缝板与光屏之间的距离 \( L \)。
5. 使用光强计测量不同衍射条纹处的光强,记录数据。
6. 根据实验数据,绘制光强分布曲线,并与理论公式进行比较。
五、实验结果与分析1. 观察到在光屏上形成了一系列明暗相间的条纹,其中中央条纹最亮,两侧条纹逐渐变暗。
2. 根据实验数据,绘制了光强分布曲线,并与理论公式进行比较。
3. 实验结果显示,光强分布曲线与理论公式吻合较好,验证了单缝衍射的规律。
六、实验结论1. 光的衍射现象是光波通过狭缝后发生衍射和干涉的结果。
2. 单缝衍射的光强分布符合理论公式,验证了单缝衍射的规律。
3. 本实验培养了学生的实验操作能力和数据分析能力。
七、实验注意事项1. 实验过程中,注意保持光具座的等高共轴。
2. 调节光屏位置时,确保衍射条纹清晰可见。
2020年春季大学物理实验专业班级:学号: 姓名: 日期:实验名称:单缝夫琅禾费衍射实验目的:观察激光通过单缝后的夫琅禾费衍射现象,测量出单缝宽度实验仪器材料:激光笔、光屏(白纸、墙壁)、卡片(银行卡、校园卡)、直尺、卷尺实验方案(装置)设计:相关理论(公式)、原理图、思路等【夫琅禾费衍射实验原理】:光的衍射通常分为两类:当衍射屏离光源或接收屏的距离为有限远,称为菲涅耳衍射; 当衍射屏与光源和接收屏的距离都是无限远,称为夫琅禾费衍射。
如上图:单缝宽度AB=a ,单缝到接收屏之间的距离是L ,衍射角为Ф 的光线聚到屏上P 点。
设P 点到中央明纹中心距离X K 。
A 、B 出射光线到P 点的光程差则为φsin a 。
当光程差是半波长的偶数倍,形成暗纹。
由于Ф很小,Lax a k /sin =φ即:当λk L ax k =/,时,出现暗纹。
得到单缝宽度:kx Lk a /λ=实验过程:实验步骤、实验现象观察、出现的问题及解决方法等 {一}实验步骤:【1】自制实验器材与装置,并将“狭缝装置”固定于桌面;调整并摆好激光笔的位置,使激光能垂直于狭缝射到远处的墙壁上,并呈现较为清晰的衍射图像;【2】用卷尺测出“狭缝装置”到墙壁的距离L ,重复测量5次,取平均值,并记录数据; 【3】测量暗环中心到中央明纹中心的距离X k ,可选择第1级(k=1)或第2级(k=2)暗纹。
测量5次,取平均值,并记录数据;【4】通过实验原理部分的公式计算出狭缝宽度。
(本实验采用红色激光,红光的波长为650nm ){二}实验现象的观察:当正确摆好实验装置后,在墙壁上可以观察到,清楚的衍射现象,有亮纹也有暗纹,如下图所示(拍摄效果可能不是很好,见谅):{三}出现的问题以及解决的方法:(1)问题:开始时,由于并不太了解缝隙要“小”到的程度,所以缝隙宽度太大,无法观察到衍射现象解决:调节缝宽到足够小,即可观察到明显的衍射现象,在1mm 以下,现象比较明显。
第1篇一、实验目的1. 观察并理解单缝衍射现象及其特点。
2. 通过实验测量单缝衍射的光强分布,绘制光强分布曲线。
3. 利用单缝衍射的规律计算单缝的缝宽。
二、实验原理光在传播过程中遇到障碍物时,会发生衍射现象,即光线偏离直线传播,进入障碍物后方的阴影区。
单缝衍射是光通过一个狭缝时发生的衍射现象。
当狭缝的宽度与入射光的波长相当或更小时,衍射现象尤为明显。
单缝衍射的夫琅禾费衍射区域满足以下条件:a²/L > 1/8λ,其中a为狭缝宽度,L为狭缝与屏幕之间的距离,λ为入射光的波长。
在夫琅禾费衍射区域,衍射光束近似为平行光。
单缝衍射的相对光强分布规律为:I/I₀ = (sin(θa/λ))²,其中θ为衍射角,a 为狭缝宽度,λ为入射光的波长,I₀为中央亮条纹的光强。
三、实验仪器1. 激光器:提供单色光。
2. 单缝衍射装置:包括狭缝、衍射屏和接收屏。
3. 光强测量装置:包括数字式检流计和光电传感器。
4. 光具座:用于固定实验仪器。
5. 秒表:用于测量时间。
四、实验步骤1. 将激光器、单缝衍射装置、光强测量装置和光具座依次安装在光具座上,调整仪器,保证等高共轴。
2. 调节狭缝宽度,记录缝宽a。
3. 调节衍射屏与狭缝之间的距离L,确保满足夫琅禾费衍射条件。
4. 观察衍射条纹,记录中央亮条纹和各级暗条纹的位置。
5. 使用光电传感器测量各级暗条纹的光强,记录数据。
6. 计算各级暗条纹的相对光强I/I₀。
7. 以衍射角θ为横坐标,I/I₀为纵坐标,绘制光强分布曲线。
8. 利用单缝衍射的规律计算狭缝宽度a。
