当前位置:文档之家› 热动工程力学第13章

热动工程力学第13章

热动工程力学第13章
热动工程力学第13章

第13章教学方案——压杆稳定

第13章 压杆稳定

13.1 压杆稳定性的概念

13.1.1 平衡稳定性的概念

处于平衡状态的系统,若受到外界干扰偏离平衡位置后,在干扰撤除后仍能回到平衡位置,则其平衡是稳定的;若不能回到平衡位置而失去平衡状态则为不稳定的平衡;若在任意位置保持平衡则为随遇平衡。例如,小球放在凹面、凸面和平面上的状态。

13.1.2 压杆的稳定性

前面的研究中,受压直杆失效表现为强度不足,即杆件塑性屈服或脆性断裂。事实上,对于较长的受压直杆,常出现另一种与强度失效完全不同的破坏形式,就是在使用中突然变弯甚至折断。这种破坏形式称为失稳。为了保证压杆工作的安全性,在设计压杆时,必须考虑其稳定性。工程结构中有许多受压的细长杆,例如内燃机配气机构中的挺杆(图13.2),磨床液压装置的活塞杆(图13.3)。还有桁架结构中的抗压杆,建筑物中的柱也是压杆。实践证明,导致细长受压杆件失稳破坏的轴向力要比其发生强度破坏时的轴向力小得多,可见这种形式的失效,并非强度不足,而是稳定性不够。

13.1.3 细长压杆的失稳现象

轴向受压的理想细长直杆如图13.4所示,当压力F 小于某一极限力时,它保持直线状态的平衡。若对杆施加一微小的横向干扰力Q ,杆将发生微小的弯曲变形,如图13.4(a )中虚线所示,当撤去横向力后,它将回复到原有的直线状态,如图13.4(b )。此时,压杆处于稳定的直线平衡状态。若逐渐增大压力F ,达到某一极限值F cr 时, 在微小的干扰力的Q 作用下, 压杆将产生微小的弯曲,当撤去横向力后,仍将保持曲线状态的平衡,如图13.4(c)所示。此时,压杆处于失稳的临界状态。

上述现象表明,当轴向压力F 小于某一极限值时,压杆直线状态的平衡是稳定的,当F 值达到该极限值时,压杆原有的直线状态的平衡将变为不稳定。这个极限压力值是使压杆直线状态的平衡开始由稳定转变为不稳定的临界值,称为临界压力或临界力,用F cr 表示。压杆由直线状态的稳定平衡转变为不稳定平衡,称为丧失稳定,简称失稳。

图13.2 图

13.3

10.2 细长压杆的临界压力

13.2.1两端铰支细长压杆的临界压力

设两端铰支长度为l 的细长杆,在轴向压力F 的作用下保持微弯平衡状态,如图13.5所示。在图所示坐标系中,x 截面处横截面上的弯矩为

()Fw x M -= (a )

小变形下挠曲线近似微分方程为

()x M dx

w

d EI =22 (b)

将(a )式代入(b )式,得

Fw dx w

d EI -=2

2 (c ) 若令 EI

F

k =2

(d ) 式(c )可写成

022

2=+w k dx

w

d (

e ) 此微分方程的通解为

kx B kx A w cos sin += (f ) 上式中的A 、B 为待定常数,可由杆端边界条件确定。在0=x 处,0=w ,代入式(f ),得 B=0 于是式(f)改写为

kx A w sin = (g )

上式表示挠曲线为一正弦曲线。在l x =处,0=w ,代入式(g ),则有 0sin =kl A 可得

0sin 0==kl A 或

A =0时,0=w ,表示压杆未发生弯曲,这与杆产生微弯曲的前提矛盾。由此必有 0s i n =kl

图13.5

可得

),2,1,0( ==n n kl π

或 2

2

22

l

n k π= (h ) 将式(d )代入上式,可得

),2,1,0(2

22 ==

n l EI

n F π (i )

上式表明,当压杆处于微弯平衡状态时,在理论上压力F 是多值的。由于临界压力应是压杆在微弯形状下保持平衡的最小轴向力,所以在上式中取不等于零的F 最小值。因此,取1=n ,可得临界压力为

F cr =

2

2l

EI

π (13-1)

上式一般称为两端铰支细长压杆临界压力的欧拉公式。

13.2.2其它支座条件下细长压杆的临界压力

通过类比可以得到其它杆端约束条件下压杆的压杆临界力的表达式。综合各种约束情况,可将欧拉公式写成统一的形式

()

2

2l EI

F cr μπ= (13-2) 式中μl 称为相当长度,表示将杆端约束条件不同的压杆长度l 折算成两端铰支压杆的长度,μ称为长度因数。几种杆端约束情况下长度因数μ值列于表13-1中,从表13-1中可以看出,两端铰支时,在临界力作用下,压杆挠曲线为正弦半波曲线。而一端固定、另一端自由长为l 的压杆的挠曲线与长为2l 的两端铰支的压杆的挠曲线的一半形状相同。因此,在这种约束情况下,相当长度为2l 。其它约束情况下的长度因数可依此类推。这里需注意,压杆挠曲线拐点处弯矩为零,这相当于杆端铰支约束的情况。

表13-1 压杆长度因数

【例13-1】一矩形截面细长压杆,截面宽度b =40mm,高度h =60mm ,两端用图示夹头约束。在x-y 平面内弯曲时,两端可简化为铰支,如图13.6(a ),长度m l 4.2=,在x-z 平面内弯曲时,两端可视为固定端,如图13.6(b),长度m l 3.21=。压杆材料为Q235钢,弹性模量E =210GPa 。试用欧拉公式求压杆的临界力。

解:(1)计算x-y 平面内弯曲时的临界压力。由于两端为铰支,因此其长度因数μ=1,由式(13-2)

可得临界压力

()()()()KN l Ebh l EI F z cr

25912

4.211060*********/21239223222=???????==='-πμπμπ (2)计算x-z 平面内弯曲时的临界压力。由于两端为固定支座,其长度因数μ=0.5,由式(13-2)

可得临界压力

()()()()KN l Ehb l EI F y

cr

5.50112

3.25.01040601021012/2

12

39221322

12=???????===''-πμπμπ (3)确定压杆的临界压力。比较上面两种情况下的临界压力,由于cr cr

F F ''<',可知压杆首先在x-y 平面内失稳。故该压杆的临界压力为F cr =259KN 。

(4)讨论。如果从压杆的强度考虑,对于Q235钢,其σs =240MPa ,使该压杆塑性屈服而破坏

的轴向压力为

()KN bh A F s s u 57610

6040102406

6

=????===-σσ

可见,该压杆的F cr 远小于F u 值,说明细长压杆的承载能力往往是由它的稳定性来决定的。

13.3 临界应力和柔度 三种不同类型的压杆

13.3.1临界应力和柔度

压杆的临界压力F cr 除以其横截面面积,定义为压杆的临界应力,即 A

F cr

cr =σ 将式(13-2)代入上式,得

图13.6

()A

l EI cr 2

2μπσ= 若将压杆横截面的惯性矩I 写成

A i I 2

= 或 A

I i =

式中i 称为压杆横截面的惯性半径。 于是临界应力可写为

2

2??

