七年级期末试卷(培优篇)(Word版 含解析)
- 格式:doc
- 大小:1.95 MB
- 文档页数:36
七年级数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.若关于x 的方程2x ﹣m=x ﹣2的解为x=3,则m 的值是( ) A .5B .﹣5C .7D .﹣7 2.如果整式x n ﹣3﹣5x 2+2是关于x 的三次三项式,那么n 等于( ) A .3B .4C .5D .63.下列运算正确的是A .325a b ab +=B .2a a a +=C .22ab ab -=D .22232a b ba a b -=-4.下列四个图形中,能用1∠,AOB ∠,O ∠三种方法表示同一个角的是()A .B .C .D .5.如图,数轴的单位长度为1,如果点A 表示的数为-2,那么点B 表示的数是( )A .3B .2C .0D .-1 6.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是( ) A .+B .-C .×D .÷7.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A .秦B .淮C .源D .头8.由n 个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n 的最小值为( )A .10B .11C .12D .139.下列图形,不是柱体的是( ) A .B .C .D .10.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A .27°40′B .57°40′C .58°20′D .62°20′11.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++B .12(10)1360x x +=+C .60101312x x +-=D .60101213x x+-= 12.-5的倒数是A .15B .5C .-15D .-513.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A14.下列计算正确的是( )A .325a b ab +=B .532y y -=C .277a a a +=D .22232x y yx x y -=15.若关于x y 、的单项式33n x y -与22m x y 的和是单项式,则()nm n -的值是 ( ) A .-1B .-2C .1D .2二、填空题16.地球的半径大约为6400000m ,用科学计数法表示地球半径为___________m .17.比较大小:23-______34-. 18.一个角的度数是4536'︒,则它的补角的度数为______︒.(结果用度表示)19.如图,在三角形ABC 中,90B ∠=︒,6AB cm =,8BC cm =,点D 是AB 的中点,点P 从C 点出发,先以每秒2cm 的速度运动到B ,然后以每秒1cm 的速度从B 运动到A .当点P 运动时间t = _______秒时,三角形PCD 的面积为26cm .20.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________. 21.6的绝对值是___.22.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .23.若∠α=70°,则它的补角是 .24.如果一个角的余角等于它本身,那么这个角的补角等于__________度. 25.已知1x =-是方程23ax a =-的解,则a =__________.三、解答题26.计算:(1)35116()824⨯+- (2) 3242(2)(3)3--÷⨯- 27.如图,直线AB 、CD 相交于点O ,BOD ∠与∠BOE 互为余角,18BOE ∠=︒.求AOC ∠的度数.28.如图,已知AOB ∠.画射线OC OA ⊥、射线OD OB ⊥.(1)请你画出所有符合要求的图形; (2)若30AOB ∠=︒,求出COD ∠的度数.29.如图,A ,B 两地相距450千米,两地之间有一个加油站O ,且AO =270千米,一辆轿车从A 地出发,以每小时90千米的速度开往B 地,一辆客车从B 地出发,以每小时60千米的速度开往A 地,两车同时出发,设出发时间为t 小时. (1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O 多远? (3)经过几小时,两车相距50千米?30.解方程或不等式(1)123123x x+--=;(2) 2(3)4(3)x x x +>-- 31.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是 立方单位,表面积是 平方单位(包括底面积); (2)请在方格纸中用实线画出它的三个视图.32.计算:(1)()360.655---+-+ (2)()()202031113122⎛⎫---÷⨯-- ⎪⎝⎭33.计算:(1)﹣2÷8×(﹣12); (2)2312(3)()19---⨯-+.四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。
七年级期末试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧(1)若AB=18,DE=8,线段DE在线段AB上移动①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则________.【答案】(1)解:①又 E为BC中点;②设,因点F(异于A、B、C点)在线段AB上,可知:,和当时,此时可画图如图2所示,代入得:解得:,即AD的长为3当时,此时可画图如图3所示,代入得:解得:,即AD的长为5综上,所求的AD的长为3或5;(2) .【解析】【解答】(2)①若DE在如图4的位置设,则又(不符题设,舍去)②如DE在如图5的位置设,则又代入得:解得:则 .【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.2.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.【答案】(1)解:∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°(2)解:∠DOC= ×∠BOC= ×70°=35°,∠AOE= ×∠AOC= ×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补【解析】【分析】(1)由∠BOC、∠AOC的度数,求出∠AOB=∠BOC+∠AOC的度数,再求出∠AOB补角的度数;(2)根据角平分线定义求出∠DOC、∠AOE的度数,再由(1)中的度数得到∠DOE与∠AOB互补.3.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90 ).(1)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由;(2)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=60 ,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.【答案】(1)解:ON平分∠AOC.理由如下:∵OM平分∠BOC,∴∠BOM=∠MOC.∵∠MON=90°,∴∠BOM+∠AON=90°.又∵∠MOC+∠NOC=90°∴∠AON=∠NOC,即ON平分∠AOC(2)解:∠BOM=∠NOC+30°.理由如下:∵∠BOC=60°,即:∠NOC+∠NOB=60°,又因为∠BOM+∠NOB=90°,所以:∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°,∴∠BOM与∠NOC之间存在的数量关系是:∠BOM=∠NOC+30°.【解析】【分析】(1)ON平分∠AOC.理由如下:根据角平分线的定义得出∠BOM=∠MOC ,根据平角的定义得出∠BOM+∠AON=90°.又∠MOC+∠NOC=90°,根据等角的余角相等即可得出∠AON=∠NOC,即ON平分∠AOC ;(2)∠BOM=∠NOC+30°.理由如下:根据角的和差得出∠NOC+∠NOB=60°,又因为∠BOM+∠NOB=90°,利用整体替换得出∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°。
七年级期末试卷(培优篇)(Word 版 含解析)一、选择题1.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因( ) A .两点之间,线段最短 B .过一点有无数条直线 C .两点确定一条直线D .两点之间线段的长度,叫做这两点之间的距离2.若关于x 的方程2x ﹣m=x ﹣2的解为x=3,则m 的值是( ) A .5B .﹣5C .7D .﹣73.自南京地铁四号线开通以来,最高单日线路客运量是 2017 年 12 月 7 日的 191000 人次,数字 191000 用科学计数法表示为( ) A .19.1×410B .1.91×510C .19.1×510D .0.191×6104.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数....x 的和为( )A .30B .35C .42D .39 5.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .1006.如图,图1是AD ∥BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中∠CFE=18°,则图2中∠AEF 的度数为( )A .120°B .108°C .126°D .114° 7.如果整式x n ﹣3﹣5x 2+2是关于x 的三次三项式,那么n 等于( ) A .3B .4C .5D .68.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( ) A .-3B .3C .13D .169.下列几何体三视图相同的是( ) A .圆柱 B .圆锥 C .三棱柱 D .球体 10.下列各项中,是同类项的是( )A .xy 与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab11.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直; ④过一点有且只有一条直线与已知直线平行. 其中正确的说法有( ) A .1个 B .2个 C .3个 D .4个 12.对于代数式3m +的值,下列说法正确的是( )A .比3大B .比3小C .比m 大D .比m 小13.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变 D .商品的销售量不变 14.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分 B .3点30分C .6点45分D .9点15.下列计算正确的是( )A .325a b ab +=B .532y y -=C .277a a a +=D .22232x y yx x y -=二、填空题16.如图,已知∠AOB=75°,∠COD=35°,∠COD 在∠AOB 的内部绕着点O 旋转(OC 与OA 不重合,OD 与OB 不重合),若OE 为∠AOC 的角平分线.则2∠BOE -∠BOD 的值为______.17.已知关于x 的方程345m x -=的解是1x =,则m 的值为______.18.有一数值转换器,其转换原理如图所示,若开始输入x 的值是9,可发现第1次输出的结果是14,第2次输出的结果是7,第3次输出的结果是12,…,依次继续下去,第2020次输出的结果是______.19.下图是计算机某计算程序,若开始输入2x =-,则最后输出的结果是____________.20.今年冬季某天测得的最高气温是9℃,最低气温是1-℃,则当日温差是________℃ 21.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.22.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.23.已知222x y -+的值是 5,则 22x y -的值为________. 24.如果单项式1b xy+-与23a xy -是同类项,那么()2019a b -=______.25.已知1x =-是方程23ax a =-的解,则a =__________.三、解答题26.已知平面上点,,,A B C D .按下列要求画出图形: (1)画直线AC ,射线BD ,交于点O ;(2)比较两角的大小:AOD ∠___________BOC ∠,理由是___________; (3)画出从点A 到CD 的垂线段AH ,垂足为H .27.如图,//AD EF ,12180∠+∠=. (1)求证://DG AB ;(2)若DG 是ADC ∠的角平分线,130∠=,求B 的度数.28.由几个相同的棱长为1的小立方块搭成的几何体的俯视图如图所示,方格中的数字表示该位置的小立方块的个数.(1)在下面方格纸中画出这个几何体的1主视图与左视图; (2)求该几何体的表面积29.解方程 (1)528x +=- (2)4352x x -=+ (3)()4232x x -=-- (4)2151136x x +--= 30.如图,点O 是直线AB 上的一点,将一直角三角板如图摆放,过点O 作射线OE 平分BOC ∠.(1)如图1,如果40AOC ∠=︒,依题意补全图形,求DOE ∠度数;(2)当直角三角板绕点O 顺时针旋转一定的角度得到图2,使得直角边OC 在直线AB 的上方,若AOC α∠=,其他条件不变,请你直接用含α的代数式表示DOE ∠的度数为 ;(3)当直角三角板绕点O 继续顺时针旋转一周,回到图1的位置,在旋转过程中你发现DOE ∠与AOC ∠(0180,0AOC DOE ≤∠≤≤∠°°°)≤180°之间有怎样的数量关系?请直接写出你的发现: .31.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm 秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm 秒,经过多长时间P 、Q 两点相遇?(2)当P 在线段AB 上且2PA PB =时,点Q 运动到的位置恰好是线段AB 的三等分点, 求点Q 的运动速度;(3)当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,求OB APEF-的值.32.某车间在计划时间内加工一批零件,若每天生产40个,则差20个而不能完成任务,若每天生产50个,则可提前1天完成任务,且超额10个,问这批零件的个数? 33.解方程:(1)-5x +3=-3x -5; (2)4x -3(1-x )=11.四、压轴题34.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.35.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 36.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?37.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.38.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数. 39.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).40.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.41.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0na b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论. 42.观察下列各等式:第1个:22()()a b a b a b -+=-; 第2个:2233()()a b a ab b a b -++=-; 第3个:322344()()a b a a b ab b a b -+++=- ……(1)这些等式反映出多项式乘法的某种运算规律,请利用发现的规律猜想并填空:若n 为大于1的正整数,则12322321()( )n n n n n n a b aa b a b a b ab b -------++++++=______;(2)利用(1)的猜想计算:1233212222221n n n ---+++++++(n 为大于1的正整数);(3)拓展与应用:计算1233213333331n n n ---+++++++(n 为大于1的正整数).43.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点. ①若x A =1,x B =5,则x c = ; ②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ; (2)若AC =λCB (其中λ>0). ①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据两点之间,线段最短解答即可. 【详解】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”, 其原因是两点之间,线段最短, 故选:A . 【点睛】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.2.A解析:A 【解析】 【分析】把x =3代入已知方程后,列出关于m 的新方程,通过解新方程来求m 的值.∵x=3是关于x的方程2x﹣m=x﹣2的解,∴2×3﹣m=3﹣2,解得:m=5.故选A.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.3.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】191000=1.91×105,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D解析:D【解析】【分析】根据题意可知第一次所得的结果≤26,第二次所得的结果>26,列不等式组并解除不等式组得解后再计算满足条件的所有整数的和即可.【详解】由题意得31263(31)126xx-≤⎧⎨--⎩①>②,解不等式①得,x≤9,解不等式②得,x>103,∴x的取值范围是103<x≤9,∴满足条件的所有整数x的和为4+5+6+7+8+9=39.故答案选D.【点睛】本题考查一元一次不等式组的应用,解题的关键是正确理解程序所表示的意义,能根据题意列出不等式组.5.B解析:B【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得0.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.6.D解析:D【解析】【分析】如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x-18°,再由第2次折叠得到∠C′FB=∠BFC=x-18°,于是利用平角定义可计算出x=66°,接着根据平行线的性质得∠A′EF=180°-∠B′FE=114°,所以∠AEF=114°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−18°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−18°,而∠B′FE+∠BFE+∠C′FB=180°,∴x+x+x−18°=180°,解得x=66°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−66°=114°,∴∠AEF=114°.故答案选:D.【点睛】本题考查了翻折变换(折叠问题)与平行线的性质,解题的关键是熟练的掌握翻折变换(折叠问题)与平行线的性质.7.D解析:D【解析】【详解】根据题意得到n﹣3=3,即可求出n的值.解:由题意得:n﹣3=3,解得:n=6.故选D8.A解析:A【解析】【分析】将x=-2代入方程mx=6,得到关于m的一元一次方程,解方程即可求出m的值.【详解】∵关于x的一元一次方程mx=6的解为x=-2,∴﹣2m=6,解得:m=-3.故选:A.【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.9.D解析:D【解析】【分析】根据几何体的主视图、左视图、俯视图的形状即可判断.【详解】解:A选项,圆柱的主视图和左视图为长方形,俯视图为圆,不相同,A错误;B选项,圆锥的主视图和左视图为三角形,俯视图为圆及圆心,不相同,B错误;C选项,三棱柱的三视图分别为三角形,三角形,三角形及中心与顶点的连线, C错误;D选项,球体的三视图均为相同的圆,D正确.故选:D【点睛】本题考查了三视图,熟练掌握基础几何体的三视图是解题的关键.10.A解析:A【解析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】A.﹣xy与2yx,所含字母相同,相同字母的指数也相同,是同类项.故选项A符合题意;B.2ab与2abc,所含字母不相同,不是同类项.故选项B不符合题意;C.x2y与x2z,所含字母不相同,不是同类项.故选项C不符合题意;D.a2b与ab2,所含字母相同,相同字母的指数不相同,不是同类项.故选项D不符合题意.故选A.【点睛】本题考查了同类项,关键是理解同类项定义中的两个“相同”:相同字母的指数相同.11.A解析:A【解析】【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断.【详解】解:①两点之间,线段最短,故错误;②若AC=BC,且A,B,C三点共线时,则点C是线段AB的中点,故错误;③同一平面内经过一点有且只有一条直线与已知直线垂直,故正确;④经过直线外一点有且只有一条直线与已知直线平行,故错误.正确的共1个故选:A.【点睛】本题考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础只记题目,掌握相关概念即可解题.12.C解析:C【解析】【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m大3.【详解】解:∵3+m=m+3,m+3表示比m大3,∴3+m比m大.故选:C.【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.13.C解析:C【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.14.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a ,如果a 大于180°,夹角=360°-a ,如果a ≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.15.D解析:D【解析】【分析】根据合并同类项的法则进行运算依次判断.【详解】解:A.两项不是同类项不能合并,错误;B. 532y y y -=,错误;C. 78a a a +=,错误;D.正确.故选D.【点睛】本题考查了合并同类项,系数相加字母部分不变是解题关键.二、填空题16.110°【解析】【分析】由角平分线的定义可知∠AOC=2∠AOE,由角的和差可知∠BOE=∠AOB-∠AOE,代入2∠BOE-∠BOD整理即可.【详解】∵OE为∠AOC的角平分线,∴∠A解析:110°【解析】【分析】由角平分线的定义可知∠AOC=2∠AOE,由角的和差可知∠BOE=∠AOB-∠AOE,代入2∠BOE-∠BOD整理即可.【详解】∵OE为∠AOC的角平分线,∴∠AOC=2∠AOE,∵∠BOE=∠AOB-∠AOE,∴2∠BOE-∠BOD=2(∠AOB-∠AOE) -∠BOD=2∠AOB-2∠AOE -∠BOD=2∠AOB-∠AOC -∠BOD=2∠AOB-(∠AOC +∠BOD)=2∠AOB-(∠AOB -∠COD)=∠AOB+∠COD=75°+35°=110°.故答案为:110°.【点睛】本题考查了角平分线的有关计算,以及角的和差,结合图形找出不同角之间的数量关系是解答本题的关键.17.3【解析】【分析】方程的解满足方程,所以将代入方程可得的值.【详解】解:将代入方程得解得.故答案为:3.【点睛】本题考查了一元一次方程,熟练掌握一元一次方程的解的定义是解题的关键 解析:3【解析】【分析】方程的解满足方程,所以将1x =代入方程可得m 的值.【详解】解:将1x =代入方程345m x -=得345m -=解得3m =.故答案为:3.【点睛】本题考查了一元一次方程,熟练掌握一元一次方程的解的定义是解题的关键.18.6【解析】【分析】先多算几次输出代入结果找出循环的规律,由规律可得第2020次输出的结果.【详解】解:依次计算可得第4次输出的结果为6,第5次输出的结果为3,第6次输出的结果为8,第7次输解析:6【解析】【分析】先多算几次输出代入结果找出循环的规律,由规律可得第2020次输出的结果.【详解】解:依次计算可得第4次输出的结果为6,第5次输出的结果为3,第6次输出的结果为8,第7次输出的结果为4,第8次输出的结果为2,第9次输出的结果为1,第10次输出的结果为6,第11次输出的结果为3……,由此可知从第4次开始,每6次一循环,(20203)6336......1-÷=,所以第2020次输出的结果为第337个循环的第1个结果为6. 故答案为:6【点睛】本题考查了数字的规律探究,多求几次结果,找出变化规律是解题的关键.19.【解析】把−2按照如图中的程序计算后,若<−5则结束,若不是则把此时的结果再进行计算,直到结果<−5为止.【详解】解:根据题意可知,(−2)×4−(−3)=−8+3=−5,所以再解析:17【解析】【分析】把−2按照如图中的程序计算后,若<−5则结束,若不是则把此时的结果再进行计算,直到结果<−5为止.【详解】解:根据题意可知,(−2)×4−(−3)=−8+3=−5,所以再把−5代入计算:(−5)×4−(−3)=−20+3=−17<−5,即−17为最后结果.故本题答案为:−17【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.20.10【解析】【分析】先依据题意列出算式,然后依据减法法则计算即可.【详解】解:9-(-1)=9+1=10(℃).故答案为;10.【点睛】本题考查了有理数的减法,掌握有理数的减法法则是解析:10【解析】【分析】先依据题意列出算式,然后依据减法法则计算即可.【详解】解:9-(-1)=9+1=10(℃).故答案为;10.【点睛】本题考查了有理数的减法,掌握有理数的减法法则是解题的关键.【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A 应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长解析:1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.22.17×107【解析】解:11700000=1.17×107.故答案为1.17×107.解析:17×107【解析】解:11700000=1.17×107.故答案为1.17×107.23.3【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,,∴.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键.【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,2225x y -+=,∴223x y -=.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键. 24.1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,解析:1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,∴()2019a b -=1, 故答案为:1.【点睛】此题考查同类项的定义,正确理解同类项的定义并熟练解题是关键. 25.1【解析】【分析】直接把代入,即可求出a 的值.【详解】解:把代入,则,故答案为:1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程. 解析:1【解析】【分析】直接把1x =-代入23ax a =-,即可求出a 的值.【详解】解:把1x =-代入23ax a =-,则2(1)3a a ⨯-=-,解得:1a =;故答案为:1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程.三、解答题26.(1)详见解析;(2)=,对顶角相等;(3)详见解析.【解析】【分析】(1)根据直线、射线的定义画出图形即可;(2)根据对顶角相等即可解决问题;(3)根据垂线段作法可作出垂线;【详解】(1)画直线AC ,射线BD ,交于点O ,图形如下图所示;(2)AOD ∠=BOC ∠,理由是对顶角相等,故答案为:=,对顶角相等;(3)画出从点A 到CD 的,垂足为H ,即垂线段AH 即为所求.【点睛】本题考查直线、射线、对顶角、垂线段等知识,解题关键是熟练掌握基本知识,属于中考常考题型.27.(1)证明见解析;(2)30°.【解析】【分析】(1)根据平行线的性质可得∠2+∠BAD =180°,根据补角的性质可得∠1=∠BAD ,再根据平行线的判定即可证得结论;(2)由角平分线的定义可得∠GDC 的度数,然后根据平行线的性质即得结果.【详解】(1)证明:∵AD ∥EF ,∴∠2+∠BAD =180°,∵∠1+∠2=180°,∴∠1=∠BAD ,∴DG ∥AB ;(2)解:∵DG 是∠ADC 的角平分线,∴∠GDC =∠1=30°,∵DG ∥AB ,∴∠B =∠GDC =30°.【点睛】本题考查了平行线的判定和性质、补角的性质和角平分线的定义,属于基本题型,熟练掌握平行线的判定和性质是解题的关键.28.(1).见解析;(2)该几何体的表面积为24.【解析】【分析】(1)主视图有2列,每列小正方形数目分别为1,3;左视图有2列,每列小正方形数目分别为3,2;2)上下共有2×3个正方形;左右共有5个正方形;前后共有4个正方形.【详解】(1)如图所示.(2)该几何体的表面积为345224++⨯=().【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.29.(1)x=-2;(2)x=4;(3)x=2;(4)x=-3【解析】【分析】(1)先移项合并同类项,再系数化1;(2)先移项合并同类项,再系数化1;(3)先去括号,再移项合并同类项,最后系数化1;(4)先去分母,再去括号,然后一项合并类项,最后在系数化1.【详解】解:(1)528x +=-,移项合并同类项得:5x=-10系数化1得:x=-2;(2)4352x x -=+移项合并同类项得:2x=8系数化1得:x=4;(3)()4232x x -=--去括号得:4-x=2-6+3x移项合并同类项得:4x=8系数化1得:x=2;(4)2151136x x +--= 去分母得:2(2x+1)-(5x-1)=6去括号得:4x+2-5x+1=6移项合并同类项得:-x=3系数化1得:x=-3【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的步骤是解题的关键.30.(1)补全图形见解析;20DOE ︒∠=;(2)2DOE α∠=;(3)12DOE AOC ∠=∠;11802DOE AOC ︒∠=-∠. 【解析】【分析】 (1)根据角平分线的作法作出OE 平分∠BOC ,先根据平角的定义求出∠BOC ,再根据角平分线的定义求出∠COE ,再根据直角的定义即可求解;(2)先根据平角的定义求出∠BOC ,再根据角平分线的定义求出∠COE ,再根据直角的定义即可求解;(3)分两种情况:0°≤∠AOC≤180°,0°≤∠DOE≤180°,可求∠AOC 与∠DOE 之间的数量关系.【详解】(1)补全图形:解:因为180,40AOC BOC AOC ︒︒∠+∠=∠= 所以140BOC ︒∠=因为OE 平分BOC ∠,所以1702COE BOC ︒∠=∠=; 由直角三角板,得90COD ︒∠=; 因为90,70COD COE ︒︒∠=∠=;所以907020DOE COD COE ︒︒︒∠=∠-∠=-=; (2)∵由∠AOC+∠BOC=180°,∠AOC=α,∴∠BOC=180°-α;∵OE 平分∠BOC ,∴∠COE=90°-12α; ∵直角三角板,∴∠COD=90°; ∵∠COD=90°,∠COE=90°-12α, ∴∠DOE=2α; (3)①0°≤∠AOC≤180°时,∵由∠AOC+∠BOC=180°,∴∠BOC=180°-∠AOC ;∵OE 平分∠BOC ,∴∠COE=90°-12∠AOC ; ∵直角三角板,∴∠COD=90°; ∵∠COD=90°,∠COE=90°-12∠AOC ,∴∠DOE=12∠AOC;②0°≤∠DOE≤180°时,∵由∠AOC+∠BOC=180°,∴∠BOC=180°-∠AOC;∵OE平分∠BOC,∴∠COE=12∠BOC=90°-12∠AOC;∵直角三角板,∴∠COD=90°;∴∠DOE=90°+∠COE =180°-12∠AOC;∴∠DOE=12∠AOC(0°≤∠AOC≤180°),∠DOE=180°−12∠AOC(0°≤∠DOE≤180°).【点睛】本题考查了余角和补角,角平分线的定义,角的计算,找到各个量之间的关系求出角的度数是解题的关键.31.(1)30秒;(2)1/2cm s或5/6cm s;(3)2.【解析】【详解】(1)设经过ts,PQ两点相遇,则t+2t=90,解得t=30s,所以经过30s后两点相遇(2)因为AB=60,PA=2PB,所以PA=40,PB=20,OP=60所以点P,Q的运动时间为60s因为AB=60,13AB=20,所以QB=20或40所以Q的运动速度为10201602+=cm/s或10405606+=cm/s(3)设运动时间为ts,所以OE=12OP=12tOF=OA+12AB=20+30=50所以()80201502t OB AP EF t ---=-=2 32.这批零件的个数为340个.【解析】【分析】等量关系为:(零件个数-20)÷40=(零件个数+10)÷50+1,把相关数值代入即可求解.【详解】解:设这批零件的个数为x . 由题意得:x 2040-=x 1050++1, 解得:x=340 答:这批零件的个数为340个.【点睛】解决本题的关键是利用计划时间得到相应的等量关系,注意在解方程时要细心.33.(1)x =4;(2)x =2.【解析】【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)移项得:-5x +3x =-5-3合并得:﹣2x =﹣8,解得:x =4;(2)去括号得:4x ﹣3+3x =11,移项得:4x +3x =11+3移项合并得:7x =14,解得:x =2.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.四、压轴题34.(1)2412--;;(2)2t ;362t -;(3)P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【解析】【分析】 ()1因为点A 在原点左侧且到原点的距离为24个单位长度,所以点A 表示数24-;点B 在。
