深圳历年中考数学试题(高清打印版)
- 格式:pdf
- 大小:3.87 MB
- 文档页数:105
深圳九年级中考数学试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 0C. 3D. 82. 如果 a > b,那么下列哪个式子成立?()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列哪个数是偶数?()A. 21B. 24C. 27D. 304. 下列哪个数是无理数?()A. √16B. √25C. √36D. √495. 下列哪个数是素数?()A. 11B. 12C. 13D. 14二、判断题1. 0是正数。
()2. 2的平方根是4。
()3. 所有的偶数都是2的倍数。
()4. 所有的奇数都不是2的倍数。
()5. 1是质数。
()三、填空题1. 如果 a = 3,那么 2a 5 = _____。
2. 如果 b = -2,那么 |b| = _____。
3. 如果 c = 5,那么c² = _____。
4. 如果 d = 4,那么√d = _____。
5. 如果 e = 15,那么e ÷ 3 = _____。
四、简答题1. 解释什么是素数。
2. 解释什么是偶数。
3. 解释什么是奇数。
4. 解释什么是无理数。
5. 解释什么是绝对值。
五、应用题1. 如果一个正方形的边长是6厘米,那么它的面积是多少平方厘米?2. 如果一个长方形的长是8厘米,宽是4厘米,那么它的面积是多少平方厘米?3. 如果一个圆的半径是5厘米,那么它的面积是多少平方厘米?4. 如果一个三角形的底是6厘米,高是4厘米,那么它的面积是多少平方厘米?5. 如果一个梯形的上底是4厘米,下底是6厘米,高是3厘米,那么它的面积是多少平方厘米?六、分析题1. 解释如何判断一个数是否是素数。
2. 解释如何计算一个数的平方根。
七、实践操作题1. 画出一个边长为5厘米的正方形,并计算它的面积。
2. 画出一个长为8厘米,宽为4厘米的长方形,并计算它的面积。
广东省深圳市xx年中考数学真题试题一、选择题1. ( 2分) 6的相反数是( )A. B. C. D. 6【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:∵6的相反数为-6,故答案为:A.【分析】相反数:数值相同,符号相反的两个数,由此即可得出答案.2. ( 2分) 260000000用科学计数法表示为( )A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:∵260 000 000=2.6×108.故答案为:B.【分析】科学计数法:将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数,由此即可得出答案.3. ( 2分) 图中立体图形的主视图是( )A.B.C.D.【答案】B【考点】简单几何体的三视图【解析】【解答】解:∵从物体正面看,最底层是三个小正方形,第二层从右往左有两个小正方形,故答案为:B.【分析】视图:从物体正面观察所得到的图形,由此即可得出答案.4. ( 2分) 观察下列图形,是中心对称图形的是( )A. B.C. D.【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A.等边三角形为轴对称图形,有三条对称轴,但不是中心对称图形,A不符合题意;B.五角星为轴对称图形,有五条对称轴,但不是中心对称图形,B不符合题意;C.爱心为轴对称图形,有一条对称轴,但不是中心对称图形,C不符合题意;D.平行四边形为中心对称图形,对角线的交点为对称中心,D符合题意;故答案为:D.【分析】中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,由此即可得出答案。
5. ( 2分) 下列数据:,则这组数据的众数和极差是( )A.B.C.D.【答案】A【考点】极差、标准差,众数【解析】【解答】解:∵85出现了三次,∴众数为:85,又∵最大数为:85,最小数为:75,∴极差为:85-75=10.故答案为:A.【分析】众数:一组数据中出现次数最多数;极差:一组数据中最大数与最小数的差;由此即可得出答案.6. ( 2分) 下列运算正确的是( )A. B.C. D.【答案】B【考点】同底数幂的乘法,同底数幂的除法,同类二次根式,同类项【解析】【解答】解:A.∵a .a =a ,故错误,A不符合题意;B.∵3a-a=2a,故正确,B符合题意;C.∵a8÷a4=a4,故错误,C不符合题意;D. 与不是同类二次根式,故不能合并,D不符合题意;故答案为:B.【分析】A.根据同底数幂相乘,底数不变,指数相加即可判断对错;B.根据同类项定义:所含字母相同,并且相同字母指数相同,由此得不是同类项;C.根据同底数幂相除,底数不变,指数相减即可判断对错;D.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式,由此即可判断对错.7. ( 2分) 把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A. B. C. D.【答案】D【考点】一次函数图象与几何变换【解析】【解答】解:∵函数y=x向上平移3个单位,∴y=x+3,∴当x=2时,y=5,即(2,5)在平移后的直线上,故答案为:D.