耐热钢的焊接
- 格式:ppt
- 大小:1.71 MB
- 文档页数:3
15CrMo及12Cr1MoVG耐热钢焊接技术要求15CrMo及12Cr1MoVG耐热钢焊接特点:铬钼耐热钢中主要含有铬、钼等元素,这些都是显著提高钢淬硬性的元素,特别是钼的作用比铬约大50倍,它们延迟了钢在冷却过程中的转变,提高了过冷奥氏体的稳定性,从而在较高的冷却速度下可能形成马氏体组织,如果管材厚度较大且焊接不预热时,就有可能产生100%马氏体,转变出现淬硬组织,冷裂纹倾向较大。
铬钼耐热钢还具有再裂纹倾向和回火脆性。
15CrMo管材的焊接工艺要点:(1)焊前应对焊缝坡口及两侧各不小于焊件厚度的3倍范围内预热到70-80℃,且焊接过程中应保证预热范围内的母材(内外表面)温度不低于预热温度,且层间温度不低于150℃,不高于250℃。
(2)焊接使用的焊条一定要严格按要求进行烘干使用,在保温桶的存放时间不得超过4小时,剩余的焊材下班时要及时送回焊材烘干箱,不允许留在保温桶内。
(3)每道焊缝必需一次焊接完成。
每道焊缝焊接工作结束后,必须立即进行消氢热处理。
消氢热处理温度为250-350℃,保温时间为15分钟。
保温工作结束后,用硅酸铝板将焊缝及热影响区包裹采取缓冷措施。
(4)焊缝和热影响区的表面不允许存在咬边、裂纹、气孔、弧坑、夹杂等缺陷。
焊接接头上的熔渣和两侧的飞溅物必须打磨并消除干净。
(5)禁止在焊缝的非焊接部位引弧。
因电弧擦伤而产生的弧坑、弧疤,割除临时附件后,遗留的焊疤,均应打磨光滑,并按JB/T4730.4进行100%磁粉检测,Ⅰ级合格。
(6)探伤不合格的返修部位应对其按照要求进行预热后,方可进行清根、补焊。
补焊完成后,按照要求进行无损检测。
无损检测要求:(1)焊接接头(包含返修焊缝)焊接完成24h后才能进行以下无损检测:严格按照JB/T4730.2进行100%射线无损检测,合格级别不低于Ⅱ级。
(2)水压试验合格24h后,焊接接头应进行以下无损检测:焊接接头按JB/T4730.5进行100%渗透检测,Ⅰ级合格。
材料焊接性之不锈钢及耐热钢的焊接引言焊接是一种常用的金属连接方法,可以将不同材料的金属零件连接在一起。
然而,不同材料的焊接性能存在差异,需要针对不同材料选择合适的焊接方法和技术参数。
本文将重点讨论不锈钢及耐热钢的焊接性能及相关注意事项。
不锈钢焊接性不锈钢是一种耐腐蚀性能较好的材料,在很多领域得到广泛应用,如航空航天、化工、食品加工等。
然而,不锈钢的焊接性能相对较差,主要表现在以下几个方面:1.焊接变形:不锈钢在焊接过程中容易产生变形,特别是薄板的不锈钢更容易变形。
这主要是由于不锈钢的热导率较低,焊接过程中热量会聚集在焊缝附近,导致局部温度升高,引起膨胀和变形。
2.易开裂:不锈钢焊接容易产生热裂纹和冷裂纹。
热裂纹主要是因为不锈钢含有较高的含碳量,并且在焊接过程中产生的晶界液滴容易凝固形成裂纹。
冷裂纹则是由于焊接过程中残余应力引起的。
3.易产生气孔:不锈钢焊接还容易产生气孔,主要是由于不锈钢表面有一层氧化膜,焊接时难以完全消除,氧化膜中的气体会被封闭在焊缝中形成气孔。
为了克服不锈钢焊接的问题,我们可以采取以下几个措施:•合理选择焊接方法:根据不同情况选择合适的焊接方法,如手工弧焊、TIG焊、MIG/MAG焊等。
不锈钢薄板焊接可以选择TIG焊,对于厚板可以选择手工弧焊或MIG/MAG焊。
•控制焊接变形:采取适当的预热和后续处理方法,减少焊接变形。
可以通过加热、加压、采用夹具等方式控制焊接变形。
•选择合适的焊接材料:选择合适的焊丝和焊剂,以提高焊接质量和性能。