七年级期末试卷(培优篇)(Word 版 含解析)一、选择题1.下列说法错误的是( )A .对顶角相等B .两点之间所有连线中,线段最短C .等角的补角相等D .不相交的两条直线叫做平行线 2.2-的相反数是( )A .2-B .2C .12D .12- 3.倒数是-2的数是( )A .-2B .12-C .12D .24.下列说法错误的是( )A .同角的补角相等B .对顶角相等C .锐角的2倍是钝角D .过直线外一点有且只有一条直线与已知直线平行5.﹣3的相反数为( )A .﹣3B .﹣13C .13D .36.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°7.下列立体图形中,俯视图是三角形的是( )A .B .C .D .8.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .9.二次三项式2x 2﹣3x ﹣1的二次项系数,一次项系数,常数项分别是( ) A .2,﹣3,﹣1 B .2,3,1 C .2,3,﹣1 D .2,﹣3,110.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( )A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变 11.如图,用一副特制的三角板可以画出一些特殊角.在下列选项中,不能画出的角度是( )A .81B .63C .54D .5512.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A13.3-的绝对值是( )A .3-B .13- C .3 D .3±14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个,设计划做x 个“中国结”,可列方程( )A .9764x x --=B .96x -=74x +C .x 9x+764+=D .x 9x 764+-=15.下列计算中正确的是( )A .()33a a -=B .235a b ab +=C .22243a a a -=D .332a a a +=二、填空题16.如图是一个正方体的展开图,把展开图折叠成正方体后,与数字3所在的面相对的面上的数字是________.17.计算: x(x-2y) =______________18.若a -2b =1,则3-2a +4b 的值是__.19.把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62°,则∠DEF =_____°.20.如图,O 为模拟钟面圆心,M 、O 、N 在一条直线上,指针OA 、OB 分别从OM 、ON 同时出发,绕点O 按顺时针方向转动,OA 运动速度为每秒12°,OB 运动速度为每秒4°,当一根指针与起始位置重合时,转动停止,设转动的时间为t 秒,当t =______秒时,∠AOB=60°.21.若代数式m 42a b 与2n 15a b +-是同类项,则n m =______.22.如图,已知∠AOB =150°,∠COD =40°,∠COD 在∠AOB 的内部绕点O 任意旋转,若OE 平分∠AOC ,则2∠BOE ﹣∠BOD 的值为___°.23.若 2230α'∠=︒,则α∠的余角等于________.24.已知222x y -+的值是 5,则 22x y -的值为________. 25.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .三、解答题26.如图,已知BD 平分∠ABC ,点F 在AB 上,点G 在AC 上,连接FG 、FC ,FC 与BD 相交于点H ,如果∠GFH 与∠BHC 互补,那么∠1=∠2吗?请说明理由.27.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?28.如图,OC 是一条射线,OD 、OE 分别是AOC ∠和BOC ∠的平分线.(1)如图①,当80AOB ∠=︒时,则DOE ∠的度数为________________;(2)如图②,当射线OC 在AOB ∠内绕O 点旋转时,∠BOE 、EOD ∠、DOA ∠三角之间有怎样的数量关系?并说明理由;(3)当射线OC 在AOB ∠外如图③所示位置时,(2)中三个角:∠BOE 、EOD ∠、DOA ∠之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC 在AOB ∠外如图④所示位置时,∠BOE 、EOD ∠、DOA ∠之间数量关系是____________.29.计算:(1)()375244128⎛⎫-+-⨯- ⎪⎝⎭(2)()24123-+⨯-30.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,FOC ∠=90°,∠1=40°.求∠2和∠3的度数.31.定义:对于一个两位数x,如果x满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S(x).例如,a=13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S(13)=4.(1)下列两位数:20,29,77中,“相异数”为,计算:S(43)=;(2)若一个“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10,求相异数y;(3)小慧同学发现若S(x)=5,则“相异数”x的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例.32.如图,在方格纸中,A、B、C为3个格点,点C在直线AB外.(1)仅用直尺,过点C画AB的垂线m和平行线n;(2)请直接写出(1)中直线m、n的位置关系.33.如图,已知所有小正方形的边长都为1,点A、B、C都在格点上,借助网格完成下列各题.(1)过点A画直线BC的垂线,并标出垂足D;(2)线段______的长度是点C到直线AD的距离;(3)过点C画直线AB的平行线交于格点E,求出四边形ABEC的面积.四、压轴题34.请观察下列算式,找出规律并填空. 111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值. 35.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示;②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .36.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.37.尺规作图是指用无刻度的直尺和圆规作图。
七年级上册期末试卷(培优篇)(Word 版 含解析)一、选择题1.下列运算正确的是( ) A .332(2)-=- B .22(3)3-=- C .323233-⨯=-⨯ D .2332-=-2.下列说法错误的是( ) A .对顶角相等 B .两点之间所有连线中,线段最短 C .等角的补角相等D .不相交的两条直线叫做平行线 3.下面计算正确的是( ) A .2233x x -= B .235325a a a += C .10.2504ab ab -+=D .33x x +=4.在55⨯方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( )(1)(2)A .先向下移动1格,再向左移动1格;B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格:D .先向下移动2格,再向左移动2格5.如图,几何体的名称是( )A .长方体B .三角形C .棱锥D .棱柱6.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m7.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .13x ﹣1D .6x 2+13x ﹣18.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13B .12C .23D .19.下列计算结果正确的是( ) A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy +=10.画如图所示物体的主视图,正确的是( )A .B .C .D .11.3-的倒数是( ) A .3B .13C .13-D .3-12.下列运算中,结果正确的是( ) A .3a 2+4a 2=7a 4 B .4m 2n+2mn 2=6m 2n C .2x ﹣12x =32x D .2a 2﹣a 2=213.2019年12月15开始投入使用的盐城铁路综合客运枢纽,建筑总面积的为324000平方米,数据324000用科学记数法可表示为( ) A .33.2410⨯ B .43.2410⨯C .53.2410⨯D .63.2410⨯ 14.下列各题中,运算结果正确的是( )A .325a b ab +=B .22422x y xy xy -=C .222532y y y -=D .277a a a +=15.下列运用等式的性质,变形正确的是( ) A .若x=y ,则x ﹣5=y+5 B .若a=b ,则ac=bc C .若a bc c =,则2a=3b D .若x=y ,则x y a a= 二、填空题16.已知关于 x 的一元一次方程 5x - 2a = 6 的解 x=1,则 a 的值是___________. 17.若单项式2a m b 4与-3ab 2n 是同类项,则m -n =__.18.如图,从A 到B 有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是 .19.已知A =5x +2,B =11-x ,当x =_____时,A 比B 大3. 20.已知76A ∠=︒,则A ∠的余角的度数是_____________. 21.2-的结果是_______.22.正方体切去一块,可得到如图几何体,这个几何体有______条棱.23.三味书屋推出售书优惠方案:(1)一次性购书不超过100元,不享受优惠;(2)一次性购书超过100元但不超过200元一律打九折;(3)一次性购书超过200元及以上一律打八折。
七年级数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是A .3mnB .23m nC .3m nD .32m n2.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒3.倒数是-2的数是( )A .-2B .12-C .12D .24.下列几何体三视图相同的是( )A .圆柱B .圆锥C .三棱柱D .球体5.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣120206.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .19 7.下列各组代数式中,不是同类项的是( )A .2与-5B .-0.5xy 2与3x 2yC .-3t 与200tD .ab 2与-8b 2a 8.拖拉机加油50L 记作50L +,用去油30L 记作30L -,那么()5030++-等于( ) A .20 B .40 C .60 D .809.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a10.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( )A .﹣5x ﹣1B .5x+1C .13x ﹣1D .6x 2+13x ﹣1 11.如图,AB ∥CD ,AD 平分∠BAC ,且∠C=80°,则∠D 的度数为( )A .50°B .60°C .70°D .100°12.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角D .EOD ∠与BOC ∠是对顶角 13.下列运算中,结果正确的是( )A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=2 14.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分 B .3点30分 C .6点45分 D .9点15.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .二、填空题16.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.17.正方体切去一块,可得到如图几何体,这个几何体有______条棱.18.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_______.19.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.20. 当m = __时,方程21x m x +=+的解为4x =-.21.若 2230α'∠=︒,则α∠的余角等于________.22.已知222x y -+的值是 5,则 22x y -的值为________. 23.如图,已知3654AOB '∠=︒,射线OC 在AOB ∠的内部且12AOC BOC ∠=∠,则AOC ∠=___.24.有下列三个生活、生产现象:①用两个钉子就可以把木条固定在干墙上;②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线.其中可用“两点之间,线段最短”来解释的现象有_____(填序号).25.216x -的系数是________ 三、解答题26.将正整数1至2019按照一定规律排成下表:记a ij 表示第i 行第j 个数,如a 14=4表示第1行第4个数是4.(1)直接写出a 35= ,a 54= ;(2)①若a ij =2019,那么i = ,j = ,②用i ,j 表示a ij = ; (3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2026.若能, 求出这5个数中的最小数,若不能请说明理由.27.给出定义如下:若一对实数(,)a b 满足4a b ab -=+,则称它们为 一对“相关数”,如:3377488-=⨯+,故3(7,)8是一对“相关数”. (1)数对(1,1),(2,6),(0,4)---中是“相关数”的是___________; (2)若数对(,3)x -是“相关数”,求x 的值;(3)是否存在有理数数,m n ,使数对(,)m n 和(,)n m 都是“相关数”,若存在,求出一对,m n 的值,若不存在,说明理由.28.先化简,再求值:()()222227a b ab 4a b 2a b 3ab +---,其中a 、b 的值满足2a 1(2b 1)0-++= 29.运动场环形跑道周长400米,小红跑步的速度是爷爷的53倍,小红在爷爷前面20米,他们沿跑道的同一方向同时出发,5min 后小红第一次与爷爷相遇.小红和爷爷跑步的速度各是多少?30.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格 阶梯 用户年用气量(单位:立方米)2018年单价 (单位:元/立方米) 2019年单价 (单位:元/立方米) 第一阶梯0-300(含) a 3 第二阶梯300-600(含) 0.5a + 3.5 第三阶梯 600以上 1.5a +5(1)甲用户家2018年用气总量为280立方米,则总费用为 元(用含a 的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a 的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?31.有三条长度均为a 的线段,分别按以下要求画圆.(1)如图①,以该线段为直径画一个圆,记该圆的周长为C 1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C 2,请指出C 1和C 2的数量关系,并说明理由;(2)如图③,当a =11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为 .(直接填写答案,结果保留π)32.先化简,再求值:()()22225343a b abab a b ---+,其中a=-2,b=12; 33.计算:(1)25)(277+-()-(-)-; (2)315(2)()3-⨯÷-. 四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.35.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB .(1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.36.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.37.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.38.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解.(1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?39.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)(2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.40.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.41.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数:(2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.42.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O 作射线OE ,当OE 恰好为∠AOC 的角平分线时,另作射线OF ,使得OF 平分∠BOD ,则∠EOF 的度数是__________度;(2)如图2,过点O 作射线OE ,当OE 恰好为∠AOD 的角平分线时,求出∠BOD 与∠COE 的数量关系;(3)过点O 作射线OE ,当OC 恰好为∠AOE 的角平分线时,另作射线OF ,使得OF 平分∠COD ,若∠EOC=3∠EOF ,直接写出∠AOE 的度数43.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0na b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.2.C解析:C【解析】【分析】设∠B ′FE =x ,根据折叠的性质得∠BFE =∠B ′FE =x ,∠AEF =∠A ′EF ,则∠BFC =x−24°,再由第2次折叠得到∠C ′FB =∠BFC =x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A ′EF =180°−∠B ′FE =112°,所以∠AEF =112°.【详解】如图,设∠B ′FE =x ,∵纸条沿EF 折叠,∴∠BFE =∠B ′FE =x ,∠AEF =∠A ′EF ,∴∠BFC =∠BFE−∠CFE =x−24°,∵纸条沿BF 折叠,∴∠C ′FB =∠BFC =x−24°,而∠B ′FE +∠BFE +∠C ′FE =180°,∴x +x +x−24°=180°,解得x =68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.3.B解析:B【解析】【分析】根据倒数的定义:两个数的乘积是1,则这两个数互为倒数可求解.【详解】解:12()12-⨯-=∴倒数是-2的数是1 2 -故选:B【点睛】本题考查了倒数,熟练掌握倒数的定义是解题的关键.4.D解析:D【解析】【分析】根据几何体的主视图、左视图、俯视图的形状即可判断.【详解】解:A选项,圆柱的主视图和左视图为长方形,俯视图为圆,不相同,A错误;B选项,圆锥的主视图和左视图为三角形,俯视图为圆及圆心,不相同,B错误;C选项,三棱柱的三视图分别为三角形,三角形,三角形及中心与顶点的连线, C错误;D选项,球体的三视图均为相同的圆,D正确.故选:D【点睛】本题考查了三视图,熟练掌握基础几何体的三视图是解题的关键.5.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.6.D解析:D【解析】【分析】根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步列方程即可.【详解】解:1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…x张长方形餐桌的四周可坐4x+2人;则依题意得:4x+2=78,解得:x=19,故选:D.【点睛】此题考查图形的变化规律和由实际问题抽象出一元一次方程,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.7.B解析:B【解析】【分析】同类项定义:单项式所含字母及字母指数相同的是同类项,单个数也是同类项.根据定义即可判断选择项.【详解】A是两个常数,是同类项;B中两项所含字母相同但相同字母的指数不同,不是同类项;C和D所含字母相同且相同字母的指数也相同的项,是同类项.故选:B.【点睛】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.8.A解析:A【解析】根据有理数的实际意义即可求解.【详解】()++-表示拖拉机加油50L,再用去油30L,故剩下20L5030故选A.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性.9.C解析:C【解析】【分析】根据数轴得出-3<a<-2,再逐个判断即可.【详解】A、∵从数轴可知:-3<a<-2,∴2<-a<3,故本选项不符合题意;B、∵从数轴可知:-3<a<-2,∴2<a<3,故本选项不符合题意;C、∵从数轴可知:-3<a<-2,∴2<a<3,∴1<|a|-1<2,故本选项符合题意;D、∵从数轴可知:-3<a<-2,∴3<1 –a<4,故本选项不符合题意;故选:C.【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a<-2是解此题的关键.10.A解析:A【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】根据题意列得:(3x2+4x−1)−(3x2+9x)=3x2+4x-1−3x2−9x=−5x−1.故选A.【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.11.A【解析】∵AD 平分∠BAC ,∴∠BAD=∠CAD .∵AB ∥CD ,∴∠BAD=∠D .∴∠CAD=∠D .∵在△ACD 中,∠C+∠D+∠CAD=180°,即80°+∠D+∠D=180°,解得∠D=50°,故选A .12.D解析:D【解析】【分析】根据余角、邻补角、对顶角的定义即可求解.【详解】由图可知,∵OE CD ⊥∴ 1∠与2∠互为余角,A 正确;3∠与2∠互为余角,B 正确;3∠与AOD ∠互为补角,C 正确;AOD ∠与BOC ∠是对顶角,故D 错误;故选D.【点睛】此题主要考查相交线,解题的关键是熟知余角、邻补角、对顶角的定义.13.C解析:C【解析】【分析】将选项A ,C ,D 合并同类项,判断出选项B 中左边两项不是同类项,不能合并,即可得出结论,【详解】解:A 、3a 2+4a 2=7a 2,故选项A 不符合题意;B 、4m 2n 与2mn 2不是同类项,不能合并,故选项B 不符合题意;C.、2x -12x =32x ,故选项C 符合题意; D 、2a 2-a 2=a 2,故选项D 不符合题意;故选C .【点睛】本题考查同类项的意义,合并同类项的法则,解题关键是掌握合并同类项法则.14.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a,如果a大于180°,夹角=360°-a,如果a≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.15.D解析:D【解析】【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【详解】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图一共三列,左边一列1个正方体,右边一列1个正方体,中间一列有3个正方体,故选D.【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题16.【解析】【分析】根据题意可知单项式与是同类项,从而可求出m的值.【详解】解:∵若单项式与的差仍是单项式,∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】解析:3【解析】【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式,∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3. 17.12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.解析:12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.18.29或6.【解析】【详解】试题解析:第一个数就是直接输出其结果的:5x-1=144,解得:x=29,第二个数是(5x-1)×5-1=144解得:x=6;第三个数是:5[5(5x-1)-解析:29或6.【解析】【详解】试题解析:第一个数就是直接输出其结果的:5x-1=144,解得:x=29,第二个数是(5x-1)×5-1=144解得:x=6;第三个数是:5[5(5x-1)-1]-1=144,解得:x=1.4(不合题意舍去),第四个数是5{5[5(5x-1)-1]-1}-1=144,解得:x=1225(不合题意舍去)∴满足条件所有x的值是29或6.19.一【解析】【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答解析:一【解析】【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.20.5【解析】【分析】将代入方程,然后解一元一次方程即可.【详解】解:由题意,将代入方程解得:m=5故答案为:5【点睛】本题考查方程的解和解一元一次方程,正确计算是本题的解题关键.解析:5【解析】【分析】将4x =-代入方程,然后解一元一次方程即可.【详解】解:由题意,将4x =-代入方程2(4)41m ⨯-+=-+解得:m=5故答案为:5【点睛】本题考查方程的解和解一元一次方程,正确计算是本题的解题关键.21.【解析】【分析】根据余角的定义,即和为90°的两角叫互为余角,列算式求解即可.【详解】解:∵的余角为.故答案为:.【点睛】本题考查余角的定义及度、分、秒之间的运算,掌握定义是解答此解析:'6730︒【解析】【分析】根据余角的定义,即和为90°的两角叫互为余角,列算式求解即可.【详解】解:∵ 2230α'∠=︒α∠的余角为9022306730''-︒=︒.故答案为:'6730︒.【点睛】本题考查余角的定义及度、分、秒之间的运算,掌握定义是解答此题的关键.22.3【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,,∴.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键.解析:3【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,2225x y -+=,∴223x y -=.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键. 23.【解析】【分析】根据角的和差倍分进行计算即可.【详解】解:设∵∴∴∵∴∴∴故答案为:【点睛】本题考查了角的和差倍分,根据题意列出方程是解题的关键.解析:1218'︒【解析】【分析】根据角的和差倍分进行计算即可.【详解】解:设AOC x ∠= ∵12AOC BOC ∠=∠ ∴=2BOC x ∠∴=23AOB AOC BOC x x x ∠=∠+∠+=∵3654AOB '∠=︒∴33654x '=︒∴1218x '=︒∴1218AOC '∠=︒故答案为:1218'︒ 【点睛】本题考查了角的和差倍分,根据题意列出方程是解题的关键.24.②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线; ②把弯曲的公路改直能缩短路程,解析:②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,根据两点之间,线段最短;③植树时只要定出两颗树的位置,就能确定同一行所在的直线根据两点确定一条直线; 故答案为②.考点:线段的性质:两点之间线段最短.25.【解析】【分析】根据单项式的系数的定义即可求解.【详解】解:的系数是.故答案为:.【点睛】本题考查单项式的系数.单项式中的数字因数叫做单项式的系数. 解析:16- 【解析】【分析】根据单项式的系数的定义即可求解.【详解】 解:216x -的系数是16-. 故答案为:16-. 【点睛】本题考查单项式的系数.单项式中的数字因数叫做单项式的系数.三、解答题26.(1)23,40;(2)①225,3;②9(i ﹣1)+j ;或者9 i ﹣9+j ;(3)不能等于2026,见解析.【解析】【分析】(1)根据表格直接得出即可.(2)①根据每行由小到大排列8个数,用2019除以8,根据除数与余数即可求值.②根据表格数据排列规律即可.(3)设5个数最小的为x,用含x 的代数式分别表示出其他4个数,根据求和等式列出方程,解出即可.【详解】解:(1)a 35=23,a 54=40;(2) ①∵2019÷9=224…3,∴2019是第225行的第3个数,∴i =225,j =3.故答案为225,3;②根据题意,可得a ij =9(i ﹣1)+j .故答案为9(i ﹣1)+j ;或者9i -9+j(3)设这5个数中的最小数为x ,则其余4个数可表示为x +4,x +10,x +12, x +20, 根据题意,得x +x +4+x +10+x +12+x +20=2026,解得x =396.∵396÷9=44,∴396是第44行的第9个数,而此时x +4=400是第45行的第4个数,与396不在同一行,∴将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和不能等于2026.【点睛】本题为新定义的类型题,读懂题意根据规定计算是解题关键.27.(1)(0,4)-;(2)14x =;(3)不存在,证明详见解析. 【解析】【分析】(1)根据“相关数”的定义和公式进行计算,左右相等的即为答案;(2)代入新定义公式得到方程,解方程即可解答;(3)先假设存在,分别代入新定义公式,假设相等得:m n n m -=-,只有0的相反数仍等于它本身等于0,所以得到,4m n mn =+的值不为0,即m-n≠mn+4,从而得解.【详解】(1)∵数对(1,1):左边:a-b=1-1=0,右边:ab+4=1×1+4=5,左边≠右边,∴(1,1)不是;数对(-2,-6):左边:a-b=-2-(-6)=4,右边:ab+4=(-2)×(-6)+4=16,左边≠右边,∴(-2,-6)不是;数对(0,-4):左边:a-b=0-(-4)=4,右边:ab+4=0×(-4)+4=4,左边=右边,∴(0,-4)是;即数对(1,1),(2,6),(0,4)---中是“相关数”的是(0,4)-;(2)由题意得:(3)34x x --=-+解:334x x +=-+343x x +=-41x =14x = 答:14x =(3)不存在.理由:假设存在(,)m n 满足4m n mn -=+,(,)n m 满足4n m nm -=+,且两个等式右边相同m n n m ∴-=-若满足m n n m -=-,则m n n m -=-=0,4m n mn ∴=+的值不为0m n -和4mn +的结果不同,4m n mn ∴-≠+4n m nm -≠+综上所述,n m -和4nm +的结果不同 ,不存在有理数,m n ,使数对(,)m n 和(,)n m 都是“相关数”,【点睛】本题考查有理数的计算和解方程,解题关键是理解和运用新定义公式.28.12【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:由题意得,a 10-=,2b 10+=,解得,a 1=,1b 2=-, 原式222227a b ab 4a b 2a b 3ab =+--+22a b 4ab =+211141()22⎛⎫=⨯-+⨯⨯- ⎪⎝⎭ 12=. 故答案为:12. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.29.小红速度为190 米/分,爷爷速度为114米/分.【解析】【分析】由题意得第一次与爷爷相遇,必定小红比爷爷多跑一圈,所以小红的路程=爷爷的路程+400-20,由该等式列成方程解出即可.【详解】解:设爷爷的速度为x 米/分,小红的速度为53x 米/分. 5·53x =5x +400-20 251538033x x -=103803x = x =11453x =190 米/分. 答: 小红速度为190 米/分,爷爷速度为114米/分.【点睛】本题考查一元一次方程的应用,关键在于读题列出方程.30.(1)280a ;(2)2.5;(3)丙用户家2018年天然气用气量为650立方米,2019年天然气用气量为550立方米【解析】【分析】(1)根据题意即可列出代数式;(2)根据题意列出方程即可求解a 的值;(3)根据题意分①2019年用气量不超过300立方米,②2019年用气量超过300立方米,但不超过600立方米分别列出方程即可求解.【详解】(1)甲用户家2018年用气总量为280立方米,则总费用为280a 元,故答案为:280a .(2)由题意得:()3001500.51200a a ++=.解得: 2.5a =.∴a 的值为2.5.(3)设丙用户家2019年用气x 立方米,2018年用气()1200x -立方米.∵2018年用气量大于2019年用气量,∴2018年用气量大于600立方米,2019年用气量小于600立方米.①2019年用气量不超过300立方米,由题意得:()7509004120060033625x x ++--+=.解得:425x =.不合题意,舍去.②2019年用气量超过300立方米,但不超过600立方米.由题意得:()75090041200600x ++--()3300 3.5300x +⨯+⨯-3625=.解得:550x =,符合题意.∴1200650x -=.答:丙用户家2018年天然气用气量为650立方米,2019年天然气用气量为550立方米.【点睛】本题考查了一元一次方程的应用,解题的关键是根据收费标准,列式计算;找准等量关系,正确列出一元一次方程.31.(1)C 1=C 2,理由详见解析;(2)11π.【解析】【分析】(1)设线段a 分长的两段为a 1、a 2,则a 1+a 2=a ,根据圆的周长公式C d π=得到C 1=πa ,C 2=π(a 1+a 2)=πa ,从而得到C 1和C 2的相等;(2)设小圆的直径分别为d 1、d 2、d 3,…,d n ,则d 1+d 2+d 3+…+d n =a =11,然后根据圆的周长公式得到C 1+C 2+C 3+…+C n =πd 1+πd 2+πd 3+…+πd n =π(d 1+d 2+d 3+…+d n )=a π,即可求解.【详解】解:(1)C 1=C 2.理由如下:设线段a 分长的两段为a 1、a 2,则a 1+a 2=a ,∵C 1=πa ,C 2=πa 1+πa 2=π(a 1+a 2)=πa ,∴C 1=C 2;(2)设小圆的直径分别为d 1、d 2、d 3,…,d n ,则d 1+d 2+d 3+…+d n =a =11,∵C 1+C 2+C 3+…+C n =πd 1+πd 2+πd 3+…+πd n =π(d 1+d 2+d 3+…+d n )=11π.故答案为:11π.【点睛】本题主要考查圆的周长,掌握圆的周长公式是解题的关键.32.3a 2b-ab 2,132 【解析】【分析】先根据去括号法则和合并同类项法则将整式化简,然后代入求值即可.【详解】解:()()22225343a b ab ab a b ---+=2222155412a b ab ab a b -+-=223a b ab -将a=-2,b=12代入,得 原式=()()221113322222⎛⎫⨯-⨯--⨯= ⎪⎝⎭【点睛】此题考查的是整式的化简求值题,掌握去括号法则和合并同类项法则是解决此题的关键.33.(1)1;(2)120.【解析】【分析】(1)根据有理数加减法混合运算法则计算即可;(2)根据有理数四则混合运算法则计算即可.【详解】。
