加法器及差分放大器项目实验报告
- 格式:doc
- 大小:2.02 MB
- 文档页数:18
实验报告_差分式放大电路一、实验目的:1.了解差分式放大电路的工作原理;2.熟悉差分放大电路的实际应用场景;3.掌握实验中的测量方法和仪器的使用。
二、实验仪器与设备:1.示波器;2.信号发生器;3.双踪电压表。
三、实验原理和内容:差分放大电路是一种常用的放大电路,它是以运放为核心组成的,通过对输入信号进行差分放大,从而实现信号放大和滤波等功能。
差分放大电路的输入端是由两个输入信号和一个共模信号组成的,一般情况下,差分输入电路的两个输入端的信号具有相同的幅值和频率,相位差为180°。
本实验使用两个预先设定的输入电压,分别作为差分放大电路的输入信号,并利用示波器测量输出信号的放大后的幅值和相位。
四、实验步骤:1.将差分放大电路的输入端分别与信号发生器的正负端子相连,并将信号发生器的输出设置为正弦信号;2.调节信号发生器的幅值和频率,观察并记录信号发生器的输出波形;3.分别将差分放大电路的输出端和电压表的两个测量端相连,调节电压表的量程,记录输出电压的幅值和相位差;4.调节信号发生器的频率,观察并记录输出信号的变化情况;5.分别改变其中一个输入信号的幅值和频率,观察并记录输出信号的变化;6.对实验数据进行处理和分析,总结实验结果和心得体会。
五、实验数据处理:1.绘制输入电压和输出电压随频率变化的曲线图;2.对输入电压和输出电压的幅值和相位差进行统计和比较;3.分析数据的相关性和实验结果的可靠性;4.从实验结果中得出结论,总结实验心得和体会。
六、实验结论:通过本实验,我们对差分式放大电路有了更深入的理解,了解了差分放大电路的基本工作原理和应用场景。
实验结果显示,差分放大电路能够有效放大输入信号,并且输出信号的幅值和相位差与输入信号有一定的关系。
实验数据的分析和处理结果也验证了差分放大电路的性能和可靠性。
七、实验改进:在实验过程中,可以尝试调整不同的输入信号和改变差分放大电路的其他参数,进一步研究其对输出信号的影响。
实验六差分放大器一.实验目的1.加深理解差分放大器的性能特点。
2.掌握差分放大器性能指标的测试方法。
二.预习要求1.复习差分放大器的工作原理和性能分析方法。
2.了解差分放大器的调整方法及放大倍数、共模抑制比的测量方法。
三.实验原理差分放大器是基本放大电路之一,由于它具有抑制零点漂移的优异性能,因此得到广泛的应用,并成为集成电路中重要的基本单元电路,常作为集成运算放大器的输入级。
典型的差分放大器电路如图1所示。
+Ec 即使在不对称的情况下,它也能较好地放大差模信号,而对共模信号的放大能力则很差,从而抑制了零点漂移。
这一电路的特点,是在发射极串联了一个电阻R e。
通常R e取值较大,由于分占了稳压电源E C较大的电压,使两管的静态工作点处于不合理的位置,因此引进辅助电源E E(一般取E E = -E C),以抵消R e上的直流压降,并为基极提供适当的偏置。
Ui2如图1所示,当输入差模信号时,T1管的i c1增加,T2管的i c2减小,增减的量相等,因此两管的电流通过R e的信号分量相等但方向相反,他们相互抵消,所以R e可视为短路,这时图1中的差分放大器就变成了没有R e的基本差分放大器电路,它对差模信号具有一定的放大能力。
对于共模信号,两管的共模电流在R e上的方向是相同的,在取值较大的R e上产生较大的反馈电压,深度的负反馈把放大倍数压得很低,因此抑制了零点漂移。
从上述可知,对差分放大器来说,其放大的信号分为两种:一种是差模信号,这是需要放大的有用的信号,这种信号在放大器的双端输入时呈现大小相等,极性相反的特性;另一种是共模信号,这是要尽量抑制其放大作用的信号。
1.差模电压放大倍数对于差模信号,由于U id1 = -U id2,故射极电阻R e上的电流相互抵消,其压降保持不变,即 ∆U E = 0,可得到差模输入时的交流等效电路,如图2所示,由于电路对称,每个半边与单管 共射极放大器完全一样。
双端输入——双端输出差分放大器的差模 电压放大倍数为: idod ud U U A =2121id id od od U U U U --= id2 1122id od U U = 图2 差模输入时的交流等效电路 u be b c A r R R =+-=β (1) 可见A ud 与单管共射极放大器的电压放大倍数A u 相同。
加法器及差分放大器项目实验报告一、项目内容和要求 (一)、加法器 1、任务目的:(1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理;(3)掌握应用仿真软件对运算放大器进行仿真分析的方法。
2、任务内容:2.1 设计一个反相加法器电路,技术指标如下:(1)电路指标运算关系:)25(21i i O U U U +-=。
输入阻抗Ω≥Ω≥K R K R i i 5,521。
(2)设计条件电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5(3)测试项目A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压;B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电压波形。
C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。
D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为2kHz ,测量该加法器的幅频特性。