推荐使用低碳或超低碳不锈钢焊丝,同时选用适合不锈钢的焊剂。
•控制焊接参数:合理控制焊接电流、电压、焊接速度等参数,以避免产生过大的热量和过多的焊接变形。
耐热钢焊接性耐热钢是一种能够在高温环境下保持稳定性能的材料,常用于石油化工、电力、制造等领域。
耐热钢的焊接性能相对较好,但仍存在以下一些问题:1.易烧穿:耐热钢的烧穿性较强,容易在焊接过程中烧穿母材,特别是对于板材焊接来说。
耐热钢的焊接方法
耐热钢的焊接方法取决于具体的耐热钢材料和焊接要求。
下面列举几种常用的耐热钢的焊接方法:
1. 电弧焊(手工电弧焊和自动电弧焊):这是最常用的耐热钢焊接方法。
根据具体的耐热钢材料和焊接要求,可以选择适合的电弧焊材料和电弧焊工艺。
2. 氩弧焊:氩弧焊通常用于焊接不锈耐热钢。
氩弧焊具有较高的稳定性和焊缝质量,适合要求较高的焊接。
3. 电渣焊:电渣焊通常用于焊接厚板,适用于耐热钢的大尺寸焊接。
4. 焊锡焊接:适用于焊接低温和中温耐热钢。
5. 激光焊接:激光焊接适用于焊接较细小和特殊形状的耐热钢,具有较高的焊接质量和焊接速度。
6. 电子束焊接:适用于需要较高焊接质量和较小热影响区的耐热钢。
在选择耐热钢的焊接方法时,需要综合考虑焊接材料、焊件结构、焊接要求和设备条件等因素。
同时,在焊接过程中,需要注意选用合适的焊接材料和焊接工艺,
确保焊接质量和焊接性能。
最好在进行具体焊接前,咨询专业的工程师或焊接技术人员,以确保选择适合的焊接方法。
山东省“金蓝领”焊工技师(或高级技师)论文耐热钢薄壁管的TIG焊接工艺作者:单位:日期:耐热钢薄壁管的TIG焊接工艺摘要:通过焊接工艺试验和实践经验,介绍了12cr1MOV耐热钢薄壁管不作焊前预热和焊后热处理,管内不充氩气保护的氩弧焊焊接工艺。
这类耐热钢焊接时的主要问题是焊接接头的热影响区或融合区容易铲射冷裂纹。
为了消除或减少冷裂纹的形成,在设计焊接结构时,要选择合理的结构形式,避免焊接时的应力集中。
要严格清理,清洗焊丝,彻底清理坡口两侧15mm内油垢、铁锈及油漆等,正确选用焊接参数。
要选择合理的焊接顺序,以减少焊接残余应力。
耐热钢薄壁管的 T I G焊接工艺概述:2003年我公司承建的金阳电厂 75T 锅炉安装工程采用了工艺,取得了一次性X射线探伤100%合格的好成绩。
提高了工效,简化了一些对施工不利的工序,改善了施工环境,操作简单方便,节约能源,节省了所有的辅助工时,降低了成本。
特别对于空间位置狭窄的施工环境作业,其优点更为突出。
手工钨极氩弧焊的焊接工艺,一般在焊接过程中,为了防止焊缝根部氧化,要在焊缝背面充注氩气保护。
另外,12Cr1MoV耐热钢在焊接过程中其热影响区具有较大的淬硬倾向,当接头内存在较大的焊接应力和金属中扩散氢含量过高时,较易产生冷裂纹。
因此,通常都采用焊前预热、焊后热处理的工艺。
且浪费极大。
特别在排列密集、空间位置狭窄、高处作业时难度更大。
因此。
我们选用了手工钨极氩弧焊管内不充氩气保护,焊前、焊后均不进行热处理作为课题进行探讨。
对12Cr1Mov薄壁管焊接进行了工艺试验及工艺评定,经检验表明:这种接头性能完全符合国家质量规范要求。
1.焊接机具及焊接材料的选用(1)焊机焊接设备根据实际需要选用150A至300A的直流氩弧焊机。
(2)焊接材料焊接材料包括:焊条、焊丝、气体(氩气纯度为99.5%)焊丝选用时考虑化学成分与母材等同的焊丝。
为减少焊缝金属淬硬倾向,并为取消焊前预热,焊后热处理创造条件,决定选用机械性能和化学成分都较接近母材的Ho8CrMoVA.焊丝熔敷金属化学成分表:表1Ho8CrMoVA熔敷金属化学成分(%)2.焊接工艺试验在制定焊接工艺规程前,对材质的裂纹敏感性Pcm进行了计算。