【分析】根据平移的性质得平移后的函数解析式,再将点的横坐标代入得出y值,一一判断即可得出答案.8. ( 2分) 如图,直线被所截,且,则下列结论中正确的是( )A. B.C. D.【答案】B【考点】平行线的性质【解析】【解答】解:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.9. ( 2分) 某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A.B.C.D.【答案】A【考点】二元一次方程组的其他应用【解析】【解答】解:依题可得:故答案为:A.【分析】根据一共70个房间得x+y=70;大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满得8x+6y=480,从而得一个二元一次方程组.10. ( 2分) 如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A.3B.C.D.【答案】D【考点】切线的性质,锐角三角函数的定义,切线长定理【解析】【解答】解:设光盘切直角三角形斜边于点C,连接OC、OB、OA(如图),∵∠DAC=60°,∴∠BAC=120°.又∵AB、AC为圆O的切线,∴AC=AB,∠BAO=∠CAO=60°,在Rt△AOB中,∵AB=3,∴tan∠BAO= ,∴OB=AB×tan∠60°=3 ,∴光盘的直径为6 .故答案为:D.【分析】设光盘切直角三角形斜边于点C,连接OC、OB、OA(如图),根据邻补角定义得∠BAC=120°,又由切线长定理AC=AB,∠BAO=∠CAO=60°;在Rt△AOB中,根据正切定义得tan∠BAO= ,代入数值即可得半径OB长,由直径是半径的2倍即可得出答案.11. ( 2分) 二次函数的图像如图所示,下列结论正确是( )A. B.C. D. 有两个不相等的实数根【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:A.∵抛物线开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∵对称轴- 在y轴右侧,∴b>0,∴abc<0,故错误,A不符合题意;B. ∵对称轴- =1,即b=-2a,∴2a+b=0,故错误,B不符合题意;C. ∵当x=-1时,y<0,即a-b+c<0,又∵b=-2a,∴3a+c<0,故正确,C符合题意;D.∵ax2+bx+c-3=0,∴ax2+bx+c=3,即y=3,∴x=1,∴此方程只有一个根,故错误,D不符合题意;故答案为:C.【分析】A.根据抛物线开口向下得a<0;与y轴的正半轴相交得c>0;对称轴在y轴右侧得b>0,从而可知A错误;B.由图像可知对称轴为2,即b=-2a,从而得出B错误;C.由图像可知当x=-1时,a-b+c<0,将b=-2a代入即可知C正确;D.由图像可知当y=3时,x=1,故此方程只有一个根,从而得出D错误.12. ( 2分) 如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是( )①;②;③若,则平分;④若,则A. ①③B. ②③C. ②④D. ③④【答案】B【考点】反比例函数系数k的几何意义,三角形的面积,角的平分线判定【解析】【解答】解:设P(a,b),则A(,b),B(a, ),①∴AP= -a,BP= -b,∵a≠b,∴AP≠BP,OA≠OB,∴△AOP和△BOP不一定全等,故①错误;②∵S△AOP= ·AP·y A= ·(-a)·b=6- ab,S△BOP= ·BP·x B= ·(-b)·a=6- ab,∴S△AOP=S△BOP.故②正确;③作PD⊥OB,PE⊥OA,∵OA=OB,S△AOP=S△BOP.∴PD=PE,∴OP平分∠AOB,故③正确;④∵S△BOP=6- ab=4,∴ab=4,∴S△ABP= ·BP·AP= ·(-b)·(-a),=-12+ + ab,=-12+18+2,=8.故答案为:B.【分析】设P(a,b),则A(,b),B(a, ),①根据两点间距离公式得AP= -a,BP= -b,因为不知道a和b是否相等,所以不能判断AP与BP,OA与OB,是否相等,所以△AOP和△BOP不一定全等,故①错误;②根据三角形的面积公式可得S△AOP=S△BOP=6- ab,故②正确;③作PD⊥OB,PE⊥OA,根据S△AOP=S△BOP.底相等,从而得高相等,即PD=PE,再由角分线的判定定理可得OP平分∠AOB,故③正确;④根据S△BOP=6- ab=4,求得ab=4,再由三角形面积公式得S△ABP= ·BP·AP,代入计算即可得④错误;二、填空题13. ( 1分) 分解因式:________.【答案】【考点】因式分解﹣运用公式法【解析】【解答】a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).【分析】观察此多项式的特点,没有公因式,符合平方差公式的特点,即可求解。