人教版七年级数学下册 期末试卷(培优篇)(Word 版 含解析)一、选择题1.如图,直线a ,b 被直线c 所截,则下列符合题意的结论是( )A .13∠=∠B .14∠=∠C .24∠∠=D .34180∠+∠=︒ 2.下列现象中是平移的是( ) A .翻开书中的每一页纸张 B .飞碟的快速转动C .将一张纸沿它的中线折叠D .电梯的上下移动3.平面直角坐标系中,点M (1,﹣5)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.下列说法中,真命题的个数为( )①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A .1个B .2个C .3个D .4个 5.如图,直线//a b ,点,M N 分别在直线,a b 上,P 为两平行线间一点,那么123∠+∠+∠等于( )A .360︒B .300︒C .270︒D .180︒6.有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3)3322--=;(4)364是无理数;(5)当0a ≠时,一定有a 是正数,其中正确的说法有( ) A .1个 B .2个 C .3个 D .4个7.如图,将一张长方形纸片折叠,若250∠=︒,则1∠的度数是( )A .80°B .70°C .60°D .50°8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则运动到第2021秒时,点P 所处位置的坐标是( )A .(2020,﹣1)B .(2021,0)C .(2021,1)D .(2022,0)二、填空题9.已知实数x,y 满足2x -+(y+1)2=0,则x-y 的立方根是_____.10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 11.如图,已知△ABC 是锐角三角形,BE 、CF 分别为∠ABC 与∠ACB 的角平分线,BE 、CF 相交于点O ,若∠A=50°,则∠BOC=_______.12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.13.如图1是长方形纸带,19DEF ∠=︒,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中的CFE ∠的度数是_________度.14.22的小数部分我们不可能2的整数部分是1,将这个数减去其整数部分,差就是小数部分,于是21225x y +,其中x 是整数,且01y <<,写出x ﹣y 的相反数_____.15.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.16.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n ,则A 2021的坐标是___________.三、解答题17.计算:(1)|2−3|+38+23;(2)已知(x –2)2=16,求x 的值.18.求满足下列各式x 的值(1)2x 2﹣8=0;(2)12(x ﹣1)3=﹣4.19.如图,已知3A ∠=∠,DE BC ⊥,AB BC ⊥,求证:DE 平分CDB ∠.证明:DE BC ⊥,AB BC ⊥ (已知)90DEC ABC ∴∠=∠=︒(垂直的定义)//DE AB ∴( )23∴∠=∠( )1∠= (两直线平行,同位角相等)又3A ∠=∠(已知)∴ ( )DE ∴平分CDB ∠(角平分线的定义)20.如图,在平面直角坐标系中,三角形ABC 经过平移得到三角形A 1B 1C 1,结合图形,完成下列问题:(1)三角形ABC 先向左平移 个单位,再向 平移 个单位得到三角形A 1B 1C 1. (2)三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是 .(3)三角形ABC 的面积是 .21.23490a b a -+-=(1)求实数,a b 的值;(2b 的整数部分为x ,小数部分为y①求2x y +的值;②已知103kx m =+,其中k 是一个整数,且01m <<,求k m -的值.二十二、解答题22.有一块正方形钢板,面积为16平方米.(1)求正方形钢板的边长.(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为3:2,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由.(参考数2 1.414≈3 1.732≈).二十三、解答题23.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答.问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.24.已知直线//AB CD ,M ,N 分别为直线AB ,CD 上的两点且70MND ∠=︒,P 为直线CD 上的一个动点.类似于平面镜成像,点N 关于镜面MP 所成的镜像为点Q ,此时,,NMP QMP NPM QPM MNP MQP ∠=∠∠=∠∠=∠.(1)当点P 在N 右侧时:①若镜像Q 点刚好落在直线AB 上(如图1),判断直线MN 与直线PQ 的位置关系,并说明理由;②若镜像Q 点落在直线AB 与CD 之间(如图2),直接写出BMQ ∠与DPQ ∠之间的数量关系;(2)若镜像PQ CD ⊥,求BMQ ∠的度数.25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.26.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵180BDC DBC BCD ∠+∠+∠=︒,(______)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(______)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.【参考答案】一、选择题1.A解析:A【分析】利用对顶角、同位角、同旁内角定义解答即可.【详解】解:A、∠1与∠3是对顶角,故原题说法正确,符合题意;B、由条件不能得出∠1=∠4,故原题说法错误,不符合题意;C、∠2与∠4是同位角,只有a//b时,∠2=∠4,故原题说法错误,不符合题意;D、∠3与∠4是同旁内角,只有a//b时,∠3+∠4=180°故原题说法错误,不符合题意;故选:A.【点睛】此题主要考查了对顶角、同位角、同旁内角,关键是掌握各种角的定义.2.D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题,④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.5.A【分析】过点P作PE∥a.则可得出PE∥a∥b,结合“两直线平行,内错角相等”可得出∠2=∠AMP+∠BNP,再结合邻补角的即可得出结论.【详解】解:过点P作PE∥a,如图所示.∵PE∥a,a∥b,∴PE∥a∥b,∴∠AMP=∠MPE,∠BNP=∠NPE,∴∠2=∠MPE+∠NPE=∠AMP+∠BNP.∵∠1+∠AMP=180°,∠3+∠BNP=180°,∴∠1+∠2+∠3=180°+180°=360°.故选:A.【点睛】本题考查了平行线的性质以及角的计算,解题的关键是找出∠2=∠AMP+∠BNP.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.6.B【分析】根据平方根与立方根的定义与性质逐个判断即可.【详解】-是36的一个平方根,则此说法正确;(1)6(2)16的平方根是4±,则此说法错误;(3)33328(2)2--=--=--=,则此说法正确;(4)3644=,4是有理数,则此说法错误;(5)当0a<时,a无意义,则此说法错误;综上,正确的说法有2个,故选:B.【点睛】本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键.7.A【分析】先由折叠的性质得出∠4=∠2=50°,再根据矩形对边平行可以得出答案.【详解】解:如图,由折叠性质知∠4=∠2=50°,∴∠3=180°-∠4-∠2=80°,∵AB∥CD,∴∠1=∠3=80°,故选:A .【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质.8.C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P 的坐标.【详解】半径为1个单位长度的半圆的周长为:,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个单位长度 解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P 的坐标.【详解】半径为1个单位长度的半圆的周长为:1212ππ⨯⨯=, ∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度, ∴点P 1秒走12个半圆, 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0),…,可得移动4次图象完成一个循环,∵2021÷4=505…1,∴点P 运动到2021秒时的坐标是(2021,1),故选:C .【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二、填空题9.【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是.【点睛】本题考查的是【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.10.4【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,,,则a+b的值是:,故答案为.【点睛】本题考查了关于x轴对称的解析:4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.11.115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE 、CF 分别为∠ABC 与∠ACB 的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB解析:115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE 、CF 分别为∠ABC 与∠ACB 的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB ,∴∠OBC+∠OCB=12(∠ABC+∠ACB)= 12×130°=65°,在△OBC 中,∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115° 12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD =50°, ∴12ECD ACD ∠=∠=25°, ∴∠1=25°,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13.123【分析】由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG .【详解】解:∵AD//解析:123【分析】由题意根据折叠的性质可得∠DEF =∠EFB =19°,图2中根据平行线的性质可得∠GFC =142°,图3中根据角的和差关系可得∠CFE =∠GFC -∠EFG .【详解】解:∵AD //BC ,∴∠DEF =∠EFB =19°,在图2中,∠GFC =180°-∠FGD =180°-2∠EFG =142°,在图3中,∠CFE =∠GFC -∠EFG =123°.故答案为:123.【点睛】本题考查平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.14.【分析】根据题意得方法,估算的大小,求出的值,进而求出x ﹣y 的值,再通过相反数的定义,即可得到答案.【详解】∴的整数部分是2由题意可得的整数部分即,则小数部分则∴x﹣y的相反6【分析】2的值,进而求出x﹣y的值,再通过相反数的定义,即可得到答案.【详解】解:∵∴2由题意可得2的整数部分即4x=,则小数部分2y=则42)6x y-=-=∴x﹣y66.【点睛】本题主要考查二次根式的估算,解题的关键是估算无理数的小数部分和整数部分.15.或【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,当0≤x<3时,2x≥0,x-3解析:2或2 -3【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=23 -,当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=83<3(不合题意,舍去),综上,x的值为2或23 -,故答案为2或2 3 -.【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键. 16.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,2021÷4=505•••1,所以A2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1)原式=;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式;(2)【点睛】本题考查平解析:(1)原式=4;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式224=+=+x-=,(2)()22161262x x ==-,,【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.18.(1)或者;(2)【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的立方根解方程【详解】(1)2x2﹣8=0,,,解得或者;(2)(x ﹣1)3=﹣4,,,解得.【解析:(1)2x =或者2x =-;(2)1x =-【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的立方根解方程【详解】(1)2x 2﹣8=0,228x =,24x =,解得2x =或者2x =-;(2)12(x ﹣1)3=﹣4,3(1)8x -=-, 12x -=-,解得1x =-.【点睛】本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键. 19.见解析【分析】应用平行线的判定与性质进行求解即可得出答案.解:证明:∵DE ⊥BC ,AB ⊥BC (已知),∴∠DEC=∠ABC=90°(垂直的定义).∴DE ∥AB (同位角相等,两直线解析:见解析【分析】应用平行线的判定与性质进行求解即可得出答案.【详解】解:证明:∵DE ⊥BC ,AB ⊥BC (已知),∴∠DEC =∠ABC =90°(垂直的定义).∴DE ∥AB (同位角相等,两直线平行).∴∠2=∠3(两直线平行,内错角相等),∠1=∠A (两直线平行,同位角相等).又∵∠A =∠3(已知),∴∠1=∠2(等量代换).∴DE 平分∠CDB (角平分线的定义).【点睛】本题主要考查了平行线的判定与性质,熟练应用平行线的判定与性质进行求解是解决本题的关键.20.(1)5,下,4;(2)(,);(3)7.【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.【详解】解:(1)根据题图解析:(1)5,下,4;(2)(5x -,4y -);(3)7.【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.【详解】解:(1)根据题图可知,三角形ABC 先向左平移5个单位,再向下平移4个单位得到三角形A 1B 1C 1;故答案是:5,下,4;(2)由平移的性质:上加下减,左减右加可知,三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是(5x -,4y -),故答案是:(5x -,4y -);(3)11144142423162437222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---=,故答案是:7.【点睛】本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键.21.(1);;(2)①;②【分析】(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”型可求得a 和b 的值;(2)根据(1)中b 的值,可得的整数部分和小数部分,①将x 和y 的值代入解析:(1)7a =;21b =;(2)①4;【分析】(1)根据分式的值为0,分子为0且分母不能为02490a -=和70a +≠,再依据“0+0”型可求得a 和b 的值;(2)根据(1)中b 的整数部分和小数部分,①将x 和y 的值代入2x y +即可求值;②估算10k 是一个整数,且01m <<,可得k 和m 的值,由此可得k m -的值.【详解】解:(1)∵0=,∴2490a -=且70a +≠, ∴30a b -=,2490a -=且70a +≠, 即7,21a b ;(2)∵162125, ∴45<的整数部分为44,①244)4x y +=+=;②∵12<<, ∴8109<<,又∵104kx m k m =+=+,k 是一个整数,且01m <<, ∴2,10242k m ==⨯=∴2(2k m -=-=【点睛】本题考查分式为0的条件,算术平方根的整数部分和小数部分,不等式的性质,绝对值和算术平方根的非负性.(1)中掌握分式的值为0,分子为0且分母不为0是解题关键;(2)中理解一个数的整数部分+小数部分=这个数是解题关键.二十二、解答题22.(1)4米 (2)见解析(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x 值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解解析:(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为3x 米、2x 米,由其面积可得x 值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,∴4=米;(2)设长方形的长宽分别为3x 米、2x 米,则3212x x •=,22x =,x34x =,24x =<,∴长方形长是4米,所以李师傅不能办到.【点睛】本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.二十三、解答题23.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC= 解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒, 128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下: 如图3,过P 作//PF AD 交CD 于F , //AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠, 180BCP PCE ∠+∠=︒,PCE β∠=∠, 180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F , //AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠, 180BCP PCE ∠+∠=︒,PCE β∠=∠, 180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠. 理由:如图5,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.24.(1)①,证明见解析,②,(2)或.【分析】(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,解析:(1)①//MN PQ ,证明见解析,②70DPQ BMQ ∠∠+=︒,(2)160︒或20︒.【分析】(1) ①根据//AB CD 和镜像证出NMP QPM ∠=∠,即可判断直线MN 与直线PQ 的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证DPQ BM MQP Q ∠=∠∠+即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,分类讨论,依据平行线的性质求解即可.【详解】(1)①//MN PQ ,证明:∵//AB CD ,∴NPM QMP ∠=∠,∵,NMP QMP NPM QPM ∠=∠∠=∠,∴NMP QPM ∠=∠,∴//MN PQ ;②过点Q 作QF ∥CD ,∵//AB CD ,∴////AB CD QF ,∴1BMQ ∠=∠,2QPD ∠=∠,∴DPQ BM MQP Q ∠=∠∠+,∵70MNP MQP ∠=∠=︒,∴70DPQ BMQ ∠∠+=︒;(2)如图,当点P 在N 右侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,∴180NP FQP Q ∠=∠+︒,FQM BMQ ∠=∠,∵PQ CD ⊥,∴90NPQ ∠=︒,∴90FQP ∠=︒,∵70MND PQM ∠=∠=︒,∴20FQM ∠=︒,∴20BMQ ∠=︒,如图,当点P 在N 左侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF , 同理可得,90FQP ∠=︒,∵70MND ∠=︒,∴110MNP PQM ∠=∠=︒,∴20FQM ∠=︒,∵//AB QF ,∴180BM FQM Q ∠=∠+︒,∴160BMQ ∠=︒;综上,BMQ ∠的度数为160︒或20︒.【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.26.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85A ∠=︒;②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,由三角形外角性质可知,1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,∴12BDC A ∠=∠+∠+∠.(3)①如图①所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=135252585A BDC ABD ACD ∠=∠-∠-∠︒-︒-︒=︒,∴85A ∠=︒;②如图②所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=1406080ABD ACD BDC A ∠+∠=∠-∠︒-︒=︒,∵ABD ∠与ACD ∠的角平分线交于点E , ∴12EBD ABD ∠=∠,12ECD ACD ∠=∠, ∴()11140222EBD ECD ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠=︒, ∵140BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18040DBC DCB BDC ∠+∠=︒-∠=︒,∴80EBC ECB ∠+∠=︒,∵180E EBC ECB ∠+∠+∠=︒,∴100E ∠=︒;③如图③所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∵120BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18060DBC DCB BDC ∠+∠=︒-∠=︒,∵ABD ∠与ACD ∠的十等分线交于点3F ,∴3710DBF ABD ∠=∠,3710DCF ACD ∠=∠, ∴()33777101010DBF DCF ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠,∴()333371060CBF BCF EBF ECF A DBC D A CB BD CD ∠+∠=+︒∠+∠=∠+∠+∠+∠, ∵333180CBF BCF BF C +∠=︒∠+∠,∴333180=116CBF BC F F B C =︒-∠︒∠+∠,∴80ABD ACD ︒∠+∠=,∴()1208040A BDC ABD ACD ∠=∠-∠+∠=︒-︒=︒,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O ,∵AE 平分BAC ∠,BD 平分BDC ∠, ∴12BAE BAC ∠=∠,12BDE BDC ∠=∠, ∵BOE BAE ABD ∠=∠+∠,BOE E BDE ∠=∠+∠,∴BAE ABD E BDE ∠+∠=∠+∠, ∴()11+22BAC ABD E BAC ABD ACD ∠+∠=∠+∠+∠∠, ∴()1111+2222E BAC ABD ACD BAC ABD ABD ACD ∠=∠+∠∠-∠-∠=∠-∠,即2B C E ∠-∠=∠;⑤∵ABD ∠,BAC ∠的角平分线交于点E , ∴()1502BAE ABE BAC ABD ∠+∠=∠+∠=︒, ∴()180********AEB BAE ABE ∠=︒-∠+∠=︒-︒=︒.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.。
七年级期末试卷(培优篇)(Word 版 含解析) 一、选择题1.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是A .3mnB .23m nC .3m nD .32m n2.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++B .12(10)1360x x +=+C .60101312x x +-=D .60101213x x +-= 3.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-=B .20x 4x 5+=C .x x 5204+= D .x x 5204204+=+- 4.如图是我市十二月份某一天的天气预报,该天的温差是( )A .3℃B .7℃C .2℃D .5℃ 5.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .不确定6.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是( )A .赚了B .亏了C .不赚也不亏D .无法确定7.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a8.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m 9.多项式343553m n m n -+的项数和次数分别为( ) A .2,7B .3,8C .2,8D .3,7 10.由n 个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n 的最小值为( )A .10B .11C .12D .1311.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .12.下列运算中,结果正确的是( )A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=2 13.-5的倒数是 A .15 B .5 C .-15 D .-514.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且a +b +c +d =6,则点D 表示的数为( )A .﹣2B .0C .3D .515.一个长方形操场的长比宽长70米,根据需要将它扩建,把它的宽增加20米后,它的长就是宽的1.5倍.若设扩建前操场的宽为x 米,则下列方程正确的是( )A . 1.5(7020)x x =-+B .70 1.5(20)x x +=+C .70 1.5(20)x x +=-D .70 1.5(20)x x -=+二、填空题16.若221x x -++= 4,则2247x x -+的值是________.17.如图,已知,,AB DE BAC m CDE n ∠=︒∠=︒∕∕,则ACD ∠=___________°.18.已知关于x 的方程345m x -=的解是1x =,则m 的值为______.19.若4550a ∠=︒',则a ∠的余角为______.20.用一副三角尺可以直接得到或可以拼出的锐角的个数总共有___________个.21.当x =1时,代数式ax 2+2bx+1的值为0,则2a+4b ﹣3=_____.22.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.23.已知1x =-是方程23ax a =-的解,则a =__________.24.已知a ﹣2b =3,则7﹣3a +6b =_____.25.如果1x =是方程240x k +-=的解,那么k 的值是_________三、解答题 26.如图,数轴上线段AB =2(单位长度),CD =4(单位长度),点A 在数轴上表示的数是﹣8,点C 在数轴上表示的数是10.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度也向右匀速运动.(1)运动t 秒后,点B 表示的数是 ;点C 表示的数是 .(用含有t 的代数式表示)(2)求运动多少秒后,BC =4(单位长度);(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式4BD AP PC -=,若存在,求线段PD 的长;若不存在,请说明理由.27.《九章算术》中有“盈不足术”的问题,原文如下:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出5文,则差45文;每人出7文,则差3文.(1)设人数为x ,则用含x 的代数式表示羊价为___________或___________;(2)求人数和羊价各是多少?28.如图,直线AB,CD 相交于点O,OE 平分∠AOD,OF ⊥OC .(1)图中∠AOF 的余角是_____________ (把符合条件的角都填上);(2)如果∠1=28° ,求∠2和∠3的度数.29.某校七年级科技兴趣小组计划制作一批飞机模型,如果每人做6个,那么比计划多做了10个,如果每人做5个,那么比计划少做了14个.该兴趣小组共有多少人?计划做多少个飞机模型?30.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是 立方单位,表面积是 平方单位(包括底面积);(2)请在方格纸中用实线画出它的三个视图.31.计算(1)157()362612+-⨯ (2)()421723-+÷-32.如图,在方格纸中, A 、 B 、 C 为 3 个格点,点 C 在直线 AB 外.(1)仅用直尺,过点C画AB的垂线m和平行线n;(2)请直接写出(1)中直线m、n的位置关系.33.在平整的地面上,由若干个完全相同的棱长为10 cm的小正方体堆成一个几何体,如图①所示.(1)请你在方格纸中分别画出这个几何体的主视..图;..图和左视(2)若现在手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变,Ⅰ.在图①所示几何体上最多可以添加个小正方体;Ⅱ.在图①所示几何体上最多可以拿走个小正方体;Ⅲ.在题Ⅱ的情况下,把这个几何体放置在墙角,使得几何体的左面和后面靠墙,其俯视图如图②所示,若给该几何体露在外面的面喷上红漆,则需要喷漆的面积最少是多少平方厘米?四、压轴题,3,点P是射线AB上的一个动点34.如图,数轴上点A,B表示的有理数分别为6(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.35.已知A,B在数轴上对应的数分别用a,b表示,且点B距离原点10个单位长度,且位于原点左侧,将点B先向右平移35个单位长度,再向左平移5个单位长度,得到点A,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?36.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.37.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3(1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程)②若AB a ,AC b =,则MN =___________;(直接写出结果)(2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON .③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果)(3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)38.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.39.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .40.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解.①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由;(2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PB PC+的值不变.41.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.42.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).43.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.2.B解析:B【解析】【分析】实际生产12小时的零件比原计划13小时生产的零件多60件,根据生产总量=生产效率乘以时间即可列出方程【详解】实际生产12小时的零件数量是12(x+10)件,原计划13小时生产的零件数量是13x 件,由此得到方程12(10)1360x x +=+,故选:B.【点睛】此题考查列方程解决实际问题,正确理解原计划与实际生产的工作量之间的关系是解题的关键.3.D解析:D【解析】【分析】由题意可得顺水中的速度为(20+4)km/h ,逆水中的速度为(20﹣4)km/h ,根据“从甲码头顺流航行到乙码头,再返回甲码头共用5h ”可得顺水行驶x 千米的时间+逆水行驶x 千米的时间=5h ,根据等量关系代入相应数据列出方程即可.【详解】若设甲、乙两码头的距离为xkm ,由题意得:204204x x +=+-5. 故选D .【点睛】本题考查了由实际问题抽象出一元一次方程,关键是正确理解题意,抓住题目中的关键语句,列出方程.4.B【解析】【分析】用最高气温减去最低气温列出算式,然后再依据有理数的减法法则计算即可.