2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标运算关系:21i i O U U U +=。
(2)设计条件电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压;B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压波形。
(二)、差分放大器1、任务目的:(1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理;(3)掌握应用仿真软件对运算放大器进行仿真分析的方法。
2、任务内容2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标运算关系:)(521i i O U U U --=。
最新加法器实验报告
实验目的:
本实验旨在验证加法器的基本功能和性能,通过实际操作加深对数字电路中加法运算原理的理解,并掌握加法器的使用方法。
实验设备和材料:
1. 数字逻辑实验板
2. 四位二进制加法器芯片(如74LS83)
3. 电源
4. 示波器或LED灯阵列(用于显示输出结果)
5. 连接线若干
6. 面包板或实验板
实验步骤:
1. 根据加法器芯片的引脚图,正确连接电源至Vcc和GND。
2. 将四位二进制加法器插入实验板,并按照数据手册连接A、B输入端口,以及进位输入端口Cin。
3. 准备两个四位二进制数,分别输入至加法器的A、B端口。
4. 通过开关或按钮设置进位输入Cin为0或1。
5. 打开示波器,连接至加法器的输出端口,观察并记录加法结果。
6. 更改输入数值,重复步骤3至5,进行多次实验以验证加法器的准确性。
实验结果:
在实验中,我们对加法器进行了多次测试,输入了不同的四位二进制数值。
实验数据显示,加法器能够正确地执行加法运算,并且输出的和与预期相符。
在所有测试中,加法器的性能稳定,没有出现误差。
实验结论:
通过本次实验,我们验证了四位二进制加法器的正确性和稳定性。
实验结果表明,加法器是实现数字电路中基本算术运算的重要组件。
此外,实验过程中也加深了对数字逻辑电路设计和功能测试的理解。
【精编】差动放大器实验报告
一、实验目的
实验目的是设计并测试一个典型的差动放大电路,以了解差动放大电路的工作原理,
掌握其输入/输出特性,进而提高对它的理解。
二、实验内容
实验包括三个环节:设计、实现、测试。
首先,将2个普通的NPN晶体管相互连接,
构成一个由负反馈控制的差动放大电路,然后根据信号输入与信号输出来配置参数,最后
通过实验室仪器(如示波器、示波表等)进行测试,以确定功能性及其噪声特性。
三、实验结果
实验中,将两个普通的NPN晶体管相互连接,构成一个由负反馈控制的差动放大电路,在负反馈电路上,两个NPN晶体管芯片均被接入了两个组件,Resistor(电阻)和Capacitor(电容),构成了一个电容电阻网络,用于控制反馈信号的传播率。
从实验结果来看,在输入端设置1kHz信号源时,输出端可以输出51Hz 单波峰失真曲线,其中正向输出电压大小在4.16V 上,负向输出电压大小在-4.16V 上,此外,在放大
系统的输入/输出端的噪声比也保持良好的情况下,放大系统的增益可达到51dB 。
四、总结
经过实验验证,学生对于差动放大器的工作原理以及输入/输出特性有了更深入的了解,学生对由负反馈控制的差动放大器的噪声控制能力有了更好的认识,同时学生充分利
用仪器仪表测试以及调试,掌握了调试设备的操作流程。
实验可以作为设计和应用差动放
大器的参考。
实验五差动放大电路(本实验数据与数据处理由果冻提供,仅供参考,请勿传阅.谢谢~)一、实验目的1、加深对差动放大器性能及特点的理解2、学习差动放大器主要性能指标的测试方法二、实验原理R P用来调节T1、T2管的静态工作点,V i=0时,V O=0。
R E为两管共用的发射极电阻,它对差模信号无负反馈作用,不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,可以有效抑制零漂。
差分放大器实验电路图三、实验设备与器件1、±12V直流电源2、函数信号发生器3、双踪示波器4、交流毫伏表5、直流电压表6、晶体三极管3DG6×3,T1、T2管特性参数一致,或9011×3,电阻器、电容器若干。
四、实验内容1、典型差动放大器性能测试开关K拨向左边构成典型差动放大器。
1) 测量静态工作点①调节放大器零点信号源不接入。
将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压V O ,调节调零电位器R P ,使V O =0。
②测量静态工作点 再记下下表。
2) 测量差模电压放大倍数(须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 3) 测量共模电压放大倍数理论计算:(r be =3K .β=100. Rp=330Ω)静态工作点:E3BEEE CC 212E3C3R V )V (V R R R I I -++≈≈=1.153mA I c Q =I c 3/2=0.577mA, I b Q =I c /β=0.577/100=5.77uA U CEQ =V cc-I c R c+U BEQ =12-0.577*10+0.7=6.93V双端输出:(注:一般放大倍数A 的下标d 表示差模,下标c 表示共模,注意分辨)Pbe B C iOd β)R (121r R βR △V △V A +++-===-33.71A c 双 =0.