第一章平行线复习课
- 格式:ppt
- 大小:232.50 KB
- 文档页数:9
2023年浙教版七下数学第一章平行线章节复习(教师版)一、知识梳理知识点1:平行线的定义1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a ∥b.注意:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.知识点2:同位角、内错角和同旁内角两条直线被第三条线所截,可得八个角,即“三线八角”,如图6所示。
(1)同位角:可以发现∠1与∠5都处于直线l的同一侧,直线a、b的同一方,这样位置的一对角就是同位角。
图中的同位角还有∠2与∠6,∠3与∠7,∠4与∠8。
(2)内错角:可以发现∠3与∠5都处于直线l的两旁,直线a、b的两方,这样位置的一对角就是内错角。
图中的内错角还有∠4与∠6。
(3)同旁内角:可以发现∠4与∠5都处于直线l的同一侧,直线a、b的两方,这样位置的一对角就是同旁内角。
图中的同旁内角还有∠3与∠6。
知识点3:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点4:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。
几何语言:∵∠1=∠2∴ AB∥CD(同位角相等,两直线平行)判定方法(2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。
教学流程
分课时
环节
与时间
教师活动学生活动
△设计意图
◇资源准备
□评价○反思
课堂练习
20分钟
课堂小结
7分钟
布置作业
1分钟
4、练习:
判断:
(1)两条直线被第三条直线所截,
同位角相等()
(2)同旁内
角互补
5.填空:如图
∵∠1=∠C
(已知)
∴AD∥BC
(
)
∴∠2=∠B
()
∠EAC+∠C=180°
()
前一步用的是平行线的_______,后
一步用的是。
1、通过复习你有何收获?
要判定两条直线平行,可以运用哪些
公理或定理?
要判定两个角相等,可以运用哪些公
理或定理?
2、思想方法:
分析问题的方法:
由已知看可知,扩大已知面。
由未知想需知,明确解题方向。
识图的方法:
在定理图形中提炼基本图形,
在解题时把复杂图形分解为基本图形。
复习题5
学生抢答
由一同学口答
学生畅所欲言,全
面总结
△通过练习题,以
抢答的形式激发
学生的兴趣,有利
于知识的理解。
相交线与平行线(复习课)教案教学目标1 .梳理本章的知识结构.复习巩固相交线与平行线的有关概念和性质,使学生会用这些概念和 性质进行简单的推理或计算;能用直尺、三角板、量角器画垂线和平行线:经历对本章所学 知识回顾与思考的过程,将本章内容条理化,系统化,2 .通过对知识的疏理,进一步加深对所学概念的理解,经历把文字语言、符号语言和图形语言的相互转化过程.进一步熟悉和掌握几何语言,能用语言说明几何图形.3 .感受数学来源于生活又服务于生活,激发学习数学的乐趣.体验用运动变换的观点来揭示知识间内在联系.提高学生分析问题、解决问题的能力。
重点、难点重点:两条直线的相交和平行的位置关系,以及相交线、平行线的综合应用. 难点:垂直、平行线的性质和判定的综合应用.教学过程一、展示设计作品课前布置要求以小组为单位每组设计知识结构图作成手抄报形式,要求有创意体现本组特 色和风格教师给出评价二、回顾与思考出示幻灯片按知识网展开复习.L 对顶角、邻补角。
动动手 任意画两条相交直线,在形成的四个角(如图)中,两两相配共组成几对角?各对角 存在怎样的位置关系?(1)出示幻灯片 两条直线相交、构成哪两种特殊位置关系的角? 学生回答.练习一1 .如图1,直线AB 、CD 、EF 相交于0, NA0E 的对顶角是,邻补角是, NCOF 的对顶角是, 邻补角是2如图,直线a 、b 相交,Nl=40° ,求N2、N3、Z 4的度数。