? ??=

i l E

cr μπσ

令i

l

μλ=

,则

22λ

πσE

cr

= (13-3) 上式为计算压杆临界应力的欧拉公式。式中λ称为压杆的柔度或长细比,柔度是无量纲的量,它反映了压杆的约束情况、杆的长度以及横截面形状和尺寸等因素对临界应力的综合影响。从式(13-3)可以看出,若压杆的柔度值越大,其临界应力就越小,越容易失稳。

13.3.2三种不同类型的压杆及临界应力表达式

公式(13-3)是欧拉公式(13-2)的另一种表达式,两者并无实质性的差别。欧拉公式是根据挠曲线近似微分方程得到的,而应用此微分方程时,材料必须服从胡克定律。因此,欧拉公式的适用范围是压杆的临界应力σcr 不超过材料的比例极限σp 。即

p cr E

σλ

πσ≤=22

有 p

E

σπ

λ≥ (13-4)

如令 1λσπ=p

E

欧拉公式的适用范围为

p

E

σπ

λλ=≥1 (13-5)

上式表示当压杆的柔度不小于λ1时,才可应用欧拉公式计算临界压力或临界应力。这类压杆称为大柔度杆或细长杆。从式(13-4)可知,λ1的值取决于材料的性质。例如Q235钢,σp=200MPa,E =200GPa,由式(13-4)算得

100200

1025

1=?==πσπ

λp

E

当压杆临界应力超过材料的比例极限但不超过材料的屈服极限时,实践表明,压杆失效形式仍为失稳。此时,材料处于弹塑性阶段,此类压杆的稳定性称弹塑性稳定。对这类压杆大都采用经验公式确定临界应力或临界压力。经验公式是在实验和实践资料的基础上,经分析、归纳而得到的。较常用的经验公式为直线公式和抛物线公式等,本书仅介绍直线公式,其表达式为

λσb a cr -= (13-6) 式中的a 和b 是与材料有关的常数,其单位为MPa 。

对塑性材料,按式(13-6)算出的临界应力不能超过σs ,设对应于σs 的柔度为λ2,则

b

a s

σλ-=

2 (13-7) 这是使用直线公式时柔度的最小值,它也是只与材料性质有关的常数。若压杆的柔度λ<λ2,其失效表现为强度不足,应按照压缩强度计算,对塑性材料要求 S cr A

F

σσ≤=

对脆性材料只需把σs 改为σb 。

一般把柔度值在λ1和λ2之间的压杆称为中柔度杆或中长杆,用经验公式计算其临界应力。柔度小于λ2的压杆称为小柔度杆或粗短杆,对于塑性材料压杆,其临界应力σcr =σs ,对于脆性材料,其临界应力σcr =σb 。

13.3.3临界应力总图

【例13-2】图13.9所示为两端铰支圆截面压杆,材料为Q235钢,σs =235MPa ,λ1=100,λ2=62,直径d =40mm 。试计算(1)杆长m l 2.1=,(2)杆长mm l 800=,(3)杆长mm l 500=,三种情况下压杆的临界压力。

解:(1)计算杆长m l 2.1=时的临界压力 两端铰支故μ=1

惯性半径 mm d d d A I i 1044044

/64/24=====ππ 柔度 10012010

102

.1113

=>=??=

=

-λμλi

l

图13.9

为大柔度杆,应用欧拉公式计算

()()KN d E A F cr cr 172120

410401020042

2

393222=???===-ππλπσ. (2)计算杆长mm l 800=时的临界压力 1=μ,mm i 10= 8010

800

1=?=

=

i

l

μλ 因12λλλ<< 为中柔度杆,应用直线公式计算,从表13-2中查得:MPa b MPa a 12.1,304==

()

()()

KN

d b a A F cr cr 2694

10

40801012.1103044

2

36

6

2

=???-?=

-==-ππλσ.

(3)计算杆长mm l 500=时的临界压力

625010

1010500123

3

=<=???==--λμλi l

为小柔度杆,其临界压力为 KN d A F s s cr 2954

1040102354

3

62

=????=

==-ππσσ..

13.4压杆的稳定校核

前面的讨论表明,对大柔度杆,可用欧拉公式直接算出临界压力F cr 。对中柔度杆,可由经验公

式求出临界应力σcr ,乘以横截面面积求得临界压力F cr 。要保证压杆不失稳,必须要求实际工作压力小于临界压力。为了有一定的稳定性安全储备,用F cr 除以稳定安全系数n st 得许可压力[F ]。压杆的实际工作压力F 应低于[F ],故压杆的稳定性条件为

[]F n F F st

cr

≥= 以上条件也可写成

st cr

n F

F ≥ 把临界压力F cr 与工作压力F 之比记为n ,称为工作安全系数,稳定条件又可写为 st cr

n F

F n ≥=

(13-8) 稳定安全系数n st 一般要高于强度安全系数。这是因为:

●一些难以避免的因素,如杆件的初弯曲、压力偏心、材料不均匀和支座的缺陷等,都严重影响压杆的稳定性,降低了临界压力。而同样的这些因素,对强度的影响就不像对稳定性那么严重。 ●压杆失稳大都具有突发性,危害性比较大。由于细长杆丧失稳定性的可能性比较大,为了保证充分的安全度,柔度较大的压杆稳定安全系数相应增大。

由于压杆稳定性破坏是整体性的,临界压力也是根据整杆的失稳来确定,所以在稳定计算中不必考虑如打孔等原因而使横截面局部销弱的影响,而以毛面积进行计算。但在强度计算中,应按局部被削弱的净面积进行计算。

【例13-3】图13.11所示的结构中,梁AB 为l4号普通热轧工字钢,CD 为圆截面直杆,其直径d =20mm ,两者材料均为Q235钢,σp =200MPa ,E =206GPa 。结构受力如图中所示,F 铅垂向下;A 、C 、D 三处均为铰接。若已知F =l2KN ,m l 25.1=,m a 55.0=,强度许用应力[σ] =160MPa , 规定的稳定安全因数 n st =2。试问此结构是否安全。