单端输出:d i C1d1A 21△V △V A ===-16.86, d i C2d2A 21△V △V A -===16.86(参考答案中的Re=10K ,而Re 等效为恒流源电阻,理想状态下无穷大,因此上式结果应为0.读者自己改一下)实测计算:(注:本实验相对误差不做数据处理要求,下面给出的仅供参考比对数据)静态工作点:Ic 1Q =(Vcc-Uc1)/Rc1=(12-6.29)/10mA=0.571mA Ic 2Q =0.569mA Ib 1Q = Ic Q/β=0.571/100mA=5.71uA Ib 2Q =5.69uA U C1E1Q =U C1-U E1=6.29-(-0.61)=6.90VU C2E2Q =6.92V差模放大倍数:(Ui=Ui1-Ui2=+0.2V) (注:放大倍数在实测计算时,正负值因数据而异~!)Ad1=(Uc1差模-Uc1)/(Ui-0)=(10.08-6.29)/(0.2-0)=18.95Ad2=(Uc2差模-Uc2)/(Ui-0)=-18.80 Ad 双=Uo 双/Ui=7.46/0.2=37.3相对误差计算 (||Ad 理|-|Ad 实||)/|Ad 理|r d1=|16.86-18.95|/16.86=12.4% r d2=|16.86-18.80|/16.86=10.9% r d 双=10.6%共模放大倍数:(Ui=+0.1V)Ac1=(Uc1共模-Uc1)/Ui=(6.29-6.29)/0.1=0 Ac2=(Uc2共模-Uc2)/Ui=(6.31-6.31)/0.1=0Ac 双=Uc 双/Ui=-0.02/0.1=-0.2 (Ui=-0.1V 时同理)5.0-=-≈++++-===EC E P be B CiC1C2C12R R )2R R 21β)((1r R βR △V △V A A共模抑制比:CMRR=|Ad双/Ac双|=|37.3/(-0.2)|=186.54.单端输入(注:上面实验中差模与共模接法均为双端输入,详见最后分析)(正弦信号的Uc1=Uc2)Ui=+0.1V时Ac1=(4.76-6.29)/0.1=-15.3Ac2=(7.84-6.31)/0.1=15.3Ao=(-3.70/0.1)=-37.0Ui=-0.1时Ac1=(8.13-6.29)/(-0.1)=-18.4Ac2=(4.47-6.31)/(-0.1)=18.4Ao=3.64/(-0.1)=-36.4正弦信号时(注:部分同学的输入电压可能为500mV,处理时请注意) Ac1=(0.32-6.29)/0.05=-119.4Ac2=(0.32-6.31)/0.05=-119.8分析部分:(注:只供理解,不做报告要求)Vi、Vo、Vc1和Vc2的相位关系电压值放大倍数Uc1Uc2Uo直流+0.1V 4.767.84-3.70直流-0.1V8.13 4.47 3.64正弦信号(50mV.1KHz)0.320.32\其中Vi、Vc1同相,Vi、Vc2反相,Vc1、Vc2反相。
加法器实验报告加法器实验报告概述:本次实验旨在设计和实现一个加法器电路,通过对电路的搭建和测试,验证加法器的正确性和可行性。
加法器是计算机中最基本的算术运算器之一,其在数字逻辑电路中扮演着重要的角色。
1. 实验背景加法器是一种基本的数字逻辑电路,用于实现数字的加法运算。
在计算机中,加法器被广泛应用于算术逻辑单元(ALU)和中央处理器(CPU)等部件中,用于进行各种数值计算和逻辑运算。
因此,了解和掌握加法器的工作原理和设计方法对于理解计算机原理和数字电路设计具有重要意义。
2. 实验目的本次实验的主要目的是通过设计和实现一个4位二进制加法器电路,验证加法器的正确性和可行性。
具体要求如下:- 设计并搭建一个4位二进制加法器电路;- 对电路进行测试,验证其加法运算的正确性;- 分析电路的性能和优化空间。
3. 实验原理加法器是通过逻辑门电路实现的。
在本次实验中,我们将使用全加器电路来实现4位二进制加法器。
全加器是一种能够实现两个二进制位相加并考虑进位的电路。
通过将多个全加器连接起来,可以实现更高位数的二进制加法器。
4. 实验步骤4.1 设计加法器电路的逻辑功能首先,我们需要确定加法器电路的逻辑功能。
在这个实验中,我们需要实现两个4位二进制数的相加运算,并输出结果。
具体的逻辑功能可以通过真值表或逻辑表达式来描述。
4.2 搭建电路根据逻辑功能的要求,我们可以使用逻辑门电路来搭建加法器。
在本次实验中,我们将使用多个全加器电路来实现4位二进制加法器。
通过将多个全加器连接起来,可以实现更高位数的二进制加法器。
4.3 进行电路测试在搭建完电路后,我们需要对电路进行测试,以验证其加法运算的正确性。
可以通过输入一些测试用例,并比较输出结果与预期结果是否一致来进行测试。
5. 实验结果与分析通过对加法器电路的测试,我们可以得到加法器的输出结果。
通过比较输出结果与预期结果,可以验证加法器的正确性。
同时,我们还可以分析电路的性能和优化空间,例如进一步提高加法器的速度和减少功耗等。
重庆 XXXX实验报告课程名称:电子电路基础实验实验名称:加法器设计实验类型:设计学时: 3 学时系别:物理与电子工程学院专业:电子信息工程年级班别:09级电信2班学期:2010—2011上学生姓名:xxx 学号:20090701xxx实验教师:xxx 成绩:日期:2010年12月2日实验七: 加法器设计一 实验目的1) 研究集成运放对输出电压的影响 2) 进一步熟悉集成运放的性能指标 3) 掌握运算放大器的正确使用方法 4) 掌握基本运算电路的设计方法 5) 熟悉multisim 软件的使用 二 实验仪器示波器 信号源 直流稳压源 交流电源 交流表 三 实验器件集成运放HA17741 10k,20k,电阻 导线 四 实验原理集成运放能构成各种运算电路,在运算电路中,以输入电压作为自变量,以输出电压作为函数;当输入电压变化时,输出电压将按一定的数学规律变化,即输出电压反映输入电压某种运算的结果。