2020年深圳中考数学试卷一、选择题1.9的相反数()1A.-9B.9C. ±9D.92.下列图形中是轴对称图形但不是中心对称图形的是( )D.A.B.C.3.支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北,据统计,2020年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学计数法表示为()A B C D4.4.由几个大小相同的正方形组成的几何图形如图所示,则它的俯视图()A BC D5.在-2,1,2,1,4,6中正确的是()A.平均数3 B.众数是-2 C.中位数是1 D.极差为86.已知函数y=ax+b经过(1,3)(0,-2)求a-b()A.-1B.-3C.3D.77.下列方程没有实数根的是( )A 、x²+4x=10 B、3x²+8x -3=0C 、x²-2x+3=0D 、(x-2)(x-3)=128.如图、△ABC 和△DEF 中,AB=DE 、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC ≌△DEF ( )A 、AC ∥DFB 、∠A=∠DC 、AC=DFD 、∠ACB=∠F9.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,文抽取的两个球数字之和大于6的概率是( ) A.12 B.712 C.58 D.3410.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12,的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )A .6002505- B. 6003250- C. 3503503+ D .500311.二次函数2y ax bx c =++图像如图所示,下列正确的个数为( )① 0bc >② 230a c -<③ 20a b +>④ 20ax bx c ++=有两个解12,x x ,120,0x x ><⑤ 0a b c ++>⑥ 当1x >时,y 随x 增大而减小A. 2B. 3C. 4D. 512.如图,已知四边形ABCD 为等腰梯形,AD//BC ,AB=CD ,E 为CD 中点,连接AE ,且AE=23,2AD =,∠DAE=30°,作AE ⊥AF 交BC 于F ,则BF=( )A .1 B. 33- C. 51- D. 422-二、 填空题13.因式分解:228x -=14.,90,,6,8,Rt ABC C AD CAB AC BC CD ∆∠=︒∠===在中平分15.如图所示,双曲线k y x=经过Rt △BOC 斜边上的点A,且满足23AO AB =,与BC 交于点D, 21BOD S ∆=,求k= 16.如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有……三、 解答题17.计算:12-2tan60°+(2014-1)0-(31)-118.先化简,再求值:4)223(2-÷+--x x x x x x ,在-2,0,1,2四个数中选一个合适的代入求值.20.已知BD 垂直平分AC ,∠BCD=∠ADF ,AF ⊥AC ,(1)证明ABDF 是平行四边形F C(2)若AF=DF=5,AD=6,求AC的长21.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同。
2024深圳中考数学试卷一、在平面直角坐标系中,点A(3,4)关于x轴对称的点B的坐标为:A. (-3,-4)B. (3,-4)C. (-3,4)D. (4,3)(答案:B)二、已知三角形ABC的三边长为a, b, c,且a+b=10, ab=21,c为整数,则c的可能取值有:A. 1个B. 2个C. 3个D. 4个(答案:C)三、函数y = (x-1)/(x+2)中,当x增大时,y值的变化趋势是:A. 一直增大B. 一直减小C. 在某个区间内增大,在另一个区间内减小D. 无法确定(答案:C)四、若关于x的一元二次方程x2 - 2x + m = 0有两个相等的实数根,则m的值为:A. 0B. 1C. 2D. 3(答案:B)五、一个正六边形的边长为a,则它的外接圆的半径为:A. aB. √2aC. √3aD. 2a(答案:C)六、已知数据x1, x2, x3, ..., xn的平均数为5,方差为2,则数据2x1+1, 2x2+1, 2x3+1, ..., 2xn+1的平均数和方差分别为:A. 10, 2B. 10, 4C. 11, 2D. 11, 8(答案:D)七、在平行四边形ABCD中,AB=6,AD=8,∠BAD的平分线交BC于点E,则DE的长度为:A. 5B. √34C. 6D. 8(答案:D)八、若关于x的不等式组{ x-a≥0, 3-2x>-1 }的整数解共有4个,则a的取值范围是:A. -3<a≤-2B. -3≤a<-2C. -2<a≤-1D. -2≤a<-1(答案:A)。
【历年中考数学真题精编】2013—2019年深圳市中考数学试题汇编(含参考答案与解析)1、2013年深圳市中考数学试题及参考答案与解析 (2)2、2014年深圳市中考数学试题及参考答案与解析 (22)3、2015年深圳市中考数学试题及参考答案与解析 (43)4、2016年深圳市中考数学试题及参考答案与解析 (62)5、2017年深圳市中考数学试题及参考答案与解析 (82)6、2018年深圳市中考数学试题及参考答案与解析 (103)7、2019年深圳市中考数学试题及参考答案与解析 (123)2013年深圳市中考数学试题及参考答案与解析一.选择题(本大题共12小题,每小题3分,共36分)1.﹣3的绝对值是()A.3 B.﹣3 C.13-D.132.下列计算正确的是()A.(a+b)2=a2+b2B.(ab)2=ab2C.(a3)2=a5D.a•a2=a33.