固体物理 03-03一维双原子链
- 格式:ppt
- 大小:2.87 MB
- 文档页数:35
固体物理(胡安)课后答案第一章晶体的结构及其对称性1.1石墨层中的碳原子排列成如图所示的六角网状结构,试问它是简单还是复式格子。
为什么?作出这一结构所对应的两维点阵和初基元胞。
解:石墨层中原子排成的六角网状结构是复式格子。
因为如图点A和点B的格点在晶格结构中所处的地位不同,并不完全等价,平移A→B,平移后晶格结构不能完全复原所以是复式格子。
1.2在正交直角坐标系中,若矢量,,,为单位向量。
为整数。
问下列情况属于什么点阵?(a)当为全奇或全偶时;(b)当之和为偶数时。
解:当为全奇或全偶时为面心立方结构点阵,当之和为偶数时是面心立方结构1.3 在上题中若奇数位上有负离子,偶数位上有正离子,问这一离子晶体属于什么结构?解:是离子晶体,属于氯化钠结构。
1.4 (a)分别证明,面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角相等,对fcc为,对bcc为(b)在金刚石结构中,作任意原子与其四个最近邻原子的连线。
证明任意两条线之间夹角θ均为解:(1)对于面心立方 (2)对于体心立方 (3)对于金刚石晶胞1.5 证明:在六角晶系中密勒指数为(h,k,l)的晶面族间距为证明:元胞基矢的体积倒格子基矢倒格矢:晶面间距1.6 证明:底心正交的倒点阵仍为底心正交的。
证明:简单六角点阵的第一布里渊区是一个六角正棱柱体底心正交点阵的惯用晶胞如图: 初级晶胞体积: 倒易点阵的基矢: 这组基矢确定的面是正交底心点阵1.7 证明:正点阵是其本身的倒易点阵的倒格子。
证明:倒易点阵初级元胞的体积:是初基元胞的体积而由于而或:现在证明: 又令又:代入同理 1.8 从二维平面点阵作图说明点阵不可能有七重旋转对称轴。
解: 1.9 试解释为什么:(a)四角(四方)晶系中没有底心四角和面心四角点阵。
(b)立方晶系中没有底心立方点阵。
(c)六角晶中只有简单六角点阵。
解:(a)因为四方晶系加底心,会失去4次轴。
(b)因为立方晶系加底心,将失去3次轴。
第三章晶体振动和晶体的热学性质3.1相距为某一常数(不是晶格常数)倍数的两个原子,其最大振幅是否相同?解答:(王矜奉3.1.1,中南大学3.1.1)以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A, 另一个原子振幅B, 由《固体物理学》第79页公式,可得两原子振幅之比(1)其中m原子的质量. 由《固体物理学》式(3-16)和式(3-17)两式可得声学波和光学波的频率分别为, (2). (3)将(2)(3)两式分别代入(1)式, 得声学波和光学波的振幅之比分别为, (4). (5)由于=,则由(4)(5)两式可得,1B A=. 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.3.2 试说明格波和弹性波有何不同?解答:晶格中各个原子间的振动相互关系3.3 为什么要引入玻恩-卡门条件?解答:(王矜奉3.1.2,中南大学3.1.2)(1)方便于求解原子运动方程.由《固体物理学》式(3-4)可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(《固体物理学》§3.1与§3.6). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.3.4 试说明在布里渊区的边界上()/q π=a ,一维单原子晶格的振动解n x 不代表行波而代表驻波。
《固体物理学》教学大纲(适用于本科物理学专业)课程编码:140613040学时:64学分:4开课学期:第七学期课程类型:专业必修课先修课程:理论力学,电动力学,热力学与统计物理,量子力学教学手段:多媒体一、教学目的与任务:本课程是物理学专业本科生的专业选修课。
通过本课程的学习,使学生了解固体物理学发展的基本情况,以及固体物理学对于近代物理和近代科技的发展起的作用,培养学生的科学素质和科学精神;了解固体物理所研究的基本内容和固体物理研究前沿领域的概况,培养学生的现代意识和科学远见;掌握固体物理学的基本概念和基本规律,培养掌握科学知识的方法;掌握应用固体物理学理论分析和处理问题的手段和方法,培养科学研究的方法。
二、课程的基本内容:1.晶体的结构2.固体的结合3.晶格振动与晶体的热学性质4.能带理论5.晶体中电子在电场和磁场中的运动6.金属电子论三、课程的教学要求:(1)掌握晶体的空间点阵,晶体基矢的表达,倒易点阵,晶面、晶向的概念以及正点阵和倒易点阵的关系。
(2)掌握晶体的结合类型和结合性质。
(3)掌握一维晶体振动模式的色散关系,晶格振动的量子化、声子的概念。
爱因斯坦模型和德拜模型解释固体的比热性质。
(4)掌握自由电子气的概念,自由电子气的费密能量,布洛赫波以及自由电子模型。
(5)掌握布里渊区的概念以及近自由电子近似和紧束缚近似方法计算能带的理论。
(6)了解晶体的对称操作类型,了解非谐效应,确定振动谱的实验方法以及晶格的自由能。
(7)了解金属中电子气的热容量,金属、半导体、绝缘体以及空穴的概念。
四、课程学时分配:第一章晶体结构(8学时)【教学目的】通过本章的教学,使学生了解晶格结构的一些实例;理解和掌握晶体结构的周期性特征及其描述方法;理解和掌握晶体结构的对称性特征及其描述方法;理解和掌握倒格子的定义及其与正格子的关系。
【重点难点】重点:晶体结构的周期性特征及其描述方法、晶体结构的对称性特征及其描述方法、倒格子及其与正格子的关系。
3.1 讨论N 个原胞的一维双原子链(相邻原子间距为a),其2 N 个格波解,当m M =时与一维单原子链的结果一一对应。