结合练习教师强调:对顶角、邻补角是由两条相交面而成的具有特殊位置关系的角,要抓住对 顶角的特征,有公共顶角,角的两边互为反向延长线;邻补角的特征:有公共顶有一条公共 边,另一边互为反向延长线。
线相交 两条直邻补角,对顶角 垂线及其性质对顶角相等| 点到直线的距离线的位置关系 平面内两条直三条直 两条直线所截 线被第 同位角,内错角,同旁内角平行公理性质 平移判定(3)对顶角有什么性质?(对顶角相等)如果两个对顶角互补或邻补角相等,你得到什么结论?2.垂线及其性质.(1)垂线的定义及推理格式定义可以作垂线的制定方法用,也可以作垂线性质用.(2)如图所示,0为直线AB上一点,ZAOC=1 ZBOC, 0C是NAOD的平分线.3(1)求Z COD的度数;(2)判断0D与AB的位置关系,并说明理由.鼓励学生用不同方法求解变式训练渗透设未知数列方程的方法(3)垂线性质1和性质2.①请回忆一下后体育课测跳远成绩时,教师是怎样测量的?②垂线段最短。
D平行线复习学案【 课 题】 平行线复习课 【学习背景】学生对于平行线的定义及画法并不难接受,但对于三线八角的辨别却是一难点,复习时要教会学生排除背景干扰,在复杂的图形中准确的识别同位角、内错角、同旁内角。
在应用平行线的性质和判定解决问题时,要注意条件和结论。
【复习目标】知识与技能:先说出平行线的定义、性质及判定,并能利用性质和判定解决相关问题。
会过直线外一点画已知直线的平行线。
过程与方法:通过平行线判定和性质的运用,体会应用的技巧与方法。
情感与态度:通过对技巧和方法的探索,感悟成功的快乐,享受数学美。
【复习重难点】重点:平行线性质、判定的应用。
难点:应用技巧和方法的提炼。
【课前准备】闯关加油站:(充分准备是顺利闯关的关键) 忆一忆:1、回顾平行线这一章中我们主要学习了哪些概念?2、平行线有哪些性质?3、平行线有哪些判定方法? 【复习过程】 第一关:概念关 1、如图:(1) ∠AGE (2)∠BGH (3)∠AGH 2、∠ABC 的同旁内角有( )个 A 、0 B 、1 C 、2 D 、3错题门诊3、判断,并说明理由(1)不相交的直线是平行线 ( )(2)在同一平面内,两条不相交的线段是平行线( ) (3)过一点可以而且只可以画一条直线与已知直线平行( ) 第二关:性质关 1、如图1:长方形ABDC 沿着对角线折叠,∠1与∠2相等吗?为什么?图1 图22、如图2,已知AB ∥CD ,EF 交AB,CD 于G, H ,∠BGH=100度,∠GHD= ∠GHC= ∠CHF=第三关:判定关1、如图,已知EF 交AB,CD 于M, N ,∠1=∠2,AB ∥CD 吗?请用尽可能多的方法说明。
21NMDCB AFE第四关:综合应用关1、如图,已知AB ∥CD ,EF 交AB,CD 于G, H, GM, HN 分别平分∠AGF,∠EHD 试说明GM ∥HN.ABCDEFGHABC结论::如果两直线平行,内错角的平分线 。
第二章相交线和平行线第三节平行线的性质第2课时兴仁中学李丽课型:复习课授课时间:2013年3月29日星期五第3节课教学目标:1复习平行线的判定和性质,体会几何说理过程2熟练应用平行线的性质和判定直线平行的条件解决问题。
教学重点与难点:重点:灵活应用平行线的判定和性质难点:平行线的判定和性质的区别与联系,有条理地说理表达教法与学法指导:教法:引导,启发,探究,归纳学法:自主探究,合作交流课前准备:直尺练习本教学过程:一.情境引入师:同学们,前几节课,我们一起探索了两直线平行的条件和平行线的性质,你们还记得吗?生:学生同位互答2))。
(1) 如图1,要说明BD ∥AE ,请添加一个适当的条件,说明添加的依据。
生1:∠CBD=∠A ,理由是:同位角相等,两直线平行 生2:∠BDC=∠E, 理由是:同位角相等,两直线平行 这时,学生没有方法了,在思考,师提示生3:∠BDF=∠DFE, 理由是:内错角相等,两直线平行 之后,生4: ∠BDF+∠AFD=180°,理由是:同旁内角互补,两直线平行 生5:∠ABD+∠A=180°,理由是:同旁内角互补,两直线平行(2) 如果DE ∥AC ,请在图中找出相等的角或互补的角,说出依据。