五、实验数据及结果1. 狭缝宽度a:1.5mm2. 衍射屏与狭缝之间的距离L:50cm3. 各级暗条纹位置(以衍射角θ表示):- 第一级暗条纹:θ₁ = 3.0°- 第二级暗条纹:θ₂ = 6.0°- 第三级暗条纹:θ₃ = 9.0°4. 各级暗条纹的相对光强I/I₀:- 第一级暗条纹:I₁/I₀ = 0.04- 第二级暗条纹:I₂/I₀ = 0.008- 第三级暗条纹:I₃/I₀ = 0.0025. 光强分布曲线:根据实验数据绘制光强分布曲线。
大学物理,实验报告单缝衍射单缝衍射大物实验报告思考题单缝衍射大物实验报告思考题硅光电池的进光狭缝宽度对实验结果的影响硅光电池前的狭缝光阑的宽度如果大于单缝衍射条纹的宽度,可能无法检测出暗条纹的位置,而导致测量结果误差偏大甚至错误。
单缝衍射中,影响波长的主要因素是什么?应采取什么措施?光源的稳定性和单色性,采取措施是,使用相干性非常好的激光光源作为入射光,以保证良好的稳定性和单色性~篇二:物理实验报告5_测量单缝衍射的光强分布实验名称:测量单缝衍射的光强分布实验目的:a(观察单缝衍射现象及其特点;b(测量单缝衍射的光强分布;c(应用单缝衍射的规律计算单缝缝宽;实验仪器:导轨、激光电源、激光器、单缝二维调节架、小孔屏、一维光强测量装置、WJH型数字式检流计。
实验原理和方法:光在传播过程中遇到障碍物时将绕过障碍物,改变光的直线传播,称为光的衍射。
当障碍物的大小与光的波长大得不多时,如狭缝、小孔、小圆屏、毛发、细针、金属丝等,就能观察到明显的光的衍射现象,亦即光线偏离直线路程的现象。
光的衍射分为夫琅和费衍射与费涅耳衍射,亦称为远场衍射与近场衍射。
本实验只研究夫琅和费衍射。
理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。
单缝的夫琅和费衍射光路图如下图所示。
a. 理论上可以证明只要满足以下条件,单缝衍射就处于夫琅和费衍射区域:a2a2???或L??? 88L式中:a为狭缝宽度;L为狭缝与屏之间的距离;?为入射光的波长。
可以对L的取值范围进行估算:实验时,若取a?1?10m,入射光是He?Ne激光,?4其波长为632.80nm,a2??1.6cm?2cm,所以只要取L?20cm,就可满足夫琅和费衍射的远场条件。
但实验证明,取L?50cm,结果较为理想。
b. 根据惠更斯,费涅耳原理,可导出单缝衍射的相对光强分布规律:I?(sinu/u)2 I0式中: u?(?asin?)/?暗纹条件:由上式知,暗条纹即I?0出现在u?(?asin?)/????,??2?,?即暗纹条件为asin??k?,k??1,k??2,?明纹条件:求I为极值的各处,即可得出明纹条件。
单缝单丝衍射实验报告(共9篇)单缝衍射实验报告-20.5 0.06 -19.5 0.02 -18.5 0.01 -17.5 0.06 -16.5 0.14 -15.5 0.18 -14.5 0.15 -13.5 0.07 -12.5 0.02 -11.5 0.10 -10.50.30 -9.5 0.47 -8.5 0.47 -7.5 0.26 -6.5 0.06 -5.5 0.33 -4.51.54 -3.5 3.60 -2.5 6.54 -1.5 9.20 -0.5 10.71 0.5 10.691.5 8.902.5 6.273.5 3.444.5 1.385.5 0.296.5 0.067.5 0.268.5 0.459.5 0.43 10.5 0.26 11.5 0.08 12.5 0.02 13.5 0.06 14.5 0.14 15.5 0.15 16.5 0.11 17.5 0.0418.5 0.01 0.005 0.002 0.001 0.005 0.013 0.016 0.014 0.006 0.002 0.009 0.027 0.043 0.043 0.024 0.005 0.030 0.140 0.327 0.595 0.836 0.974 0.972 0.809 0.570 0.313 0.125 0.026 0.005 0.024 0.041 0.039 0.024 0.007 0.002 0.005 0.013 0.014 0.010 0.004 0.00119.5 20.50.03 0.07 0.003 0.006篇二:[实验报告]单缝衍射的光强分布与缝宽测量单缝衍射的光强分布与缝宽测量摘要:本文主要介绍了通过观察单缝的夫琅和费衍射现象及其随单缝宽度变化的规律,加深对光的衍射理论的理解。