为了稳定输出电压,均引入电压负反馈。
由此可见,运算电路的特征是从集成运放的输出端到其反向输出端存在的反馈通路。
由于集成运放优良的指标参数,不管引入电压串联负反馈还是电压并联负反馈,均为深度负反馈。
因此电路是利用反馈网络和输入网络来实现各种数学运算的。
本实验要求设计加法器,所以设计同向求和运算电路。
当多个输入信号同时作用于集成运放的同相输入端时,就构成同相求和运算电路。
值得注意的是,在多级运算电路的分析中,因为各级电路的输出电阻均为零,具有恒压特性,所以后级电路虽然是前级电路的负载,但是不影响前级电路的运算关系,故而对每级电路的分析和单级电路完全相同。
如图所示,运放A1的组态为电压串联负反馈,运放A2的组态也为电压串联负反馈。
1I U , 2I U 都为运放A1的输入电压,运放A1的输出电压为1O U ,1O U 则为运放A2的输入电压。
Uo 为电路的输出电压。
加法器的运算关系如下所示12111204127547125****i i o o i i o u u u R R R u u R R u u Ru R R R R ⎛⎫=+ ⎪⎝⎭=⎛⎫=+ ⎪⎝⎭由于要保证集成运放输入级差分放大电路的对称性 ∴123456//////R R R R R R R==五 实验电路六 实验内容 1) 电路图按照实验电路图连接实验电路。
差分放大电路实验报告姓名:黄宝玲班级:计科1403学号:201408010320实验摘要(关键信息)实验目的:由于差分放大器是运算放大器的输入级,清楚差分放大电路的工作原理,有助于理解运放的工作原理和方式。
通过实验弄清差分放大器的工作方式和参数指标。
这些概念有:差模输入和共模Kemr。
输入;差模电压增益 Avd和共模电压增益 Ave;共模抑制比实验内容与规划:1、选用实验箱上差分放大电路;输入信号为Vs=300mV f=3KHz正弦波。
2、发射极先接有源负载,利用调零电位器使得输出端电压Vo=0°(Vo=Vc1-Vc2)3、在双端输入和单端输入差模信号情况下,分别测量双端输出的输入输出波形,计算各自的差模放大倍数Avd。
4、在双端输入共模信号情况下,分别测量双端输出的输入输出波形,计算双端输出共模放大倍数Ave。
5、计算共模抑制比 Kem R。
最好作好记录表格,因为要记录的数据较多。
电路中两个三极管都为9013。
实验环境(仪器用品等)1. 仪器:示波器(DPO 2012B 100MHZ 1GS/S)直流电源(IT6302 0~30V,3Ax2CH/0~5V,3A )台式万用表(UT805A)模拟电路实验箱(LTE-AC-03B)。
2、所用功能区:单管、多管、负反馈放大电路。
实验原理和实验电路1、实验原理:差分电路是具有这样一种功能的电路。
该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。
概念梳理:差模和共模是对于差动放大电路的两个输入端而言的。
A)差模输入:差动放大电路的两管基极输入的信号幅度相等、极性相反,这样的信号称为差模信号,这样的输入称为差模输入。
差模信号Vid :即差模输入的两个输入信号之差。
B)共模输入:差动放大电路的两管基极输入的信号幅度相等、极性相同,这样的信号称为共模信号,这样的输入称为共模输入。
共模信号Vic :即共模输入的两个输入信号的算数平均值。
模电实验五差分式放大电路实验报告一、实验目的1.学习差分输入放大电路的基本原理;2.掌握差分输入放大电路的工作特性以及参数计算方法;3.了解差分输入放大电路的应用场景。
二、实验仪器和器件1.示波器;2.信号发生器;3.功率放大器;4.电阻箱;5.电容;6.芯片等。
三、实验原理差分式放大电路是一种常见的放大电路,其输入端分别连接两个输入信号,输出端是两个输入信号的差值经过放大后的输出信号。
差分输入放大电路主要由差动输入级、差动放大级和输出级组成。
差动输入级是差分放大电路的核心部分,一般由一个差动对组成。
差动对由两个晶体管组成,它们的集电极或漏极通过电流源连接在一起。
其中一个晶体管的基极或栅极输入信号,另一个晶体管的基极或栅极输入其负反馈信号。
这样,当输入信号变化时,两个晶体管的工作状态会相应改变,产生一个差电流,从而使输出电压发生变化,从而实现差动放大。
差动放大级主要负责将差动输入信号放大,使得输入信号的微小变化可以在输出端得到放大。
在差动放大级中,使用了共射或共源放大电路,将差动对的差分电流经过共射或共源放大,增加输出信号的幅度。
输出级是差分放大电路的最后一级,其主要功能是将差动放大电路的输出信号变为单端输出信号。
在输出级中,可以通过改变集电阻或漏极负载来实现不同的放大增益和输出阻抗。
四、实验内容1.搭建差分输入放大电路;2.测量并记录输入信号和输出信号;3.分析实验数据,计算电路的放大增益和输入输出阻抗;4.探索差分输入放大电路在信号处理中的应用。
五、实验步骤1.搭建差分输入放大电路,调整电阻和电容的数值以及芯片的型号;2.连接示波器,设置输入信号的频率、幅度和波形;3.测量输入信号和输出信号;4.记录实验数据并计算电路的放大增益和输入输出阻抗;5.根据实验结果分析差分输入放大电路的性能;6.进一步探索差分输入放大电路在信号处理中的应用。
六、实验结果分析根据实验测量得到的数据,可以计算差分输入放大电路的放大增益和输入输出阻抗。