【详解】解:该天的温差为()()52527--=+=℃,故选:B .【点睛】本题主要考查的是有理数的减法,掌握减法法则是解题的关键.5.B解析:B【解析】【分析】根据图形可看出,∠2的对顶角∠COE 与∠1互余,那么∠1与∠2就互余.【详解】解:图中,∠2=∠COE (对顶角相等),又∵AB ⊥CD ,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B .【点睛】本题考查了余角和垂线的定义以及对顶角相等的性质.6.B解析:B【解析】【分析】分别列方程求出两件衣服的进价,然后可得两件衣服分别赚了多少和赔了多少,则两件衣服总的盈亏就可求出.【详解】设第一件衣服的进价为x ,依题意得:x (1+25%)=90,解得:x =72,所以赚了解90−72=18元;设第二件衣服的进价为y ,依题意得:y (1−25%)=150,解得:y =120,所以赔了120−90=30元,所以两件衣服一共赔了12元.【点睛】解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.7.C解析:C【解析】【分析】根据数轴得出-3<a <-2,再逐个判断即可.【详解】A 、∵从数轴可知:-3<a <-2,∴2<-a<3,故本选项不符合题意;B 、∵从数轴可知:-3<a <-2,∴2<a <3,故本选项不符合题意;C 、∵从数轴可知:-3<a <-2,∴2<a <3,∴1<|a|-1<2,故本选项符合题意;D 、∵从数轴可知:-3<a <-2,∴3<1 –a<4,故本选项不符合题意;故选:C .【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a <-2是解此题的关键.8.D解析:D【解析】【分析】【详解】解:设小长方形的宽为a ,长为b ,则有b =n -3a ,阴影部分的周长:2(m -b )+2(m -3a )+2n =2m -2b +2m -6a +2n =4m -2(n -3a )-6a +2n =4m -2n +6a -6a +2n =4m .故选D .9.B解析:B【解析】【分析】根据多项式项数和次数的定义即可求解.【详解】多项式343553m n m n -+的项数为3,次数为8,故选B.此题主要考查多项式,解题的关键是熟知多项式项数和次数的定义.10.C解析:C【解析】【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形即可求出答案.【详解】由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n的最小值是:7+5=12,故选C.【点睛】此题主要考查了由三视图判断几何体,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.11.B解析:B【解析】试题分析:A.∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B.∠1、∠2是对顶角,根据其定义;故本选项正确;C.根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D.根据三角形的外角一定大于与它不相邻的内角;故本选项错误.故选B.考点:对顶角、邻补角;平行线的性质;三角形的外角性质.12.C解析:C【解析】【分析】将选项A,C,D合并同类项,判断出选项B中左边两项不是同类项,不能合并,即可得出结论,【详解】解:A、3a2+4a2=7a2,故选项A不符合题意;B、4m2n与2mn2不是同类项,不能合并,故选项B不符合题意;C.、2x-12x=32x,故选项C符合题意;D、2a2-a2=a2,故选项D不符合题意;故选C.【点睛】本题考查同类项的意义,合并同类项的法则,解题关键是掌握合并同类项法则.13.C解析:C【解析】【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是15-.故选C . 14.D解析:D【解析】【分析】设出其中的一个数,根据各个数在数轴的位置,表示出其它的数,列方程求解即可.【详解】设点D 表示的数为x ,则点C 表示的数为x ﹣3,点B 表示的数为x ﹣4,点A 表示的数为x ﹣7,由题意得,x +(x ﹣3)+(x ﹣4)+(x ﹣7)=6,解得,x =5,故选:D .【点睛】考查数轴表示数的意义,根据点在数轴上的位置得出所表示的数是正确解答的关键. 15.B解析:B【解析】【分析】先表示出操场的长,再根据“把它的宽增加20米后,它的长就是宽的1.5倍”列出方程即可.【详解】解:若设扩建前操场的宽为x 米,则它的长为70x +米,根据题意70 1.5(20)x x +=+,故选:B .【点睛】本题考查了一元一次方程的应用.解决本题的关键是找到等量关系.长=扩建后宽×1.5.二、填空题16.1【分析】先根据已知条件求出x2-2x=-3的值,将代数式变形后再代入进行计算即可得解.【详解】∵=4,∴x2-2x=-3,∴.故答案为:1.【点睛】本题考查了代数式求值解析:1【解析】【分析】先根据已知条件求出x 2-2x=-3的值,将代数式变形后再代入进行计算即可得解.【详解】∵221x x -++=4,∴x 2-2x=-3,∴22247=2(2)72(3)7671x x x x -+-+=⨯-+=-+=.故答案为:1.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键. 17..【解析】【分析】利用平行线的性质和三角形的内角和即可求出.【详解】延长ED 交AC 于F ,∵AB∥DE,∴∠3=∠BA C =m°,∠1=180°−∠3=180°−m°,∠2=180°−解析:180m n +-.【解析】【分析】利用平行线的性质和三角形的内角和即可求出.延长ED 交AC 于F ,∵AB ∥DE ,∴∠3=∠BAC =m°,∠1=180°−∠3=180°−m°,∠2=180°−∠CDE =180°−n°,故∠C =∠3−∠2=m°−180°+n°=m°+n°−180°.故答案为:m°+n°−180°.【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:此题要构造辅助线,运用三角形的一个外角等于和它不相邻的两个内角和.18.3【解析】【分析】方程的解满足方程,所以将代入方程可得的值.【详解】解:将代入方程得解得.故答案为:3.【点睛】本题考查了一元一次方程,熟练掌握一元一次方程的解的定义是解题的关键 解析:3【解析】【分析】方程的解满足方程,所以将1x =代入方程可得m 的值.【详解】解:将1x =代入方程345m x -=得345m -=解得3m =.故答案为:3.【点睛】本题考查了一元一次方程,熟练掌握一元一次方程的解的定义是解题的关键.19.【解析】根据余角的定义(两个角的和为,则这两个角互为余角)可求解.【详解】解:,所以的余角为.故答案为:.【点睛】本题考查了余角,熟练掌握余角的定义是解题的解析:4410'︒【解析】【分析】根据余角的定义(两个角的和为90︒,则这两个角互为余角)可求解.【详解】解:9045041504︒'='︒︒-,所以a ∠的余角为4410'︒.故答案为:4410'︒.【点睛】本题考查了余角,熟练掌握余角的定义是解题的20.【解析】【分析】用三角板画出角,是用角度加减法.比如:画个75°的角,先将30°角在纸上画出来,再将45°角叠加就画出了75°角.【详解】用一副三角板可以画出:15°、30°、45°、60解析:5【解析】【分析】用三角板画出角,是用角度加减法.比如:画个75°的角,先将30°角在纸上画出来,再将45°角叠加就画出了75°角.【详解】用一副三角板可以画出:15°、30°、45°、60°、75°五个锐角.故填:5.【点睛】用三角板直接画特殊角的步骤:先画一条射线,再把三角板所画角的一边与射线重合,顶点与射线端点重合,最后沿另一边画一条射线,标出角的度数.21.–5【解析】【分析】将x=1代入ax2+2bx+1=0得出a+2b=-1,代入原式=2(a+2b)-3计算可得.【详解】解:根据题意,得:a+2b+1=0,则a+2b=–1,所以原式=2解析:–5【解析】【分析】将x=1代入ax2+2bx+1=0得出a+2b=-1,代入原式=2(a+2b)-3计算可得.【详解】解:根据题意,得:a+2b+1=0,则a+2b=–1,所以原式=2(a+2b)–3=2×(–1)–3=–5,故答案为–5.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.22.两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为两点之间线段最短.解析:两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为两点之间线段最短.23.1【解析】【分析】直接把代入,即可求出a的值.【详解】解:把代入,则,解得:;故答案为:1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程. 解析:1【解析】【分析】直接把1x =-代入23ax a =-,即可求出a 的值.【详解】解:把1x =-代入23ax a =-,则2(1)3a a ⨯-=-,解得:1a =;故答案为:1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程.24.-2【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a ﹣2b =3,∴7﹣3a+6b =7﹣3(a ﹣2b )=7﹣3×3=﹣2.故答案为:﹣2.【点睛】本题考查的知解析:-2【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a ﹣2b =3,∴7﹣3a +6b =7﹣3(a ﹣2b )=7﹣3×3=﹣2.故答案为:﹣2.【点睛】本题考查的知识点是根据已知条件求代数式的值,此类题目往往先利用整体思想将原式变形,再代入已知条件求值.25.2【解析】【分析】把x=1代入方程可得到关于k 的方程,可求得k 的值.【详解】解:把x=1代入方程,得,解得k=2.故答案为:2.【点睛】本题考查方程的解的定义.理解方程的解的定义解析:2【解析】【分析】把x=1代入方程可得到关于k 的方程,可求得k 的值.【详解】解:把x=1代入方程240x k +-=,得240k +-=,解得k=2.故答案为:2.【点睛】本题考查方程的解的定义.理解方程的解的定义是解决此题的关键.方程的解,就是能够使方程左右两边相等的未知数的值.三、解答题26.(1)-6+6t ;10+2t ;(2)5t =,3t =;(3)PD =185或143【解析】【分析】(1)根据题意列出代数式即可.(2)根据题意分点B 在点C 左边和右边两种情况,列出方程解出即可.(3)随着点B 的运动大概,分别讨论当点B 和点C 重合、点C 在A 和B 之间及点A 与点C 重合的情况.【详解】(1)点B 表示的数是-6+6t ;点C 表示的数是10+2t.(2)66(102)4t t -+-+=661024t t -+--=或661024t t -+--=-∴5t = 或 3t =(3)设未运动前P 点表示的数是x,则运动t 秒后,A 点表示的数是86t -+B 点表示的数是-6+6tC 点表示的数是10+2tD 点表示的数是14+2tP 点表示的数是x+6t则BD=14+2t-(-6+6t)=20-4tAP=x+6t-(-8+6t)=x+8 PC=6(102)x t t +-+ (P 点可能在C 点左侧,也可能在右侧)PD=14+2t-(x+6t)=14-(4t+x)∵4BD AP PC -=∴20-4t-(x+8)=46(102)x t t +-+∴12-(4t+x )=4(4t+x)-40 或 12-(4t+x )=40-4(4t+x)∴4t+x=525 或 4t+x=283∴PD=14+2t -(x+6t)=14-(4t+x)=185或143. 【点睛】本题考查了两点间的距离,并综合了数轴、一次元一次方程,关键在于分类讨论,列出对应方程.27.(1)545x +, 73x + ;(2)人数21人,羊价150文.【解析】【分析】(1)设合伙人为x 人,根据“若每人出5文,还差45文;若每人出7文,还差3文”,即可用含x 的代数式表示出羊的总钱数,(2)由(1)中两个代数式都表示羊的总钱数,它们相等解之即可得出结论.【详解】(1)设人数为x ,则用含x 的代数式表示羊的总价格为(545x +)文或(73x +)文; (2)解:设人数为x54573x x +=+57345x x -=-242x -=-21x =2154510545150⨯+=+=(文)21731473150⨯+=+=(文)答:人数21人,羊价150文.【点睛】本题考查一元一次方程组的应用,解题关键是找准等量关系,正确列出一元一次方程.28.(1)∠AOD, ∠BOC;(2)∠2=56°, ∠3=34°.【解析】【分析】(1)由垂线的定义和角的互余关系即可得出结果;(2)由角平分线的定义求出∠AOD ,由对顶角相等得出∠2的度数,再由角的互余关系即可求出∠3的度数.【详解】解:(1)∵OF ⊥OC ,∴∠COF=∠DOF=90°,∴∠AOF+∠BOC=90°,∠AOF+∠AOD=90°,∴∠AOF 的余角是∠BOC 、∠AOD ;故答案为:∠BOC 、∠AOD ;(2)∵OE 平分∠AOD ,∴∠AOD=2∠1=56°,∴∠2=∠AOD=56°,∴∠3=90°-56°=34°.【点睛】本题考查了角平分线的定义、对顶角相等的性质、互为余角关系;熟练掌握对顶角相等得性质和角平分线的定义是解决问题的关键.29.人数24人,模型134个【解析】【分析】设该兴趣小组共有x 人,由“每人做6个,那么比计划多做了10个”可知计划做(610)x -个飞机模型,由“每人做5个,那么比计划少做了14个”可列出关于x 的一元一次方程,求解即可.【详解】解:设该兴趣小组共有x 人,则计划做(610)x -个飞机模型,根据题意得:561014x x =--解得24x =62410134⨯-=(个)答:该兴趣小组共有24人,则计划做134个飞机模型.【点睛】本题考查了一元一次方程的应用,正确理解题意,找准题中等量关系是解题的关键.30.(1)5;22;(2)见解析.【解析】【分析】(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为2,1,1;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为1,2,1.解:(1)几何体的体积:1×1×1×5=5(立方单位),表面积:小正方体被遮住的面有8个,所以表面积为:1×1×22=22(平方单位); (2)如图所示:【点睛】 此题主要考查了画几何体的三视图,关键是掌握三视图所看位置.31.(1)27;(2)-2.【解析】 【分析】 (1)原式利用乘法分配律计算即可得;(2)原式先计算乘方运算,再计算乘除,最后算加减即可得.【详解】解:157()362612+-⨯ 157=3636362612⨯+⨯-⨯ =183021+-=27;(2)()421723-+÷- ()=1729-+÷-()=177-+÷-()=11-+-=2-.【点睛】本题考查了有理数的混合运算,掌握运算法则和运算步骤,选用合理的运算律是解答此题的关键.32.(1)如图见解析;(2)垂直.【解析】(1)根据小方格的特征过C点画AB的垂线和平行线;(2)观察图形得出m,n的垂直关系,或者根据平行线的性质可得.【详解】(1)将点A向上平移3个单位,过该点和点C作直线n,用直尺过点C作直线AB的垂线m,如图:(2)观察图形可得m,n互相垂直,或根据两直线平行,同位角相等也可得m与n的夹角为90°,即m,n互相垂直.【点睛】本题考查网格画图,根据网格中小正方形的特征画图是解答此题的关键.33.(1)见解析;(2)Ⅰ.2个小正方体;Ⅱ.2个小正方体;Ⅲ.1900平方厘米.【解析】【分析】(1)根据几何体可知主视图为3列,第一列是三个小正方形,第二列是1个小正方形,第三列是2个小正方形;左视图是三列,第一列是3个正方形,第二列是3个正方形,第三列是1个正方形;(2)I.可在正面第一列的最前面添加2个小正方体,故答案为:2II.可以拿走最左侧第2排两个,也可以拿走最左侧3排两个,故答案为:2III.若拿走最左侧第2排两个,能喷漆的面有19个,若拿走最左侧第3排两个,能喷漆的面有21个,根据面积公式计算即可.【详解】(1)画图(2)Ⅰ.可在正面第一列的最前面添加2个小正方体;Ⅱ.可以拿走最左侧第2排两个,也可以拿走最左侧3排两个;2个小正方体;。
七年级数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.下列各组单项式中,是同类项的一组是( ) A .3x 3y 与3xy 3B .2ab 2与-3a 2bC .a 2与b 2D .2xy 与3 yx2.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤3.﹣3的相反数为( ) A .﹣3B .﹣13C .13D .34.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°5.27-的倒数是( ) A .72 B .72-C .27D .27-6.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .3077.若,,则多项式与的值分别为( ) A .6,26B .-6,26C .-6,-26D .6,-268.如图正方体纸盒,展开后可以得到( )A .B .C .D .9.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元. A .140B .120C .160D .10010.让人欲罢不能的主题曲,让人潸然泪下的小故事,让人惊叹不已的演出阵容《我和我的祖国》首日票房超过285000000元,数字285000000科学记数法可表示为( ) A .2.85×109 B .2.85×108C .28.5×108D .2.85×10611.将方程21101136x x ++-=去分母,得( ) A .2(2x +1)﹣10x +1=6 B .2(2x +1)﹣10x ﹣1=1 C .2(2x +1)﹣(10x +1)=6D .2(2x +1)﹣10x +1=112.下列各题中,运算结果正确的是( ) A .325a b ab += B .22422x y xy xy -= C .222532y y y -=D .277a a a +=13.-5的相反数是( ) A .15B .±5C .5D .-1514.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( ) A .36.1728910⨯亿元 B .261.728910⨯亿元 C .56.1728910⨯亿元D .46.1728910⨯亿元15.对于下列说法,正确的是( ) A .过一点有且只有一条直线与已知直线平行 B .不相交的两条直线叫做平行线 C .相等的角是对顶角D .将一根木条固定在墙上,只需打两个钉子就可以了,这种做法的依据是两点确定一条直线二、填空题16.3615︒'的补角等于___________︒___________′. 17.计算: x(x-2y) =______________18.如图,已知线段AB =8,若O 是AB 的中点,点M 在线段AB 上,OM =1,则线段BM 的长度为_____.19.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________.20.马拉松(Marathon)国际上非常普及的长跑比赛项目,全程距离26英里385码,折合约为42000米,用科学记数法表示42000为 ______.21.已知1a b -=,则代数式()226a b -+的值是___________.22.今年冬季某天测得的最高气温是9℃,最低气温是1-℃,则当日温差是________℃ 23.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是_____℃. 24.已知x +y =3,xy =1,则代数式(5x +2)﹣(3xy ﹣5y )的值_____. 25.有下列三个生活、生产现象: ①用两个钉子就可以把木条固定在干墙上; ②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线. 其中可用“两点之间,线段最短”来解释的现象有_____(填序号).三、解答题26.解下列方程:(1)3(45)7x x --=; (2)5121136x x +-=-. 27.如图是由一些棱长都为1cm 的小正方体组合成的简单几何体.(1)画该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加 块小正方体. 28.解方程:(1)1﹣3(x ﹣2)=4; (2)213x +﹣516x -=1. 29.把边长为1的10个相同正方体摆成如图的形式. (1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积(包括向下的面);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多..可以再添加 个小正方体. 30.解方程(组) (1)3(4)12x -= (2)2121136x x -+-= (3) 5616795x y x y +=⎧⎨-=⎩31.如图,在数轴上,点A 表示10-,点B 表示11,点C 表示18.动点P 从点A 出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q 从点C 出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t 秒.(1)当t 为何值时,P 、Q 两点相遇?相遇点M 所对应的数是多少?(2)在点Q 出发后到达点B 之前,求t 为何值时,点P 到点O 的距离与点Q 到点B 的距离相等;(3)在点P 向右运动的过程中,N 是AP 的中点,在点P 到达点C 之前,求2CN PC -的值.32.有三条长度均为a 的线段,分别按以下要求画圆.(1)如图①,以该线段为直径画一个圆,记该圆的周长为C 1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C2,请指出C1和C2的数量关系,并说明理由;(2)如图③,当a=11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为.(直接填写答案,结果保留π)33.化简与求值(1)求3x2+x+3(x2﹣23x)﹣(6x2+x)的值,其中x=﹣6.(2)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中|a+1|+(b﹣12)2=0四、压轴题34.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=|x1-x2|.根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是-4, 8(A、B两点的距离用AB表示),点M、N是数轴上两个动点,分别表示数m、n.(1)AB=_____个单位长度;若点M在A、B之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m的值;(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 35.如图一,点C在线段AB上,图中有三条线段AB、AC和BC,若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)(2)如图二,点A和B在数轴上表示的数分别是20和40,点C是线段AB的巧点,求点C在数轴上表示的数。
七年级上册期末试卷(培优篇)(Word 版 含解析)一、选择题1.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤2.下面计算正确的是( )A .2233x x -=B .235325a a a +=C .10.2504ab ab -+=D .33x x +=3.下列单项式中,与2a b 是同类项的是( ) A .22a bB .22a bC .2abD .3ab 4.若x 3=是方程3x a 0-=的解,则a 的值是( ) A .9B .6C .9-D .6-5.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120206.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )A .20B .25C .30D .357.某数x 的43%比它的一半还少7,则列出的方程是( ) A .143%72x ⎛⎫-= ⎪⎝⎭B .1743%2x x -= C .143%72x x -= D .143%72x -= 8.多项式343553m n m n -+的项数和次数分别为( ) A .2,7 B .3,8C .2,8D .3,79.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直; ④过一点有且只有一条直线与已知直线平行. 其中正确的说法有( ) A .1个B .2个C .3个D .4个10.若2(1)210x y -++=,则x +y 的值为( ). A .12B .12-C .32D .32-11.甲、乙两人在长为25米泳池内始终以匀速游泳,两人同时从起点出发,触壁后原路返回,如是往返;甲的速度是1米/秒,乙的速度是0.6米/秒,那么第十次迎面相遇时他们离起点( ) A .7.5米B .10米C .12米D .12.5米12.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A .50°B .55°C .60°D .65° 13.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分B .3点30分C .6点45分D .9点14.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养15.如图,直线a ,b 相交于点O ,若1∠等于36︒,则2∠等于( )A .54︒B .64︒C .144︒D .154︒二、填空题16.已知23a b -=,则736a b +-的值为__________.17.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么|1||1|b c -+-=______.18.多项式32ab b +的次数是______.19.如图,C 为线段AB 的中点,D 在线段CB 上,且8,6DA DB ==,则CD =__________.20.已知2x =是关于x 的不等式310x m -+≥的解,则m 的取值范围为_______. 21.如图是一个数值转换机.若输出的结果为10,则输入a 的值为______.22.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________. 23.多项式234ab ab -的次数是______. 24.21°17′×5=_____.25.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________.三、解答题26.已知关于x 的方程3(2)x x a -=- 的解比223x a x a+-= 的解小52,求a 的值. 27.如图所示,O 为一个模拟钟面圆心,M 、O 、N 在一条直线上,指针 OA 、OB 分别从 OM 、ON 出发绕点 O 转动,OA 运动速度为每秒 30°,OB 运动速度为每秒10°,当一根指针与起始位置重合时,运动停止,设转动的时间为 t 秒,试解决下列问题:(1)如图①,若OA 顺时针转动,OB 逆时针转动,t = 秒时,OA 与OB 第一次重合;(2)如图②,若OA 、OB 同时顺时针转动, ①当t =3秒时,∠AOB = °;②当t 为何值时,三条射线OA 、OB 、ON 其中一条射线是另两条射线夹角的角平分线?28.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?29.(探索新知)如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)图2中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.30.如图①,在平整的地面上,用若干个完全相同的棱长为10 cm的小正方体堆成一个几何体.(1)现已给出这个几何体的俯视图(如图②),请你画出这个几何体的主视图与左视图;(2)若现在你手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变.①在图①所示的几何体中最多可以再添加几个小正方体?②在图①所示的几何体中最多可以拿走几个小正方体?③在②的情况下,把这个几何体放置在墙角,如图③所示是此时这个几何体放置的俯视图,若给这个几何体表面喷上红漆,则需要喷漆的面积最少是多少?31.如图所示方格纸中,点,,O A B三点均在格点(格点指网格中水平线和竖直线的交点)上,直线,OB OA交于格点O,点C是直线OB上的格点,按要求画图并回答问题.(1)过点C画直线OB的垂线,交直线OA于点D;过点C画直线OA的垂线,垂足为E;在图中找一格点F,画直线DF,使得//DF OB(2)线段CE的长度是点C到直线的距离,线段CD的长度是点到直线OB的距离. 32.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.33.解下列方程:(1)76163x x+=-;(2)253164y y---=.四、压轴题34.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n个()0a a≠相除记作na,读作“a的n次商”.(1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______.(2)关于除方,下列说法错误的是()A.任何非零数的2次商都等于1B.对于任何正整数n,()111n--=-C.除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D.负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______615⎛⎫=⎪⎝⎭______(4)想一想,将一个非零有理数a的n次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭35.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=|x1-x2|.根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是-4, 8(A、B两点的距离用AB表示),点M、N是数轴上两个动点,分别表示数m、n.(1)AB=_____个单位长度;若点M在A、B之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m的值;(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 36.如图,数轴上点A,B表示的有理数分别为6-,3,点P是射线AB上的一个动点(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.37.(1)如图,已知点C在线段AB上,且6AC cm=,4BC cm=,点M、N分别是AC、BC的中点,求线段MN的长度;(2)若点C是线段AB上任意一点,且AC a=,BC b=,点M、N分别是AC、BC的中点,请直接写出线段MN的长度;(结果用含a、b的代数式表示)(3)在(2)中,把点C是线段AB上任意一点改为:点C是直线AB上任意一点,其他条件不变,则线段MN的长度会变化吗?若有变化,求出结果.38.已知:点O为直线AB上一点,90COD∠=︒,射线OE平分AOD∠,设COEα∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= . 39.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长;(3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.40.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.41.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.42.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 43.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点. ①若x A =1,x B =5,则x c = ; ②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ; (2)若AC =λCB (其中λ>0). ①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据数轴上点的距离判断即可. 【详解】由图可得: 0a b +<;0b a ->;a b ->;a b <-;0a b >>; ∴②③⑤正确 故选C. 【点睛】本题考查数轴相关知识,关键在于熟悉数轴的定义与性质.2.C解析:C 【解析】 【分析】根据合并同类项的方法判断即可. 【详解】A. 22232x x x -=,该选项错误;B. 2332a a 、不是同类项不可合并,该选项错误;C. 10.2504ab ab -+=,该选项正确; D. 3x 、不是同类项不可合并,该选项错误. 故选C. 【点睛】本题考查同类型的判断,关键在于清楚同类型的定义.3.A解析:A【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A.考点:同类项的概念.4.A解析:A【解析】【分析】把x=3代入方程3x﹣a=0得到关于a的一元一次方程,解之即可.【详解】把x=3代入方程3x﹣a=0得:9﹣a=0,解得:a=9.故选A.【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.5.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.6.C解析:C【解析】可设折痕对应的刻度为xcm,根据折叠的性质和三段长度由短到长的比为1:2:3,长为60cm的卷尺,列出方程求解即可.解:设折痕对应的刻度为xcm,依题意有绳子被剪为10cm,20cm,30cm的三段,①x=202+10=20,②x=302+10=25,③x=302+20=35,④x=102+20=25,⑤x=102+30=35,⑥x=202+30=40.综上所述,折痕对应的刻度可能为20、25、35、40.故选C.“点睛”本题考查了一元一次方程的应用和图形的简拼,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分类思想的运用.7.B解析:B【解析】【分析】由该数的43%比它的一半还少7,可得出关于x 的一元一次方程,此题得解.【详解】 解:依题意,得:1743%2x x -= 故选:B .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 8.B解析:B【解析】【分析】根据多项式项数和次数的定义即可求解.【详解】多项式343553m n m n -+的项数为3,次数为8,故选B.【点睛】此题主要考查多项式,解题的关键是熟知多项式项数和次数的定义.9.A解析:A【解析】【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断.【详解】解:①两点之间,线段最短,故错误;②若AC=BC ,且A ,B ,C 三点共线时,则点C 是线段AB 的中点,故错误;③同一平面内经过一点有且只有一条直线与已知直线垂直,故正确;④经过直线外一点有且只有一条直线与已知直线平行,故错误.