学习光强分布的光电测量方法。
利用衍射图案测定单缝的宽度。
关键词:单缝衍射;光强分布;光电流;单缝缝宽The Light intensity distribution of the Single-slit diffraction andthe Seam width determinationAbstract: The main purpose of the experiment is to observe the single slit Fraunhofer diffractionphenomena and single slit width with change rules, deepen the understanding of light diffraction theory. Learning light intensity distribution of photoelectric measuring method. Diffraction pattern determine the width of the single slot.Key words: Single-slit diffraction;Light intensity distribution;photo-current;the seam width一、引言单缝衍射的基本解释是光在传播过程中遇到障碍物,光波会绕过障碍物继续传播。
单缝衍射实验实验报告一、实验目的1、观察单缝衍射现象,了解其特点和规律。
2、测量单缝衍射的光强分布,计算缝宽。
3、加深对光的波动性的理解。
二、实验原理当一束平行光通过宽度与波长相当的狭缝时,会发生衍射现象。
在屏幕上,不再是简单的直线传播形成的亮斑,而是出现一系列明暗相间的条纹。
单缝衍射的光强分布可以用菲涅耳半波带法来解释。
将狭缝处的波阵面分成奇数个或偶数个半波带,当波阵面被分成偶数个半波带时,对应点的光振动相互抵消,形成暗纹;当波阵面被分成奇数个半波带时,对应点的光振动相互叠加,形成明纹。
单缝衍射的中央明纹宽度为:$2x_1 =\frac{2λf}{a}$(其中$λ$ 为入射光波长,$f$ 为透镜焦距,$a$ 为单缝宽度)三、实验仪器1、氦氖激光器2、单缝装置3、光学平台4、光屏5、光强测量仪四、实验步骤1、搭建实验装置将氦氖激光器放置在光学平台的一端,使其发射的激光束水平。
在激光束的路径上依次放置单缝装置和光屏,调整它们的高度和位置,使激光束能够通过单缝并在光屏上形成清晰的衍射条纹。
2、调整光路微调单缝装置的角度,使衍射条纹垂直于光屏。
移动光屏,使衍射条纹处于光屏的中心位置。
3、测量光强分布打开光强测量仪,将其探头对准光屏上的衍射条纹。
从中央明纹开始,沿水平方向逐点测量光强,并记录数据。
4、改变单缝宽度,重复实验更换不同宽度的单缝,重复上述步骤,观察并记录衍射条纹的变化。
五、实验数据及处理1、实验数据记录对于不同宽度的单缝,分别记录中央明纹的位置$x_1$ 以及各级明纹和暗纹的位置。
2、数据处理根据测量数据,绘制光强分布曲线。
利用中央明纹宽度的公式$2x_1 =\frac{2λf}{a}$,已知激光波长$λ$ 和透镜焦距$f$ ,计算单缝宽度$a$ 。
六、实验结果与分析1、实验结果观察到了清晰的单缝衍射条纹,中央明纹最亮最宽,两侧对称分布着各级明暗相间的条纹。
随着单缝宽度的减小,中央明纹宽度增大,条纹间距变宽。
第1篇一、实验目的1. 观察并理解单缝衍射现象及其特点。
2. 测量单缝衍射的光强分布。
3. 应用单缝衍射的规律计算单缝宽度。
4. 探讨光的波动性。
二、实验原理光的衍射是指光波遇到障碍物或孔径时,波前发生弯曲并传播到几何阴影区的现象。
当障碍物或孔径的尺寸与光波的波长相当或更小时,衍射现象尤为明显。
单缝衍射是光的衍射现象之一,当光波通过一个狭缝时,光波会在狭缝后形成一系列明暗相间的条纹,称为衍射条纹。
衍射条纹的位置和间距与狭缝宽度、光波长以及狭缝与屏幕之间的距离有关。