差动放大器实验报告差动放大电路的分析与综合(计算与设计)实验报告1、实验时间10月31日(周五)17:50-21:002、实验地点实验楼9023、实验目的1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法)2. 加深对差动放大器性能及特点的理解3. 学习差动放大电路静态工作点的测量4. 学习差动放大器主要性能指标的测试方法5. 熟悉恒流源的恒流特性6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力7. 练习使用电路仿真软件,辅助分析设计实际应用电路8. 培养实际工作中分析问题、解决问题的能力4、实验仪器数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线5、电路原理1. 基本差动放大器图是差动放大器的基本结构。
它由两个元件参数相同的基本共射放大电路组成。
部分模拟图如下1.直流分析数据2.直流分析仿真数据3.交流分析数据4.交流分析仿真数据具有平衡电位器的差动放大器图是差动放大器的结构。
它由两个元件参数相近的基本共射放大电路组成。
2.直流分析仿真数据4.交流分析仿真数据具有恒流源的差动放大器图2-3是差动放大器的结构。
它由两个元件参数相近的基本共射放大电路组成。
1.直流分析数据2.直流分析仿真数据3.交流分析数据4.交流分析仿真数据图3.1 差动放大器实验电路当开关K 拨向右边时,构成具有恒流源的差动放大器。
晶体管 T 3 与电阻3E R 共同组成镜象恒流源电路 , 为差动放大器提供恒定电流E I 。
用晶体管恒流源代替发射极电阻E R ,可以进一步提高差动放大器抑制共模信号的能力。
1、差动电路的输入输出方式根据输入信号和输出信号的不同方式可以有四种连接方式,即 :(l) 双端输入 -双端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 、2o V 两端。
(2) 双端输入 -单端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 或2o V 到地。
加法器实验报告加法器实验报告一、实验背景加法器是计算机中最基础的逻辑电路之一,它的主要作用是将两个二进制数进行加法运算,并输出一个二进制数作为结果。
在计算机中,加法器的存在极为重要,因为它是所有计算的起点。
二、实验目的本实验的主要目的是通过制作加法器电路,掌握加法器的基本原理和操作方法。
通过实验,我们可以深入了解加法器的实现原理,在实践中体验二进制数的加法运算及其结果。
三、实验器材本次实验所需的器材如下:1.电路板2.电源线3.开关4.三枚LED灯5.四个按键6.电阻7.逻辑门SN74008.引线等四、实验步骤1.将电路板和电源线取出并清洗干净。
2.将电阻固定在电路板上。
3.将逻辑门SN7400安装到电路板上,并连接引线。
4.安装开关、LED灯和按键。
5.进行电路连接,注意避免短路和错接。
6.检查出错情况,重新调整电路连接。
7.开启电源并进行测试。
五、实验结果经过多次调整,我们成功地制作出了加法器电路,并进行了测试。
实验的结果显示:当我们同时按下两个按键时,相应的LED灯会点亮,从而输出结果。
六、实验误差及分析在实验过程中,我们发现有时LED灯不能很好地显示结果,这可能是由于电路连接不良或电阻的阻值不准确造成的。
在检查出错情况时,我们需要细心认真,尤其是对于电路连接的质量非常重要。
七、实验心得通过本次实验,我们深入了解了加法器的基本原理和操作方法。
同时,我们也掌握了电路连接和调试的技巧,认识到了实验中心细节的重要性。
通过实践,我们加深了对计算机逻辑电路的理解和应用,也提升了我们的创新能力和动手实践能力。
总之,本次实验让我们得到了很大的收获,不仅增强了我们对计算机逻辑电路的认识,也提高了我们的实验技能和科学素质。
我们相信,在今后的学习和实践中,这次实验的经验和教训将对我们有很大的帮助。
实验八 差分放大电路一、实验目的1. 加深对差动放大器性能及特点的理解。
2. 学习差动放大器主要性能指标的测试方法。
二、实验原理差分放大电路是模拟电路基本单元电路之一,是直接耦合放大电路的最佳电路形式,具有放大差模信号、抑制共模干扰信号和零点漂移的功能。
图8-1是差分放大电路的基本结构。
它由两个元件参数相同的基本共射放大电路组成。
当开关K 拨向C 时(K 接R E ),构成典型的差分放大器。
调零电位器R W 用来调节T 1、T 2管的静态工作点,使得输入信号u i =0时,双端输出电压u O =0。
R E 为两管共用的发射极电阻,它对差模信号无反馈作用,因此不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。
12VEEA B图8-1 差分放大电路当开关拨向D 时(K 接T 3),构成具有恒流源的差分放大器。
它用晶体管恒流源T 3代替发射极电阻R E ,T 3的交流等效电阻r CE3远远大于R E ,可以进一步提高差分放大器对共模信号的抑制能力。
当差分放大器的电路结构对称,元件参数和特性相同时,两个三极管集电极的直流电位相同。
但在实验过程中,由于三极管特性和电路参数不可能完全对称,导致差分放大电路在输入信号为零时双端输出却不为零。
故需要对差分放大电路进行零点调节。
当T 1、T 2的基极分别接入幅度相等、极性相反的差模信号时,使两管发射极产生大小相等、方向相反的变化电流。
当两个电流同时流过发射极电阻R E (K 拨向C )时,其作用互相抵消,即R E 中没有差模信号电流流过。
但对T 1、T 2而言,一个管子集电极电流增大,另一个管子集电极电流减小,于是两管集电极之间的输出电压就得到了被放大了的差模输出电压。