耐热钢的焊接工艺耐热钢的焊接工艺1.耐热钢的焊接性分析高温下具有足够的强度和抗氧化性的钢称为耐热钢,高温下具有足够的强度和抗氧化性的钢称为耐热钢。
耐热钢按其合金成分不同,可分为低合金(合金的质量分数在5%以下),中合金(合金的质量分数为5%~12%)和高合金(合金的质量分数为12%以上)耐热钢。
耐热钢主要用于重油裂解、煤液化等新工艺所需要更趋高温、高压以及原加氢反应器大型化的设备制造。
以Cr、Mo为主要合金元素的低合金耐热钢,基体组织是珠光体(或珠光体+铁素体)称为珠光体耐热钢,常用钢号有15CrMoR(SA387Cr12)、14Cr1MoR、(SA387 Cr11)12Cr2Mo1R (SA387 Cr22)、12CrMoV、12Cr2MoWVTiB、14MnMov。
由于珠光体耐热钢中含有一定量的Cr、Mo和其它一些合金元素,所以热影响区会产生硬脆的马氏体组织,低温焊接或焊接刚性较大的结构时,易形成冷裂纹。
下面主要讨论低合金耐热钢的焊接工艺。
2.耐热钢的焊接主要的工艺措施(1)预热预热是焊接珠光体耐热钢的重要工艺措施。
为了确保焊接质量,不论在定位焊或正式施焊过程中,焊件都应预热并保持为80~150℃用氩弧焊打底和CO2气体保护焊时,可以降低预热温度或不预热。
(2)焊接材料低合金耐热钢焊接材料的选用原则,焊缝金属的合金成分与强度性能基本上与母材金属相应指标一致,或应达到产品技术条件提出的最低性能指标。
(3)焊后缓冷焊后应立即用石棉布覆盖焊缝及热影响区,使其缓慢冷却。
(4)焊后热处理焊后应立即进行高温回火,防止产生延迟裂纹、消除应力和改善组织。
焊后热处理温度应避免在350~500℃温度区间内进行,因珠光体耐热钢在该温度区间内有强烈的回火脆性现象。
3.典型耐热钢的焊接工艺举例1. 15CrMoR(SA387Cr12)钢的焊接工艺该钢的焊接性良好,焊接时焊条电弧焊可选用R307焊条。
施焊时可选用直流反接,短弧焊接。
目录1前言................................................. 错误!未定义书签。
2SA335-P92钢的焊接 ........................... 错误!未定义书签。
2.1概述 .................................................................... 错误!未定义书签。
2.2P92钢化学成份及性能特点................................... 错误!未定义书签。
2.3P92钢焊接的重点及难点 ...................................... 错误!未定义书签。
2.4P92钢的焊接工艺................................................. 错误!未定义书签。
2.5P92钢现场的安装焊接.......................................... 错误!未定义书签。
3新型奥氏体钢的焊接 ........................... 错误!未定义书签。
3.1概述 .................................................................... 错误!未定义书签。