正确的共1个故选:A .【点睛】本题考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础只记题目,掌握相关概念即可解题.10.A 解析:A 【解析】解:由题意得:x-1=0,2y+1=0,解得:x=1,y=12-,∴x+y=11122-=.故选A.点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.11.D解析:D【解析】【分析】根据题意,画出图形,即可发现,甲乙每迎面相遇一次,两人共行驶50米,从而求出第十次迎面相遇时的总路程,然后除以速度和即可求出甲行驶的时间,从而求出甲行驶的路程,然后计算出甲行驶了几个来回即可判断.【详解】解:根据题意,画出图形可知:甲乙每迎面相遇一次,两人共行驶25×2=50米,∴第十次迎面相遇时的总路程为50×10=500米∴甲行驶的时间为500÷(1+0.6)=1250 4s∴甲行驶的路程为12504×1=12504米∵一个来回共50米∴12504÷50≈6个来回∴此时距离出发点12504-50×6=12.5米故选D.【点睛】此题考查的是行程问题,掌握行程问题中的各个量之间的关系是解决此题的关键.12.D解析:D【解析】【分析】根据方向角的定义和角平分线的定义即可得到结论.【详解】∵OA方向是北偏西40°方向,∴∠AOC=40°+90°=130°.∵OB平分∠AOC,∴∠BOC12∠AOC=65°.故选:D.【点睛】本题考查了方向角、角平分线的定义、角的和差定义等知识,解题的关键是理解方向角的概念,学会用方向角描述位置,属于中考常考题型.13.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a,如果a大于180°,夹角=360°-a,如果a≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.14.D解析:D【解析】【分析】根据正方体的展开图即可得出答案.【详解】根据正方体的展开图可知:“数”的对面的字是“养”“学”的对面的字是“核”“心”的对面的字是“素”故选:D.【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.15.C解析:C【解析】【分析】∠=︒,可求∠2.观察图形可知∠1和∠2是一对邻补角,由136【详解】解:因为直线a,b相交于点O,∠+∠=︒,所以12180∠=︒,又因为136∠=︒-∠=︒-︒=︒.所以2180118036144故选:C.【点睛】本题考查了邻补角的性质,解题的关键是结合图形,熟练运用邻补角的性质,此题比较简单,易于掌握.二、填空题16.【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数解析:16【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数式求值,解题关键是正确将原式变形.17.【解析】【分析】易得,结合数轴判断的正负,由绝对值的性质去绝对值即可.【详解】解:点是线段的中点,且原点在线段上故答案为:【点睛】本题考查了绝对值,将数轴与绝对值解析:b c -【解析】【分析】易得1AC BC ==,结合数轴判断1,1b c --的正负,由绝对值的性质去绝对值即可.【详解】 解:点C 是线段AB 的中点,且2AB =1AC BC ∴==原点O 在线段AC 上1,1OC OB ∴≤≥10,10c b ∴-≤-≥|1||1|1(1)b c b c b c ∴-+-=---=- 故答案为:b c -【点睛】本题考查了绝对值,将数轴与绝对值相结合是本题的难点,灵活利用数轴判断代数式值的正负是去绝对值的关键.18.3【解析】【分析】直接利用多项式次数的定义得出答案.【详解】解:多项式的次数是3;故答案为:3.【点睛】本题考查了多项式,正确把握多项式的次数定义是解题关键.解析:3【分析】直接利用多项式次数的定义得出答案.【详解】解:多项式32ab b +的次数是3;故答案为:3.【点睛】本题考查了多项式,正确把握多项式的次数定义是解题关键.19.1【解析】【分析】根据可知AB 的长度,再根据为线段的中点,可知AC 的长度,从而可求答案.【详解】∵∴AB=DA+DB=8+6=14∵为线段的中点∴∴CD=DA -AC=8-7=1故解析:1【解析】【分析】根据8,6DA DB ==可知AB 的长度,再根据C 为线段AB 的中点,可知AC 的长度,从而可求答案.【详解】∵8,6DA DB ==∴AB=DA+DB=8+6=14∵C 为线段AB 的中点 ∴1=72AC BC AB == ∴CD=DA -AC=8-7=1故答案为1.【点睛】本题考查的是线段中点的性质,熟知线段中点的性质是解题的关键.20.【解析】【分析】将代入不等式后解关于m 的一元一次不等式即可.将代入不等式得,解得:m≤1.【点睛】本题考查一元一次不等式的解得概念,解题的关键是将不等式的解代入不等式后再解关于解析:1m【解析】【分析】将2x =代入不等式后解关于m 的一元一次不等式即可.【详解】将2x =代入不等式得2310m -+≥,解得:m ≤1.【点睛】本题考查一元一次不等式的解得概念,解题的关键是将不等式的解代入不等式后再解关于m 的方程.21.【解析】【分析】根据题意列出关于a 的方程,利用平方根定义求出a 的值即可.【详解】解:根据题意得:0.5(a2+4)=10,整理得:a2=16,解得:a=±4, 故答案为:±4. 【点睛解析:4±【解析】【分析】根据题意列出关于a 的方程,利用平方根定义求出a 的值即可.【详解】解:根据题意得:0.5(a 2+4)=10,整理得:a 2=16,解得:a=±4,故答案为:±4.【点睛】此题考查了开平方运算,熟练掌握运算法则是解本题的关键.22.【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵ ,,,,,,,,∴商的最小值为.故答案为:.【点睛】本题考解析:5 2 -【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵1242,422,2255,5522,3344,4433,3355,5533,∴商的最小值为5 2 -.故答案为:5 2 -.【点睛】本题考查有理数的除法,掌握除法法则是解答此题的关键.23.3【解析】【分析】根据多项式中最高次项的次数叫做多项式的次数进行分析即可. 【详解】解:多项式的次数是3故答案为:3.【点睛】此题主要考查了多项式,关键是掌握多项式次数的计算方法. 解析:3【解析】根据多项式中最高次项的次数叫做多项式的次数进行分析即可.【详解】解:多项式234ab ab 的次数是3故答案为:3.【点睛】此题主要考查了多项式,关键是掌握多项式次数的计算方法.24.106°25′.【解析】【分析】按照角的运算法则进行乘法运算即可,注意满60进1.【详解】解:21°17′×5=105°85′=106°25′.故答案为:106°25′.【点睛】本题解析:106°25′.【解析】【分析】按照角的运算法则进行乘法运算即可,注意满60进1.【详解】解:21°17′×5=105°85′=106°25′.故答案为:106°25′.【点睛】本题主要考查角的运算,掌握度分秒之间的换算关系是解题的关键.25.25×108【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原解析:25×108【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.解:根据科学记数法的定义:225000000=82.2510⨯故答案为:82.2510⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.三、解答题26.a=1【解析】【分析】分别求出两个方程的解,然后根据关系列出等式,求出a 的值即可.【详解】解:∵3(2)x x a -=-, 解得:62a x -=; ∵223x a x a +-=, 解得:5x a =, ∴65522a a -=-, 解得:1a =;∴a 的值为1.【点睛】 本题考查了解一元一次方程,以及一元一次方程的解,解题的关键是正确求出一元一次方程的解,从而列出等式求出a 的值.27.(1)4.5;(2)① 120°;②经过4.5,7.2秒时,其中一条射线是另外两条射线夹角的平分线.【解析】【分析】(1)设t 秒后第一次重合.根据题意,列出方程,解方程即可;(2)①利用180°减去OA 转动的角度,加上OB 转动的角度,即可得到答案;②先用t 的代数式表示∠BON 和∠AON ,然后分为三种情况进行讨论:当ON 、OA 、OB 为角平分线时,分别求出t 的值,即可得到答案.【详解】解:(1)若OA 顺时针转动,OB 逆时针转动,∴∠AOM+∠BON=180°,∴3010180t t +=,解得: 4.5t =;∴ 4.5t =秒,OA 与OB 第一次重合; 故答案为:4.5;(2)①若OA 、OB 同时顺时针转动,∴30390AOM ∠=︒⨯=︒,10330BON ∠=︒⨯=︒, ∴1809030120AOB ∠=︒-︒+︒=︒; 故答案为:120; ② 由题意知012t ≤≤,∴∠BON =10t ,∠AON =180-30t (0≤t ≤6),∠AON =30t -180(6<t ≤12). 当ON 为∠AOB 的角平分线时,有 180-30t =10t , 解得:t =4.5;当OA 为∠BON 的角平分线时, 10t =2(30t -180), 解得:t =7.2;当OB 为∠AON 的角平分线时, 30t -180=2×10t , 解得:t =18(舍去);∴经过4.5,7.2秒时,射线OA 、OB 、ON 其中一条射线是另外两条射线夹角的平分线. 【点睛】本题考查一元一次方程的应用,解题的关键是理解题意,学会设未知数列方程解决问题,注意利用分类讨论的思想进行解题,属于中考常考题型.28.(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m . 【解析】 【分析】(1)设小明的骑行速度为x 米/分钟,则爸爸的骑行速度为2x 米/分钟,根据距离=速度差×时间即可得出关于x 的一元一次方程,解之即可得出结论;(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y 分钟,小明和爸爸跑道上相距50m .分第一次相遇后爸爸比小明多骑50米和350米两种情况考虑,根据距离=速度差×时间即可得出关于y 的一元一次方程,解之即可得出结论. 【详解】(1)设小明的骑行速度为x 米/分钟,则爸爸的骑行速度为2x 米/分钟, 根据题意得:2(2x-x )=400, 解得:x=200, ∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y 分钟,小明和爸爸跑道上相距50m ,①爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了50米,根据题意得:400y-200y=50,解得:y=14;②爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了350米,根据题意得:400y-200y=350,解得:y=74.答:第二次相遇前,再经过14或74分钟,小明和爸爸跑道上相距50m.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据距离=速度差×时间列出关于x 的一元一次方程;(2)分第一次相遇后爸爸比小明多骑50米和350米两种情况考虑.29.(1)3π+3;(2)=;(3)π-1,(4)1、π、π+1+2、π2+2π+1.【解析】【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度.【详解】(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=x,BD=y,则BC=πx,AD=πy,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,x+πx=π+1,解得x=1,∴MN=π+1-1-1=π-1;(4)设点D表示的数为x,如图3,若CD=πOD,则π+1-x=πx,解得x=1;如图4,若OD=πCD,则x=π(π+1-x),解得x=π;如图5,若OC=πCD,则π+1=π(x-π-1),解得x=π+1π+2;如图6,若CD=πOC,则x-(π+1)=π(π+1),解得x=π2+2π+1;综上,D点所表示的数是1、π、π+1π+2、π2+2π+1.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.30.(1)见解析;(2)①2个;②2个;③需要喷漆的面积最少是1900cm2.【解析】【分析】(1)根据物体形状即可画出左视图有三列与以及主视图三列;(2)①可在最左侧前端放两个,②可在最左侧最后面或最前面拿走两个,③分别从正面、右面、上面、左面求表面积即可.【详解】(1)如图所示(2)①可在最左侧前端放两个;②可在最左侧最后面或最前面拿走两个两个;③根据每一个面的面积是10×10=100,∴需要喷漆的面积最少是:19×100=1900(cm2).【点睛】此题主要考查了由实物画三视图,以及利用主视图和俯视图判断几何体的形状,主要培养同学们的空间想象能力,想象不出来可以亲手实验.31.(1)详见解析;(2)OA,D.【解析】【分析】(1)根据题意画出图象即可.(2)由图象即可得出结论.【详解】(1)由题意画图如下:(2)由图可以看出:线段CE的长度是点C到直线OA的距离,线段CD的长度是点D到直线OB的距离.【点睛】本题考查作图能力,关键在于掌握平行垂直等作图技巧.32.(1)-5.5;(2)1 6 .【解析】【分析】根据有理数的计算法则计算即可.【详解】(1)解:原式=1 6.52--+=-5.5.(2)解:原式=111(29)23--⨯⨯-=7 16 -+=1 6 .本题考查有理数的计算,关键在于熟练掌握计算方法. 33.(1)x =1;(2)y =13. 【解析】 【分析】根据一元一次方程的解题步骤解出即可. 【详解】 (1)解:10x =10 x =1.(2)解:122(25)3(3)y y --=- -y =-13 y =13. 【点睛】本题考查一元一次方程的解法,关键掌握解题方法,特别是去分母.四、压轴题34.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29- 【解析】 【分析】(1)利用题中的新定义计算即可求出值; (2)利用题中的新定义计算即可求出值; (3)将原式变形即可得到结果; (4)根据题意确定出所求即可; (5)原式变形后,计算即可求出值. 【详解】 (1)3111111222222⎛⎫=÷÷=÷=⎪⎝⎭, ()()()()()4111222221224-=-÷-÷-÷-=⨯⨯=, 故答案为:2,14; (2)A .任何非零数的2次商都等于1,说法正确,符合题意;B .对于任何正整数n ,当n 为奇数时,()111n --=-;当n 为偶数时,()111n --=,原说法错误,不符合题意;C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意.。
七年级上册数学期末试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知点O是直线AB上的一点,∠COE=120°,射线OF是∠AOE的一条三等分线,且∠AOF= ∠AOE.(本题所涉及的角指小于平角的角)(1)如图,当射线OC、OE、OF在直线AB的同侧,∠BOE=15°,求∠COF的度数;(2)如图,当射线OC、OE、OF在直线AB的同侧,∠FOE比∠BOE的余角大40°,求∠COF的度数;(3)当射线OE、OF在直线AB上方,射线OC在直线AB下方,∠AOF<30°,其余条件不变,请同学们自己画出符合题意的图形,探究∠FOC与∠BOE确定的数量关系式,请直接给出你的结论.【答案】(1)解:∵∠AOE+∠BOE=180°,∠BOE=15°,∴∠AOE=180°-15°=165°∴∠AOF= ∠AOE=×165°=55°∵∠AOC=∠AOE-∠COE=165°-120°=45°∴∠COF=∠AOF-∠AOC=55°-45°=10°答:∠COF的度数为10°.(2)解:设∠BOE=x,则∠BOE的余角为90°-x.∵∠FOE比∠BOE的余角大40°,∴∠FOE=130°-x∵∠COE=120°,则∠COF=x-10°,∠AOC=60°-x,∴∠AOF=∠AOC+∠COF=50°∵∠AOF= ∠AOE∴∠AOE=150°∴∠BOE=x=180°-150°=30°∴∠COF=x-10°=30°-10°=20°答:∠COF的度数为20°(3)解:∠FOC=∠BOE如图,设∠AOF=x∵∠AOF=∠AOE∴∠AOE=3x∴∠EOF=2x,∠BOE=180°-3x=3(60°-x)∵∠COE=120°∴∠AOC=120°-3x∴∠COF=∠AOC+∠AOF=120°-3x+x=2(60°-x)∴∴∠FOC=∠BOE【解析】【分析】(1)利用邻补角的定义及已知求出∠AOE、∠AOF的度数,再利用∠AOC=∠AOE-∠COE,求出∠AOC的度数,然后根据∠COF=∠AOF-∠AOC,可求得结果。
七年级期末试卷(培优篇)(Word版含解析)一、选择题1.李明在小学时成绩一直名列前茅,可进入初中后,由于学习科目增多,难度加大,他虽然学习还是很认真,但感觉成绩明显下降了。
这时他应该①让爸爸妈妈帮忙监督检查学习情况②合理安排时间,制定学习计划,改变学习方法③寻找自己落后的原因,找出解决问题的方法④选两个自己喜欢的科目认真学,其他的就随他去吧A.①④B.③④C.①②③④D.①②③2.“迈向初中生活,我总有一些陌生,不知如何面对。
我该怎么办?”我们可以告诉他()①初中生活是人生最美好的时光②初中同学比小学同学更好交往③主动了解新同学扩大交往范围④努力结交新的朋友珍视新友谊A.①②B.②③C.③④D.①④3.出门打不到车?滴滴叫车随叫随到;饿了不想做饭?美团来送饭……这都体现了“分享服务”和“共享经济”,它们都是借助互联网技术,打造出的新商业模式。
这体现了()A.网络打破了传统人际交往的时空限制B.网络为科技创新搭建新的平台C.网络促进民主政治的进步D.网络为经济发展注入新的活力4.“直播带货”作为一种线上新型消费,在新冠肺炎疫情防控大背景下,受到越来越多人的青睐。
4月15日,湖北省30个县的县长在直播间“为湖北拼个单”;山东烟台海阳市副市长发起“博士市长助力农产品”,视频播放量突破200万。
“直播带货”()①刷新了我们的消费方式②为经济发展注入了新的活力③使我们的生活更加丰富④已成为经济发展的主要方式A.①②③B.①③④C.①②④D.②③④5.纸上得来终觉浅,绝知此事要躬行。
”这告诉我( )①学习不仅仅局限在学校②真正掌握知识,要经过实践的检验③要重视社会实践④读书没有必要,书本知识太浅薄A.①②③B.①②④C.①③④D.②③④6.怎样让学习更有效果?世界著名的“学习金字塔”理论能帮助我们解答疑惑。
观察图,下列说法正确的是()A.好的学习方法确保知识永不忘B.单纯听讲是最有效的学习方法C.给同学讲题对自我提升帮助很大D.实践对提高学习效率最有效果7.在自我推荐优秀学生班会活动中,学习成绩优秀、乐于助人的小英,谈到自己还有不少缺点,比如性格不够开朗,遇事容易急躁。
北师大版数学七年级下册 期末试卷(培优篇)(Word 版 含解析) 一、解答题1.已知,AB ∥DE ,点C 在AB 上方,连接BC 、CD . (1)如图1,求证:∠BCD +∠CDE =∠ABC ;(2)如图2,过点C 作CF ⊥BC 交ED 的延长线于点F ,探究∠ABC 和∠F 之间的数量关系;(3)如图3,在(2)的条件下,∠CFD 的平分线交CD 于点G ,连接GB 并延长至点H ,若BH 平分∠ABC ,求∠BGD ﹣∠CGF 的值.2.如图,直线AB ∥直线CD ,线段EF ∥CD ,连接BF 、CF . (1)求证:∠ABF +∠DCF =∠BFC ;(2)连接BE 、CE 、BC ,若BE 平分∠ABC ,BE ⊥CE ,求证:CE 平分∠BCD ;(3)在(2)的条件下,G 为EF 上一点,连接BG ,若∠BFC =∠BCF ,∠FBG =2∠ECF ,∠CBG =70°,求∠FBE 的度数.3.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.4.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;5.已知:如图,直线AB //CD ,直线EF 交AB ,CD 于P ,Q 两点,点M ,点N 分别是直线CD ,EF 上一点(不与P ,Q 重合),连接PM ,MN .(1)点M ,N 分别在射线QC ,QF 上(不与点Q 重合),当∠APM +∠QMN =90°时, ①试判断PM 与MN 的位置关系,并说明理由;②若PA 平分∠EPM ,∠MNQ =20°,求∠EPB 的度数.(提示:过N 点作AB 的平行线) (2)点M ,N 分别在直线CD ,EF 上时,请你在备用图中画出满足PM ⊥MN 条件的图形,并直接写出此时∠APM 与∠QMN 的关系.(注:此题说理时不能使用没有学过的定理)二、解答题6.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系.7.已知:三角形ABC 和三角形DEF 位于直线MN 的两侧中,直线MN 经过点C ,且BC MN ⊥,其中A ABC CB =∠∠,DEF DFE ∠=∠,90∠+∠=︒ABC DFE ,点E 、F 均落在直线MN 上.(1)如图1,当点C 与点E 重合时,求证://DF AB ;聪明的小丽过点C 作//CG DF ,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程. (2)将三角形DEF 沿着NM 的方向平移,如图2,求证://DE AC ;(3)将三角形DEF 沿着NM 的方向平移,使得点E 移动到点E ',画出平移后的三角形DEF ,并回答问题,若DFE α∠=,则∠=CAB ________.(用含α的代数式表示) 8.已知直线//AB CD ,M ,N 分别为直线AB ,CD 上的两点且70MND ∠=︒,P 为直线CD 上的一个动点.类似于平面镜成像,点N 关于镜面MP 所成的镜像为点Q ,此时,,NMP QMP NPM QPM MNP MQP ∠=∠∠=∠∠=∠.(1)当点P 在N 右侧时:①若镜像Q 点刚好落在直线AB 上(如图1),判断直线MN 与直线PQ 的位置关系,并说明理由;②若镜像Q 点落在直线AB 与CD 之间(如图2),直接写出BMQ ∠与DPQ ∠之间的数量关系;(2)若镜像PQ CD ⊥,求BMQ ∠的度数. 9.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由. 实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.10.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)①∠ABN 的度数是 ;②∵AM ∥BN ,∴∠ACB =∠ ; (2)求∠CBD 的度数;(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律; (4)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是 .三、解答题11.如图,在ABC 中,AD 是高,AE 是角平分线,20B ∠=︒,60C ∠=°.(1)求CAD ∠、AEC ∠和EAD ∠的度数.(2)若图形发生了变化,已知的两个角度数改为:当30B ∠=︒,60C ∠=°,则EAD ∠=__________︒.当50B ∠=︒,C 60∠=︒时,则EAD ∠=__________︒. 当60B ∠=︒,60C ∠=°时,则EAD ∠=__________︒. 当70B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.(3)若B 和C ∠的度数改为用字母α和β来表示,你能找到EAD ∠与α和β之间的关系吗?请直接写出你发现的结论. 12.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜 OM ,ON ,且 OM ⊥ON ,入射光线 AB 经过两次反射,得到反射光线 CD .求证 AB ∥CD . (尝试探究)如图 3,有两块平面镜 OM ,ON ,且∠MON =55︒ ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 相交于点 E ,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜 OM ,ON ,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 所在的直线相交于点 E ,∠BED =β , α 与 β 之间满足的等量关系是 .(直接写出结果)13.如图,△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于A 1.(1)当∠A 为70°时, ∵∠ACD -∠ABD =∠______ ∴∠ACD -∠ABD =______°∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线 ∴∠A 1CD -∠A 1BD =12(∠ACD -∠ABD )∴∠A 1=______°;(2)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于A 2,∠A 2BC 与A 2CD 的平分线交于A 3,如此继续下去可得A 4、…、A n ,请写出∠A 与∠A n 的数量关系______;(3)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230度,则∠F =______.(4)如图3,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q +∠A 1的值为定值;②∠Q -∠A 1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.14.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒; ③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.15.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、解答题1.(1)证明见解析;(2);(3). 【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒. 【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE , CFDE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠, BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE , CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒, F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠, ABC F BCF ∴∠-∠=∠, CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE , GM DE ∴,MGN DFG ∴∠=∠,BH 平分ABC ∠,FN 平分CFD ∠, 11,22ABH AB D C CF DFG ∴∠=∠∠∠=,由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒,又BGD MGH MGDCGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.2.(1)证明见解析;(2)证明见解析;(3)∠FBE =35°. 【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可; (2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE =35°. 【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可; (2)由(1)的结论和垂直的定义解答即可; (3)由(1)的结论和三角形的角的关系解答即可. 【详解】证明:(1)∵AB ∥CD ,EF ∥CD , ∴AB ∥EF , ∴∠ABF =∠BFE , ∵EF ∥CD , ∴∠DCF =∠EFC ,∴∠BFC =∠BFE +∠EFC =∠ABF +∠DCF ; (2)∵BE ⊥EC , ∴∠BEC =90°, ∴∠EBC +∠BCE =90°,由(1)可得:∠BFC =∠ABE +∠ECD =90°, ∴∠ABE +∠ECD =∠EBC +∠BCE , ∵BE 平分∠ABC , ∴∠ABE =∠EBC ,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.3.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 4.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.5.(1)①PM ⊥MN ,理由见解析;②∠EPB 的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ ,再根据已知条解析:(1)①PM ⊥MN ,理由见解析;②∠EPB 的度数为125°;(2)∠APM +∠QMN =90°或∠APM -∠QMN =90°.【分析】(1)①利用平行线的性质得到∠APM =∠PMQ ,再根据已知条件可得到PM ⊥MN ; ②过点N 作NH ∥CD ,利用角平分线的定义以及平行线的性质求得∠MNH =35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM ⊥MN ,理由见解析:∵AB //CD ,∴∠APM =∠PMQ ,∵∠APM +∠QMN =90°,∴∠PMQ +∠QMN =90°,②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ -∠QMN=90°,∴∠APM -∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM -∠QMN=90°;综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.二、解答题6.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;【详解】解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A -∠C =30°+α.②如图所示,210-∠A =(180°-∠D CM )+α,即∠A -∠DCM =30°-α.综上所述,∠A -∠DCM =30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l ∥AB ,利用平行线的性质(两直线平行内错角相等)将所求的角∠M 与已知角∠A 、∠C 的数量关系联系起来,从而求得∠M 的度数.7.(1)见解析;(2)见解析;(3)见解析;.【分析】(1)过点C 作,得到,再根据,,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据(2)结论得到∠D解析:(1)见解析;(2)见解析;(3)见解析;2α.【分析】(1)过点C 作//CG DF ,得到DFE FCG ∠=∠,再根据90BCF ∠=︒,90∠+∠=︒ABC DFE ,得到ABC BCG ∠=∠,进而得到//CG AB ,最后证明//DF AB ;(2)先证明90ACB DEF ∠+∠=︒,再证明90ACB ACE ∠+∠=︒,得到DEF ACE ∠=∠,问题得证;(3)根据题意得到DFE DEF α∠=∠=,根据(2)结论得到∠DEF =∠ECA =α,进而得到=90BC AC A B α=∠︒-∠,根据三角形内角和即可求解.【详解】解:(1)过点C 作//CG DF ,DFE FCG ∴∠=∠,BC MN ⊥,90BCF ∴∠=︒,90BCG FCG ∴∠+∠=︒,90BCG DFE ∴∠+∠=︒,90ABC DFE ∠+∠=︒,ABC BCG ∴∠=∠,//CG AB ∴,//DF AB ∴;(2)解:ABC ACB ∠=∠,DEF DFE ∠=∠,又90ABC DFE ∠+∠=︒,90ACB DEF ∴∠+∠=︒,BC MN ⊥,90BCM ∴∠=︒,90ACB ACE ∴∠+∠=︒,DEF ACE ∴∠=∠,//DE AC ∴;(3)如图三角形DEF 即为所求作三角形.∵DFE α∠=,∴DFE DEF α∠=∠=,由(2)得,DE ∥AC ,∴∠DEF =∠ECA =α,∵90ACB ACE ∠+∠=︒,∴∠ACB =90α︒-,∴ =90BC AC A B α=∠︒-∠,∴∠A =180°-A ABC CB -∠∠=2α.故答案为为:2α.【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.8.(1)①,证明见解析,②,(2)或.【分析】(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,解析:(1)①//MN PQ ,证明见解析,②70DPQ BMQ ∠∠+=︒,(2)160︒或20︒.【分析】(1) ①根据//AB CD 和镜像证出NMP QPM ∠=∠,即可判断直线MN 与直线PQ 的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证DPQ BM MQP Q ∠=∠∠+即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,分类讨论,依据平行线的性质求解即可.【详解】(1)①//MN PQ ,证明:∵//AB CD ,∴NPM QMP ∠=∠,∵,NMP QMP NPM QPM ∠=∠∠=∠,∴NMP QPM ∠=∠,∴//MN PQ ;②过点Q 作QF ∥CD ,∵//AB CD ,∴////AB CD QF ,∴1BMQ ∠=∠,2QPD ∠=∠,∴DPQ BM MQP Q ∠=∠∠+,∵70MNP MQP ∠=∠=︒,∴70DPQ BMQ ∠∠+=︒;(2)如图,当点P 在N 右侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,∴180NP FQP Q ∠=∠+︒,FQM BMQ ∠=∠,∵PQ CD ⊥,∴90NPQ ∠=︒,∴90FQP ∠=︒,∵70MND PQM ∠=∠=︒,∴20FQM ∠=︒,∴20BMQ ∠=︒,如图,当点P 在N 左侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF , 同理可得,90FQP ∠=︒,∵70MND ∠=︒,∴110MNP PQM ∠=∠=︒,∴20FQM ∠=︒,∵//AB QF ,∴180BM FQM Q ∠=∠+︒,∴160BMQ ∠=︒;综上,BMQ ∠的度数为160︒或20︒.【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.9.(1);(2)理由见解析;(3),理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠ 解析:(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1 148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1(2)理由如下:如图2. 