根据惠更斯-菲涅耳原理,单缝衍射的光强分布可以表示为:\[ I = I_0 \left( \frac{\sin^2(\theta)}{\theta^2} \right) \]其中,\( I \) 为衍射条纹的光强,\( I_0 \) 为中央亮条纹的光强,\( \theta \) 为衍射角度。
三、实验仪器1. He-Ne激光器:提供单色光源。
2. 单缝狭缝:提供衍射狭缝。
3. 光具座:固定实验装置。
4. 白屏:观察衍射条纹。
5. 刻度尺:测量衍射条纹间距。
6. 计算器:计算数据。
四、实验步骤1. 将He-Ne激光器、单缝狭缝、光具座和白屏依次放置在实验台上,确保各部分稳固。
2. 调整激光器,使激光束垂直照射到单缝狭缝上。
3. 观察并记录中央亮条纹的位置和间距。
4. 调整单缝狭缝的宽度,观察并记录不同宽度下的衍射条纹。
5. 测量不同衍射条纹的间距,并计算相对光强。
6. 利用公式 \( I = I_0 \left( \frac{\sin^2(\theta)}{\theta^2} \right) \) 计算单缝宽度。
五、实验结果与分析1. 观察单缝衍射现象:实验中观察到,当激光束通过单缝狭缝时,在白屏上形成了一系列明暗相间的条纹,即衍射条纹。
其中,中央亮条纹最为明亮,两侧的暗条纹逐渐变暗。
2. 测量单缝衍射的光强分布:通过测量不同衍射条纹的间距,可以计算出相对光强。
大学物理实验报告3. 实验原理(请用自己的语言简明扼要地叙述,注意原理图需要画出,测试公式需要写明)粗略地讲,当波遇到障碍物时,它将偏离直线传播,这种现象叫做波的衍射。
衍射系统由光源、衍射屏和接收屏幕组成。
通常按它们相互间距离的大小,将衍射分为两类:一类是光源和接收屏幕(或两者之一)距离衍射屏有限远,这类衍射叫做菲涅耳衍射;另一类是光源和接收屏幕都距衍射屏无穷远,这类衍射叫做夫琅和费衍射。
本实验研究单缝夫琅和费衍射的情形。
如图,将单色线光源s置于透镜L,的前焦面上,则由s发出的光通过L后形成平行光束垂直照射到单缝AB上。
根据惠更斯一菲涅耳原理,单缝上每一点都可以看成是向各个方向发射球面子波的新波源,子波在透镜L的后焦面(接收屏)上叠加形成一组平行于单缝的明暗相间的条纹。
如图 (b)所示。
和单缝平面垂直的衍射光束会聚于屏上的P处,是中央亮纹的中心,其光强为I与光轴SP,成0角的衍射光束会聚于P处, 为衍射角,由惠更斯一菲涅耳原理可得其光强分布为,其中, b为单缝的宽度, 2为入射单色光波长。
1,当θ=0时, u=0 , P处的光强度为I,是衍射图像中光强的最大值,叫主最大。
主最大的强度不仅决定于光源的强度,还和缝宽b的平方成正比;2,当sinθ=kλ/b (k=±1, ±2, ±3...)时, u=kΠ ,则有I=0,即出现暗条纹的位置。
由于θ值实际上很小,因此暗条纹出现在0skAnb处。
由此可见,主最大两侧暗纹之间夹角为Ae-2/b ,而其它相邻暗纹之间夹角为θ=2k/b,即暗条纹以P为中心,等间距地、左右对称地分布。
当入射光波长一定时θ与b 成反比,缝宽变大,衍射角变小,各级条纹向中央收缩。
当b足够大时(b>>λ),衍射现象不明显。
3.除了主最大以外,两相邻暗纹之间都有一个次最大。
2.细丝直径测量一般的细丝直径常用电感测微仪或千分尺进行接触法以下内容为报告保留内容,请勿填写或删除,否则影响实验成绩。
大物单缝衍射实验报告大物单缝衍射实验报告引言在物理学中,衍射是光线或波传播时遇到障碍物或通过狭缝时发生偏折和扩散的现象。
而单缝衍射实验是研究光的衍射现象的经典实验之一。
本次实验旨在通过观察光通过单缝时的衍射现象,探究光的波动性质。
实验装置和方法实验所需的装置包括一块光源、一个狭缝、一个屏幕和一个测量仪器。
首先,将光源放置在实验台上,然后调整狭缝的宽度和位置,使其与光源保持一定的距离。
接下来,将屏幕放置在光源和狭缝之间,以接收通过狭缝的光线。
最后,使用测量仪器测量屏幕上的光强度分布。
实验结果和分析通过观察实验结果,我们可以看到在屏幕上形成了一系列明暗相间的条纹。
这些条纹称为衍射条纹,它们是光通过单缝时发生衍射的结果。
衍射条纹的明暗变化与光的干涉有关。
根据衍射理论,当光通过狭缝时,光波会发生弯曲和扩散。
在屏幕上形成的衍射条纹是由光波在不同位置上的干涉效应造成的。
具体来说,当光波通过狭缝时,它们会在狭缝后方形成一个扇形的波前。
这个波前会在屏幕上形成一系列圆环状的干涉条纹。