某活动中,共募得捐款32000000元,将32000000用科学记数法表示为()A.0.32×108B.3.2×106C.3.2×107D.32×1064.如图,是轴对称图形但不是中心对称图形的是()A.线段B.等边三角形C.正方形D.圆5.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A.最高分B.中位数C.极差D.平均数6.分式242xx-+的值为0,则()A.x=﹣2 B.x=±2 C.x=2 D.x=07.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.78.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.1440144010100x x-=-B.1440144010100x x=++C.1440144010100x x=+-D.1440144010100x x-=+9.如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是()A.8或B.10或4+C.10或D.8或4+10.下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A .1个B .2个C .3个D .4个11.已知二次函数y=a (x ﹣1)2﹣c 的图象如图所示,则一次函数y=ax+c 的大致图象可能是( )A .B .C .D .12.如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等,若等腰直角△ABC 的三个项点分别在这三条平行直线上,则sinα的值是( )A .13 B .617C D 二.填空题(本大题共4小题,每小题3分,共12分)13.分解因式:4x 2﹣8x+4= .14.写有“中国”、“美国”、“英国”、“韩国”的四张卡片,从中随机抽取一张,抽到卡片所对应的国家为亚洲的概率是 .15.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价 元.16.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有 个正方形.三.解答题(本大题共7小题,共52分)17.(5分)计算:101|4sin 453-⎛⎫+-︒- ⎪⎝⎭. 18.(6分)解下等式组:9587422133x x x x ++⎧⎪⎨+-⎪⎩<>,并写出其整数解. 19.(7分)2013年起,深圳市实施行人闯红灯违法处罚,处罚方式分为四类:“罚款20元”、“罚款50元”、“罚款100元”、“穿绿马甲维护交通”.如图是实施首日由某片区的执法结果整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)实施首日,该片区行人闯红灯违法受处罚一共 人;(2)在所有闯红灯违法受处罚的行人中,穿绿马甲维护交通所占的百分比是 %;(3)据了解,“罚款20元”人数是“罚款50元”人数的2倍,请补全条形统计图;(4)根据(3)中的信息,在扇形统计图中,“罚款20元”所在扇形的圆心角等于 度.20.(8分)如图,在等腰梯形ABCD 中,已知AD ∥BC ,AB=DC ,AC 与BD 交于点O ,廷长BC 到E ,使得CE=AD ,连接DE .(1)求证:BD=DE .(2)若AC ⊥BD ,AD=3,S ABCD =16,求AB 的长.21.(8分)如图所示,该小组发现8米高旗杆DE 的影子EF 落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG 的长为3米,HF 的长为1米,测得拱高(弧GH 的中点到弦GH 的距离,即MN 的长)为2米,求小桥所在圆的半径.22.(9分)如图1,过点A (0,4)的圆的圆心坐标为C (2,0),B 是第一象限圆弧上的一点,且BC ⊥AC ,抛物线212y x bx c =-++经过C 、B 两点,与x 轴的另一交点为D .(1)点B 的坐标为( , ),抛物线的表达式为 ;(2)如图2,求证:BD ∥AC ;(3)如图3,点Q 为线段BC 上一点,且AQ=5,直线AQ 交⊙C 于点P ,求AP 的长.23.(9分)如图1,直线AB 过点A (m ,0),B (0,n ),且m+n=20(其中m >0,n >0).(1)m 为何值时,△OAB 面积最大?最大值是多少?(2)如图2,在(1)的条件下,函数k y x =(k >0)的图象与直线AB 相交于C 、D 两点,若18OCA OCD SS =,求k 的值.(3)在(2)的条件下,将△OCD 以每秒1个单位的速度沿x 轴的正方向平移,如图3,设它与△OAB 的重叠部分面积为S ,请求出S 与运动时间t (秒)的函数关系式(0<t <10).参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣3的绝对值是()A.3 B.﹣3 C.13D.13【知识考点】绝对值.【思路分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答过程】解:﹣3的绝对值是3.故选:A.【总结归纳】此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列计算正确的是()A.