当共模信号作用于电路时,T 1、T 2的发射极电流的变化量相等,显然R E 上电流的变化量为2△I E ,由此而引起的R E 上的电压变化量△u E 的变化方向与输入共模信号的变化方向相同,使B -E 间的电压变化方向与之相反,导致基极电流变化,从而抑制了集电极电流的变化。
实验四-差分放大器实验四差分放大器实验目的:1.掌握差分放大器偏置电路的分析和设计方法;2.掌握差分放大器差模增益和共模增益特性,熟悉共模抑制概念;3.掌握差分放大器差模传输特性。
实验内容:一.实验预习根据图4-1所示电路,计算该电路的性能参数。
已知晶体管的导通电压,,试求该电路中晶体管的静态电流,节点1和2的直流电压V1,V2,晶体管跨导,差模输入电阻,差模输入电压增益,共模电压增益,和共模抑制比,请写出详细的计算过程,并完成表4-1.图4-1 差分放大器实验电路(mA) V1(V) V2(V) (mS) (k欧)1.005982.98804 2.98804 38.691 11.275 -76.3578 -1.973619.3448所以V1=v2=5-2*1.00598=2.98804V(10//)=11.275k二.仿真实验1.在MULTISIM中设计差分放大器,电路结构和参数如图4-1所示,进行直流工作点分析,得到电路的工作点电流和电压,完成表4-2,并与计算结果对照。
(mA) V1(V) V2(V) V3(V) V5(V) V6(V)2.20388 2.99750 2.99750 1.00341 1.57651 1.554922.在图4-1所示电路中,固定输入信号频率为2kHz,输入不同信号幅度时,测量电路的差模增益。
采用示波器观察输出波形,测量输出电压的峰峰值,通过“差模输出电压峰峰值/差模输入电压峰峰值”计算差模增益,用频谱仪器观测节点1的基波功率和谐波功率,并完成表4-3。
截得的波形以及频谱图如下:输入单端幅度为1mV输入单端幅度为10mV输入单端幅度为20mV1 10 20输入信号单端幅度(mV)-74.82 -71.978 -64.45基波频率P1(dBm) -24.677 -5.260 -0.039基波频率P2(dBm) -97.072 -46.231 -30.139基波频率P3(dBm) -103.764 -81.625 -53.434思考:表4-3中的在不同输入信号幅度的时候一样吗?若不一样,请解释原因。
加法器实验报告篇一:加法器实验报告实验 __一__【实验名称】1位加法器【目的与要求】1. 掌握1位全加器的设计2. 学会1位加法器的扩展【实验内容】1. 设计1位全加器2. 将1位全加器扩展为4位全加器3. 使4位的全加器能做加减法运算【操作步骤】1. 1位全加器的设计(1)写出1位全加器的真值表(2)根据真值表写出表达式并化简(3)画出逻辑电路(4)用quartusII进行功能仿真,检验逻辑电路是否正确,将仿真波形截图并粘贴于此(5)如果电路设计正确,将该电路进行封装以用于下一个环节 2. 将1位全加器扩展为4位全加器(1)用1位全加器扩展为4位的全加器,画出电路图(2)分别用两个4位补码的正数和负数验证加法器的正确性(注意这两个数之和必须在4位补码的数的范围内,这两个数包括符号在内共4位),用quartusII进行功能仿真并对仿真结果进行截图。
3. 将4位的全加器改进为可进行4位加法和减法的运算器(1)在4位加法器的基础上,对电路进行修改,使该电路不仅能进行加法运算而且还能进行减法运算。
画出该电路(2)分别用两个4位补码的正数和负数验证该电路的正确性(注意两个数之和必须在4位补码的数的范围内),用quartusII进行功能仿真并对仿真结果进行截图。
【附录】篇二:加法器的基本原理实验报告一、实验目的1、了解加法器的基本原理。
掌握组合逻辑电路在Quartus Ⅱ中的图形输入方法及文本输入方法。
2、学习和掌握半加器、全加器的工作和设计原理3、熟悉EDA工具Quartus II和Modelsim的使用,能够熟练运用Vrilog HDL语言在Quartus II下进行工程开发、调试和仿真。
4、掌握半加器设计方法5、掌握全加器的工作原理和使用方法二、实验内容1、建立一个Project。
2、图形输入设计:要求用VHDL结构描述的方法设计一个半加器3、进行编译,修改错误。
4、建立一个波形文件。
(根据真值表)5、对该VHDL程序进行功能仿真和时序仿真Simulation三、实验步骤1、启动QuartusⅡ2、建立新工程 NEW PROJECT3、设定项目保存路径\项目名称\顶层实体名称4、建立新文件 Blok Diagram/Schematic File5、保存文件FILE /SAVE6、原理图设计输入元件符号放置通过EDIT_>SYMBOL 插入元件或点击图标元件复制元件移动元件删除管脚命名 PIN_NAME元件之间连线(直接连接,引线连接)7、保存原理图8 、编译:顶层文件设置,PROJECT_>Set as Top_Level开始编译 processing_>Start Compilation编译有两种:全编译包括分析与综合(Analysis&Synthesis)、适配(Fitter)、编程(assembler)时序分析(Classical Timing Analysis)4个环节,而这4个环节各自对应相应菜单命令,可单独发布执行也可以分步执行9 、逻辑符号生成 FILECreat/_update_>create Symbol File forCurrent File10 、仿真建立仿真wenjian添加需要的输入输出管脚设置仿真时间设置栅格的大小设置输入信号的波形保存文件,仿真功能仿真:主要检查逻辑功能是否正确,功能仿真方法如下:1TOOL/SIMULATOR TOOL,在SIMULATOR MODE下选择Functional,在SIMULATION INPUT栏中指定波形激励文件,单击Gencrator Functional Simulator Netist,生成功能仿真网表文件。