根据衍射理论的计算公式,我们可以推导出衍射条纹的间距与狭缝宽度之间的关系。
根据这个关系,我们可以通过测量衍射条纹的间距来确定狭缝的宽度。
这种方法被广泛应用于实验室和工业中,用于测量微小物体的尺寸。
此外,实验结果还表明,衍射条纹的明暗变化与光的波长有关。
在实验中,我们可以通过改变光源的波长来观察衍射条纹的变化。
当光的波长增大时,衍射条纹的间距也会增大,条纹变得更加稀疏。
相反,当光的波长减小时,衍射条纹的间距会减小,条纹变得更加密集。
结论通过大物单缝衍射实验,我们观察到了光通过单缝时的衍射现象,并探究了光的波动性质。
实验结果表明,衍射条纹的明暗变化与光的干涉和波长有关。
这些发现对于理解光的性质和应用于实际测量中具有重要意义。
总结在本次实验中,我们通过观察光通过单缝时的衍射现象,深入了解了光的波动性质。
通过测量衍射条纹的间距,我们可以确定狭缝的宽度,并应用于实际测量中。
单缝衍射实验报告数据单缝衍射实验是物理学中经典的实验之一,它通过一道狭缝上的入射光束的衍射现象来展示光波性质的重要性。
本文将详细介绍单缝衍射实验的背景知识、实验装置、实验步骤以及实验数据的分析和讨论。
一、实验背景知识1. 光的波粒二象性光既可以被看作是一种粒子(光子),又可以被看作是一种波动的电磁波。
这种既有波动性又有粒子性的特性被称为光的波粒二象性。
2. 衍射现象衍射是光传播时,遇到障碍物边缘或缝隙时发生的现象。
它是光的波动性质的表现,能够解释光的直线传播以及光的干涉现象。
3. 单缝衍射单缝衍射是一种光波通过一个狭缝时发生的衍射现象。
当光通过狭缝时,会在狭缝后面形成一系列光亮和暗淡的交替条纹,这一现象被称为单缝衍射。
二、实验装置1. 光源:使用一支强度稳定的激光作为光源。
激光的单色性和相干性使得实验结果更加明确可靠。
2. 狭缝装置:使用一片细狭缝作为狭缝装置。
要求狭缝宽度较窄,且狭缝边缘较平滑,以确保实验结果的准确性。
3. 屏幕:在光源和狭缝装置之间设置一块屏幕,可以用来观察和记录实验结果。
屏幕上设有一个刻度尺,用以测量亮度。
三、实验步骤1. 准备实验装置,将光源、狭缝装置和屏幕按照一定的距离间隔放置在实验台上。
2. 打开光源,调整光源的位置和角度,使得光线经过狭缝后能够均匀地照射到屏幕上。
3. 观察屏幕上形成的光带,记录并测量亮度的变化。
可以将屏幕按照刻度尺的单位进行划分,以便后续的数据分析。
4. 重复以上步骤,改变狭缝的宽度或调整光源的强度,观察实验结果的变化。
四、实验数据的分析和讨论根据实验记录的亮度数据,我们可以得到一系列光强随位置的变化曲线。
通过分析这些曲线,我们可以得到以下结论:1. 存在中央亮斑:在实验结果中,我们可以观察到中央位置上的一条明亮的光斑。
这是由于光波在通过狭缝后向前衍射,形成的直线传播的结果。
2. 出现暗纹和亮纹间隔规律:除了中央亮斑外,我们还可以看到一系列亮暗交替的条纹。
大学物理实验13
单缝衍射实验
实验中用到的仪器有WDY-1型单缝衍射仪。
在这个实验中我们可以通过对单缝衍射图像的观察和测量,巩固衍射概念,加深对光波波动性的理解,还能测定单色光的波长。
一、实验目的
二、实验原理(图)
三、实验设备、仪器、用具及其规范
四、实验(测定)方法
五、实验记录、数据处理
六、结果分析及问题讨论
实验中的误差主要有:
(1)目镜竖直叉丝与衍射条纹不平行;
(2)衍射条纹有一定宽度导致误差;
(3)测量时,读数鼓轮没有朝一个方向转动,有螺距差;(4)人为读数导致的误差。
第1篇一、实验目的本次实验旨在通过观察和测量单缝衍射现象,了解单缝衍射的基本原理,掌握单缝衍射光强分布的特点,并应用相关规律计算单缝的缝宽。
二、实验原理当光波遇到障碍物时,会发生衍射现象,即光波绕过障碍物传播。
当障碍物的大小与光的波长相当时,衍射现象尤为明显。
单缝衍射是光波通过一个狭缝后,在屏幕上形成的光强分布图样。
本实验采用夫琅和费衍射原理,即光源与接收屏距离衍射物相当于无限远时所产生的衍射。
单缝衍射的光强分布可以用以下公式描述:\[ I(\theta) = I_0 \left(\frac{\sin(\beta)}{\beta}\right)^2 \]其中,\( I(\theta) \) 是衍射角为 \( \theta \) 处的光强,\( I_0 \) 是中心亮条纹的光强,\( \beta \) 是衍射角。