过点B 作//BD a ,图22180ABD ∴∠+∠=︒,//a b ,//b BD ∴,1∴∠=∠DBC ,601ABD ABC DBC ∴∠=∠-∠=︒-∠,2601180∴∠+︒-∠=︒,21120∴∠-∠=︒;(3)12∠=∠,图3理由如下:如图3,过点C 作//CP a , AC 平分BAM ∠,30CAM BAC ∴∠=∠=︒,260BAM BAC ∠=∠=︒,又//a b ,//CP b ∴,160BAM ∠=∠=︒,30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.10.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒ ②CBN ;(2)58︒;(3)不变,:2:1APB ADB ∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明∠CBD =12∠ABN ,即可求出结果;(3)不变,∠APB :∠ADB =2:1,证∠APB =∠PBN ,∠PBN =2∠DBN ,即可推出结论; (4)可先证明∠ABC =∠DBN ,由(1)∠ABN =116°,可推出∠CBD =58°,所以∠ABC+∠DBN =58°,则可求出∠ABC 的度数.【详解】解:(1)①∵AM//BN ,∠A =64°,∴∠ABN =180°﹣∠A =116°,故答案为:116°;②∵AM//BN ,∴∠ACB =∠CBN ,故答案为:CBN ;(2)∵AM//BN ,∴∠ABN+∠A =180°,∴∠ABN =180°﹣64°=116°,∴∠ABP+∠PBN =116°,∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠CBP ,∠PBN =2∠DBP ,∴2∠CBP+2∠DBP =116°,∴∠CBD =∠CBP+∠DBP =58°;(3)不变,∠APB :∠ADB =2:1,∵AM//BN ,∴∠APB =∠PBN ,∠ADB =∠DBN ,∵BD 平分∠PBN ,∴∠PBN =2∠DBN ,∴∠APB :∠ADB =2:1;(4)∵AM//BN ,∴∠ACB =∠CBN ,当∠ACB =∠ABD 时,则有∠CBN =∠ABD ,∴∠ABC+∠CBD =∠CBD+∠DBN∴∠ABC =∠DBN ,由(1)∠ABN =116°,∴∠CBD =58°,∴∠ABC+∠DBN =58°,∴∠ABC =29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.三、解答题11.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【分析】(1)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,进而可求AEC ∠和EAD ∠的度数;(2)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,则前三问利用EAD EAC DAC ∠=∠-∠即可得出答案,第4问利用EAD DAC EAC ∠=∠-∠即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵20B ∠=︒,60C ∠=°,∴180100BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1502EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ADE ∴∠=∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,20EAD EAC CAD ∴∠=∠-∠=︒ ,9070AEC EAD ∴∠=︒-∠=︒ .(2)当30B ∠=︒,60C ∠=°时,∵30B ∠=︒,60C ∠=°,∴18090BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1452EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,15EAD EAC CAD ∴∠=∠-∠=︒ ;当50B ∠=︒,60C ∠=°时,∵50B ∠=︒,60C ∠=°,∴18070BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1352EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD EAC CAD ∴∠=∠-∠=︒ ;当60B ∠=︒,60C ∠=°时,∵60B ∠=︒,60C ∠=°,∴18060BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠,∴1302EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,0EAD EAC CAD ∴∠=∠-∠=︒ ;当70B ∠=︒,60C ∠=°时,∵70B ∠=︒,60C ∠=°,∴18050BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1252EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD DAC EAC ∴∠=∠-∠=︒ .(3)当B C ∠<∠ 时,即αβ<时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD EAC CAD βα∴∠=∠-∠=- ; 当B C ∠>∠ 时,即αβ>时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD DAC EAC αβ∴∠=∠-∠=- ; 综上所述,当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.12.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.13.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠A n(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD-∠A1BD=12(∠ACD-∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,故答案为:∠A=2∠A n.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=12(∠A+∠D )-90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A 1的值为定值正确.∵∠ACD-∠ABD=∠BAC ,BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线 ∴∠A 1=∠A 1CD-∠A 1BD=12∠BAC ,∵∠AEC+∠ACE=∠BAC ,EQ 、CQ 是∠AEC 、∠ACE 的角平分线, ∴∠QEC+∠QCE=12(∠AEC+∠ACE )=12∠BAC ,∴∠Q=180°-(∠QEC+∠QCE )=180°-12∠BAC ,∴∠Q+∠A 1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要. 14.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<, ∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”, ∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A +∠APB =50°,∴∠APB =40°;如图③,当2∠APB +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠APB =20°;如图④,当2∠A +∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A +∠APB =50°,所以∠A =40°,所以∠APB =10°;综上,∠APB 的度数是10°或20°或40°或110°时,ABP △是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解. 15.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+,∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。
七年级期末试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求△ACD的面积;(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.【答案】(1)解:∵B(3,0),∴OB=3,∵BC=8,∴OC=5,∴C(﹣5,0),∵AB∥CD,AB=CD,∴D(﹣2,﹣4)(2)解:如图(1),连接OD,∴S△ACD=S△ACO+S△DCO﹣S△AOD=﹣=16(3)解:∠M=45°,理由是:如图(2),连接AC,∵AB∥CD,∴∠DCB=∠ABO,∵∠AOB=90°,∴∠OAB+∠ABO=90°,∴∠OAB+∠DCB=90°,∵∠OAB与∠OCD的角平分线相交于点M,∴∠MCB=,∠OAM=,∴∠MCB+∠OAM==45°,△ACO中,∠AOC=∠ACO+∠OAC=90°,△ACM中,∠M+∠ACM+∠CAM=180°,∴∠M+∠MCB+∠ACO+∠OAC+∠OAM=180°,∴∠M=180°﹣90°﹣45°=45°.【解析】【分析】(1)利用B的坐标,可得OB=3,从而求出OC=5,利用平移的性质了求出点D的坐标.(2)如图(1),连接OD,由S△ACD=S△ACO+S△DCO+S△AOD,利用三角形的面积公式计算即得.(3)连接AC,利用平行线的性质及直角三角形两锐角互余可得∠OAB+∠DCB=90°,利用角平分线的定义可得∠MCB+∠OAM==45°,根据三角形的内角和等于180°,即可求出∠M的度数.2.把一副三角板放成如图所示.(1)当OD平分∠AOB时,求∠COB;(2)若摆成如图2,OB、OD重合,OM平分∠AOD,ON平分∠AOC,求∠MON;(3)将三角板OCD绕O点旋转,把OD旋转到∠AOB的内部或外部,(2)中的条件不变,试问∠MON的角度是否变化?若不变,求出它的值,并说理由.【答案】(1)解:∵OD平分∠AOB,∠AOB=90°∴∠DOB=∠AOB=45°∵∠DOC=30°∴∠COB=∠DOB-∠DOC=45°-30°=15°(2)解:如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=45°∠AON=∠AOC=(90°+30°)=60°∴∠MON=∠AON-∠AOM=60°-45°=15°(3)解:把OD旋转到∠AOB的内部时,如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(90°-∠BOD)=45°-∠BOD∠AON=∠AOC=(∠AOB+∠COD-∠BOD)=60°-∠BOD∴∠MON=∠AON-∠MOA=15°把OD旋转到∠AOB的外部时,如图,设∠AOC=α,则∠AOD=360°-30°-α=330°-α∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(330°-α)=165°-α∠AON=∠AOC=α∠MON=∠MOA+∠AON=165°-α+α=165°∴∠MON=15°或∠MON=165°【解析】【分析】(1)利用角平分线的定义求出∠DOB的度数,再根据∠COB=∠DOB-∠DOC,就可求出结果。
七年级数学期末试卷(培优篇)(Word版含解析)一、选择题1.如果整式x n﹣3﹣5x2+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.62.如图,C 是线段AB上一点, AC=4,BC=6,点M、N 分别是线段AC、BC的中点,则线段MN的长是( )A.5 B.92C.4 D.33.如图,给出下列说法:①∠B和∠1是同位角;②∠1和∠3是对顶角;③∠2和∠4是内错角;④∠A和∠BCD是同旁内角. 其中说法正确的有( )A.0个B.1个C.2个D.3个4.下列几何体中,是棱锥的为()A.B.C.D.5.如图,某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.经过一点,有无数条直线C.垂线段最短D.经过两点,有且只有一条直线6.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1C.13x﹣1 D.6x2+13x﹣17.在 3.14、 227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个B .2 个C .3 个D .4 个8.如图,AB ∥CD ,AD 平分∠BAC ,且∠C=80°,则∠D 的度数为( )A .50°B .60°C .70°D .100°9.若2(1)210x y -++=,则x +y 的值为( ). A .12B .12-C .32D .32-10.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A .ab >0B .|b|<|a|C .b <0<aD .a+b >0 11.下列合并同类项正确的是( )A .2x +3x =5x 2B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=0 12.如果向北走2 m ,记作+2 m ,那么-5 m 表示( ) A .向东走5 mB .向南走5 mC .向西走5 mD .向北走5 m13.在同一平面内,下列说法中不正确的是( ) A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .过直线外一点有且只有一条直线与这条直线垂直D .若AC BC =,则点C 是线段AB 的中点.14.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐15.2-的相反数是( ) A .2-B .2C .12D .12-二、填空题16.若∠α=40° 15′,则∠α的余角等于________°.17.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.18.一组“数值转换机”按下面的程序计算,如果输入的数是10,那么输出的结果为19,要使输出的结果为17,则输入的最小正整数是______.19.如图是一个正方体的展开图,把展开图折叠成正方体后,与数字3所在的面相对的面上的数字是________.20.如图,将一张长方形的纸片沿折痕EF 翻折,使点C 、D 分别落在点M 、N 的位置,且∠BFM=12∠EFM ,则∠BFM 的度数为_______21.多项式32ab b +的次数是______. 22.0的绝对值是_____.23.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.24.如图,AB =24,点C 为AB 的中点,点D 在线段AC 上,且AD =13CB ,则DB 的长度为___.25.如图所示,在P Q 、处把绳子AB 剪断,且::2:3:4AP PQ QB =,若剪断的各段绳子中最长的一段为16cm ,则绳子的原长为___________三、解答题26.先化简,再求值:若x =2,y =﹣1,求2(x 2y ﹣xy 2﹣1)﹣(2x 2y ﹣3xy 2﹣3)的值. 27.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.()1过点C 画线段AB 的平行线CD ;()2过点A 画线段BC 的垂线,垂足为E ;()3过点A 画线段AB 的垂线,交线段CB 的延长线于点F ; ()4线段AE 的长度是点______到直线______的距离; ()5线段AE 、BF 、AF 的大小关系是______.(用“<”连接)28.化简:(1)()632m m n --+ (2)()()22835232ab aab ab a ----29.先化简,再求值.22225(3)4(31)a b ab ab a b ---+-,其中2(2)10a b ++-=.30.先化简,再求值:已知a 2+2(a 2﹣4b )﹣(a 2﹣5b ),其中a =﹣3,b =13. 31.计算 (1)157()362612+-⨯ (2)()421723-+÷-32.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.33.(1)根据如图(1)所示的主视图、左视图、俯视图,这个几何体的名称是 . (2)画出如图(2)所示几何体的主视图、左视图、俯视图.四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.35.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.36.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?37.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.38.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.39.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .40.尺规作图是指用无刻度的直尺和圆规作图。
七年级期末试卷(培优篇)(Word 版 含解析)一、选择题1.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因( ) A .两点之间,线段最短 B .过一点有无数条直线 C .两点确定一条直线D .两点之间线段的长度,叫做这两点之间的距离 2.下列运算中,正确的是( ) A .325a b ab += B .325235a a a += C .22330a b ba -=D .541a a -=3.如图,点A 、O 、D 在一条直线上,此图中大于0︒且小于180︒的角的个数是( )A .3个B .4个C .5个D .6个4.3-的倒数是( ) A .3B .13C .13-D .3-5.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( ) A .1 B .2C .1-D .2-6.方程去分母后正确的结果是( ) A .B .C .D .7.点P 为直线L 外一点,点A 、B 、C 为直线上三点,PA=6cm ,PB=8cm ,PC=4cm ,则点P 到直线l 的距离为( ) A .4cmB .6cmC .小于 4cmD .不大于 4cm8.如图正方体纸盒,展开后可以得到( )A .B .C .D .9.如图是一个正方体的表面展开图,折叠成正方体后与“安”相对的一面字是()A.高B.铁C.开D.通10.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为()元.A.100 B.140 C.90 D.12011.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有()A.1个B.2个C.3个D.4个12.27-的倒数是()A.72B.72-C.27D.27-13.下列说法:①两点之间,直线最短;②若AC=BC,则点C是线段AB的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有()A.1个B.2个C.3个D.4个14.下列图形,不是柱体的是()A.B.C.D.15.下列说法中,正确的是()A.单项式232ab-的次数是2,系数为92-B.2341x y x-+-是三次三项式,常数项是1C.单项式a的系数是1,次数是0 D.单项式223x y-的系数是2-,次数是3二、填空题16.在-4,0,π,1.010010001,-227,1.3•这6个数中,无理数有______个. 17.计算:3-|-5|=____________.18.已知3x =是方程35x x a -=+的解,则a 的值为__________. 19.若代数式2a-b 的值是4,则多项式2-a+12b 的值是_______________ . 20.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数).“C 运算”不停地重复进行,例如,66n =时,其“C 运算”如下:…若35n =,则第2020次“C 运算”的结果是________.21.已知x =1是方程ax -5=3a +3的解,则a =_________. 22.已知1x =是方程253ax a -=+的解,则a =__.23.将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=_______.24.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.25.如图,在三角形ABC 中,90B ∠=︒,6AB cm =,8BC cm =,点D 是AB 的中点,点P 从C 点出发,先以每秒2cm 的速度运动到B ,然后以每秒1cm 的速度从B 运动到A .当点P 运动时间t = _______秒时,三角形PCD 的面积为26cm .三、解答题26.计算:(1)253(3)-÷-;(2)1138842⎛⎫-⨯+- ⎪⎝⎭;(3)2357m n n m ---;(4)()2242x xy xy x xy ⎡⎤--+--⎣⎦. 27.解下列方程:(1)3(45)7x x --=;(2)5121136x x +-=-. 28.解方程(1)528x +=- (2)4352x x -=+(3)()4232x x -=-- (4)2151136x x +--= 29.某校办工厂生产一批新产品,现有两种销售方案。
七年级数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -=2.下列说法错误的是( ) A .对顶角相等 B .两点之间所有连线中,线段最短 C .等角的补角相等 D .不相交的两条直线叫做平行线 3.单项式24x y 3-的次数是( ) A .43-B .1C .2D .34.如果整式x n ﹣3﹣5x 2+2是关于x 的三次三项式,那么n 等于( ) A .3B .4C .5D .65.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为() A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯6.倒数是-2的数是( ) A .-2B .12-C .12D .27.一袋面粉的质量标识为“100±0.25千克”,则下列面粉质量中合格的是( ) A .100.30千克B .99.51千克C .99.80千克D .100.70千克8.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )A .20B .25C .30D .359.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°10.画如图所示物体的主视图,正确的是( )A .B .C .D .11.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( ) A .-4 B .-2C .2D .412.将方程21101136x x ++-=去分母,得( ) A .2(2x +1)﹣10x +1=6 B .2(2x +1)﹣10x ﹣1=1 C .2(2x +1)﹣(10x +1)=6D .2(2x +1)﹣10x +1=113.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变 D .商品的销售量不变 14.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分 B .3点30分 C .6点45分 D .9点 15.若x 3=是方程3x a 0-=的解,则a 的值是( )A .9B .6C .9-D .6-二、填空题16.已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______. 17.当x =1时,代数式ax 2+2bx+1的值为0,则2a+4b ﹣3=_____.18.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .19.已知有理数a 、b 表示的点在数轴上的位置如图所示,化简:1b a a --+=_______.20.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .21.某市2019年参加中考的考生人数约为98500人,将98500用科学记数法表示为______.22.整理一批图书,甲、乙两人单独做分别需要6小时、9小时完成.现在先由甲单独做1小时,然后两人合作整理这批图书要用_____小时. 23.计算t 3t t --=________.24.已知∠α=28°,则∠α的余角等于___.25.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)三、解答题26.如图,已知BD 平分∠ABC ,点F 在AB 上,点G 在AC 上,连接FG 、FC ,FC 与BD 相交于点H ,如果∠GFH 与∠BHC 互补,那么∠1=∠2吗?请说明理由.27.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分AOB ∠,OE 在BOC ∠内,13BOE EOC ∠=∠.(1)若OE AC ⊥,垂足为O 点,则∠BOE 的度数为________°,BOD ∠的度数为________°;在图中,与AOB ∠相等的角有_________; (2)若32AOD ∠=︒,求EOC ∠的度数.28.如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD ,OP 是∠BOC 的平分线,⑴写出所有∠EOC 的补角 ; ⑵如果∠AOD=40°,求∠POF 的度数.29.设a ,b ,c ,d 为有理数,现规定一种新的运算:a bc d=ad-bc ,当2x 43x 23-=10时,求代数式2(x-2)-3(x+1)的值.30.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格阶梯用户年用气量(单位:立方米)2018年单价 (单位:元/立方米)2019年单价 (单位:元/立方米)第一阶梯 0-300(含) a3 第二阶梯 300-600(含) 0.5a + 3.5 第三阶梯600以上1.5a +5(1)甲用户家2018年用气总量为280立方米,则总费用为 元(用含a 的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a 的值; (3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?31.如图,点C 是线段AB 的中点,6AC =.点D 在线段AB 上,且12BD AD =,求线段CD 的长.32.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭33.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<<()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).四、压轴题34.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.36.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 37.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.38.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.39.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .40.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).41.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.42.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE , (1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示); (3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.43.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据合并同类项的法则进行运算依次判断. 【详解】解:A.两项不是同类项不能合并,错误; B. 532y y y -=,错误; C. 78a a a +=,错误; D.正确. 故选D. 【点睛】本题考查了合并同类项,系数相加字母部分不变是解题关键.2.D解析:D 【解析】 【分析】根据各项定义性质判断即可. 【详解】D 选项应该为:同一平面内不相交的两条直线叫平行线. 故选D. 【点睛】本题考查基础的定义性质,关键在于熟记定义与性质.3.D解析:D 【解析】 【分析】直接利用单项式的次数的定义得出答案. 【详解】单项式43-x 2y 的次数是2+1=3. 故选D . 【点睛】本题考查了单项式的次数,正确把握定义是解题的关键.4.D解析:D 【解析】 【详解】根据题意得到n ﹣3=3,即可求出n 的值. 解:由题意得:n ﹣3=3, 解得:n=6. 故选D5.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将98.46万用科学记数法表示为59.84610⨯. 故选:C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.B解析:B 【解析】 【分析】根据倒数的定义:两个数的乘积是1,则这两个数互为倒数可求解. 【详解】 解:12()12-⨯-=∴倒数是-2的数是12-故选:B 【点睛】本题考查了倒数,熟练掌握倒数的定义是解题的关键.7.C解析:C【解析】【分析】根据题意,明确“正”和“负”所表示的意义求出合格产品的范围,再求解即可.【详解】依题意,合格面粉的质量应大于等于97.75千克,小于等于100.25千克选项中只有99.75<99.8<100.25故答案选C【点睛】本题考查了正负数的意义,本题难度较小,解决本题的关键是理解正负数的意义.8.C解析:C【解析】可设折痕对应的刻度为xcm,根据折叠的性质和三段长度由短到长的比为1:2:3,长为60cm的卷尺,列出方程求解即可.解:设折痕对应的刻度为xcm,依题意有绳子被剪为10cm,20cm,30cm的三段,①x=202+10=20,②x=302+10=25,③x=302+20=35,④x=102+20=25,⑤x=102+30=35,⑥x=202+30=40.综上所述,折痕对应的刻度可能为20、25、35、40.故选C.“点睛”本题考查了一元一次方程的应用和图形的简拼,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分类思想的运用. 9.B解析:B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,10.A解析:A【解析】【分析】直接利用三视图解题即可【详解】解:从正面看得到的图形是A.故选:A.【点睛】本题考查三视图,基础知识扎实是解题关键11.A解析:A【解析】【分析】根据相反数的性质并整理可得a 4b -=-1,然后去括号、合并同类项,再利用整体代入法求值即可.【详解】解:∵a 和14b -互为相反数,∴a +14b -=0整理,得a 4b -=-1()()2210723b a a b -++--=242071421b a a b -++--=3121a b --=()341a b --=()311⨯--=-4故选A .【点睛】此题考查的是相反数的性质和整式的化简求值题,掌握相反数的性质、去括号法则和合并同类项法则是解决此题的关键.12.C解析:C【解析】【分析】方程的分母最小公倍数是6,方程两边都乘以6即可.【详解】方程两边都乘以6得:2(2x +1)﹣(10x +1)=6.故选:C .【点睛】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.13.C解析:C【解析】【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.14.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a ,如果a 大于180°,夹角=360°-a ,如果a ≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.15.A解析:A【解析】【分析】把x =3代入方程3x ﹣a =0得到关于a 的一元一次方程,解之即可.【详解】把x =3代入方程3x ﹣a =0得:9﹣a =0,解得:a =9.故选A .【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.二、填空题16.17【解析】【分析】根据等腰三角形的可得第三条边为3或7,再根据三角形的三边性质即可得出三边的长度,故可求出三角形的周长.【详解】依题意得第三条边为3或7,又3+3<7,故第三条边不能为3解析:17【解析】【分析】根据等腰三角形的可得第三条边为3或7,再根据三角形的三边性质即可得出三边的长度,故可求出三角形的周长.【详解】依题意得第三条边为3或7,又3+3<7,故第三条边不能为3,故三边长为3,7,7故周长为17.【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知三角形的构成条件.17.–5【解析】【分析】将x=1代入ax2+2bx+1=0得出a+2b=-1,代入原式=2(a+2b)-3计算可得.【详解】解:根据题意,得:a+2b+1=0,则a+2b=–1,所以原式=2解析:–5【解析】【分析】将x=1代入ax2+2bx+1=0得出a+2b=-1,代入原式=2(a+2b)-3计算可得.【详解】解:根据题意,得:a+2b+1=0,则a+2b=–1,所以原式=2(a+2b)–3=2×(–1)–3=–5,故答案为–5.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1解析:53.8410⨯【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将384000用科学记数法表示为:53.8410⨯.故答案为:53.8410⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.b+1【解析】【分析】根据图示,可知有理数a ,b 的取值范围b >a ,a <-1,然后根据它们的取值范围去绝对值并求|b-a|-|a+1|的值.【详解】解:根据图示知:b >a ,a <-1,∴|b解析:b+1【解析】【分析】根据图示,可知有理数a ,b 的取值范围b >a ,a <-1,然后根据它们的取值范围去绝对值并求|b-a|-|a+1|的值.【详解】解:根据图示知:b >a ,a <-1,∴|b-a|-|a+1|=b-a-(-a-1)=b-a+a+1=b+1.故答案为:b+1.