通过第(1)题的复习,很容易得出该题的答案生:∠BDF=∠CBD,∠C=∠FDE,∠DFE=∠A, ∠C+∠CDF=180°∠A+∠AFD=180°师:通过上面的复习,谁能说说“平行线的判定和性质的区别是什么”? 在应用二者时应注意什么问题?(学生思考、讨论、回答) 生:判定是由角到线,性质是由线到角 生:它们的条件和结论是互逆的 师:你们总结很好,由“数”到“形”是判定,由“形”到“数”的说理是性质。
设计意图:通过创设问题情境,给学生一个思考的平台,让学生在寻找角的关系中回忆平行线的判定和性质,利用这一设问激发学生思考问题的兴趣,发散学生的思维,引发学生对数学问题的思考二.新课探索活动一:如图2说理过程填空(1)∠1和∠2是_____________角,若∠1=∠2,则______∥______;( ) (2)∠2和∠M 是_________角,若∠2=∠M ,则______∥______;( )(3) ∠2和∠3是_________角,若∠2+∠3=180°,则______∥______;( )(4)因为AM ∥BF,所以∠A=________;( )因为∠ABF+∠BFM=180°,所以AB ∥FM 学生思考,讨论,回答设计意图:运用平行线的判定和性质进行说理的基础性训练,既是关于判定和性质的复习,又是综合运用这些知识解题的铺垫。
《平行线的性质和判定》复习课教学设计一、内容和内容解析:1.内容:平行线的性质和判定的综合运用2.内容解析:本节课是平行线性质和判定的复习课,担负着几何语言和识图能力培养的任务,是完成本章要让学生实现“几何模型→图形→文字→符号”顺利过渡的一个重要的环节。
也是检验学生经过一个阶段的训练,是否能够顺利找到解决题目的思路,并用数学语言准确的表达出来。
因此,本节课的教学重点:能够根据不同的题目背景,准确选择平行线的性质或者判定,并准确地用数学语言进行表述。
二、目标和目标解析:1.目标(1)能够叙述平行线的判定和平行线性质的区别和联系;(2)能运用平行线的判定和性质进行综合推理,并规范书写推理过程。
2.目标解析:达成目标(1)的标志是:针对题目中的条件准确的判断使用的是性质还是判定;达成目标(2)的标志是:学生能够独立或者在教师的提示下,用数学语言完整的表述学案题目的解答过程。
三、教学诊断分析:在这一阶段,学生已经有了一定的解决平行线性质和判定的基础,并对两步的证明能够独立完成,简单题目能够进行,需要通过这节课的学习,在学生的互相交流中提高他们分析问题、解决问题的能力,培养他们推理能力和有条理的表达能力。
所以,基于此,本节课的难点是:在证明和求解中的说理能力。
四、教学过程:1、创设情境,复习引入:(1)提问:平行线的性质和判定内容,区别和联系(2)回忆阶段考试中的题目:母题1:如图所示:AD∥BC,∠A=∠C,试说明AB∥DC.教师提出问题,可以把题目进行如此的变化:(3)变式一如图所示:AB∥DC,∠A=∠C,试说明AD∥BC.(4)变式二如图所示:AD∥BC,AB∥DC,试说明∠A=∠C.2、整合信息,自主体验:母题2:如图,已知AB∥CD, ∠1=∠2,求证∠E=∠F.【我的题目,我做主】变式:如图,已知_____________,______________, ,求证_______________.母题3:已知:∠CGD=∠CAB,∠1=∠2,AD⊥BC,求证:EF⊥BC.【我的题目,我做主】变式:已知:_____________,______________,_______________,求证:______________.3、体会·收获:引导学生总结证明的思路(预设:①给角的信息,可以推出直线的平行,给出直线的平行可以推出角的关系,渗透转化思想②老师出题的结构无外乎条件和结论之间的变换,在解题时,多留意一下题目的条件和结论也许就有解题的方向了;③………………)4、课后作业:基础作业:把母题2,母题3中学生没有完成的另外的题目、结论组合方式自主编题,解答。