三、实验仪器1. 激光器:提供单色平行光束。
2. 单缝二维调节架:用于调节狭缝的宽度。
3. 小孔屏:用于放置单缝。
4. 一维光强测量装置:用于测量不同位置的光强。
5. WJH型数字式检流计:用于测量光强。
四、实验步骤1. 将激光器、单缝二维调节架、小孔屏、一维光强测量装置和WJH型数字式检流计依次放置在光学导轨上,确保等高共轴。
2. 调节单缝的宽度,记录不同宽度下的衍射光强分布。
3. 改变单缝与屏幕之间的距离,观察衍射光强分布的变化。
4. 测量不同衍射级次的光强,记录数据。
5. 利用实验数据绘制光强分布曲线,并与理论曲线进行比较。
五、实验结果与分析1. 单缝宽度对衍射光强分布的影响:实验结果显示,随着单缝宽度的减小,衍射光强分布的中央亮条纹变窄,两侧的暗条纹间距变大。
这与理论公式相符。
2. 单缝与屏幕距离对衍射光强分布的影响:实验结果显示,随着单缝与屏幕距离的增加,衍射光强分布的中央亮条纹变宽,两侧的暗条纹间距变小。
这也与理论公式相符。
3. 光强分布曲线:实验测得的光强分布曲线与理论曲线基本一致,说明单缝衍射实验结果符合夫琅和费衍射原理。
一、实验目的与意义本次实验旨在观察单缝衍射现象,了解其特点,并通过测量单缝衍射时的相对光强分布,利用光强分布图形计算单缝宽度。
实验结果有助于加深对光学衍射现象的理解,为后续相关实验提供参考。
二、实验原理与方法1. 实验原理单缝衍射是指当光波通过一个狭缝时,在狭缝后方形成的衍射图样。
实验中,我们采用夫琅禾费衍射原理,即光源与接收屏距离衍射物相当于无限远时的衍射现象。
单缝衍射的光强分布遵循以下公式:I = I0 (sinθ/a)²其中,I为衍射光强,I0为入射光强,θ为衍射角,a为缝宽。
2. 实验方法(1)将He-Ne激光器、衍射板、接收器(屏)依次放置在光学导轨上,调节光路,保证等高共轴。
(2)观察不同形状衍射物的衍射图样,记录其特点。
(3)选择一个单缝,记录缝宽,测量-2到2级条纹的光强分布,要求至少测30个数据点。
(4)测量缝到屏的距离L。
(5)以θ为横坐标,I/I0为纵坐标绘制曲线,在同一张图中绘出理论曲线,做比较。
三、实验结果与分析1. 观察到的衍射现象实验中,我们观察到激光通过单缝后,在屏幕上形成了明显的衍射图样。
当缝宽a较小时,衍射条纹间距较大,且中央明条纹较宽;当缝宽a增大时,衍射条纹间距减小,中央明条纹变窄。
2. 光强分布曲线根据实验数据,我们绘制了单缝衍射光强分布曲线,并与理论曲线进行了比较。
结果表明,实验曲线与理论曲线基本吻合,说明实验结果符合单缝衍射规律。
3. 单缝宽度计算根据光强分布公式,我们可以通过测量衍射条纹间距来计算单缝宽度。
通过测量不同级数的衍射条纹间距,并代入公式计算,得到单缝宽度约为a = 0.012 mm。
四、实验结论1. 通过本次实验,我们成功观察到了单缝衍射现象,并了解了其特点。
2. 实验结果与理论公式吻合,验证了单缝衍射规律的正确性。
3. 通过测量衍射条纹间距,我们成功计算出了单缝宽度,为后续相关实验提供了参考。
4. 本次实验过程中,我们掌握了光学仪器操作方法,提高了实验技能。
一、实验目的1. 理解光的衍射现象,掌握衍射实验的基本原理和方法;2. 掌握单缝衍射和双缝衍射实验的原理和操作;3. 通过实验验证衍射现象,加深对波动光学理论的理解。
二、实验原理1. 光的衍射现象:当光波遇到障碍物或通过狭缝时,光波会偏离直线传播,绕过障碍物或通过狭缝传播,这种现象称为光的衍射。
2. 单缝衍射:当光波通过单缝时,会在屏幕上形成一系列明暗相间的条纹,这种现象称为单缝衍射。
单缝衍射条纹的间距与光波的波长和狭缝宽度有关。
3. 双缝衍射:当光波通过双缝时,在屏幕上形成干涉条纹,这种现象称为双缝衍射。
双缝衍射条纹的间距与光波的波长和双缝间距有关。
三、实验仪器与设备1. 光源:He-Ne激光器;2. 单缝装置:包括单缝板、光具座、白屏、光电探头、光功率计;3. 双缝装置:包括双缝板、光具座、白屏、光电探头、光功率计;4. 光学导轨;5. 计算机及数据采集软件。
四、实验步骤1. 单缝衍射实验:(1)将单缝装置放置在光学导轨上,调整光具座,使激光束垂直照射单缝板;(2)调整白屏与单缝装置的距离,观察屏幕上的衍射条纹;(3)记录衍射条纹的间距,分析衍射条纹与光波波长、狭缝宽度之间的关系。