【点睛】本题主要考查了关于数轴的知识以及有理数大小的比较,绝对值的知识,正确把握相关知识是解题的关键.20.12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP解析:12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP=13AB时,三条绳子长度一样均为8,此时绳子原长度为24cm;当AP=23AB时,AP的2倍段最长为8cm,则AP=4,∴PB=2,此时绳子原长度为12cm.∴绳子原长为12或24.故答案为:12或24.【点睛】本题考查了线段的度量,根据题意得出线段之间的和差及倍分关系是解答此题的关键. 21.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1解析:49.8510⨯【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】98500=49.8510⨯.故答案为:49.8510⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.22.【解析】【分析】设他们合作整理这批图书的时间是x h ,根据总工作量为单位“1”,列方程求出x 的值即可得出答案.【详解】解:设他们合作整理这批图书的时间是x h ,根据题意得:解得:x =解析:【解析】【分析】设他们合作整理这批图书的时间是x h ,根据总工作量为单位“1”,列方程求出x 的值即可得出答案.【详解】解:设他们合作整理这批图书的时间是x h ,根据题意得:111()1669x ++= 解得:x =3,答:他们合作整理这批图书的时间是3h .故答案是:3.【点睛】本题主要考查一元一次方程的应用,掌握工程问题的解法是解题的关键.23.-3t【解析】【分析】根据合并同类项法则合并同类项即可.【详解】解:故答案为:-3t .【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键.解析:-3t【解析】【分析】根据合并同类项法则合并同类项即可.【详解】解:()t 31313t t t t --=--=-故答案为:-3t .【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键.24.62°.【解析】【分析】互为余角的两角和为,而计算得.【详解】该余角为90°﹣28°=62°.故答案为:62°.【点睛】本题考查了余角,从互为余角的两角和为而解得.解析:62°.【解析】【分析】互为余角的两角和为90︒,而计算得.【详解】该余角为90°﹣28°=62°.故答案为:62°.【点睛】本题考查了余角,从互为余角的两角和为90︒而解得.25.【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD ,再代入计算即可求解.【详解】∵AB=a ,CD=b ,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b .故解析:a b +【解析】【分析】观察图形可知AD +BC =AC +CD +BD +CD =AB +CD ,再代入计算即可求解.【详解】∵AB =a ,CD =b ,∴AD +BC =AC +CD +BD +CD =AB +CD =a +b .故答案为:a+b.【点睛】本题考查了两点间的距离,列代数式,关键是根据图形得到AD+BC=AB+CD.三、解答题26.∠1=∠2;见解析.【解析】【分析】根据题意算出∠GFH+∠FHD=180°,利用同旁内角互补两直线平行,证明FG∥BD,再由角平分线性质判断即可.【详解】解:12∠=∠,理由如下:∵∠BHC=∠FHD,∠GFH+∠BHC=180°,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠2=∠ABD,∴∠1=∠2;【点睛】本题考查了平行线的判定与性质和角平分线的有关计算,关键在于掌握相关基础知识. 27.(1)30,30,∠EOD;(2)87°【解析】【分析】(1)根据13BOE EOC∠=∠,即可得到∠BOE,然后求出∠AOB,利用角平分线的定义求出∠BOD,再然后根据求出∠EOD的度数,与∠AOB相等;(2)根据角平分线的定义求出∠AOB,再求出∠BOC,然后求解即可.【详解】解:(1)∵OE AC⊥,O是直线AC上一点∴∠EOC=∠AOE=90°又∵13BOE EOC ∠=∠∴190303BOE∠=⨯=∴∠AOB=90°-30°=60°∵OD平分AOB∠∴1302BOD AOB∠=∠=∵∠EOD=∠BOD+∠BOE=60°所依∠AOB=∠EOD故答案为:30,30,∠EOD;(2)因为OD平分∠AOB,所以∠AOB=2∠AOD.因为∠AOD=32°,所以∠AOB=64°.所以∠COB=180°-∠AOB =116°.因为∠BOE=13∠EOC,所以∠EOC=34∠COB=31164⨯︒=87°.【点睛】本题考查了垂直的定义,角平分线的定义,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.28.(1)∠EOD,∠AOF都是∠EOC的补角;(2)∠POD=70°.【解析】【分析】(1)首先根据垂直定义可得∠AOE=∠DOF=90°,然后再证明∠EOD=∠AOF,根据补角定义可得∠EOD,∠AOF都是∠EOC的补角;(2)根据对顶角相等,可得∠BOC的度数,根据角平分线的定义,可得∠COP,根据余角的定义,可得答案.【详解】(1)∵OE⊥AB,OF⊥CD,∴∠AOE=∠DOF=90°,∴∠EOA+∠AOD=∠DOF+∠AOD,即:∠EOD=∠AOF,∵∠EOC+∠EOD=180°,∴∠AOF+∠EOC=180°,∴∠EOD,∠AOF都是∠EOC的补角;(2)由对顶角相等,得∠BOC=∠AOD=40°,由OP是∠BOC的平分线,得∠COP=12∠BOC=20°,由余角的定义,得∠POD=∠COD-∠COP=90°-20°=70°.【点睛】此题主要考查了补角、垂直、以及角的计算,关键是理清图中角之间的和差关系.29.203 -.【解析】【分析】利用题中的新定义运算方法求出x的值,代入原式计算即可得到结果.【详解】解:根据题中的新定义运算方法得:6x-4(3x-2)=10, 去括号得:6x-12x+8=10, 解得:x=13-, ∴2(x-2)-3(x+1) =2x-4-3x-3 =-x-7 =-(13-)-7 =203-. ∴代数式2(x-2)-3(x+1)的值是203-. 【点睛】考查了解一元一次方程,以及代数式求值,解一元一次方程的步骤为:去分母,去括号,移项合并,把x 系数化为1,求出解.30.(1)280a ;(2)2.5;(3)丙用户家2018年天然气用气量为650立方米,2019年天然气用气量为550立方米 【解析】 【分析】(1)根据题意即可列出代数式; (2)根据题意列出方程即可求解a 的值;(3)根据题意分①2019年用气量不超过300立方米,②2019年用气量超过300立方米,但不超过600立方米分别列出方程即可求解. 【详解】(1)甲用户家2018年用气总量为280立方米,则总费用为280a 元, 故答案为:280a .(2)由题意得:()3001500.51200a a ++=. 解得: 2.5a =. ∴a 的值为2.5.(3)设丙用户家2019年用气x 立方米,2018年用气()1200x -立方米. ∵2018年用气量大于2019年用气量,∴2018年用气量大于600立方米,2019年用气量小于600立方米. ①2019年用气量不超过300立方米,由题意得:()7509004120060033625x x ++--+=. 解得:425x =.不合题意,舍去.②2019年用气量超过300立方米,但不超过600立方米.由题意得:()75090041200600x ++--()3300 3.5300x +⨯+⨯-3625=. 解得:550x =,符合题意. ∴1200650x -=.答:丙用户家2018年天然气用气量为650立方米,2019年天然气用气量为550立方米. 【点睛】本题考查了一元一次方程的应用,解题的关键是根据收费标准,列式计算;找准等量关系,正确列出一元一次方程. 31.CD=2 【解析】 【分析】因为点C 是线段AB 的中点,6AC =,所以12AB =. 由12BD AD =,得到13BD AB ==4,即可列式CD BC BD =-计算得到答案. 【详解】 解:点C 是线段AB 的中点,6AC =, 12AB ∴=.12BD AD =, 13BD AB ∴==4. 642CD BC BD AC BD ∴=-=-=-=.【点睛】本题考查线段的和差分倍,解题的关键是掌握线段的和差分倍计算方法. 32.(1)12;(2)79. 【解析】 【分析】(1)按照整数的运算法则运算即可. (2)按照分数的运算法则运算即可. 【详解】(1) ()()48(2)(4)44441612-+÷-⨯-=-+-⨯-=-+=.(2) 2151313104181912874632612121212361236369⎛⎫⎛⎫⎛⎫--+++-=--+++=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【点睛】本题考查有理数的运算法则,关键在于掌握基础计算方法.33.(1)908t ;-(2)152744t t ==,(3)①5或10,②3∠NOD +4∠BOM =270°. 【解析】【分析】(1)把旋转前∠NOD 的大小减去旋转的度数就是旋转后的∠NOD 的大小.(2)相对MO 与CO 的位置有两种情况,所以要分类讨论,然后根据∠NOD =4∠COM 建立关于t 的方程即可.(3)①其实是一个追赶问题,分MO 没有追上CO 与MO 超过CO 两种情况,然后分别列方程即可.②分别用t 的代数式表示∠NOD 和∠BOM ,然后消去t 即可得出它们的关系. 【详解】(1)∠NOD 一开始为90°,然后每秒减少8°,因此∠NOD =90﹣8t . 故答案为90﹣8t .(2)当MO 在∠BOC 内部时,即t 458<时,根据题意得: 90﹣8t =4(45﹣8t ) 解得:t 154=; 当MO 在∠BOC 外部时,即t 458>时,根据题意得: 90﹣8t =4(8t ﹣45) 解得:t 274=. 综上所述:t 154=或t 274=. (3)①当MO 在∠BOC 内部时,即t 458<时,根据题意得: 8t ﹣2t =30 解得:t =5;当MO 在∠BOC 外部时,即t 458>时,根据题意得: 8t ﹣2t =60 解得:t =10. 故答案为5或10.②∵∠NOD =90﹣8t ,∠BOM =6t ,∴3∠NOD +4∠BOM =3(90﹣8t )+4×6t =270°. 即3∠NOD +4∠BOM =270°. 【点睛】本题一元一次方程和图形变换相结合的题目,考查了一元一次方程的应用,渗透了分类的思想方法.四、压轴题34.(1)4-,1,6;(2)能;(3)5t +,53t +;(4)3AB BC -的值不会随时间t 的变化而变化,值为10【解析】 【分析】(1)由一次项系数、最小的正整数、单项式次数的定义回答即可, (2)计算线段长度,若AB BC =则重叠,(3)线段长度就用两点表示的数相减,用较大的数减较小的数即可, (4)根据(3)的结果计算即可. 【详解】(1)观察数轴可知,4a =-,1b =,6c =. 故答案为:4-;1;6.(2)()145AB =--=,615BC =-=,AB BC =, 则若将数轴在点B 处折叠,点A 与点C 能重合. 故答案为:能.(3)经过t 秒后43a t =--,12b t =-,6c t =+,则5AB a b t =-=+,53BC b c t =-=+.故答案为:5t +;53t +. (4)5AB t =+, ∴3153AB t =+. 又53BC t =+,∴()()315353AB BC t t -=+-+15353t t =+--10=.故3AB BC -的值不会随时间t 的变化而变化,值为10. 【点睛】本题考查列代数式求值,有理数的概念及分类,多项式的项与次数,单项式的系数与次数,在数轴上表示实数,解题的关键是用字母表示线段长度.35.(1)-1.5;(2)存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒. 【解析】 【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q 在A 的左侧或在A 的右侧时,根据Q 点与B 点的距离等于Q 点与A 点的距离的2倍可得结论; 【详解】解:(1)数轴上点A 表示的数为-6;点B 表示的数为3; ∴AB=9;∵P 到A 和点B 的距离相等,。
七年级期末试卷(培优篇)(Word版含解析)一、选择题1.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为()A.-2 B.6 C.23-D.22.下列说法中不正确的是()A.两点之间线段最短B.过直线外一点有且只有一条直线与这条直线平行C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.若 AC=BC,则点 C 是线段 AB 的中点3.运行程序如图所示,规定:从“输入一个值x”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数....x的和为( )A.30 B.35 C.42 D.394.下列说法错误的是( )A.2的相反数是2-B.3的倒数是1 3C.3-的绝对值是3 D.11-,0,4这三个数中最小的数是0 5.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.6.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为().A.B.C.D.7.在一列数:123n a a a a ⋯,,,中,12=7=1a a ,, 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这个数中的第2018个数是() A .1B .3C .7D .98.下列叙述中正确的是( )①线段AB 可表示为线段BA; ② 射线AB 可表示为射线BA; ③ 直线AB 可表示为直线BA; ④ 射线AB 和射线BA 是同一条射线. A .①②③④ B .②③C .①③D .①②③9.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A .27°40′B .57°40′C .58°20′D .62°20′10.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x +2y =0.其中一元一次方程的个数是( ) A .2B .3C .4D .511.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A .ab >0B .|b|<|a|C .b <0<aD .a+b >012.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .13.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m14.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A .50°B .55°C .60°D .65°15.在同一平面内,下列说法中不正确的是( ) A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .过直线外一点有且只有一条直线与这条直线垂直D .若AC BC =,则点C 是线段AB 的中点.二、填空题16.如图,点C 在线段AB 上,8,6AC CB ==,点,M N 分别是,AC BC 的中点,则线段MN =____.17.单项式235a b-的次数为____________.18.定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n +1;②当n 为偶数时,F (n )2kn=(其中k 是使F (n )为奇数的正整数)……,两种运算交替重复进行,例如,取n =13,则:若n =24,则第100次“F ”运算的结果是________.19.已知23a b -=,则736a b +-的值为__________.20.若代数式2a-b 的值是4,则多项式2-a+12b 的值是_______________ . 21.已知1x =是方程253ax a -=+的解,则a =__.22.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是________.23.若3842α'∠=︒,则α∠的余角等于_______. 24.若 2230α'∠=︒,则α∠的余角等于________.25.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.三、解答题26.已知关于x 的方程3(2)x x a -=- 的解比223x a x a+-= 的解小52,求a 的值. 27.阳光集团新进了20台电视机和30台电饭煲,计划将这50台电器调配给下属的甲、乙两个商店销售,其中40台给甲商店,10台给乙商店.两个商店销售这两种电器每台的利润(元)如下表:电视机 电饭煲 甲商店/元 100 60 乙商店/元8050(1)设集团调配给甲商店x 台电视机,则调配给甲商店电饭煲 台,调配给乙商店电视机 台、电饭煲 台; (2)求出x 的取值范围;(3)如果阳光集团卖出这50台电器想要获得的总利润为3650元,请求出x 的值. 28.如图,点P 是∠AOB 的边OB 上的一点 (1)过点P 画OA 的平行线PQ (2)过点P 画OA 的垂线,垂足为H (3)过点P 画OB 的垂线,交OA 于点C(4)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离. (5)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC .PH 、OC 这三条线段大小关系是______(用“<“号连接).29.把 6个相同的小正方体摆成如图的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果每个小正方体棱长为1cm,则该几何体的表面积是 2cm.(3)如果在这个几何体上再添加一些相同的小正方体,并并保持左视图和俯视图不变,那么最多可以再添加 个小正方体.30.先化简,再求值:3x2+(2xy-3y2)-2(x2+xy-y2),其中x=-1,y=2.31.解方程(1)5x﹣1=3(x+1)(2)21511 36x x+--=32.按要求画图:如图,在同一平面内有三点A、B、C.(1)画直线AB和射线BC;(2)连接线段AC,取线段AC的中点D;(3)画出点D到直线AB的垂线段DE.33.2020年8月连淮扬镇铁路正式通车,高邮迈入高铁时代,动车的平均速度为200/km h(动车的长度不计),高铁的平均速度为300/km h(高铁的长度不计),扬州市内依次设有6个站点,宝应站、高邮北站、高邮高铁站、邵伯站、江都站、扬州高铁站,假设每两个相邻站点之间的路程都相等,已知一列动车、一列高铁同时经过宝应站开往扬州高铁站,若中途不停靠任何站点,到达扬州高铁站时高铁比动车将早到10分钟(1)求宝应站到扬州高铁站的路程;(2)若一列动车6:00从宝应站出发,每个站点都停靠4分钟,一列高铁6:18从宝应站出发,只停靠高邮北站、江都站,每个站点都停靠4分钟.①求高铁经过多长时间追上动车;②求高铁经过多长时间后,与动车的距离相距20千米.四、压轴题34.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)36.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.37.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.38.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?39.如图1,点O 为直线AB 上一点,过点O 作射线OC ,OD ,使射线OC 平分∠AOD . (1)当∠BOD =50°时,∠COD = °;(2)将一直角三角板的直角顶点放在点O 处,当三角板MON 的一边OM 与射线OC 重合时,如图2.①在(1)的条件下,∠AON = °; ②若∠BOD =70°,求∠AON 的度数;③若∠BOD =α,请直接写出∠AON 的度数(用含α的式子表示).40.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).41.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数:(2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.42.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 43.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“y”是相对面,“5”与“-5”是相对面,“-4”与“3x-2”是相对面,∵相对面上所标的两个数互为相反数,∴3x-2+(-4)=0,x+y=0,解得x=2,y=-2.∴2x﹣y=6.故选B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.D解析:D【解析】【分析】根据线段公理,平行公理,垂线段最短等知识一一判断即可.【详解】A.两点之间,线段最短,正确;B.经过直线外一点,有且只有一条直线与这条直线平行,正确;C.直线外一点与这条直线上各点连接的所有线段中,垂线段最短,正确;D.当A、B、C三点在一条直线上时,当AC=BC时,点 C 是线段 AB 的中点;故错误;故选:D.【点睛】本题考查线段公理,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.D解析:D 【解析】 【分析】根据题意可知第一次所得的结果≤26,第二次所得的结果>26,列不等式组并解除不等式组得解后再计算满足条件的所有整数的和即可. 【详解】 由题意得31263(31)126x x -≤⎧⎨--⎩①>②,解不等式①得,x≤9, 解不等式②得,x >103, ∴x 的取值范围是103<x≤9, ∴满足条件的所有整数x 的和为4+5+6+7+8+9=39.故答案选D . 【点睛】本题考查一元一次不等式组的应用,解题的关键是正确理解程序所表示的意义,能根据题意列出不等式组.4.D解析:D 【解析】 【分析】根据相反数的定义,倒数的定义,绝对值的意义,以及有理数比较大小,分别对每个选项进行判断,即可得到答案. 【详解】解:A 、2的相反数是2-,正确; B 、3的倒数是13,正确; C 、3-的绝对值是3,正确;D 、11-,0,4这三个数中最小的数是11-,故D 错误; 故选:D. 【点睛】本题考查了相反数、倒数的定,绝对值的意义,以及比较有理数的大小,解题的关键数熟记定义.5.D解析:D 【解析】点到直线的距离是指垂线段的长度.【详解】解:线段AD的长表示点A到直线BC距离的是图D,故选:D.【点睛】本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段是解题关键.6.B解析:B【解析】【分析】计划做个“中国结”,根据题意可用两种方式表示出参与制作的人数,根据人数不变这一等量关系即可列出方程.【详解】计划做个“中国结”,由题意可得,故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 7.A解析:A【解析】【详解】a1=7,a2=1,a3=7,a4=7,a5=9,a6=3,a7=7,a8=1,a9=7,…不难发现此组数据为6个一循环,2018÷6=336…2,所以第2018个数是1.故选A.【点睛】本题考查了规律型——数字的变化类,此类问题关键在于找出数据循环的规律.8.C解析:C【解析】【分析】依据线段、射线以及直线的概念进行判断,即可得出正确结论.解:①线段AB 可表示为线段BA ,正确;②射线AB 不可表示为射线BA ,错误;③直线AB 可表示为直线BA ,正确;④射线AB 和射线BA 不是同一条射线,错误;故选:C .【点睛】本题主要考查了线段、射线以及直线的概念,解题时注意:射线用两个大写字母表示时,端点的字母放在前边.9.B解析:B【解析】【分析】先由∠1=27°40′,求出∠CAE 的度数,再根据∠CAE +∠2=90°即可求出∠2的度数.【详解】∵∠1=27°40′,∴∠CAE =60°-27°40′=32°20′,∴∠2=90°-32°20′= 57°40′.故选B.【点睛】本题考查了角的和差及数形结合的数学思想,认真读图,找出其中的数量关系是解答本题的关键.10.B解析:B【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.【详解】解:①x−2=2x 是分式方程,故①错误; ②0.3x=1,即0.3x-1=0,符合一元一次方程的定义.故②正确; ③2x =5x+1,即9x+2=0,符合一元一次方程的定义.故③正确; ④x 2-4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x-6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选B .【点睛】本题考查了一元一次方程的一般形式,掌握只含有一个未知数,且未知数的指数是1,一次项系数不是0是关键.11.C解析:C【解析】【分析】根据a与b在数轴上的位置即可判断.【详解】解:由数轴可知:b<-1<0<a<1,且|a|<1<|b|;∴A、 ab<0.故本选项错误;B、|b|>|a|. 故本选项错误;C、b<0<a . 故本选项正确;D、a+b<0 . 故本选项错误;故选:C.【点睛】此题考查了数轴的有关知识,利用数形结合思想是解题关键.12.C解析:C【解析】【分析】【详解】由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.13.D解析:D【解析】【分析】【详解】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.14.D解析:D【解析】【分析】根据方向角的定义和角平分线的定义即可得到结论.【详解】∵OA方向是北偏西40°方向,∴∠AOC=40°+90°=130°.∵OB平分∠AOC,∴∠BOC12=∠AOC=65°.故选:D.【点睛】本题考查了方向角、角平分线的定义、角的和差定义等知识,解题的关键是理解方向角的概念,学会用方向角描述位置,属于中考常考题型.15.D解析:D【解析】【分析】根据线段的概念,以及所学的基本事实,对选项一一分析,选择正确答案.【详解】解:A、两点之间线段最短,正确;B、过直线外一点有且只有一条直线与这条直线平行,正确;C、过直线外一点有且只有一条直线与这条直线垂直,正确;D、若AC BC=,则点C是线段AB的中点,错误;故选:D.【点睛】本题考查线段的概念以及所学的基本事实.解题的关键是熟练运用这些概念.二、填空题16.7【解析】【分析】根据线段中点求出MC和NC,即可求出MN;【详解】解:∵M、N分别是AC、BC的中点,AC=8,BC=6,∴MC=AC=4,CN=BC=3,∴MN=MC+CN=4+3解析:7【解析】【分析】根据线段中点求出MC和NC,即可求出MN;【详解】解:∵M、N分别是AC、BC的中点,AC=8,BC=6,∴MC=12AC=4,CN=12BC=3,∴MN=MC+CN=4+3=7,故答案为:7.【点睛】本题考查了两点间的距离,解题的关键是利用中点的定义求解.17.3【解析】【分析】根据单项式次数的定义来求解.【详解】解:单项式的次数为3.【点睛】本题考查了单项式、多项式的有关定义,是基础知识,需牢固掌握.解析:3【解析】【分析】根据单项式次数的定义来求解.【详解】解:单项式235a b的次数为3.【点睛】本题考查了单项式、多项式的有关定义,是基础知识,需牢固掌握.18.4【解析】【分析】计算n=24时的情况,将结果列出来找到规律解题即可.【详解】若n=1,第一次结果为3n+1=4,第2次“F运算”的结果是: =1;若n=24,第1次结果为:,第2次解析:4【解析】【分析】计算n=24时的情况,将结果列出来找到规律解题即可.若n=1,第一次结果为3n+1=4,第2次“F 运算”的结果是:242=1; 若n=24,第1次结果为:32432=, 第2次结果为:3×3+1=10, 第3次结果为:11052=, 第4次结果为:3×5+1=16, 第5次结果为:41612=, 第6次结果为:3×1+1=4,第7次结果为:2412=, 第8次结果为: 3×1+1=4,…可以看出,从第5次开始,结果就只是1,4两个数轮流出现,且当次数为奇数时,结果是1,次数是偶数时,结果是4,而100次是偶数,因此最后结果是4.故答案为:4.【点睛】本题为找规律的题型,关键在于列出结果找到规律.19.【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b )=7+3×3=16.故答案为:16.【点睛】本题考查代数解析:16【解析】【分析】直接利用整体思想将原式变形进而得出答案.解:∵a-2b=3,∴7+3a-6b=7+3(a-2b )=7+3×3=16.故答案为:16.【点睛】本题考查代数式求值,解题关键是正确将原式变形.20.0【解析】【分析】根据题意,有,则,然后利用整体代入法进行求解,即可得到答案.【详解】解:根据题意,有,∴,∴;故答案为:0.【点睛】本题考查了求代数式的值,解题的关键是得到,熟解析:0【解析】【分析】根据题意,有24a b -=,则122a b -=,然后利用整体代入法进行求解,即可得到答案. 【详解】解:根据题意,有24a b -=, ∴122a b -=, ∴1122()22022a b a b -+=--=-=; 故答案为:0.【点睛】 本题考查了求代数式的值,解题的关键是得到122a b -=,熟练运用整体代入法进行解题. 21.8【解析】【分析】根据题意将x=1代入方程即可求出a的值.【详解】将x=1代入方程得:2a-5=a+3,解得:a=8.故答案为:8.【点睛】此题考查了一元一次方程的解,方程的解即为解析:8【解析】【分析】根据题意将x=1代入方程即可求出a的值.【详解】将x=1代入方程得:2a-5=a+3,解得:a=8.故答案为:8.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.22.过一点有且只有一条直线与已知直线垂直【解析】【分析】平面内,经过一点有且只有一条直线与已知直线垂直,据此可得结论.【详解】∵OM⊥l,ON⊥l,∴OM与ON重合(平面内,经过一点有且只有解析:过一点有且只有一条直线与已知直线垂直【解析】【分析】平面内,经过一点有且只有一条直线与已知直线垂直,据此可得结论.【详解】∵OM⊥l,ON⊥l,∴OM与ON重合(平面内,经过一点有且只有一条直线与已知直线垂直),故答案为:平面内,经过一点有且只有一条直线与已知直线垂直.【点睛】本题考查了垂线,利用了垂线的性质:平面内过一点有且只有一条直线与已知直线垂直.23.【解析】【分析】根据余角的定义即可求出.【详解】解:∵∴的余角=故答案为:【点睛】此题考查的是求一个角的余角,掌握余角的定义是解决此题的关键.解析:5118'︒【解析】【分析】根据余角的定义即可求出.【详解】解:∵3842α'∠=︒∴α∠的余角=9038425118''︒-︒=︒故答案为: 5118'︒【点睛】此题考查的是求一个角的余角,掌握余角的定义是解决此题的关键.24.【解析】【分析】根据余角的定义,即和为90°的两角叫互为余角,列算式求解即可.【详解】解:∵的余角为.故答案为:.【点睛】本题考查余角的定义及度、分、秒之间的运算,掌握定义是解答此解析:'6730︒【解析】【分析】根据余角的定义,即和为90°的两角叫互为余角,列算式求解即可.【详解】解:∵ 2230α'∠=︒α∠的余角为9022306730''-︒=︒.故答案为:'6730︒.【点睛】本题考查余角的定义及度、分、秒之间的运算,掌握定义是解答此题的关键.25.100【解析】【分析】设这件衬衫的成本是x 元,根据利润=售价-进价,列出方程,求出方程的解即可得到结果.【详解】设这件衬衫的成本是x 元,根据题意得:(1+50%)x×80%﹣x=20解解析:100【解析】【分析】设这件衬衫的成本是x 元,根据利润=售价-进价,列出方程,求出方程的解即可得到结果.【详解】设这件衬衫的成本是x 元,根据题意得:(1+50%)x ×80%﹣x =20解得:x =100,这件衬衫的成本是100元.故答案为:100.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解答本题的关键.三、解答题26.a=1【解析】【分析】分别求出两个方程的解,然后根据关系列出等式,求出a 的值即可.【详解】解:∵3(2)x x a -=-, 解得:62a x -=; ∵223x a x a +-=, 解得:5x a =, ∴65522a a -=-, 解得:1a =;∴a 的值为1.【点睛】本题考查了解一元一次方程,以及一元一次方程的解,解题的关键是正确求出一元一次方程的解,从而列出等式求出a的值.27.(1)(40-x),(20-x),(x-10);(2)10≤x≤20;(3)15.【解析】【分析】(1)50台电器调配40台给甲商店,10台给乙商店,设调配给甲商店x台电视机,则调配给甲商店电饭煲40-x台,调配给乙商店电视机20-x台、电饭煲x-10台;(2)根据调配的电器数都是大于等于0的列不等式组解答即可;(3)根据总利润为3650元列方程解答即可.【详解】(1)(40-x),(20-x),(x-10);(2)∵400200100xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩∴402010xxxx≥⎧⎪≤⎪⎨≤⎪⎪≥⎩∴10≤x≤20;(3)根据题意可得,100x+60(40-x)+80(20-x)+50(x-10)=3650,解题,x=15 ,【点睛】本题考查一元一次方程的应用,解题的关键是根据总利润列出方程.28.(1)作图见解析;(2)作图见解析;(3)直线OA(或点H);线段CP的长度;PH<PC<OC【解析】【分析】按照要求作图即可,利用两个方格组成的矩形的对角线可作出与OB的平行线MN和垂线PC,沿方格线可作出OA的垂线;再由垂线段最短即可解答.【详解】解:(1)(2)(3)按要求作图即可,如下图,(4) 由图可知,PH是点P到直线OA(或点H)的距离,点到直线的垂线段长度即为该点到直线的距离,故CP的长度为点C到直线OB的距离;故答案为:直线OA(或点H);线段CP的长度(5)故PH<PC;CP是C到OB的距离,故CP<CO,故答案为:PH<PC<OC.【点睛】本题考查了与线相关的作图以及点到直线的距离.29.(1)见解析;(2)26;(3)2.【解析】【分析】(1)依据画几何体三视图的原理画出视图;(2)该几何体的表面积为主视图、左视图、俯视图面积和的两倍,根据(1)中的三视图即可求解.(3)利用左视图的俯视图不变,得出可以添加的位置.【详解】(1)三视图如图:(2)该几何体的表面积为主视图、左视图、俯视图面积和的两倍,所以该几何体的表面积为 2×(4+3+5)=24cm2(3)∵添加后左视图和俯视图不变,∴最多可以在第二行的第一列和第二列各添加一个小正方体,∴最多可以再添加2个小正方体.【点睛】本题考查了画三视图以及几何体的表面积,正确得出三视图是解答此题的关键.30.x2﹣y2,﹣3.【解析】【分析】去括号合并同类项后,再代入计算即可.【详解】原式=3x2+2xy﹣3y2﹣2x2﹣2xy+2y2=x2﹣y2.当x=﹣1,y=2时,原式=(﹣1)2﹣22=1﹣4=﹣3.【点睛】本题考查了整式的加减,解题的关键是熟练掌握整式的加减法则,属于中考常考题型. 31.(1)x=2;(2)x=﹣3.【解析】【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【详解】解:(1)去括号,可得:5x﹣1=3x+3,移项,合并同类项,可得:2x=4,系数化为1,可得:x=2.(2)去分母,可得:2(2x+1)﹣(5x﹣1)=6,去括号,可得:4x+2﹣5x+1=6,移项,合并同类项,可得:﹣x=3,系数化为1,可得:x=﹣3.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.32.(1)见详解;(2)见详解;(3)见详解.【解析】【分析】(1)根据直线和射线的概念作图可得;(2)根据线段的概念和中点的定义作图可得;(3)过点D作DE⊥AB于点E,连接DE即可.【详解】解:(1)如图所示,直线AB和射线BC即为所求;(2)如图线段AC和点D即为所求;(3)线段DE为所求垂线段.【点睛】本题主要考查作图——复杂作图,解题的关键是掌握直线、射线、线段及点到直线的距离的概念是解题的关键.33.(1)宝应站到扬州高铁站的路程为100km;(2)①高铁经过20分钟时间追上动车②高铁经过12分钟后,与动车的距离相距20千米.【解析】【分析】(1)设宝应站到扬州高铁站的路程为xkm,,已知一列动车、一列高铁同时经过宝应站开往扬州高铁站,若中途不停靠任何站点,到达扬州高铁站时高铁比动车将早到10分钟,根据时间=路程:速度即可得出关于x 的一元一次方程,解之即可得出结论;(2)①分析出动车和高铁在每个站点的具体时间进行比较即可;②分析出动车和高铁在每个站点的具体时间及行驶过的路路程,进行比较.【详解】解:(1)设宝应站到扬州高铁站的路程为xkm,依题意得:12003006x x -= 解得:100x =答:宝应站到扬州高铁站的路程为100km .(2)①每个相邻站点距离为1005=20km ÷ , 动车到每一站所花时间为20606200⨯=(分钟) , 高铁到每一站所花时间为20604300⨯= (分钟) . ∴动车在高邮北站的时间为: 6:06-6:10动车在高邮高铁站的时间为:6:16-6:20动车在邵伯站的时间为:6:26-6:30动车在江都站的时间为:6:36-6:40动车在扬州高铁站的时间为:6:46高铁在高邮北站的时间为: 6:22-6:26高铁到高邮高铁站的时间为:6:30高铁到邵伯站的时间为:6:34高铁在江都站的时间为:6:38-6:42高铁在扬州高铁站的时间为:6:46∴可以知道在6:38时动车和高铁均在江都站∴此时高铁经过20分钟时间追上动车答:高铁经过20分钟时间追上动车②由①可知:∴动车在高邮北站的时间为: 6:06-6:10,此时动车已走20km动车在高邮高铁站的时间为:6:16-6:20,此时动车已走40km动车在邵伯站的时间为:6:26-6:30,此时动车已走60km动车在江都站的时间为:6:36-6:40,此时动车已走80km动车在扬州高铁站的时间为:6:46,此时动车已走100km高铁在高邮北站的时间为: 6:22-6:26,此时高铁已走20km高铁到高邮高铁站的时间为:6:30,此时高铁已走40km高铁到邵伯站的时间为:6:34,,此时高铁已走60km高铁在江都站的时间为:6:38-6:42,,此时高铁已走80km高铁在扬州高铁站的时间为:6:46,,此时高铁已走100km。