(a+b)2=a2+b2B.(ab)2=ab2C.(a3)2=a5D.a•a2=a3【知识考点】完全平方公式;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】A.原式利用完全平方公式展开得到结果,即可作出判断;B.原式利用积的乘方运算法则计算得到结果,即可作出判断;C.原式利用幂的乘方运算法则计算得到结果,即可作出判断;D.原式利用同底数幂的乘法法则计算得到结果,即可作出判断.【解答过程】解:A.原式=a2+2ab+b2,本选项错误;B.原式=a2b2,本选项错误;C.原式=a6,本选项错误;D.原式=a3,本选项正确.故选D.【总结归纳】此题考查了完全平方公式,合并同类项,去括号与添括号,以及同底数幂的除法,熟练掌握公式及法则是解本题的关键.3.某活动中,共募得捐款32000000元,将32000000用科学记数法表示为()A.0.32×108B.3.2×106C.3.2×107D.32×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:32 000 000=3.2×107,故选:C.【总结归纳】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.。
........................ 优质文档..........................2006年深圳市初中毕业生学业考试数学试卷说明:1.全卷分第一卷和第二卷,共8页.第一卷为选择题,第二卷为非选择题.考试时间90分钟,满分100分.2.答题前,请将姓名、考生号、科目代号、试室号和座位号填涂在答题卡上;将考场、试室号、 座位号、考生号和姓名写在第二卷密封线内.不得在答题卡和试卷上做任何标记.3.第一卷选择题(1-10),每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂 黑,如需改动,用橡皮擦干净后,再选涂其它答案,凡答案写在第一卷上不给分;第二卷非选择题(11-22)答案必须写在第二卷题目指定位置上. 4.考试结束,请将本试卷和答题卡一并交回.第一卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分)每小题给出4个答案,其中只有一个是正确的.请用2B 铅笔在答题卡上将该题相对应的答案标号涂黑. 1.-3的绝对值等于A.3- B.3 C.13- D.132.如图1所示,圆柱的俯视图是图1 B C D3.今年1—5月份,深圳市累计完成地方一般预算收入216.58亿元,数据216.58亿精确到A.百亿位 B.亿位 C.百万位 D.百分位o yxo x y x y o yo x4.下列图形中,是.轴对称图形的为A B C D5.下列不等式组的解集,在数轴上表示为如图2所示的是A.1020x x ->⎧⎨+≤⎩ B.1020x x -≤⎧⎨+<⎩C.1020x x +≥⎧⎨-<⎩ D.1020x x +>⎧⎨-≤⎩ 图26.班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家的学习时间如下表所示.那么这六位学生学习时间的众数与中位数分别是 A.4小时和4.5小时 B.4.5小时和4小时 C.4小时和3.5小时 D.3.5小时和4小时7.函数(0)ky k x =≠的图象如图3所示,那么函数y kx k =-的图象大致是图3 A B C D8.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数学生姓名 小丽 小明 小颖 小华 小乐 小恩学习时间(小时)46 3 4 5 8OxyA.至多6人 B.至少6人 C.至多5人 D.至少5人9.如图4,王华晚上由路灯A 下的B 处走到C处时,测得影子CD 的长为1米,继续往前走3米到达E处时,测 得影子EF 的长为2米,已知王华的身高是1.5米,那么 路灯A 的高度AB 等于A.4.5米 B.6米 C.7.2米 D.8米图410.如图5,在□ABCD 中,AB : AD = 3:2,∠ADB=60°,那么cos A的值等于 A.366- B.3226+ C.366± D.3226± 图5第二卷(非选择题,共70分)11.某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是答案请填在上面答题表一内 . 12.化简:22193m m m -=-+答案请填在上面答题表一内 .13.如图6所示,在四边形ABCD 中,AB=BC=CD=DA ,对角线AC 与BD 相交于点O .若不增加任何字母与辅 助线,要使得四边形ABCD 是正方形,则还需增加的一个条件是答案请填在上面答题表一内 . 图6A BCDOABCDABC DEF14.人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级……逐渐增加时,上台阶的不同方法的种数依次为1、2、3、5、8、13、21……这就是著名的斐波那契数列.那么小聪上这9级台阶共有答案请填在上面答题表一内种不同方法.15.在△ABC 中,AB 边上的中线CD=3,AB=6,BC+AC=8,则△ABC 的面积为答案请填在上面答题表一内.三、解答题(本大题有7题,其中第16、17题各6分;第18题7分;第19、20题各8分;第21、22题各10分,共55分)16.