解:在给定的结构中有两个构件:梁AB 一一弯曲,

应考虑其强度问题;杆CD 一一轴向压缩,应考虑其稳定问题。

(1) 梁AB 的强度校核。梁AB 在C 截面处弯矩最大,该处为危险截面,其弯矩为

m KN Fl M .1525.112m ax =?==

查型钢表得14号普通热轧工字钢的3

3

3

10102102mm cm W z ?==。由此得到 MPa Pa W M z 1471014710

10102101569

33max max

=?=???==-σ 显然[]σσ

(2) 校核压杆CD 的稳定性。由静力平衡条件可得压杆CD 的轴向压力 KN F F N 242== 因为是圆截面杆,且两端为球铰约束,μ=1,故其柔度为 11010

204

55.014

/3

=???=

=

=-d a

i

a

μμλ 材料的1λ值为

10110

200102066

9

221=???==πσπλp E 可见1λλ>,表明CD 杆细长杆,故其临界压力为 ()41020110

1020642

3292222-?????=?==πππλπσd E A F cr Ncr

KN N 8.52108.523

=?=

稳定许用压力为

[]KN n F F st Ncr 4.262

8

.52===

显然[]F F N <,故满足稳定性条件,即CD 杆是稳定的。

上述两项计算结果表明,整个结构的强度和稳定性都是安全的。

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

土木工程力学网络形考任务一参考资料

土木工程力学(本)网络形考任务一参考资料 一、填空题 1.结点通常简化为以下三种类型: (组合结点)(刚结点)(铰结点) 2.从几何角度,结构通常可以分为三类: 杆件结构_通常由若干根杆件相互联结组成,杆件的几何特征是其长度远大于横截面上两个方向的尺度。 _板壳结构(薄壁结构)_厚度远小于其长度和宽度。 _实体结构_长、宽、高三个方向尺度大小相近(属于同一数量级)。 3.一根链杆相当于1个约束;一个单铰相当于_2_个约束;一个刚结点相当于_3_个约束。 4.在任意荷载作用下,若不考虑材料的变形,其几何形状与位置均保持不变,这样的体系称为_几何不变体系_。即使不考虑材料的变形,在很小的荷载作用下,也会引起其几何形状的改变,这样的体系称为_几何可变体系_。 5._固定支座_不允许结构在支承处发生任何方向的移动和转动。_定向支座_不允许结构在支承处发生转动,也不能沿垂直于支承的方向移动,但可以沿平行于支承的方向滑动。_固定铰支座_只允许结构在支承处绕铰A转动,而不能发生任何移动。_活动铰支座_只约束了支承链杆方向的位移,允许结构绕铰转动,也可以沿着垂直于链杆的方向移动。 6.根据荷载的不同特征,荷载可以进行如下分类: 根据作用时间可以分为:_恒载_——永久作用在结构上的不变荷载。_活载_——暂时作用在结构上的可变荷载。 根据作用的性质可以分为:_静力荷载_——荷载的大小、方向和位置不随时间变化或变化比较缓慢,不会使结构产生明显的振动,计算过程中可忽略惯性力的影响。_动力荷载_——随时间迅速变化的荷载,会使结构产生明显的振动,因而计算过程中惯性力的影响不能忽略。 根据作用的方式可以分为:_分布荷载_——是指满布在结构或构件某部分面积上的荷载。_集中荷载_——作用在结构上的荷载一般总是分布在一定的面积上,当荷载作用面积远小于结构或构件的尺寸时,可以认为此荷载是作用在结构或构件的一个点上。 7、固定支座不允许结构在支承处发生任何方向的移动和转 定向支座不允许结构在支承处发生转动,也不能沿垂直于支承的方向移动,但可以沿平行于支承的方向滑动。 固定铰支座只允许结构在支承处绕铰A转动,而不能发生任何移动。 活动铰支座只约束了支承链杆方向的位移,允许结构绕铰转动,也可以沿着垂直于链杆的方向移动。 二、单项选择题 1. 对图示平面体系进行几何组成分析,该体系是(C)。 A.瞬变体系 B.可变体系 C.无多余约束的几何不变体系 D.有一个多余约束的几何不变体系 2.对图示平面体系进行几何组成分析,该体系是(A)。 A.几何可变体系 B.瞬变体系 C.有一个多余约束的几何不变体系 D.无多余约束的几何不变体系 3.对图示平面体系进行几何组成分析,该体系是(B)。 瞬变体系B.可变体系C.无多余约束的几何不变体系D.有一个多余约束的几何不变体系 4.一个平面体系的计算自由度W>0,则该体系是(A)。 A.可变体系 B.瞬变体系 C.无多余约束的几何不变体系 D.有多余约束的几何不变体系 5.对图示平面体系进行几何组成分析,该体系是(A)。 A.瞬变体系 B.可变体系 C.无多余约束的几何不变体系 D.有一个多余约束的几何不变体系 6.刚结点在结构发生变形时的特征是(B)。

工程力学(天津大学)第13章答案

工程力学(天津大学)第13 章答案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

习 题 解 答 13?1 木制构件中的单元体应力状态如图所示,其中所示的角度为木纹方向与铅垂线的夹角。试求: (l )平行于木纹方向的切应力; (2)垂直于木纹方向的正应力。 解: 由图a 可知 MPa 0MPa, 6.1,MPa 2.0=-=-=x y x τσσ (1)平行于木纹方向的切应 力:则由公式可直接得到该斜截面上的应力 MPa 1.0)]15(2sin[2 6.12MPa 9 7.1)]15(2cos[26 .1226.1215 15=-?+-=-=-?+-+--= -- τσ (2)垂直于木纹方向的正应力 MPa 1.0)752sin(2 6.12MPa 52 7.1]752cos[26 .1226.127575-=?+-=-=?+-+--= τσ 由图b 可知 MPa 25.1,0,0-===x y x τσσ (1)平行于木纹方向的切应力:则由公式可直接得到该斜截面上的应力 MPa 08.1)]15(2cos[25.12cos MPa 625.0)15(2sin 25.12sin 1515-=-??-==-=-?=-=-- αττατσx x (2)垂直于木纹方向的正应力 MPa 08.1)752cos(25.12cos MPa 625.0)752sin(25.12sin 7575=??-===??=-= αττατσx x 13?2 已知应力状态如图一所示(应力单位为MPa ),试用解析法计算图中指定截面的正应力与切应力 解:(a )已知 MPa 20MPa,10, 0MPa 3-===x y x τσσ 则由公式可直接得到该斜截面上的应力 习题13?1图 (a) (b)

工程力学第一章答案详解

范钦珊教育教学工作室 FAN Qin-Shan’s Education & Teaching Studio eBook 工程力学习题详细解答 (教师用书) (第1章) 2006-12-18