七年级上册期末试卷(培优篇)(Word 版 含解析)一、选择题1.下列各组单项式中,是同类项的一组是( )A .3x 3y 与3xy 3B .2ab 2与-3a 2bC .a 2与b 2D .2xy 与3 yx2.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元3.庆祝澳门回归祖国20周年时,据统计澳门共有女性约360000人,则360000用科学记数法可以表示为( )A .53610⨯B .60.3610⨯C .53.610⨯D .43610⨯4.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( )A .36.1728910⨯亿元B .261.728910⨯亿元C .56.1728910⨯亿元D .46.1728910⨯亿元 5.下列四个数:22,3.3030030003,,0.5,3.147π--,其中是无理数有( ) A .1个 B .2个 C .3个 D .4个6.在一个不透明的布袋中,装有一个简单几何体模型,甲乙两人在摸后各说出了它的一个特征,甲:它有曲面;乙:它有顶点。
该几何体模型可能是( )A .球B .三棱锥C .圆锥D .圆柱 7.钟面上8:45时,时针与分针形成的角度为( )A .7.5°B .15°C .30°D .45° 8.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( )A .115×103B .11.5×104C .1.15×105D .0.115×1069.拖拉机加油50L 记作50L +,用去油30L 记作30L -,那么()5030++-等于( ) A .20 B .40 C .60 D .8010.如图由5个小正方形组成,只要再添加1个小正方形,拼接后就能使得整个图形能折叠成正方体纸盒,这种拼接的方式有( )A .2种B .3种C .4种D .5种11.如图,点C 是AB 的中点,点D 是BC 的中点,则下列等式中正确的有( )①CD AC DB =-②CD AD BC =-③2BD AD AB =- ④13CD AB = A .4个 B .3个 C .2个 D .1个12.据报道,2019年建成的某新机场将满足年旅客吞吐量45 000 000人次的需求.将45 000 000用科学记数法表示应为( )A .0.45×108B .45×106C .4.5×107D .4.5×10613.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -14.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( )A .36.1728910⨯亿元B .261.728910⨯亿元C .56.1728910⨯亿元D .46.1728910⨯亿元 15.下列各数:-1,2π,4.112134,0,227,3.14,其中有理数有( ) A .6个 B .5个 C .4个 D .3个二、填空题16.如图,AOB ∠的度数是___________︒17.若∠α=70°,则它的补角是 .18.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.19.如图,已知线段AB =8,若O 是AB 的中点,点M 在线段AB 上,OM =1,则线段BM 的长度为_____.20.在2π,3.14,0,0.1010010001(每两个1之间依次增加1个0),23中,无理数有_________个.21.若x =-1是关于x 的方程2x +a =1的解,则a 的值为_____.22.已知∠α=25°15′,∠β=25.15°,则∠α_______∠β(填“>”,“<”或“=”).23.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.24.比较大小:-12____23-(填“>”,“<”或“=”) 25.若代数式2434x x +-的值为 1,则代数式2314x x --的值为_________. 三、解答题26.已知180AOB COD +=∠∠.(1)如图 1,若90,68AOB AOD ∠=∠=,求BOC ∠的度数;(2)如图 2,指出AOD ∠的补角并说明理由.27.如图,已知点A,B 是数轴上原点O 两侧的两点,其中点A 在负半轴上,点B 在正半轴上,AO=2, OB=10.动点P 从点A 出发以每秒2个单位长度的速度向右运动,到达点B 后立即返回,速度不变;动点Q 从点O 出发以每秒1个单位长度的速度向右运动,当点Q 到达点B 时,动点P ,Q 停止运动.设P ,Q 两点同时出发,运动时间为t 秒.(1)当点P 从点A 向点B 运动时,点P 在数轴上对应的数为 当点P 从点B 返回向点O 运动时,点P 在数轴上对应的数为 (用含t 的代数式表示)(2)当t 为何值时,点P ,Q 第一次重合?(3)当t 为何值时,点P ,Q 之间的距离为3个单位?28.如图,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =135°,将一个含45°角的直角三角板的一个顶点放在点O 处,斜边OM 与直线AB 重合,另外两条直角边都在直线AB 的下方.(1)将图1中的三角板绕着点O 逆时针旋转90°,如图2所示,此时∠BOM = ;在图2中,OM 是否平分∠CON ?请说明理由;(2)接着将图2中的三角板绕点O 逆时针继续旋转到图3的位置所示,使得ON 在∠AOC 的内部,请探究:∠AOM 与∠CON 之间的数量关系,并说明理由;(3)将图1中的三角板绕点O 按每秒4.5°的速度沿逆时针方向旋转一周,在旋转的过程中,当旋转到第 秒时,∠COM 与∠CON 互补.29.如图,COD ∠为平角,,2AO OE AOC DOE ⊥∠=∠,求AOC ∠的度数.30.、两地相距,甲、乙两车分别沿同一条路线从地出发驶往地,已知甲车的速度为,乙车的速度为,甲车先出发后乙车再出发,乙车到达地后再原地等甲车. (1)求乙车出发多长时间追上甲车?(2)求乙车出发多长时间与甲车相距? 31.如图,点P 是∠AOB 的边OB 上的一点(1)过点P 画OA 的平行线PQ(2)过点P 画OA 的垂线,垂足为H(3)过点P 画OB 的垂线,交OA 于点C(4)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离.(5)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC .PH 、OC 这三条线段大小关系是______(用“<“号连接).32.先化简,再求值:()()22225343a b ab ab a b ---+,其中a=-2,b=12; 33.我们知道,任意一个正整数n 都可以进行这样的分解:n p q =⨯(p ,q 是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q是n的完美分解.并规定:()pF nq=.例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=31 62 =.(1)F(13)=,F(24)=;(2)如果一个两位正整数t,其个位数字是a,十位数字为1b-,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F(t)的最大值.四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。
七年级期末试卷(培优篇)(Word 版 含解析)一、选择题1.3-的倒数是( )A .3B .13C .13-D .3-2.有理数-53的倒数是( ) A .53 B .53-C .35D .353.在一个不透明的布袋中,装有一个简单几何体模型,甲乙两人在摸后各说出了它的一个特征,甲:它有曲面;乙:它有顶点。
该几何体模型可能是( ) A .球 B .三棱锥C .圆锥D .圆柱4.方程去分母后正确的结果是( ) A .B .C .D .5.下列合并同类项结果正确的是( )A .2a 2+3a 2=6a 2B .2a 2+3a 2=5a 2C .2xy -xy =1D .2x 3+3x 3=5x 66.小明在某月的日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是( ) A .B .C .D .7.-5的相反数是( ) A .-5B .±5C .15D .58.某网店销售一件商品,已知这件商品的进价为每件400元,按标价的7折销售,仍可获利20%,设这件商品的标价为x 元,根据题意可列出方程( ) A .0.740020%400x -=⨯ B .0.740020%0.7x x -=⨯ C .()120%0.7400x -⨯=D .()0.7120%400x =-⨯9.下列图形,不是柱体的是( ) A .B .C .D .10.下面四个图形中,∠1=∠2一定成立的是( ) A .B .C .D .11.小明同学用手中一副三角尺想摆成α∠与β∠互余,下面摆放方式中符合要求的是( ).A .B .C .D .12.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣1202013.下列运用等式的性质,变形不正确的是: A .若x y =,则55x y +=+ B .若x y =,则ax ay = C .若x y =,则x y a a = D .若a bc c=(c ≠0),则a b = 14.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .球体D .棱锥15.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y-的系数是2-,次数是3二、填空题16.据统计,我市常住人口56.3万人,数据563000用科学计数法表示为__________. 17.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.18.下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程; ③体育课上,老师测量某名同学的跳远成绩.其中,可以用“两点之间线段最短”来解释的是________ .(填序号) 19.已知1x =是方程253ax a -=+的解,则a =__.20.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.21.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”).22.有理数a 、b 、c 在数轴上的位置如图:化简:|b ﹣c |+2|a +b |﹣|c ﹣a |=_____.23.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________.24.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是_____℃.25.如图所示,在P Q 、处把绳子AB 剪断,且::2:3:4AP PQ QB =,若剪断的各段绳子中最长的一段为16cm ,则绳子的原长为___________三、解答题26.先化简,再求值:22223(2)(54)a b ab a b ab ---,其中21a b ==-、 27.如图,直线a 上有M 、N 两点,12cm MN =,点O 是线段MN 上的一点,3OM ON =.(1)填空:OM =______cm ,ON =______cm ;(2)若点C 是线段OM 上一点,且满足MC CO CN =+,求CO 的长;(3)若动点P 、Q 分别从M 、N 两点同时出发,向右运动,点P 的速度为3cm /s ,点Q 的速度为2cm /s .设运动时间为s t ,当点P 与点Q 重合时,P 、Q 两点停止运动.①当t 为何值时,24cm OP OQ -=?②当点P 经过点O 时,动点D 从点O 出发,以4cm /s 的速度也向右运动,当点D 追上点Q 后立即返回,以4cm /s 的速度向点P 运动,遇到点P 后再立即返回,以4cm /s 的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点D 也停止运动.求出在此过程中点D 运动的总路程是多少?28.计算:(1)715|4|--- (2)42112(3)6⎛⎫--⨯-÷-⎪⎝⎭29.如图,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =135°,将一个含45°角的直角三角板的一个顶点放在点O 处,斜边OM 与直线AB 重合,另外两条直角边都在直线AB 的下方.(1)将图1中的三角板绕着点O 逆时针旋转90°,如图2所示,此时∠BOM = ;在图2中,OM 是否平分∠CON ?请说明理由;(2)接着将图2中的三角板绕点O 逆时针继续旋转到图3的位置所示,使得ON 在∠AOC 的内部,请探究:∠AOM 与∠CON 之间的数量关系,并说明理由;(3)将图1中的三角板绕点O 按每秒4.5°的速度沿逆时针方向旋转一周,在旋转的过程中,当旋转到第 秒时,∠COM 与∠CON 互补.30. a ※b 是新规定的这样一种运算法则:a ※b=a 2+2ab ,例如3※(-2)=32+2×3×(-2)=-3 (1)试求(-2)※3的值 (2)若1※x=3,求x 的值 (3)若(-2)※x=-2+x ,求x 的值.31.如图,点C 是AB 上一点,点D 是AC 的中点,若12AB =,7BD =,求CB 的长.32.在平整的地面上,由若干个完全相同的棱长为10 cm 的小正方体堆成一个几何体,如图①所示.(1)请你在方格纸中分别画出这个几何体的主视..图和左视..图; (2)若现在手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变, Ⅰ.在图①所示几何体上最多可以添加 个小正方体; Ⅱ.在图①所示几何体上最多可以拿走 个小正方体;Ⅲ.在题Ⅱ的情况下,把这个几何体放置在墙角,使得几何体的左面和后面靠墙,其俯视图如图②所示,若给该几何体露在外面的面喷上红漆,则需要喷漆的面积最少是多少平方厘米?33.如图,直线AB 、CD 相交于点O ,OE ⊥CD ,∠AOC =50°.求∠BOE 的度数.四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
如图的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1)图1是显示部分代数式的“等和格”,可得a=_______(含b 的代数式表示); (2)图2是显示部分代数式的“等和格”,可得a=__________,b=__________; (3)图3是显示部分代数式的“等和格”,求b 的值。
(写出具体求解过程)35.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?37.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.38.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.39.如图1,点A,B,C,D为直线l上从左到右顺次的4个点.(1) ①直线l上以A,B,C,D为端点的线段共有条;②若AC=5cm,BD=6cm,BC=1cm,点P为直线l上一点,则PA+PD的最小值为 cm;(2)若点A在直线l上向左运动,线段BD在直线l上向右运动,M,N分别为AC,BD的中点(如图2),请指出在此过程中线段AD,BC,MN有何数量关系并说明理由;(3)若C是AD的一个三等分点,DC>AC,且AD=9cm,E,F两点同时从C,D出发,分别以2cm/s,1cm/s的速度沿直线l向左运动,Q为EF的中点,设运动时间为t,当AQ+AE+AF=32AD时,请直接写出t的值.40.对于数轴上的,,A B C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数. 41.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.42.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .43.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由互为倒数的两数之积为1,即可求解. 【详解】∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-. 故选C2.D解析:D 【解析】 【分析】根据倒数的定义,即乘积是1的两数互为倒数可得答案. 【详解】解:-53的倒数是-35, 故选:D . 【点睛】本题考查了倒数的定义,熟练掌握倒数的求法是解题的关键.3.C解析:C 【解析】 【分析】根据每个几何体的特点可得答案. 【详解】解:A. 球,只有曲面,不符合题意;B. 三棱锥,面是4个平面,还有4个顶点,不符合题意;C. 圆锥,是一个曲面,一个顶点,符合题意;D. 圆柱,是一个曲面,两个平面,没有顶点,不符合题意. 故选:C. 【点睛】本题考查认识立体图形,解题关键是熟记常见几何体的特征.4.B解析:B 【解析】 【分析】方程两边乘以8去分母得到结果,即可做出判断. 【详解】 方程去分母后正确的结果是2(2x−1)=8−(3−x),故选B. 【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则.5.B解析:B 【解析】 【分析】根据合并同类项的法则,进行求解即可. 【详解】解:222235a a a +=,故A 错误;B 正确;2xy xy xy -=,故C 错误;333235x x x +=,故D 错误;故选:B. 【点睛】本题考查了合并同类项,解答本题的关键是掌握合并同类项法则.6.B解析:B 【解析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+7+x+7+1=14x=1 3故本选项错误;B、设最小的数是x.x+x+1+x+7=14,x=2.故本选项正确.C、设最小的数是x.x+x+1+x+8=14,x=53,故本选项错误.D、设最小的数是x.x+x+6+x+7=14,x=13,故本选项错误.故选:B.【点睛】本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.7.D解析:D【解析】【分析】根据相反数的定义直接求解即可.【详解】解:-5的相反数是5,故选D.【点睛】本题考查相反的定义,熟练掌握基础知识是解题关键.8.A解析:A【解析】设这件商品的标价为x元,根据题意即可列出方程.【详解】设这件商品的标价为x元,根据题意可列出方程x-=⨯0.740020%400故选A.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系进行列方程. 9.D解析:D【解析】锥体必有一个顶点和一个底面,一个曲面;柱体必有两个底面(上底和下底),其他部分可能是平面,也可能是曲面,有两个面互相平行且大小相同,余下的每个相邻两个面的交线互相平行.故选D.10.B解析:B【解析】试题分析:A.∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B.∠1、∠2是对顶角,根据其定义;故本选项正确;C.根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D.根据三角形的外角一定大于与它不相邻的内角;故本选项错误.故选B.考点:对顶角、邻补角;平行线的性质;三角形的外角性质.11.A解析:A【解析】试题解析:A、∠α+∠β=180°-90°=90°,则∠α与∠β互余,选项正确;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β不互余,故本选项错误;D、∠α和∠β互补,故本选项错误.故选A.12.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.13.C解析:C【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】A 、若x =y ,则x +5=y +5,此选项正确;B 、若x y =,则ax ay =,此选项正确;C 、若x =y ,当a ≠0时x y a a =不成立,故此选项错误; D 、若a b c c=,则a b =(c ≠0),则 a =b ,此选项正确; 故选:C .【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.14.B解析:B【解析】试题分析:由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选B .考点:由三视图判断几何体.15.A解析:A【解析】【分析】根据单项式与多项式的次数的定义以及多项式的项数的定义求解即可.【详解】解:A . 单项式232ab -的次数是2,系数为92-,此选项正确;B . 2341x y x -+-是三次三项式,常数项是-1,此选项错误;C . 单项式a 的系数是1,次数是1,此选项错误;D . 单项式223x y -的系数是23-,次数是3,此选项错误. 故选:A .【点睛】本题考查的知识点是单项式与多项式的有关定义,熟记各定义是解此题的关键.二、填空题16.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于解析:55.6310⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.确定a×10n (1≤|a|<10,n 为整数)中n 的值,由于4320000有7位,所以可以确定n=7-1=6.【详解】解:563000=5.63×105,故答案为:5.63×105.【点睛】本题考查科学记数法,解题关键是熟记规律:(1)当|a|≥1时,n 的值为a 的整数位数减1;(2)当|a|<1时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0. 17.100【解析】【分析】设这件衬衫的成本是x 元,根据利润=售价-进价,列出方程,求出方程的解即可得到结果.【详解】设这件衬衫的成本是x 元,根据题意得:(1+50%)x×80%﹣x=20解解析:100【解析】【分析】设这件衬衫的成本是x元,根据利润=售价-进价,列出方程,求出方程的解即可得到结果.【详解】设这件衬衫的成本是x元,根据题意得:(1+50%)x×80%﹣x=20解得:x=100,这件衬衫的成本是100元.故答案为:100.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解答本题的关键.18.②【解析】分析:根据线段的性质、垂线的性质、直线的性质分别进行分析.详解:①用两根钉子就可以把一根木条固定在墙上,根据两点确定一条直线;②把弯曲的公路改直,就能够缩短路程,根据两点之间线段最解析:②【解析】分析:根据线段的性质、垂线的性质、直线的性质分别进行分析.详解:①用两根钉子就可以把一根木条固定在墙上,根据两点确定一条直线;②把弯曲的公路改直,就能够缩短路程,根据两点之间线段最短;③体育课上,老师测量某个同学的跳远成绩,根据垂线段最短;故答案为②.点睛:本题考查了线段的性质,利用直线的性质、线段的性质是解题关键.19.8【解析】【分析】根据题意将x=1代入方程即可求出a的值.【详解】将x=1代入方程得:2a-5=a+3,解得:a=8.故答案为:8.【点睛】此题考查了一元一次方程的解,方程的解即为解析:8【解析】根据题意将x=1代入方程即可求出a的值.【详解】将x=1代入方程得:2a-5=a+3,解得:a=8.故答案为:8.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.20.1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A 应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长解析:1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.21.<.【解析】【分析】先化简各值然后再比较大小.【详解】,,∵-0.4<0.4,故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.解析:<.【解析】【分析】先化简各值然后再比较大小.【详解】0.40.4--=-,(0.4)0.4--=,∵-0.4<0.4, ∴0.4--<(0.4)--.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.22.﹣a ﹣3b .【解析】【分析】由图可知:,则 ,然后根据绝对值的性质对式子化简再合并同类项即可得出答案.【详解】解:由图可知:,则∴|b ﹣c|+2|a+b|﹣|c ﹣a|=-(b-c )﹣2(解析:﹣a ﹣3b .【解析】【分析】由图可知:0a b c <<<,则0,0,0b c a b c a -<+<-> ,然后根据绝对值的性质对式子化简再合并同类项即可得出答案.【详解】解:由图可知:0a b c <<<,则0,0,0b c a b c a -<+<->∴|b ﹣c |+2|a +b |﹣|c ﹣a |=-(b-c )﹣2(a +b )﹣(c ﹣a )=﹣a ﹣3b ,故答案为:﹣a ﹣3b .【点睛】本题主要结合数轴考查绝对值的性质及代数式的化简,掌握绝对值的性质是解题的关键. 23.25×108【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原解析:25×108【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:225000000=82.2510⨯故答案为:82.2510⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.24.-1【解析】分析:由题意可得算式:-5+4,利用有理数的加法法则运算,即可求得答案. 详解:根据题意得:-5+4=-1(℃),∴调高4℃后的温度是-1℃.故答案为-1.点睛:此题考查了有理解析:-1【解析】分析:由题意可得算式:-5+4,利用有理数的加法法则运算,即可求得答案.详解:根据题意得:-5+4=-1(℃),∴调高4℃后的温度是-1℃.故答案为-1.点睛:此题考查了有理数的加法的运算法则.此题比较简单,注意理解题意,得到算式-5+4是解题的关键.25.36cm【解析】【分析】根据题意即可求出QB=16cm 和QB 与AB 的关系,从而求出AB .【详解】解:∵,剪断的各段绳子中最长的一段为,∴QB=16cm,QB=解得:AB=36即绳子的解析:36cm【解析】【分析】根据题意即可求出QB=16cm 和QB 与AB 的关系,从而求出AB .【详解】解:∵::2:3:4AP PQ QB =,剪断的各段绳子中最长的一段为16cm ,∴QB=16cm,QB=4234AB ++ 解得:AB=36即绳子的原长为36cm .故答案为: 36cm .【点睛】此题考查的是根据线段的比,求线段的长,根据线段的比求线段的关系是解决此题的关键. 三、解答题26.-2【解析】【分析】先根据整式的乘法去括号,再合并同类项,进行化简,再代入已知数求值即可.【详解】解:原式22226354a b ab a b ab =--+22a b ab =+()ab a b =+当a=2,b=-1时,原式21=-⨯2=-【点睛】本题考核知识点:整式化简求值. 解题关键点:掌握整式的基本运算法则.27.(1)9,3;(2)2;(3)①118t =或254;②36 【解析】【分析】(1)由MN 的长及,OM ON 的数量关系可得OM 、ON 的长;(2)由图知MN MC CO ON =++,结合MC CO CN =+及线段MN 、ON 的长可得CO 的长;(3)①分类讨论,分点P 在线段OM 和射线ON 上两种情况,分别用含t 的代数式表示出OP 、OQ 的长,根据24cm OP OQ -=可列出关于t 的方程,求解即可;②点D 运动的时间即为点P 从点O 到停止运动所用的时间,求出点D 运动的时间再乘以其速度即为点D 运动的路程.【详解】解:(1)12MN =,3OM ON =3412MN OM ON ON ON ON ∴=+=+== 3,39ON OM ON ∴===所以9,3OM cm ON cm ==.(2)如图12MN =,MC CO CN =+3212MN MC CO ON CO CO ON CO ON CO ON ∴=++=++++=+=由(1)知3ON =,3612CO ∴+=2CO ∴=所以CO 的长为2.(3)①如图,当点P 在线段MO 上时,93,32OP t OQ t =-=+,由24OP OQ -=得2(93)(32)4t t --+=解得118t =; 如图,当点P 在射线ON 上时,39,32OP t OQ t =-=+由24OP OQ -=得2(39)(32)4t t --+=解得254t = 综合上述,当118t s =或254s ,24OP OQ cm -=. ②点P 、Q 停止运动时,3122t t -=,解得12t =,点P 经过点O 时,39t =,解得3t =,4(123)36⨯-=所以在此过程中点D 运动的总路程是36cm.【点睛】本题考查了数轴上的动点问题,同时涉及了一元一次方程,灵活的将一元一次方程与数轴相结合是解题的关键.同时分类讨论的数学思想也在本题得以体现.28.(1)12-;(2)107;【解析】【分析】(1)先去掉绝对值后即可计算,(2)根据有理数的运算法则即可计算.【详解】解:(1)原式=7-15-4=−12;(2)原式=-1-2×9×(-6)=-1+108=107【点睛】本题考查有理数的混合运算,涉及绝对值的性质,属于简单题,熟悉有理数运算法则,注意运算的优先级是解题关键..29.(1)90°,OM 平分∠CON ;(2)∠AOM=∠CON ,详见解析;(3)15或60.【解析】【分析】(1)由旋转得∠BOM=90°,求出∠COM=45°=∠MON 即可得到OM 平分∠CON.(2)先求出∠AOC=45°,得到∠CON+∠AON=45°,再由∠MON=45°得到∠AOM+∠AON=45°,即可证得∠AOM=∠CON ;(3)分三种情况讨论:①当OM 在∠BOC 内部时,②当OM 在∠BOC 外部,ON 在∠BOC 内部时,③当ON 在∠BOC 外部时,分别求出时间t 的值.【详解】(1)由题意得,∠BOM=90°,∠MON=45°,OM 平分∠CON,理由如下:∵∠BOC=135°,∴∠COM=∠BOC-∠BOM=45°,∴∠COM=∠MON∴OM 平分∠CON ;(2)∠AOM=∠CON ,理由如下:∵∠AOC=180°-∠BOC=45°,∴∠CON+∠AON=45°,∵∠MON=45°,∴∠AOM+∠AON=45°,∴∠AOM=∠CON ;(3)设运动t 秒(0t 80≤≤),①当OM 在∠BOC 内部时,∠COM=5 4.15t 3(),∴25413.5t ()+45=180,得t=15;②当OM 在∠BOC 外部,ON 在∠BOC 内部时,∠COM+∠CON=45°,不合题意,舍去;③当ON 在∠BOC 外部时,∠CON=134.5t-5-45(),∴2134.5t-5-45()=180, 得t=60,∴当旋转到第15或60秒时,∠COM 与∠CON 互补【点睛】此题考查角平分线的定义,角度的计算,(3)是难点,解题时应考虑到当OM 、ON 在不同位置时表示的方法不同,由此决定情况不唯一,所以应分情况讨论.30.(1)-8;(2)1;(3)65. 【解析】【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x ,(-2)2+2×(-2)x=-2+x ,4-4x=-2+x ,-4x-x=-2-4,-5x=-6, x=65. 【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.31.【解析】【分析】首先根据AB 和BD 求出AD ,然后根据中点的性质求出AC ,即可得出CB.【详解】∵12AB =,7BD =,∴1275AD AB BD =-=-=.∵点D 是AC 的中点,∴22510AC AD ==⨯=.∴12102CB AB AC =-=-=.【点睛】此题主要考查线段的求解,熟练掌握,即可解题.32.(1)见解析;(2)Ⅰ.2个小正方体;Ⅱ.2个小正方体;Ⅲ.1900平方厘米.【解析】【分析】(1)根据几何体可知主视图为3列,第一列是三个小正方形,第二列是1个小正方形,第三列是2个小正方形;左视图是三列,第一列是3个正方形,第二列是3个正方形,第三列是1个正方形;(2)I.可在正面第一列的最前面添加2个小正方体,故答案为:2II.可以拿走最左侧第2排两个,也可以拿走最左侧3排两个,故答案为:2III. 若拿走最左侧第2排两个,能喷漆的面有19个,若拿走最左侧第3排两个,能喷漆的面有21个,根据面积公式计算即可.【详解】(1)画图(2)Ⅰ. 可在正面第一列的最前面添加2个小正方体;Ⅱ. 可以拿走最左侧第2排两个,也可以拿走最左侧3排两个;2个小正方体;Ⅲ.若拿走最左侧第2排两个,喷涂面积为219101900⨯=平方厘米;若拿走最左侧第3排两个,喷涂面积为221102100⨯=平方厘米;综上所述,需要喷漆的面积最少是1900平方厘米.【点睛】此题考查几何体的三视图,能正确观察几何体得到不同方位的视图是解题的关键,根据三视图对应添加或是减少时注意保证某些视图的正确性,需具有很好的空间想象能力.33.∠BOE =40°【解析】【分析】先算出∠DOE 和∠DOB,相减即可算出∠BOE.【详解】解:如图所示.。