(6分)计算:21028sin 452(3.14)π--+-+-o 解:原式=17.(6分)解方程:21133x x x-=---解:别忘了 验根哦!18.(7分)如图7,在梯形ABCD 中,AD ∥BC , AD DC AB ==,120ADC ∠=o .(1)(3分)求证:DC BD ⊥证明:(2)(4分)若4AB =,求梯形ABCD 的面积. 解:19.(8分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类.在“深圳读书月”活动期间,为了解图书的借阅情况,图书管理员对本月各类图书的借阅量进行了统计,图8-1和图8-2是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表BC图8-2自然科学 文学艺术 社会百科 数学图书 图8-1(1)(2分)填充图8-1频率分布表中的空格.(2)(2分)在图8-2中,将表示“自然科学”的部分补充完整.(3)(2分)若该学校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适?解:(4)(2分) 根据图表提供的信息,请你提出一条合理化的建议.20.(8分)工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)(4分)该工艺品每件的进价、标价分别是多少元?(2)(4分)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?21.(10分)如图9,抛物线2812(0)y ax ax a a =-+<与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角,且恰使△OCA ∽△OBC . (1)(3分)求线段OC 的长. 解:(2)(3分)求该抛物线的函数关系式. 解:(3)(4分)在x 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.解:图10-122.(10分)如图10-1,在平面直角坐标系xoy 中,点M 在x 轴的正半轴上, ⊙M 交x 轴于 A B 、两点,交y 轴于C D 、两点,且C 为»AE的中点,交轴于点,若点A 的坐标为(-2,0),AE 8 (1)(3分)求点C 的坐标. 解:(2)(3分)连结MG BC 、,求证:MG ∥BC 证明:(3)(4分) 如图10-2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PFOF的比值是否发生变化,若不变,求出比值;若变化,说明变化规律. 解:深圳市2007年初中毕业生学业考试数学试卷说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页.考试时间90分钟,满分100分.2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效.答题卡必须保持清洁,不能折叠.3.答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好.4.本卷选择题1-10,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题11-23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内.5.考试结束,请将本试卷和答题卡一并交回.第一部分 选择题(本部分共10小题,每小题3分,共30分.每小题给出4个选项,其中只有一个是正确的)1.2-的相反数是( ) A.12-B.2-C.12D.22.今年参加我市初中毕业生学业考试的考生总数为45730人,这个数据用科学记数法表示为( ) A.50.457310⨯B.44.57310⨯C.44.57310-⨯D.34.57310⨯3.仔细观察图1所示的两个物体,则它的俯视图是( )正面 图1A. B. C. D.4.下列图形中,不是..轴对称图形的是( )5.已知三角形的三边长分别是38x ,,;若x 的值为偶数,则x 的值有( ) A.6个B.5个C.4个D.3个6.一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是( ) A.180元B.200元C.240元D.250元7.一组数据2-,1-,0,1,2的方差是( ) A.1B.2C.3D.48.若2(2)30a b -++=,则2007()a b +的值是( ) A.0B.1C.1-D.20079.如图2,直线a b ∥,则A ∠的度数是( ) A.28oB.31oC.39oD.42o10.在同一直角坐标系中,函数(0)ky k x=≠与(0)y kx k k =+≠的图象大致是( )A.B.C.D.ABD ab图270°31°A.B.C. D.第二部分 非选择题填空题(本题共5小题,每小题3分,共15分)11.一个口袋中有4个白球,5个红球,6个黄球,每个球除颜色外都相同,搅匀后随机从袋中摸出一个球,这个球是白球的概率是 . 12.分解因式:2242x x -+ . 13.若单项式22mx y 与313n x y -是同类项,则m n +的值是 . 14.直角三角形斜边长是6,以斜边的中点为圆心,斜边上的中线为半径的圆的面积是 .15.