(a) (b) 习题1-1图 Ay F F B C A Ax F 'F C (a-2) C D C F D R F (a-3) Ax F F F A C B D Ay F (b-1) 第1章 静力学基础 1一1 图a 和b 所示分别为正交坐标系11y Ox 与斜交坐标系22y Ox 。试将同一个力F 分别在两中坐标系中分解和投影,比较两种情形下所得的分力与投影。 解:(a ),图(c ):11 sin cos j i F ααF F += 分力:11 cos i F αF x = , 11 sin j F αF y = 投影:αcos 1F F x = , αsin 1F F y = 讨论:?= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。 (b ),图(d ): 分力:22)tan sin cos (i F ?ααF F x -= ,22sin sin j F ? α F y = 投影:αcos 2F F x = , )cos(2α?-=F F y 讨论:?≠90°时,投影与分量的模不等。 1一2 试画出图a 和b 两种情形下各构件的受力图,并加以比较。 习题1-2图 1 y F x x F 1 y F α1 x F y F (c ) 2 F 2 y F 2 y 2x 2 x F 2 y F F (d )

比较:图(a-1)与图(b-1)不同,因两者之F R D 值大小也不同。 1一3 试画出图示各构件的受力图。 习题1-3图 F Ax F Ay F D C B A B F 或(a-2) F B A F D C A (a-1) B F Ax F A Ay F C (b-1) W F B D C F F (c-1) F F C B B F A 或(b-2) α D A F A C B F (d-1) C F C A F (e-1) Ax F A Ay F D F D C α F B F C D B F D

工程力学试题库材料力学

材料力学基本知识 复习要点 1. 材料力学的任务 材料力学的主要任务就是在满足刚度、强度和稳定性的基础上,以最经济的代价,为构件确定合理的截面形状和尺寸,选择合适的材料,为合理设计构件提供必要的理论基础和计算方法。 2. 变形固体及其基本假设 连续性假设:认为组成物体的物质密实地充满物体所在的空间,毫无空隙。 均匀性假设:认为物体内各处的力学性能完全相同。 各向同性假设:认为组成物体的材料沿各方向的力学性质完全相同。 小变形假设:认为构件在荷载作用下的变形与构件原始尺寸相比非常小。 3. 外力与内力的概念 外力:施加在结构上的外部荷载及支座反力。 内力:在外力作用下,构件内部各质点间相互作用力的改变量,即附加相互作用力。内力成对出现,等值、反向,分别作用在构件的两部分上。 4. 应力、正应力与切应力 应力:截面上任一点内力的集度。 正应力:垂直于截面的应力分量。 切应力:和截面相切的应力分量。 5. 截面法 分二留一,内力代替。可概括为四个字:截、弃、代、平。即:欲求某点处内力,假想用截面把构件截开为两部分,保留其中一部分,舍弃另一部分,用内力代替弃去部分对保留部分的作用力,并进行受力平衡分析,求出内力。 6. 变形与线应变切应变 变形:变形固体形状的改变。 线应变:单位长度的伸缩量。 练习题 一. 单选题 1、工程构件要正常安全的工作,必须满足一定的条件。下列除()项,

其他各项是必须满足的条件。 A、强度条件 B、刚度条件 C、稳定性条件 D、硬度条件 2、物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称 为() A.弹性B.塑性C.刚性D.稳定性 3、结构的超静定次数等于()。 A.未知力的数目B.未知力数目与独立平衡方程数目的差数 C.支座反力的数目D.支座反力数目与独立平衡方程数目的差数 4、各向同性假设认为,材料内部各点的()是相同的。 A.力学性质 B.外力 C.变形 D.位移 5、根据小变形条件,可以认为() A.构件不变形 B.结构不变形 C.构件仅发生弹性变形 D.构件变形远小于其原始尺寸 6、构件的强度、刚度和稳定性() A.只与材料的力学性质有关 B.只与构件的形状尺寸有关 C.与二者都有关 D. 与二者都无关7、 在下列各工程材料中,()不可应用各向同性假设。 A.铸铁 B.玻璃 C.松木 D.铸铜 二. 填空题 1. 变形固体的变形可分为和。 2. 构件安全工作的基本要求是:构件必须具有、和足够 的稳定性。(同:材料在使用过程中提出三方面的性能要求,即、、。) 3. 材料力学中杆件变形的基本形式有 。 4. 材料力学中,对变形固体做了 四个基本假设。 、、和、、、

土木工程力学本形考答案

土木工程力学(本)形考参考答案 形考一 一、选择填空题(每空1分,共20分) 1、 2、 3、 4、

5、 6、

二、单项选择题(每小题4分,共40分) 7、正确答案是:无多余约束的几何不变体系1 8、正确答案是:有一个多余约束的几何不变体系2 9、正确答案是:无多余约束的几何不变体系3 10、正确答案是:瞬变体系4 11、正确答案是:无多余约束的几何不变体系5 12、正确答案是:无多余约束的几何不变体系6 13、正确答案是:瞬变体系7 14、正确答案是:无多余约束的几何不变体系8 15、正确答案是:无多余约束的几何不变体系9 16、正确答案是:无多余约束的几何不变体系10 17、正确的答案是“错”。1 18、正确的答案是“错”。2 19、正确的答案是“错”。3 20、正确的答案是“错”。4 21、正确的答案是“错”。5 22、正确的答案是“错”。6 23、正确的答案是“对”。7 24、正确的答案是“对”。8 25、正确的答案是“错”。9 26、正确的答案是“对”。10 形考二 一、单项选择题(每小题3分,共30分) 1、正确答案是: 2、正确答案是:BD两截面间的相对转动 3、

4、 5、 6、正确答案是:AB部分 7、 8、正确答案是:轴向变形 9、正确答案是:荷载 10、正确答案是:发生变形和位移 二、判断题(每小题3分,共30分) 11、正确的答案是“对”。 12、正确的答案是“对”。 13、正确的答案是“错”。 14、正确的答案是“错”。 15、正确的答案是“对”。 16、正确的答案是“对”。 17、正确的答案是“对”。

工程力学材料力学部分习题答案

工程力学材料力学部分习题答案

b2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。 题图2.9 解:(1) 计算杆的轴力 kN 14021===P N N (2) 计算横截面的面积 21m m 8004200=?=?=t b A 202mm 4004)100200()(=?-=?-=t b b A (3) 计算正应力 MPa 1758001000140111=?== A N σ MPa 350400 1000 140222=?== A N σ (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段 的危险截面) 2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力ασ及ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆的轴力 kN 10==P N (2) 计算横截面上的正应力 MPa 50100 2100010=??==A N σ (3) 计算斜截面上的应力 MPa 5.37235030cos 2 230 =??? ? ???==ο ο σσ