解: 一维双原子链,由运动方程→试探解→色散关系运动方程:)2()2(1222212212122+++∙∙-+∙∙-+=-+=n n n n n n n n x x x x M x x x x m ββ试探解:])12([12)2(2t a n q i n t na q i n Be x Ae x ωω-++-==运动方程组有解的条件:qa m cos 222βωβ--02cos 22=--ωββM qa()()⎥⎦⎤⎢⎣⎡++±+=212222cos 2qa mM M m M m mM βω当M m = ()⎥⎦⎤⎢⎣⎡+±=2122222cos 222qa m m m m βω()[]⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛±=+±=212222122cos 2222cos 122qa m m m qa mm mββ[]qa m cos 12±=β⎥⎦⎤⎢⎣⎡-∈a a q 2,2ππ 同时由运动方程得到,1±=BA[]⎥⎦⎤⎢⎣⎡∈+=+m m qa m βββω2,2cos 122, ⎪⎩⎪⎨⎧-==-++-])12([12)2(2t a n q i n t na q i n Ae x Ae x ωω []⎥⎦⎤⎢⎣⎡∈-=-m qa m ββω2,0cos 122, ⎪⎩⎪⎨⎧==-++-])12([12)2(2t a n q i n t na q i n Ae x Ae x ωω单原子链的色散关系:)]'cos(1[22a q m -=βω ⎥⎦⎤⎢⎣⎡-∈a a q ππ,' ⎥⎦⎤⎢⎣⎡∈m βω2,0,)'(t na q i n Ae x ω-=由图可以看到: 1)⎥⎦⎤⎢⎣⎡-∈a a q q 2,2',ππ时,一维单原子链的色散关系与一维双原子链的声频支的色散关系相对应;运动解也相对应(波矢,频率相同,相邻原子的位相差也相同)。
一维双原子链的色散关系The dispersion relation of the one-dimensionaldiatomic chain摘要物理学中对晶格振动的研究一直是一个重要且有意义的课题。
关于晶格振动的研究通常建立在原子链的研究上。
本文在介绍关于原子链研究基础理论的基础上,讨论了一维单原子链晶格的色散关系,从一维双原子链的角度介绍了晶格的色散关系,然后在前面讨论的基础上对三维晶格的色散关系进行了推导。
关于原子链色散关系的研究,让我们对于晶格振动有个更加清楚地认识。
论文重点介绍了一维双原子链的色散关系,在公式推导的基础上,作者完成计算机编程和模拟计算,得到色散关系的曲线。
关键词:晶格振动,一维单原子链,一维双原子链,三维晶格,色散关系AbstractThe study of lattice vibration has been an important and meaningful topic in physics. The investigation of lattice vibration is usually based on the study of atomic chain. With the introduction of the theoretical basis of atomic chain, this thesis discusses the dispersion relation of one-dimensional monatomic chain lattice, as well as the dispersion relation of one dimensional diatomic chain lattice. Based on the knowledge above, the equations for describing the dispersion relation of three dimensional lattice are then derived. The study of dispersion relations allows us to have a more clear understanding of lattice vibration. This thesis mainly presents the study and discussion of the dispersion relation of one dimensional diatomic chain. In addition to the equation derivation, we carry out programming and simulations for obtaining some important dispersion-relation curves.II目录前言 (1)第一章理论基础 (3)第二章一维单原子链的色散关系 (6)2.1 建立振动模型 (6)2.2 建立振动方程并求解 (6)2.3 玻恩-卡曼条件 (8)2.4.qw 的函数关系 (10)第三章一维双原子链的色散关系 (13)3.1建立振动模型 (13)3.2 原子运动方程的求解 (13)3.3 周期性边界条件 (15)3.4 对于声学波和光学波的讨论 (16)第四章三维晶格振动的推导 (21)4.1 一维多原子链问题的处理 (21)4.2 建立三维模型和求解运动方程 (21)4.3 波矢q的取值和范围 (23)4.4 理论上的计算 (25)第五章结论和讨论 (28)致谢 (29)参考文献 (31)III前言讨论晶体结构时,我们把晶体内的原子看作是处于自己的平衡位置上固定不动的。