加法器及差分放大器项目实验报告一、项目内容和要求 (一)、加法器 1、任务目的:(1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理;(3)掌握应用仿真软件对运算放大器进行仿真分析的方法。
2、任务内容:2.1 设计一个反相加法器电路,技术指标如下:(1)电路指标运算关系:)25(21i i O U U U +-=。
输入阻抗Ω≥Ω≥K R K R i i 5,521。
(2)设计条件电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5(3)测试项目A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压;B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电压波形。
C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。
D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为2kHz ,测量该加法器的幅频特性。
2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标运算关系:21i i O U U U +=。
(2)设计条件电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压;B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压波形。
(二)、差分放大器1、任务目的:(1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理;(3)掌握应用仿真软件对运算放大器进行仿真分析的方法。
2、任务内容2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标运算关系:)(521i i O U U U --=。
输入阻抗Ω≥Ω≥K R K R i i 5,521。
(2)设计条件电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压;B :输入信号V KHz U V U i i 5.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电压波形。
二、设计及调试(一)、电路设计 1、反相加法器U0=-Rf*IfU0=-Rf*(Ui1/R1+Ui2/R2) 输出电压与输入电压反相R3在电路中起平衡作用(R3=R1//R2//Rf ) 2、同相加法器U0=(1+Rf/R ’)Ui输出电压与输入电压同相R 在电路中起平衡作用(R3=R1//R2//Rf ) 3、差分放大器差分放大电路可以有效的抑制“零点漂移” U0=[(R1+Rf)/R1]*[R3/(R2+R3)]-(R2/R1)*U1 R1=R2,R3=Rf,U0=-(R2/R1)*(Ui1-Ui2)(二)、电路仿真 1、加法器1.1反相加法器A.输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压 仿真测试数据:Ui1 Ui2 U0 0.5V 0.5V -3.5V 0.5V -0.5V 1.5V -0.5V 0.5V 1.5V -0.5V-0.5V3.5VB.i i 21电压波形仿真电路:仿真测试波形:输入: Ui1=0.5V ,Ui2为频率1KHz ,幅度为0.1V 的正弦波信号 (蓝色波形) 输出: U0发生直流偏移,向下偏2.5V (红色波形)输入: Ui1=0.5V ,Ui2为频率1KHz ,幅度为0.1V 的正弦波信号 (蓝色波形) 输出: U0发生直流偏移,向上偏2.5V (红色波形)C.输入信号V U i 01 ,改变2i U 的幅度,测量该加法器的动态范围 仿真电路:仿真测试波形:输入:Ui1=0V,Ui2为频率1KHz,幅度0.1V正弦波(蓝色波形)输出:U0=0.2V(最大值),频率1KHz正弦波(红色波形)输入:Ui1=0V,Ui2为频率1KHz,幅度2V正弦波(蓝色波形)输出:U0=3.998V,频率1KHz正弦波,顶部发生失真现象(红色波形)输入:Ui1=0V ,Ui2为频率1KHz ,幅度2.5V 正弦波(蓝色波形)输出:U0=4.671V (最大值),频率1KHz 正弦波,顶部和底部均发生失真现象(红色波形)动态范围: 4.671~3.746V V -D.输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为2kHz ,测量该加法器的幅频特性仿真电路:仿真测试波形:输入:Ui1=0V,Ui2为幅度为1V,频率为1KHz的正弦波(蓝色波形)输出:U0=2V(最大值),频率为1KHz的正弦波(红色波形)输入:Ui1=0V,Ui2为幅度为1V,频率为3KHz的正弦波(蓝色波形)输出:U0=2V(最大值),频率为1KHz的正弦波(红色波形)输入:Ui1=0V,Ui2为幅度为1V,频率为31KHz的正弦波(蓝色波形)输出:U0=1.92V(最大值),频率为1KHz的正弦波,幅度开始减小(红色波形)输入:Ui1=0V,Ui2为幅度为1V,频率为31KHz的正弦波(蓝色波形)输出:U0=1.67V(最大值),频率为1KHz的正弦波,幅度减小(红色波形)测试值及幅频特性曲线:1.2同相加法器A.