MPa 6.212 3250)302 sin(2 30=?= ?= οο σ τ MPa 25225045cos 2 245 =??? ? ???==οο σσ MPa 2512 50 )452 sin(2 45=?= ?= οο σ τ (4) m ax τ发生的截面 ∵ 0)2cos(==ασα τα d d 取得极值 ∴ 0)2cos(=α 因此:2 2π α= , ο454 == π α 故:m ax τ发生在其法线与轴向成45°的截面上。 (注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零) 2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。试计算杆AC 的轴向变形Δl 。 题图2.17 解:(1) 计算直杆各段的轴力及画轴力图 kN 101==P N (拉) kN 102-=-=P N (压)

国开《土木工程力学(本)》所有形考任务教学内容

国开《土木工程力学(本)》所有形考任务

从几何角度,结构通常可以分为三类: (1)回答 通常由若干根杆件相互联结组成,杆件的几何特征是其长度远大于横截面上两个方向的尺度。 (2)回答 厚度远小于其长度和宽度。 (3)回答 长、宽、高三个方向尺度大小相近(属于同一数量级)。 从以下备选项中选择正确答案填入空格中,填入相应的答案序号即可。 A.实体结构 B.板壳结构(薄壁结构) C.杆件结构 D.拱结构题目2 未回答 满分3.00 标记题目 题干 结点通常简化为以下三种类型: 回答回答回答 从以下备选项中选择正确答案填入空格中,填入相应的答案序号即可。

——作用在结构上的荷载一般总是分布在一定的面积上,当荷载作用面积远小于结构或构件的尺寸时,可以认为此荷载是作用在结构或构件的一个点上。 从以下备选项中选择正确答案填入空格中,填入相应的答案序号即可。 A.静力荷载 B.恒载 C.活载 D.集中荷载 E.分布荷 载 F.动力荷载 题目5 未回答 满分2.00 标记题目 题干 请把文字与选项对应起来。 (1)在任意荷载作用下,若不考虑材料的变形,其几何形状与位置均保持不变,这样的体系称为回答 。 (2)即使不考虑材料的变形,在很小的荷载作用下,也会引起其几何形状的改变,这样的体系称为回答 。 从以下备选项中选择正确答案填入空格中,填入相应的答案序号即可。 A.几何不变体系 B.几何可变体系 题目6 未回答 满分2.00 标记题目 题干

请把文字与选项对应起来。 一根链杆相当于1个约束;那么: (1)一个单铰相当于回答 个约束 (2)一个刚结点相当于回答 个约束。 从以下备选项中选择正确答案填入空格中,填入相应的答案序号即可。A.1 B.2 C.3 标记题目 信息文本 二、单项选择题(每小题4分,共40分) 题目7 未回答 满分4.00 标记题目 题干 对图示平面体系进行几何组成分析,该体系是()。 选择一项: A. 瞬变体系

工程力学第13章答案

习题13-1图 (a) 第13章 弹性杆件位移分析与刚度设计 13-1 直径d = 36mm 的钢杆ABC 与铜杆CD 在C 处连接,杆受力如图所示。若不考 虑杆的自重,试: 1.求C 、D 二截面的铅垂位移; 2.令F P1 = 0,设AC 段长度为l 1,杆全长为l ,杆的总伸长EA l F l 2P = ?,写出E 的表达式。 解:(1)4 π)(4 π)(2s N 2 s N d E l F d E l F u u BC BC AB AB A C + + = 947 .236π4102003000 1010020001015002 333=?? ???+??+ =mm 286 .536π101054250010100947.24 π)(2 332 c N =??????+ =+ =d E l F u u CD CD C D mm (2)A E l l F A E l F l l l EA l F C D AC c 12P s 12P 2P )(-+=?+?=?=, 令l l 1 =η c s 11 E E E ηη-+= s c s c )1(E E E E E ηη-+= 13-2 长为 1.2m 、横截面面积为3 1010.1-?m 2的铝制筒放置在固定刚块上,直径为 15.0mm 的钢杆BC 悬挂在铝筒顶端的刚性板上,若二者轴线重合、载荷作用线与轴线一致,且已知钢和铝的弹性模量分别为E s = 200GPa ,E a = 70GPa ,F P = 60kN 。试求钢杆上C 处位移。 习题13-2图 m (a) A E kN kN

x l l l l 解:铝筒:a a P A E l F u u AB B A -= -(其中u A = 0) 935 .0101010.11070102.110606 3333=???????= -B u mm 钢杆:50 .415 4π10200101.21060935.02 33 3s s P =??????+=+=A E l F u u BC B C mm 13-3 对于图a 、b 、c 、d 所示的坐标系,小挠度微分方程可写成EI M x w /d /d 2 2 -=形 式有以下四种。试判断哪一种是正确的。 (A )图b 和c ; (B )图b 和a ; (C )图b 和d ; (D )图c 和d 。 正确答案是 D 。 13-4 简支梁承受间断性分布载荷,如图所示。试用奇导函数写出其小挠度微分方程,并确定其中点挠度。 解:采用左手系:0=∑A M , ql l l ql l ql F E 434252R =?+? = (↑) 定初参数E θ, 0|4===l x A w w )34(!4)24(!4)4(!4)4(!343 )4(4443=---+--+l l q l l q l l q l ql l EI E θ 16213ql EI E - =θ ]32422424081621[1)(44433>-<->-<+>-<->-<+-= l x q l x q l x q x ql x ql EI x w EI ql w w l x C 35|4 2- ===(↓) 13-5 具有中间铰的梁受力如图所示。试画出挠度曲线的大致形状,并用奇异函数表示其挠度曲线方程。 习题13-3图 习题13-4图 13-5图 F R C