3.2新型C R、N I 纯奥氏体钢焊接控制的难点 .............. 错误!未定义书签。
3.3四种新型奥氏体钢焊接裂纹敏感性的比较 ........... 错误!未定义书签。
3.4影响C R-N I 奥氏体钢应力腐蚀的因素.................... 错误!未定义书签。
3.5焊接新型奥氏体钢的工艺原则 ............................. 错误!未定义书签。
3.6焊接工艺评估 ...................................................... 错误!未定义书签。
珠光体耐热钢的焊接珠光体耐热钢以Cr-Mo以及Cr-Mo基多元合金钢为主,加人合金元素Cr、Mo、 V,有时还加人少量W、Ti、Nb、B等,合金元素总的质量分数小于10%。
低、中合金珠光体耐热钢具有很好的抗氧化性和热强性,工作温度可高达仗旧℃,广泛用于制造蒸汽动力发电设备。
这类钢还具有良好的抗硫和氢腐蚀的能力,在石油、化工、电力和其他工业部门也得到了广泛的应用。
珠光体耐热钢Cr的质量分数一般为0.5~0.9%,Mo的质量分数一般为0.5%或1%。
随着Cr、Mo含量的增加,钢的抗氧化性、高温强度和抗硫化物腐蚀性能也都增加。
在Cr-Mo钢中加入少量的W、Ti、Nb、V等元素后,可进一步提高钢的热强性。
珠光体耐热钢的合金系基本上是:Cr-Mo、Cr-Mo-V、 Cr-Mo-W-V、 Cr-Mo-W-V-B、Cr-Ma-V-Ti-B等。
合金元素Cr能形成致密的氧化膜,提高钢的抗氧化性能。
当钢中碳含量小于1.5%时,随Cr的增加钢的蠕变强度也增加;大于1.5%后,钢的蠕变强度随含铬量的增加而降低。
Mo是耐热钢中的强化元素,形成碳化物的能力比Cr弱,Mo优先溶人固溶体,强化固溶体。
Mo的熔点高达2625 ℃,固溶后可提高钢的再结晶温度,有效地提高钢的高温强度和抗蠕变能力。
Mo可以减小钢材的热脆性,还可以提高钢材的抗腐蚀能力。
钢中的V能形成细小弥散的碳化物和氮化物,分布在晶内和晶界,阻碍碳化物聚集长大,提高蠕变强度。
V与C的亲和力比Cr和Mo大,可阻碍Cr和Mo形成碳化物,促进Cr和Mo的固溶强化作用。
钢中的V含量不宜过高,否则V的碳化物高温下会聚集长大,造成钢的热强性下降,或使钢材脆化。
钢中W的作用和Mo相似,能强化固溶体,提高再结晶温度,增加回火稳定性,提高蠕变强度。
钢中Nb 和Ti都是碳化物形成元素,可以析出细小弥散的金属间化合物,提高钢材的高温强度、抗晶间腐蚀能力和抗氧化能力,并可显著提高蠕变强度,改善钢的焊接性。
耐热钢A335-P22材质在施工现场的焊接本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March耐热钢A335-P22材质在施工现场的焊接摘要 A335-P22(化学成分为-1Mo)是ASME规范的表示方法,在国内表示为12Cr2Mo,属于高温铁素体合金耐热钢。
特点是工艺性能良好,对热处理的加热温度不太敏感,焊接性能也较好,具有良好的塑性,具有抗高温、难腐蚀。
最大的缺点在焊接工艺中具有淬硬性和再热裂纹倾向。
目前,广泛应用于电力、石化行业的超高压蒸汽管道生产工艺中。
以天津石化100万吨/年乙烯装置超高压管道为例,对A335-P22材质的合金耐热钢焊接工艺进行分析,以指导现场焊接施工。
关键词耐热钢管道焊接性能焊接工艺1工程概况天津石化100万吨/年乙烯工程100万吨/年乙烯装置,为全国首套大乙烯工程,具有工程量大、施工工期短、施工难度大、技术,质量要求严格等特点。