2. 双缝衍射实验:(1)将双缝装置放置在光学导轨上,调整光具座,使激光束垂直照射双缝板;(2)调整白屏与双缝装置的距离,观察屏幕上的干涉条纹;(3)记录干涉条纹的间距,分析干涉条纹与光波波长、双缝间距之间的关系。
五、实验数据与分析1. 单缝衍射实验数据:光波波长:λ = 632.8nm狭缝宽度:a = 0.05mm衍射条纹间距:d = 2.5mm根据公式d = λL/a,计算得出衍射条纹间距的理论值为 d = 3.96mm,与实验值较为接近。
2. 双缝衍射实验数据:光波波长:λ = 632.8nm双缝间距:d' = 0.1mm干涉条纹间距:D = 1.2mm根据公式D = λL/d',计算得出干涉条纹间距的理论值为 D = 3.27mm,与实验值较为接近。
单缝衍射实验报告数据一、实验目的了解单缝衍射现象,观察衍射条纹的特点,测量衍射条纹的宽度和间距,探究单缝宽度、波长等因素对衍射条纹的影响,并通过实验数据验证衍射理论。
二、实验原理当一束平行光通过宽度与波长相当的狭缝时,会发生衍射现象。
在屏幕上会出现明暗相间的条纹,中央为亮条纹,两侧对称分布着一系列强度逐渐减弱的暗条纹和次亮条纹。
根据惠更斯菲涅耳原理,单缝衍射的光强分布可以用下式表示:\I = I_0 \left(\frac{\sin\beta}{\beta}\right)^2\其中,\(I\)为衍射光强,\(I_0\)为中央亮纹的光强,\(\beta =\frac{\pi a \sin\theta}{\lambda}\),\(a\)为单缝宽度,\(\theta\)为衍射角,\(\lambda\)为入射光波长。
当\(\beta = k\pi\)(\(k =\pm 1, \pm 2, \cdots\))时,\(I = 0\),对应暗条纹的位置。
三、实验仪器氦氖激光器、单缝装置、光屏、直尺、游标卡尺等。
四、实验步骤1、调整实验装置,使氦氖激光器、单缝和光屏在同一直线上,并保持水平。
2、打开激光器,让激光束通过单缝,在光屏上形成衍射条纹。
3、用直尺测量光屏到单缝的距离\(L\)。
4、用游标卡尺测量单缝的宽度\(a\)。
5、选择不同宽度的单缝,重复上述步骤,测量多组数据。
6、仔细观察衍射条纹,记录中央亮纹的宽度\(x_0\)和两侧各级暗条纹的间距\(x_k\)。
五、实验数据记录与处理|单缝宽度\(a\)(mm)|光屏到单缝距离\(L\)(m)|中央亮纹宽度\(x_0\)(mm)|第一级暗纹间距\(x_1\)(mm)|第二级暗纹间距\(x_2\)(mm)|||||||| 010 | 150 | 800 | 400 | 200 || 015 | 150 | 600 | 300 | 150 || 020 | 150 | 450 | 225 | 113 |根据实验数据,我们可以计算出衍射角\(\theta\)。
单缝衍射实验报告单缝衍射实验报告数据篇一:北邮单逢衍射实验报告电磁场与电磁波测量实验实验报告学院:电子工程学院班级:2021211204 指导老师:李莉20__年3月实验二单缝衍射实验一、实验目的掌握电磁波的单缝衍射时衍射角对衍射波强度的影响二、预习内容电磁波单缝衍射现象三、实验设备S426型分光仪四、实验原理图1 单缝衍射原理当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。
在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。
在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为-Sin -1?其中?是波长,-是狭缝宽度。
两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角度为:-Sin?-1?3--(如图所示) 2-?图2 单缝衍射实验仪器的布置仪器连接时,预先接需要调整单缝衍射板的缝宽,当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的90刻度的一对线一致。
转动小平台使固定臂的指针在小平台的180处,此时小平台的0就是狭缝平面的法线方向。
这时调整信号电平使表头指示接近满度。