工程力学第11章答案

第11章强度失效分析与设计准则 11-1对于建立材料在一般应力状态下的失效判据与设计准则,试选择如下合适的论述。 (A )逐一进行试验,确定极限应力; (B )无需进行试验,只需关于失效原因的假说; (C )需要进行某些试验,无需关于失效原因的假说; (D )假设失效的共同原因,根据简单试验结果。 正确答案是 D 。 11-2对于图示的应力状态(y x σσ>)若为脆性材料,试分析失效可能发生在: (A )平行于x 轴的平面; (B )平行于z 轴的平面; (C )平行于Oyz 坐标面的平面; (D )平行于Oxy 坐标面的平面。 正确答案是 C 。 11-3 对于图示的应力状态,若x y σσ=,且为韧性材料,试根据最大切应力准则,失效可能发生在: (A )平行于y 轴、其法线与x 轴的夹角为45°的平面,或平行于x 轴、其法线与y 轴的夹角为45°的平面内; (B )仅为平行于y 轴、法线与z 轴的夹角为45°的平面; (C )仅为平行于z 轴、其法线与x 轴的夹角为45°的平面; (D )仅为平行于x 轴、其法线与y 轴的夹角为45°的平面。 正确答案是 A 。 11-4 承受内压的两端封闭的圆柱状薄壁容器,由脆性材料制成。试分析因压力过大表面出现裂纹时,裂纹的可能方向是: (A )沿圆柱纵向; (B )沿与圆柱纵向成45°角的方向; (C )沿圆柱环向; (D )沿与圆柱纵向成30°角的方向。 正确答案是 A 。 11-5 构件中危险点的应力状态如图所示。试选择合适的准则对以下两种情形作强度校核: 1.构件为钢制 x σ= 45MPa ,y σ= 135MPa ,z σ= 0,xy τ= 0, 拉伸许用应力][σ= 160MPa 。 2.构件材料为铸铁 x σ= 20MPa ,y σ= 25MPa ,z σ= 30MPa ,xy τ= 0,][σ= 30MPa 。 解:1.][MPa 135313r σσσσ<=-=强度满足。 2.][MPa 3011r σσσ===强度满足。 11-6对于图示平面应力状态,各应力分量的可能组合有以下几种情形,试按最大切应力准则和形状改变比能准则分别计算此几种情形下的计算应力。 1.x σ= 40MPa ,y σ= 40 MPa ,xy τ= 60 MPa ; 2.x σ= 60MPa ,80-=y σMPa ,40-=xy τMPa ; 3.40-=x σMPa ,y σ= 50 MPa ,xy τ= 0; 习题11-2、11-3图 习题11-5图

土木工程力学网上形考专业04全部选择题和判断计算

土木工程力学作业04任务 一、单项选择题(共10 道试题,共30 分。) 1. 位移法典型方程实质上是(A ) A. 平衡方程 B. 位移条件 C. 物理关系 D. 位移互等定理 2 用位移法计算超静定结构时,独立的结点角位移数等于( B ) A. 铰结点数 B. 刚结点数 C. 多余约束数 D. 不确定 3. 用位移法解超静定结构其基本未知量的数目( A ) A. 与结构的形式有关 B. 与多余约束的数目有关 C. 与结点数有关 D. 与杆件数有关 4. 用位移法计算超静定结构时,其基本未知量为(D ) A. 多余未知力 B. 杆端力 C. 杆端弯矩 D. 结点位移 5. 在位移法计算中规定正的杆端弯矩是(A) A. 绕杆端顺时针转动 B. 绕结点顺时针转动 C. 绕杆端逆时针转动 D. 使梁的下侧受拉6位移法典型方程中的系数代表在基本体系上产生的(C) A. B. C. 第i个附加约束中的约束反力 D. 第j个附加约束中的约束反力 7 位移法基本方程中的自由项,代表荷载在基本体系作用下产生的(C) A. B. C. 第i个附加约束中的约束反力 D. 第j个附加约束中的约束反力 8 图示超静定结构结点角位移的个数是( C ) A. 2 B. 3 C. 4 D. 5 9. 图示超静定结构结点角位移的个数是( B ) A. 2 B. 3 C. 4 D. 5 10. 图示超静定结构,结点线位移(独立)的个数是(B ) A. 0 B. 1 C. 2 D. 3 11. 图示超静定结构独立结点角位移的个数是(B) A. 2 B. 3 C. 4 D. 5 12. 用位移法求解图示结构时,基本未知量的个数是(B) A. 8 B. 10 C. 11 D. 12 13. 用位移法求解图示结构时,基本未知量个数是(B) A. 1 B. 2 C. 3 D. 4 14. 图示结构位移法方程中的系数=(D ) A. 11 B. 5 C. 9 D. 8 15 图示结构位移法方程中的系数=(C)

工程力学13章、14章习题.doc

第十三章 思考题: 13-1何谓失稳?何谓稳定平衡与不稳定平衡?何谓临界载荷? 13-2何谓临界应力?欧拉公式的适用范围? 13-3当压杆的临界应力大于材料的比例极限时,采用何种方式计算压杆的临界应力? 13-4如何提高压杆的稳定性? 13-5压杆的稳定条件? 习题: 13-1图示托家中,CD杆视为刚性杆,AB杆直径d=40mm,长度/二800mm,材料为Q235.试求: (1)托架的临界载荷Fq (2)若巳知F =60KN, AB杆规定的稳定安全系数〃“ 二2 , 试校 核托架的稳定性。 题13-1图 13-2某内燃机挺杆为空心圆截而,d =7mm,两端都是球形支座。挺杆承受载荷F=1.4KN,材料为Q235钢,E -206GPa,杆长/=45.6cn】,取规定稳定安全系数n =3, 校核挺杆的稳定性。 13-3图示结构中,横梁AB为T形截面铸铁梁,[Q]=40MP Q,[(7c] = l2QMPa , I. = 800t77?4, J、= 50mm , y2 = 90mm , O为形心。CD 杆为30mm x 50mm的矩形截 面,材料为Q235钢,若取〃,/ =3, / = lm,试求此结构的许可载荷[F]。

题13-3图

13-4图示工字钢立柱,A端自由、B端固定,顶部轴向载荷1-200KN,材料为Q235钢,[(j\ - 160MPa ,在立柱中点处开有直径〃=7Omm的圆孔,试选择工字钢的型号。 题13-4图 13-5图示结构中,AB为8 =40mm, h =60mm的矩形截而梁,AC及CD为〃=40mm的圆形截面 杆,/=lm,材料均为Q235钢,若取强度安全系数n=1.5,规定稳定安全系数久,=4, 试求许可载荷[尸]。 题13-5图 第十三章答案 13-1 (1) F er = 109/C/V (2)不满足稳定条件 13-2 〃 = 2.58(3不满足稳定条件 13-3 [F] = 6AKN 13-4 25a工字钢