其超高压蒸汽管道采用A335-P22无缝钢管,设计温度538℃,操作温度520℃,设计压力1 ,操作压力11MPa。
超高压蒸汽管道主管线贯穿街区主管廊,分散于热区、压缩区、急冷区、冷区,裂解炉区,共计管道延长米公里,共计焊口3300多道。
管道规格:Φ*~Φ610*。
焊接工作主要为A335-P22同材质焊接。
耐热钢焊接作业时间、热处理周期长。
高压管道坡口加工、焊接和安装是整个乙烯装置的重点和难点。
2焊接准备工作材料检验A335-P22无缝钢管在注明标示外,外观与普通的碳钢无缝钢管是一样的,所以在材料的验收、入库、保管、发放,必须严格执行国家的、行业的相关标准、规范及公司的相关规定,认真核对材料的质量证明文件。
材料验收、核对材料证明文件需参照表1和表2数值。
必须做到材料实物与材料证明相符合,并做上合格标记。
根据SH3501的要求,对合金钢管道组成件主体的关键合金部分应采用光谱分析等进行复查。
耐热不锈钢焊接缺陷产生的原因及防治措施根据耐热不锈钢的化学成分组成,分析了焊接过程中产生裂纹的主要原因,提出了具体的工艺措施,从而改善焊缝的质量,获得优质的焊接接头。
标签:耐热不锈钢;化学组成;焊接裂纹;防治措施前言生产中工作温度比珠光体耐热钢的高时,主要采用Cr-Ni系的不锈钢,包括Cr不锈钢和Cr-Ni不锈钢。
从组织上讲,包括铁素体不锈钢、马氏体不锈钢和奥氏体不锈钢,还有不锈铸钢。
表1中列出了各种耐热不锈钢的物理性能。
与奥氏体不锈钢相比,铁素体不锈钢或马氏体不锈钢的平均线膨胀系数较小,而热导率稍高,有利于降低热应力。
即铁素体不锈钢和马氏体不锈钢的热应力比奥氏体不锈钢小。
这类不锈钢在石油化学工业的裂解装置、脱硫装置、反应塔、热交换器及其管道中使用较多,在原子能发电的轻水反应器内壁堆焊或管道等也大量应用。
1 耐热不锈钢的化学成分耐热不锈钢中通常含有铬、钼、硅、铝、镍的合金,其中铬是最主要的抗氧化性元素。
与不锈钢相比,耐热不锈钢中不仅增加了铝和硅的含量,还增加了碳的含量,使该类钢具有强的高温抗拉强度、高温抗蠕变性能、高温耐蚀性。
其中奥氏体耐热不锈钢是应用比较广泛的一类钢,具有强的热稳定性、热强性。
2 耐热不锈钢的焊接性奥氏体耐热不锈钢焊接时存在的主要问题有焊缝金属的热裂纹、焊接热影响区晶界上碳化铬的析出以及焊接接头的脆化等。
3 耐热不锈钢的焊接缺陷产生原因奥氏体耐热不锈钢产生焊接缺陷的主要原因可以归纳为两大因素:冶金因素及力学因素。
包括化学成分、结晶组织、焊接材料、焊接工艺及结构的拘束度,特别是化学成分和结晶组织影响大。
3.1 焊缝金属热裂纹的形成奥氏体焊缝金属的热裂纹敏感性较大,因为奥氏体钢易形成方向性很强的粗大的柱状组织,有利于杂质的偏析和缺陷的聚集;这些杂质又能与Ni形成低熔点的共晶体,增大脆性温度区间,处成形成液态薄膜;另外奥氏体钢的热导率小及线膨胀系数大,在焊接的不均匀加热和冷却条件下,焊接接头形成较大的拉应力,因此,在焊缝处易产生热裂纹。
耐热钢A335-P22材质在施工现场的焊接摘要 A335-P22(化学成分为2.25Cr-1Mo)是ASME规范的表示方法,在国内表示为12Cr2Mo,属于高温铁素体合金耐热钢。
特点是工艺性能良好,对热处理的加热温度不太敏感,焊接性能也较好,具有良好的塑性,具有抗高温、难腐蚀。
最大的缺点在焊接工艺中具有淬硬性和再热裂纹倾向。
目前,广泛应用于电力、石化行业的超高压蒸汽管道生产工艺中。
以天津石化100万吨/年乙烯装置超高压管道为例,对A335-P22材质的合金耐热钢焊接工艺进行分析,以指导现场焊接施工。