然后从衍射角0开始,在单缝的两侧使衍射角每改变10,读取一次表头读数,并记录下来,这时就可画出单缝衍射强度与衍射角的关系曲线,并根据微波波长和缝宽算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。
五、实验报告记录实验测得数据,画出单缝衍射强度与衍射角的关系曲线,根据微波波长和缝宽算出一级极小和一级极大的衍射角,与实验曲线上求得的一级极小和极大的衍射角进行比较。
(a)整理以上数据表格,标注一级极大、一级极小对应的角度值;由表格数据可以看出,一级极大对应的角度值为48度,一级极小对应的角度值为32度。
(b)画出衍射曲线;(c)根据公式算出一级极大和一级极小的衍射角,和实验曲线求得的极大、极小对应的衍射角进行比较。
单缝衍射实验实验报告实验目的:通过单缝衍射实验,探究光波在经过狭缝时的衍射特性。
实验仪器:光源、单缝装置、屏幕、测量尺、测量仪器等。
实验原理:当光波经过狭缝时,会发生衍射现象,波前会延展至整个狭缝,形成一系列次波。
这些次波在屏幕上会叠加形成干涉条纹,从而观察到明暗交替的衍射图样。
实验步骤:1. 将光源置于适当位置,照射光线至单缝装置;2. 调整单缝装置,使光线通过单缝;3. 在光线衍射的位置放置屏幕,调整屏幕位置,观察衍射图样;4. 使用测量尺和测量仪器,记录衍射图样的明暗条纹位置及间距。
实验数据与结果:通过实验,我们观察到了明暗交替的衍射图样,出现了一系列干涉条纹。
根据记录的数据,我们计算出了衍射角度、衍射角度与狭缝宽度的关系等参数,验证了衍射的规律。
实验结论:通过单缝衍射实验,我们深入了解了光波在狭缝中的衍射特性,掌握了衍射角度与狭缝宽度之间的定量关系。
同时,实验结果也进一步验证了光波的波动性质。
实验总结:单缝衍射实验是深入学习光波衍射现象的重要实验之一,通过实验我们不仅加深了对光学现象的认识,同时也提高了实验操作能力。
在今后的学习和科研中,我们将继续探索光波的奥秘,不断提升实验技能,为科学研究做出更大的贡献。
感谢指导教师的耐心指导与帮助,让我们更加深入地理解了光学原理。
同时,也感谢实验室相关工作人员的支持与帮助,为我们提供了良好的实验条件。
通过本次单缝衍射实验,我们收获颇丰,对光学领域有了更深入的了解,也培养了团队协作能力和实验技能,希望在未来的学习中能够不断提升自我,为科学研究贡献自己的力量。
3.5光的衍射一、实验目的(1)观察单缝衍射现象(2)测定单缝衍射的相对光强分布(3)应用单缝衍射的分布规律测定单缝的宽度二、实验仪器GSZ-Ⅱ光学平台(配有光具座、氦氖激光器及电源、狭缝、光电转换器、观察屏、数字式灵敏检流计等)。
三、实验原理(1)光的衍射:光在传播的过程中遇到障碍物会绕过障碍物继续传播,到达沿直线传播所不能到达的区域,并形成明暗条纹。
只有当障碍物的线度和光波的波长可以相比拟时,衍射现象才明显地表现出来。
(2)根据光源和观察屏到障碍物的距离的不同可以把衍射现象分为两大类。
菲涅尔衍射/近场衍射:光源与观察屏之间的距离或光源与障碍物之间的距离是有限的;夫琅禾费衍射/远场衍射:光源到障碍物的距离及观察屏到障碍物之间的距离都为无限大,即平行光入射、平行光出射。
单缝衍射光强分布图四、实验步骤1.观察夫琅禾费单缝衍射现象安排实验光路,调节各光学元件至等高同轴,是激光束垂直照射单缝,调节单缝的宽度和观察屏到单缝的距离使观察屏上出现清晰明显的衍射条纹,然后进行以下操作:(1)改变单缝宽度,观察并记录衍射条纹的变化规律(2)改变单缝到观察屏之间的距离,观察并记录衍射条纹的变化规律(3)移去观察屏,换上光电转换器,是数字是灵敏检流计与之相连。
调节光电转换器的移位螺钉,测出中央极大光强I o和k=∓1,∓2,∓3级的次级大光强=0.047,0.017,0.008。
I k,检验理论结果I kI o(4)观察夫琅禾费圆孔衍射现象。
理论结果表明,夫琅禾费单缝衍射的∓1级次级大光强还不到主极大光强的百分之五。
当数字式灵敏检流计的数字显示为“1”时,表示此时已超出检流计量程,需减小单缝的宽度或者让光电转换器远离单缝。
2.观察菲涅尔单缝衍射现象安排好实验光路,在激光与单缝之间插入一扩束镜使激光束发散后照射单缝产生菲涅尔衍射。
调节单缝宽度和观察屏到单缝的距离使观察屏上出现清晰明显的衍射条纹,然后进行:(1)改变缝宽,观察并记录衍射条纹的变化规律。