输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压 仿真电路:仿真测试数据:Ui1 Ui2 U0 1V 1V 2V 1V -1V -11.147uV -1V 1V -11.147uV -1V-1V-2VB.V KHz U V U i i 1,1,121为正弦波±=形仿真电路:仿真测试波形:输入:Ui1=1V ,Ui2为频率1KHz ,幅度1V 的正弦波(绿色波形)输出:U0=0.999766V (有效值),频率1KHz 的正弦波,向上偏移1V (红色波形)输入:Ui1=-1V ,Ui2为频率1KHz ,幅度1V 的正弦波(绿色波形)输出:U0=-0.999761V ,频率1KHz 的正弦波,向下偏移1V (红色波形)2、差分放大器A.输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压 仿真电路:仿真测试数据:Ui1 Ui2 U0 0.5V 0.5V -55.315uV 0.5V -0.5V -4.633V -0.5V 0.5V 3.764V -0.5V-0.5V-8.381uVB.i i 21电压波形仿真电路:仿真测试波形:输入:Ui1=-0.5V ,ui2为频率1KHz ,幅度0.5V 的正弦波(红色波形) 输出:U0=2.163V ,频率1KHz 正弦波,顶部发生失真现象(黄色波形)输入:Ui1=0.5V ,ui2为频率1KHz ,幅度0.5V 的正弦波(红色波形)输出:U0=-2.337V ,频率1KHz 正弦波,底部发生失真现象(黄色波形)(三)、电路焊装和调试1、元器件清单名称型号 数量 普通电阻4.7K Ω3 10K Ω 1 22K Ω1 运放芯片 LM358 1 芯片底座DIP811.2同相加法器名称 型号 数量 普通电阻 4.7K Ω 5 运放芯片 LM358 1 芯片底座DIP81名称 型号 数量 普通电阻 4.7K Ω 3 22K Ω 2 运放芯片 LM358 1 运放底座DIP812、电路调试结果及结果分析 2.1反相加法器A.输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压 硬件电路测试结果:Ui1 Ui2 U0 0.5V 0.5V -2.98V 0.5V -0.5V -1.2V -0.5V 0.5V 1.2V -0.5V-0.5V2.96V结果分析:实际测量结果比仿真测量结果偏小,当两个输入信号均为0.5V 时,理论输出应该是-3.4V ,而我们的测试值只有-2.98V ,最后检查电路时发现由于我们在提供芯片的电压上串接了一个1K 电阻和一个发光二级管,再加上电源输入端到4脚、8脚的导线比较长(产生了1.46V 的压降)所以芯片的工作电压其实并没有±5V ,因此输出值会普遍偏小。
B.输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出压波形硬件电路输出波形:输入: Ui1=0.5V ,Ui2为频率1KHz ,幅度为0.1V 的正弦波信号 (黄色波形)输出: U0发生直流偏移,向下偏2.5V (绿色波形)输入: Ui1=0.5V ,Ui2为频率1KHz ,幅度为0.1V 的正弦波信号 (黄色波形)输出: U0发生直流偏移,向上偏2.5V (绿色波形)结果分析:在这个测试项目的进行下,我们发现硬件焊接的电路测试值很不稳定,总是在0.6V 之内上下波动,最后发现外界信号对电路输出只有很大的干扰,当我们把手放在输入端上,输出电压值都会发生跳动,经比较计算,我们的测试值在误差范围内是正确的C.输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围 硬件电路输出波形:输入:Ui1=0V ,Ui2为频率1KHz ,幅度1.29V 正弦波(黄色波形) 输出:U0=2.21V ,频率1KHz 正弦波,顶部发生失真现象(绿色波形)输入:Ui1=0V ,Ui2为频率1KHz ,幅度1.41V 正弦波(黄色波形) 输出:U0=2.53V ,频率1KHz 正弦波,顶部和底部同时失真(绿色波形)动态范围 2.53~2.21V V -结果分析:在做仿真的时候,当Ui2=2.0V 时,波形便发生失真,而在硬件电路的测试中,Ui2=1.29V 便出现顶部失真现象,由于我们电路的实际放大倍数为2.2,而仿真的是2,而且实际电路中导线的压降又不可避免(导线太长),因此,静态工作点会更加偏低,会在较小的输入电压情况下发生失真。
D.输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为2kHz ,测量该加法器的幅频特性硬件电路测试波形:输入:Ui1=0V ,Ui2为幅度为1V ,频率为1KHz 的正弦波(黄色波形) 输出:U0=2.08V ,频率为1KHz 的正弦波(绿色波形)输入:Ui1=0V ,Ui2为幅度为1V ,频率为5KHz 的正弦波(黄色波形) 输出:U0=2.02V ,频率为5KHz 的正弦波,开始出现交越失真(绿色波形)输入:Ui1=0V ,Ui2为幅度为1V ,频率为39KHz 的正弦波(黄色波形)输出:U0=0.70V ,频率为5KHz 的正弦波,幅度明显下降(绿色波形)硬件电路测试数据:结果分析:硬件电路测试值较仿真测试值曲线不够平滑,电路本身存在干扰,仪器仪表又具有一定的误差范围,因此相对于仿真,实际电路与理论值会有一定大的误差。