关键词耐热钢管道焊接性能焊接工艺1工程概况天津石化100万吨/年乙烯工程100万吨/年乙烯装置,为全国首套大乙烯工程,具有工程量大、施工工期短、施工难度大、技术,质量要求严格等特点。
其超高压蒸汽管道采用A335-P22无缝钢管,设计温度538℃,操作温度520℃,设计压力1 2.8MPa,操作压力11MPa。
超高压蒸汽管道主管线贯穿街区主管廊,分散于热区、压缩区、急冷区、冷区,裂解炉区,共计管道延长米 3.2公里,共计焊口3300多道。
管道规格:Φ21.3*4.78~Φ610*73.025。
焊接工作主要为A335-P22同材质焊接。
耐热钢焊接作业时间、热处理周期长。
高压管道坡口加工、焊接和安装是整个乙烯装置的重点和难点。
2焊接准备工作2.1材料检验A335-P22无缝钢管在注明标示外,外观与普通的碳钢无缝钢管是一样的,所以在材料的验收、入库、保管、发放,必须严格执行国家的、行业的相关标准、规范及公司的相关规定,认真核对材料的质量证明文件。
材料验收、核对材料证明文件需参照表1和表2数值。
必须做到材料实物与材料证明相符合,并做上合格标记。
根据SH3501的要求,对合金钢管道组成件主体的关键合金部分应采用光谱分析等进行复查。
表1 A335-P22无缝钢管的化学成分表2 A335-P22无缝钢管的力学性能2.2焊接材料焊接材料的选择应根据所焊管材的化学成分、力学性能及使用和施焊条件进行综合考虑的,所以焊接材料的合理选用必须慎重。
P9\P11耐热钢炉管焊接摘要: 耐热钢材质炉管普遍应用在石油化工装置中,结合上海石化60万吨/年芳烃联合装置及其配套工程中四合一重整炉的实际施工,从焊接特点、焊接工艺和质量控制等方面阐述了耐热钢炉管P9与P9、P9与P11及P11与P11的焊接。
关键词:P9、P11耐热钢炉管焊接石油化工装置加热炉由于苛刻的操作条件,炉管长期在高温下运行,炉管材质一般选用P9、P11、Cr5Mo等耐热钢,以满足炉管长期安全运行的要求。
以下结合上海石化60万吨/年芳烃联合装置及其配套工程中四合一重整炉的焊接实践,简要阐述耐热钢炉管P9与P9、P9与P11及P11与P11的焊接。
1 四合一重整炉炉管焊接工程简述上海石化60万吨/年芳烃联合装置及其配套工程中四合一重整炉(方箱炉)炉管材质为P9、P11耐热钢。
炉管现场焊接工作量见表1:表1炉管焊接要求2 耐热钢材质的焊接特点耐热钢在高温下具有化学稳定性和足够的强度,并有抗气体腐蚀的能力,根据化学成分和显微组织,P9、P11、Cr5Mo等材质属于珠光体耐热钢。
珠光体耐热钢不含Ni,含Cr不多,还有其他合金元素,如Mo、V、Nb、W 等。
由于钢中碳和合金元素的共同作用,在焊接时极易形成淬硬组织,可焊性差,焊接时易产生冷裂纹,再热裂纹和回火脆性,所以要求焊前预热,焊后回火处理。
为防止产生焊接裂纹,焊接操作时应尽可能的采用多道焊、小电流和窄焊道,不摆动或小幅度摆动电弧。
焊道的宽度以不超过焊条直径的三倍为宜,并严格按要求进行焊前预热和焊后热处理。
耐热钢(特别是P9)的焊接难点在于如何控制打底层的焊接质量。
由于耐热钢合金含量较高,熔池流动性较差导致不宜焊透,且打底层容易在焊接高温下产生氧化而失效。
因此,当采用钨极氩弧焊进行打底焊接时,管内填充氩气或氮气保护,是取得良好的焊接接头的必要条件。
3 焊接方法、设备和焊接材料的选择为确保炉管焊接质量,提高焊接一次合格率,炉管焊接一般采用手工钨极氩弧焊打底焊接、手工电弧焊进行填充和盖面焊接;焊接设备选用ZX5-400可挖硅整流弧焊机可保证焊接参数的稳定性;焊接材料选用见表2:表2焊接材料4 焊接工艺要求4.1一般规定4.1.1焊接环境出现如下情况时,必须采用棚布遮挡,加热等措施,否则禁止施焊。