工程力学材料力学答案

4-1 试求题4-1图所示各梁支座的约束力。设力的单位为kN,力偶矩的单位为kN m,长度单位为m,分布载荷集度为kN/m。(提示:计算非均布载荷的投影和与力矩和时需应用积分)。 解: (b):(1) 整体受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 (c):(1) 研究AB杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 (e):(1) 研究CABD杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 4-5 AB梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D,设重物的重量为G,又AB长为b,斜绳与铅垂线成角,求固定端的约束力。 解:(1) 研究AB杆(带滑轮),受力分析,画出受力图(平面任意力系); (2) 选坐标系Bxy,列出平衡方程; 约束力的方向如图所示。 4-7 练钢炉的送料机由跑车A和可移动的桥B组成。跑车可沿桥上的轨道运动,两轮间距离为2 m,跑车与操作架、平臂OC以及料斗C相连,料斗每次装载物料重W=15 kN,平臂长OC=5 m。设跑车A,操作架D和所有附件总重为P。作用于操作架的轴线,问P至少应多大才能使料斗在满载时跑车不致翻倒? 解:(1) 研究跑车与操作架、平臂OC以及料斗C,受力分析,画出受力图(平面平行力系); (2) 选F点为矩心,列出平衡方程; (3) 不翻倒的条件; 4-13 活动梯子置于光滑水平面上,并在铅垂面内,梯子两部分AC和AB各重为Q,重心在A点,彼此用铰链A和绳子DE连接。一人重为P立于F处,试求绳子DE的拉力和B、C两点的约束力。 解:(1):研究整体,受力分析,画出受力图(平面平行力系); (2) 选坐标系Bxy,列出平衡方程; (3) 研究AB,受力分析,画出受力图(平面任意力系); (4) 选A点为矩心,列出平衡方程; 4-15 在齿条送料机构中杠杆AB=500 mm,AC=100 mm,齿条受到水平阻力FQ的作用。已知Q=5000 N,各零件自重不计,试求移动齿条时在点B的作用力F是多少? 解:(1) 研究齿条和插瓜(二力杆),受力分析,画出受力图(平面任意力系); (2) 选x轴为投影轴,列出平衡方程; (3) 研究杠杆AB,受力分析,画出受力图(平面任意力系); (4) 选C点为矩心,列出平衡方程; 4-16 由AC和CD构成的复合梁通过铰链C连接,它的支承和受力如题4-16图所示。已知均布载荷集度q=10 kN/m,力偶M=40 kN m,a=2 m,不计梁重,试求支座A、B、D的约束力和铰链C所受的力。 解:(1) 研究CD杆,受力分析,画出受力图(平面平行力系); (2) 选坐标系Cxy,列出平衡方程;

土木工程力学形考作业三

形考作业三 一、单项选择题(每小题3分,共30分) 超静定结构产生内力的原因() 选择一项: A. 支座位移 B. 荷载作用与温度变化 C. 制造误差 D. 以上四种原因 正确答案:以上四种原因 超静定结构在支座移动作用下产生的内力与刚度() 选择一项: A. 无关 B. 相对值有关 C. 绝对值有关 D. 相对值绝对值都有关 正确答案:绝对值有关 在超静定结构计算中,一部分杆考虑弯曲变形,另一部分杆考虑轴向变形,则此结构为()选择一项: A. 梁 B. 组合结构 C. 桁架 D. 横梁刚度为无限大的排架 正确答案:组合结构 在力法方程的系数和自由项中() 选择一项: A.恒大于零

B.恒大于零 C.恒大于零 D.恒大于零 正确答案:恒大于零 力法典型方程中的自由项是基本体系在荷载作用下产生的()选择一项: A.方向的位移 B. C. D.方向的位移 正确答案:方向的位移 力法方程中的系数代表基本体系在作用下产生的()选择一项: A. B.方向的位移 C. D.方向的位移 正确答案:方向的位移

图示结构的超静定次数是() 选择一项: A. 12 B. 10 C. 6 D. 9 正确答案:12 图示超静定结构的次数是() 选择一项: A. 8 B. 6 C. 5 D. 7 正确答案:7

下图所示对称结构的等代结构为() 选择一项: A. B. C.

D. 正确答案: 下图所示对称结构A截面不为零的是() 选择一项: A. 竖向位移 B. 轴力 C. 弯矩 D. 转角 正确答案:转角

图示对称结构EI =常数,对称轴穿过的截面C内力应满足() 选择一项: A. B. C. D. 正确答案: 超静定结构的超静定次数等于结构中() 选择一项: A. 结点数 B. 多余约束的数目 C. 约束的数目 D. 杆件数 正确答案:多余约束的数目 用力法计算超静定结构时,其基本未知量为() 选择一项: A. 结点线位移 B. 多余未知力 C. 结点角位移

最新工程力学(静力学与材料力学)第四版习题答案

静力学部分 第一章基本概念受力图

2-1 解:由解析法, 23cos 80RX F X P P N θ==+=∑ 12sin 140RY F Y P P N θ==+=∑ 故: 22161.2R RX RY F F F N =+= 1(,)arccos 2944RY R R F F P F '∠==

2-2 解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有 123cos45cos453RX F X P P P KN ==++=∑ 13sin 45sin 450 RY F Y P P ==-=∑ 故: 223R RX RY F F F KN =+= 方向沿OB 。 2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。 (a ) 由平衡方程有: 0X =∑ sin 300 AC AB F F -= 0Y =∑ cos300 AC F W -= 0.577AB F W =(拉力) 1.155AC F W =(压力) (b ) 由平衡方程有:

0X =∑ cos 700 AC AB F F -= 0Y =∑ sin 700 AB F W -= 1.064AB F W =(拉力) 0.364AC F W =(压力) (c ) 由平衡方程有: 0X =∑ cos 60cos300 AC AB F F -= 0Y =∑ sin 30sin 600 AB AC F F W +-= 0.5AB F W = (拉力) 0.866AC F W =(压力) (d ) 由平衡方程有: 0X =∑ sin 30sin 300 AB AC F F -= 0Y =∑ cos30cos300 AB AC F F W +-= 0.577AB F W = (拉力) 0.577AC F W = (拉力)

09工程力学答案第13章一点的运动分析

13-5 如图摇杆结构的滑杆AB 以u 的速度匀速向上运动,试建立摇杆的OC 上点的运动方程;并求此C 点在4 π ?=时的速度大小,假定初始瞬时0?=。摇杆长OC=a ,距离OD=b 。 解:方法一(直角坐标法): (1)建立C 点的运动方程: 由图示几何关系可知: tan arctan cos(arctan )cos sin sin(arctan ) ut l ut l ut x a x a l y a ut y a l ????==? =?=??????→??=??=?? (2)求C 点速度方程 将运动方程对时间求一阶导数,即可求C 的速度在x 、y 轴上的投影。 2 2 sin(arctan )1()cos(arctan )1()x y u l ut x a ut l l u l ut y a ut l l ?==-?+? ? ?==?+? v v 于是速度的大小为: 21()u l a ut l ==+v = 速度与杆垂直。 (3)求C 点在4 π ?=时的速度大小 当4 π?=时tan 1ut l ?==,2112u l au a l ==+v

