2018年春人教版七年级数学下册6.2 立方根
- 格式:doc
- 大小:260.00 KB
- 文档页数:5
6.2 立方根
要点感知1一般地,如果一个数的立方等于a,那么这个数叫做a的__________,即如果x3=a,那么__________叫做__________的立方根.
预习练习1-1 (2014·黄冈)-8的立方根是( )
A.-2
B.±2
C.2
D.-1 2
1-2 -64的立方根是__________,-1
3
是__________的立方根.
要点感知2 求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是__________;负数的立方根是__________;0的立方根是__________.
预习练习2-1下列说法正确的是( )
A.如果一个数的立方根是这个数本身,那么这个数一定是0
B.一个数的立方根不是正数就是负数
C.负数没有立方根
D.一个不为零的数的立方根和这个数同号,0的立方根是0
要点感知3一个数a,读作“__________”,其中__________是被开方数,__________是根指数.
预习练习3-1
知识点1 立方根
1.(2014·潍坊的立方根是( )
A.-1
B.0
C.1
D.±1
2.若一个数的立方根是-3,则该数为( )
B.-27
C.
D.±27
3.下列判断:①一个数的立方根有两个,它们互为相反数;②若x3=(-2)3,则x=-2;③15
有理数都有立方根,它不是正数就是负数.其中正确的有( )
A.1个
B.2个
C.3个
D.4个
4.立方根等于本身的数为__________.
__________.
6.若x-1是125的立方根,则x-7的立方根是__________.
7.求下列各数的立方根:
(1)0.216;(2)0;(3)-210
27
;(4)-5.
8.求下列各式的值:
;
知识点2 用计算器求立方根
9.( )
A.3.049
B.3.050
C.3.051
D.3.052
10.估计96的立方根的大小在( )
A.2与3之间
B.3与4之间
C.4与5之间
D.5与6之间
11.__________(精确到百分位).
12.
13.(1)填表:
(2)由上表你发现了什么规律?请用语言叙述这个规律:______________________________.
(3)根据你发现的规律填空:
;
=__________.
14.下列说法正确的是( )
A.一个数的立方根有两个,它们互为相反数
B.一个数的立方根比这个数平方根小
C.如果一个数有立方根,那么它一定有平方根
15.( )
A.7
B.-7
C.±7
D.无意义
16.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的( )
A.2倍
B.3倍
C.4倍
D.5倍
17.-27__________.
18.计算:=__________.
19.已知2x+1的平方根是±5,则5x+4的立方根是__________.
20.求下列各式的值:
21.比较下列各数的大小:
与-3.4.
22.求下列各式中的x:
(1)8x3+125=0;(2)(x+3)3+27=0.
23.(b-27)2.
24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”
如图所示,不妨设原祭坛边长为a,想一想:
(1)做出来的新祭坛是原来体积的多少倍?
(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍?
挑战自我
25.请先观察下列等式:
…
(1)请再举两个类似的例子;
(2)经过观察,写出满足上述各式规则的一般公式.
参考答案
课前预习
要点感知1立方根(或三次方根) x a
预习练习1-1 A
1-2-4 -1 27
要点感知2 正数负数0
预习练习2-1 D
要点感知3 三次根号a a 3
预习练习3-1 3
当堂训练
1.C
2.B
3.B
4.0,1或-1
5.±2
6.-1
7.(1)∵0.63=0.216,
∴0.216的立方根是0.6=0.6;
(2)∵03=0,
∴0的立方根是0;
(3)∵-210
27
=-
64
27
,且(-
4
3
)3=-
64
27
,
∴-210
27
的立方根是-
4
3
4
3
;
(4)-5 8.(1)0.1;