第1章绪论1.1 引言发展大容量、高蒸汽参数的电站机组是提高燃料使用效率、降低二氧化碳排放的有效手段,但提高机组运行参数(尤其是蒸汽温度),对电站锅炉用耐热钢提出了更高的要求,因此,开发用于超临界、超超临界电站锅炉用新型耐热钢成为了制造高效洁净电力能源设备的关键技术之一[1-5]。
在用于电站锅炉的过热器、再热器等高温部件时,TP304、TP347等奥氏体不锈钢表现出良好的高温强度,但不锈钢具有导热系数低、应力腐蚀敏感性高、热膨胀系数大等缺点,并不能很好的满足机组安全高效运行的要求[6-19]。
因此,铁素体耐热钢的开发成为世界各国电站锅炉用钢的重要发展方向,国际上,珠光体、贝氏体、马氏体耐热钢统称为铁素体钢[1,14]。
1.2 电站锅炉用铁素体耐热钢的发展历史铁素体耐热钢的发展可以分为两条主线,一是逐渐提高主要耐热合金元素Cr的含量,从2.25%Cr提高到12%Cr;二是通过添加V、Nb、W、Mo、Co等合金元素,使钢的600℃х105h蠕变断裂强度由35MPa提高到60、100、140、180MPa,12Cr-0.5Mo-2WCuVNb图1.1铁素体耐热钢发展历程[24]Fig.1.1 Developing process of ferric heat-resistant steel图1.1给出了铁素体耐热钢的现状及发展趋势,部分铁素体耐热钢的化学成分列于表1.1[20-24]1.2.1 传统的耐热钢(1)低合金耐热钢20世纪50年代,电站锅炉钢管大多采用含Cr≤3%,含Mo≤1%的铁素体耐热钢,其典型钢种及最高使用温度为:15Mo≤530℃12CrMo≤540℃15CrMo≤540℃12Cr1Mo≤580℃15Cr1MoV≤580℃10CrMo910≤580℃当时,当温度超过580℃时,一般都采用奥氏体耐热钢,如TP304,TP347H等,然而由于不锈钢价格昂贵、导热系数低、热膨胀系数大及存在应力腐蚀裂纹倾向等缺点,未被大量采用。
15CrMoG耐热钢管道焊接施工工法15CrMoG耐热钢管道焊接施工工法一、前言15CrMoG耐热钢管道是一种常用于高温高压工况下的管道材料,其焊接施工工法对于确保管道的质量和安全至关重要。
本文将介绍15CrMoG耐热钢管道焊接施工工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例。
二、工法特点15CrMoG耐热钢管道焊接施工工法具有以下特点:1. 施工技术成熟:在实际工程中长期验证的施工方法,具有较高的可靠性和可行性。
2. 适用范围广:适用于各种工况下的15CrMoG耐热钢管道焊接施工,包括高温高压、腐蚀性介质等工况。
3. 施工效率高:采用高效的工艺流程和机械化作业,能够提高施工效率,节约时间和成本。
三、适应范围15CrMoG耐热钢管道焊接施工工法适用于以下范围:1. 高温高压工况下的管道系统,如石油、化工、电力等行业。
2. 各种管道直埋、架空、穿越、跨越等工程。
3. 不锈钢、合金钢、碳钢等不同材质的管道。
四、工艺原理15CrMoG耐热钢管道焊接施工工法的工艺原理与实际工程之间的联系包括以下几个方面:1. 确定焊接方法:根据管道材质和工况要求,选择合适的焊接方法,包括手工焊、自动焊、气焊等。
2. 材料准备:对15CrMoG耐热钢材料进行质量检测和预处理,包括清洁、去油、打磨等。
3.焊接接头设计:根据管道布置和连接要求,设计合适的焊接接头形式,如对接焊、角焊、弯头焊等。