方法二:(弧坐标法) (1)以C 点的初始位置为弧坐标原点,建立运动方程为: tan arctan arctan ut l ut l ut s a s a l ????= ==????→= (2)求C 点速度方程 2 ()arctan()1()ds d a d d ut l u l a a a dt dt dt dt ut l ??= ===→=+v v 当4 π?=时tan 1ut l ?== 2112u l au a l ==+v 13-7 已知刚体的角速度ω与角加速度α如图所示,求A 、M 两点的速度、切向加速度和法向加速度的大小,并图示其方向。 v b 解:(a )因杆的角速度与角角速度的转向相反,OAM 绕O 匀减速定轴转动,其上任意点绕O 作匀减速圆周运动。 2 2 222A M n A A OA a OM OA a OA a τ ωωωωω αα =?==?==?==?=v v a a 速度、加速度方向如图所示。 (b )因杆的角速度与角角速度的转向相反,AB 作曲线平动, A 点绕O 作匀减速圆周运动,AB 杆上任意点与A 的轨迹、速度、加速度完全相同。 22A M n n n M A M A OA r OA r OA r τωωωωαα =?====?===?=v v a a a a 速度、加速度方向如图所示。 13-8 物体做定轴转动的运动方程为2 43t t ?=-(φ为rad 计,t 以s 计),试求该物体

工程力学第11章-压杆的稳定性问题答案

工程力学第11章-压杆的稳定性问题答案

工程力学(静力学与材料力学)习题详细解答(教师用书) (第11 章) 范钦珊唐静静 2006-12-18

2 第 11 章 压杆的稳定性问题 11-1 关于钢制细长压杆承受轴向压力达到临界载荷之后,还能不能继续承载有如下四 种答案,试判断哪一种是正确的。 (A )不能。因为载荷达到临界值时屈曲位移将无限制地增加; (B )能。因为压杆一直到折断时为止都有承载能力; (C )能。只要横截面上的最大正应力不超过比例极限; 正确答案是 C 。 (D )不能。因为超过临界载荷后,变形不再是弹性的。 11-2 今有两根材料、横截面尺寸及支承情况均相同的压杆.仅知长压杆的长度是短压 杆的长度的两倍。试问在什么条件下短压杆临界力是长压杆临界力的 4 倍?为什么? 解:只有当二压杆的柔度 λ ≥ λ 时,才有题中结论。这是因为,欧拉公式 F = π EI , 只有在弹性范围才成立。这便要求 P λ ≥ λP 。 Pcr (μl ) 2 11-3 图示四根压杆的材料及横截面(直径为 d 的圆截面)均相同,试判断哪一根最容易 失稳,哪一根最不容易失稳。

习题11-3 解:计算各杆之柔度:λ= μl ,各杆之i 相同 i

3 3 (a ) λa = 5l i (μ = 1) (b ) λb (c ) λ = 4.9l i = 4.5l (μ = 0.7) (μ = 0.5) c (d ) λd i = 4l i (μ = 2) 可见 λa > λb > λc > λd ,故(a )最容易失稳,(d )最 不容易失稳。 11-4 三根圆截面压杆的直径均为 d =160mm ,材料均为 A3 钢,E =200GPa ,σs = 240MPa 。已知杆的两端均为铰支,长度分别为 l 1、l 2 及 l 3,且 l 1=2l 2=4l 3 =5m 。试求各杆的临 界力。 解: i = d / 4 = 160 / 4 = 40mm , μ = 1 λ = μl 1 1 i = 5 ×10 40 = 1.25 3 λ = μl 2 2 i μl λ = 3 3 i = 2.5 ×10 40 = 1.25 ×10 40 = 62.5 = 31.5

工程力学材料力学答案-第十一章解析

11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的 最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。 解:(1) 画梁的弯矩图 (2) 最大弯矩(位于固定端): max 7.5 M kN = (3) 计算应力: 最大应力: K 点的应力: 11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。 试求梁内的最大弯曲拉应力与最大弯曲压应力。 解:(1) 查表得截面的几何性质: 4020.3 79 176 z y mm b mm I cm === (2) 最大弯曲拉应力(发生在下边缘点处) ()30max 8 80(7920.3)10 2.67 17610x M b y MPa I σ -+-?-?-?===? 6max max max 22 7.510176 408066 Z M M MPa bh W σ?====?6max max 33 7.51030 132 ******** K Z M y M y MPa bh I σ????====? x M 1 z M M z

(3) 最大弯曲压应力(发生在上边缘点处) 30max 8 8020.3100.92 17610 x M y MPa I σ ---???===? 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底 边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。 解:(1) 求支反力 31 44 A B R qa R qa = = (2) 画内力图 (3) 由胡克定律求得截面C 下边缘点的拉应力为: 49max 3.010******* C E MPa σε+-=?=???= 也可以表达为: 2 max 4C C z z qa M W W σ+== (4) 梁内的最大弯曲正应力: 2 max max max 993267.5 8 C z z qa M MPa W W σσ+ = === q x x F S M

电大土木工程力学(本科)形成性考核册答案

电大土木工程力学(本) 形成性考核册答案电大土木工程力学(本)形成性考核册答案1 一、选择题(每小题2分,共20分) 1.三刚片组成几何不变体系的规则是( B ) A 三链杆相联,不平行也不相交于一点 B 三铰两两相联,三铰不在一直线上 C 三铰三链杆相联,杆不通过铰 D 一铰一链杆相联,杆不过铰 2.在无多余约束的几何不变体系上增加二元体后构成( C ) A 可变体系 B 瞬变体系 C 无多余约束的几何不变体系 D 有多余约束的几何不变体系 3.瞬变体系在一般荷载作用下,( C ) A产生很小的内力 B不产生内力 C产生很大的内力 D不存在静力解答 4.已知某体系的计算自由度W=-3,则体系的( D ) A自由度为3 B自由度等于0 C 多余约束数等于3 D 多余约束数大于等于3

5.不能作为建筑结构使用的是( D ) A无多余约束的几何不变体系 B有多余约束的几何不变体系 C 几何不变体系 D几何可变体系 6.图示桁架有几根零杆( D ) 10.三铰拱在集中力作用下其合理拱轴线形状是( D )A 折线 B 圆弧 C 双曲线 D 抛物线

判断题(每小题2分,共20分) 1.多余约束是体系中不需要的约束。(?) 2.如果体系的计算自由度大于零,那么体系一定是几何可变体系。(∨)3.两根链杆的约束作用相当于一个单铰。(?) 4.一个体系是有n个自由度的几何可变体系,那么加入n个约束后就成为无多余约束的几何不变体系。(?) 5.两刚片用三链杆相联,且三链杆平行不等长,则构成瞬变体系。(∨) 6.图示两个单跨梁,同跨度同荷载。但横截面形状不同,故其内力也不相

相关主题
文本预览
相关文档 最新文档