4. 焊接工艺参数确定:根据工程要求和焊接材料的性能,确定合适的焊接电流、电压、速度等参数。
5. 焊接质量控制:采取合适的焊接工艺措施,如预热、焊接顺序、填充材料等,确保焊接质量达到设计要求。
五、施工工艺15CrMoG耐热钢管道焊接施工工法的施工工艺包括以下阶段:1. 材料准备:对管道材料进行检查和预处理,包括清理、切割、划线等。
2. 焊接接头设计和制作:根据实际布置要求和设计要求,对管道进行切割、倒角、坡口制作等。
耐热钢的焊接方法
耐热钢的焊接方法可以根据具体的合金成分和焊接材料的选择而有所不同。
下面是一些常见的耐热钢焊接方法:
1. 电弧焊:电弧焊包括手工电弧焊、埋弧焊和气体保护焊。
一般情况下,使用碳钢电焊条或专用的耐热钢焊条进行电弧焊。
气体保护焊可以使用氩气或混合气体进行。
2. TIG焊:TIG焊(钨极氩弧焊)是一种常用的焊接方法,适用于焊接较薄的耐热钢板材。
它通过使用钨极和氩气来保护焊缝,产生高质量的焊接。
3. MIG/MAG焊:MIG(金属惰性气体)和MAG(金属活性气体)焊是半自动或自动焊接方法。
它们使用焊丝和惰性气体(MIG)或活性气体(MAG)来保护焊缝。
这些方法通常适用于大量焊接和厚板焊接。
4. 电阻焊:电阻焊可用于对接或连接薄板材或杆件。
焊接区域通过电流在两个电极之间产生热量来完成焊接。
这种方法通常用于焊接铜合金。
5. 激光焊接:激光焊接是一种高能量密度焊接方法,适用于高精度和复杂结构的焊接。
使用激光束产生的热量来融化焊缝,可以实现快速和精确的焊接。
要选择合适的焊接方法和材料,在使用前最好先咨询和咨询焊接工程师或专业人
士,以确保焊接的质量和稳定性。
15CrMOG耐热钢的焊接工艺云维厂国外引进的15CrMOG的耐热无缝钢管,用于蒸汽管道,耐高温(400゜左右),工作压力在38~45公斤/㎝2,由于管径小(Ø57×4、Ø38×3.5、Ø32×3.5)壁厚薄,给焊接工作带来一定难度,根据图纸要求,焊接施工质量目标执行现场设备工业管道焊接施工及验收规范(GB50236—98),因此对15CrMOG薄壁耐热钢管采用全氩弧焊焊接,对Ø159×8的耐热钢管道采用手工电弧焊焊接,为了确保焊接质量,我们对薄壁耐热钢管道焊接做了焊接工艺评定,其抗拉、弯曲试验都达到规范要求,为达到优质的焊接接头、特编制以下焊接工艺:1、焊接材料的选择及化学成份的比较。
1:2、15CrMOG耐热钢手工电弧焊采用焊条热307:1:3、15CrMOG耐热钢手工钨极氩弧焊采用焊丝:H13CrMOA、Ø2.5㎜。
2:焊前准备:2:1、坡口制作及清理,坡口加工应用机械制作,坡口角度α=60°焊前将坡口两侧内外20㎜范围内的油、锈、污、毛刺等清除干净,使之露出金属光铎,同时清理焊丝表面的油、锈、等杂质。
2:2、焊条烘烤温度选择:热307焊条烘烤温度为350℃,恒温1—2小时随用随取,焊条使用时必须放入保温桶内、并经100℃—150℃恒温。
2:3、管子或管件对接焊缝组对时,内壁应齐平,内壁错边量不宜超过管壁厚度的10%,且不应大于2㎜。
3:焊接工艺要求:3:1、15CrMOG耐热钢焊接,根据管壁的不同厚度范围,选择不同的予热温度,小管径、薄壁管选择予热温度为150℃—250℃,管道组对定位焊缝也必须采用予热措施,定位焊缝应采用与根部焊道相同的焊接材料和焊接工艺,并应由合格焊工施焊。
3:2、采用氩弧焊时,严格按照工艺指导书的焊接规范施焊,采用小电流短电弧,快速、少摆动的的操作手法、焊丝应在氩气的保护下过度熔滴,并做好管内壁的氩气保护,以免管内氧化。