邓老师设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是7时,输出的数据是 .解答题(本题共8小题,其中第16题5分,第17题6分,第18题6分,第19题6分,第20题7分,第21题8分,第22题9分,第23题8分,共55分)16.计算:01π3sin 4520073-⎛⎫+- ⎪⎝⎭o17.解不等式组,并把它的解集表示在数轴上:2(2)3134x x x x ++⎧⎪⎨+<⎪⎩≤ ① ②18.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点,BAE MCE =∠∠,45MBE =o ∠.(1)求证:BE ME =. (2)若7AB =,求MC 的长.图3A BCDME19.2007年某市国际车展期间,某公司对参观本次车展盛会的消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回.①根据调查问卷的结果,将消费者年收入的情况整理后,制成表格如下:②将消费者打算购买小车的情况整理后,作出频数分布直方图的一部分(如图4). 注:每组包含最小值不包含最大值,且车价取整数.请你根据以上信息,回答下列问题. (1)根据①中信息可得,被调查消费者的年收入的众数是______万元. (2)请在图4中补全这个频数分布直方图.(3)打算购买价格10万元以下小车的消费者人数占被调查消费者人数的百分比是______.图420.如图5,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M 处,在点A 处测得某岛C 在北偏东60o的方向上.该货船航行30分钟后到达B 处,此时再测得该岛在北偏东30o的方向上,已知在C 岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.21.A B ,两地相距18公里,甲工程队要在A B ,两地间铺设一条输送天然气管道,乙工程队要在A B ,两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?22.如图6,在平面直角坐标系中,正方形AOCB的边长为1,点D在x轴的正半轴上,且OD OB=,BD交OC于点E.(1)求BEC∠的度数.(2)求点E的坐标.(3)求过B O D,,三点的抛物线的解析式.(计算结果要求分母有理化.参考资料:把分5==;1==2==等运算都是分母有理化)23.如图7,在平面直角坐标系中,抛物线2164y x =-与直线12y x =相交于A B ,两点.(1)求线段AB 的长.(2)若一个扇形的周长等于(1)中线段AB 的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少?(3)如图8,线段AB 的垂直平分线分别交x 轴、y 轴于C D ,两点,垂足为点M ,分别求出OM OC OD ,,的长,并验证等式222111+=是否成立.(4)如图9,在Rt ABC △中,90ACB =o∠,CD AB ⊥,垂足为D ,设BC a =,AC b =,AB c =.CD b =,试说明:222111a b h+=深圳市2008年初中毕业生学业考试数学试卷图7图8图9说明:1、全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。
深圳中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. 3.14D. 0.5答案:B2. 如果一个二次函数的图像开口向上,且顶点坐标为(2, -1),则该函数的一般形式为:A. y = a(x-2)^2 - 1B. y = a(x+2)^2 - 1C. y = a(x-2)^2 + 1D. y = a(x+2)^2 + 1答案:A3. 已知一个等差数列的首项为3,公差为2,那么该数列的第10项为:A. 23B. 21C. 19D. 17答案:A4. 以下哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 等腰梯形D. 圆答案:D5. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:C6. 函数y=2x+3的图像与x轴的交点坐标为:A. (-3/2, 0)B. (3/2, 0)C. (-1.5, 0)D. (1.5, 0)答案:A7. 计算(3x^2 - 2x + 1) - (x^2 - 4x + 3)的结果为:A. 2x^2 + 2x - 2B. 2x^2 + 2x + 2C. x^2 + 2x - 2D. x^2 + 2x + 2答案:C8. 已知一个三角形的两边长分别为3和4,且这两边的夹角为60度,那么这个三角形的面积为:A. 3√3/2B. 2√3C. 3√3D. 4√3/2答案:A9. 以下哪个选项是不等式2x - 3 > 5的解集?A. x > 4B. x > 4/3C. x > 4/2D. x > 8/3答案:D10. 一个正方体的体积为64立方厘米,那么它的棱长为:A. 2厘米B. 4厘米C. 8厘米D. 16厘米答案:B二、填空题(每题3分,共15分)11. 计算√(9 + 16)的值为______。
答案:512. 如果一个数的相反数是-5,那么这个数是______。
2005年深圳市中考数学试题一、选择题:(本大题共10题,每小题3分,共30分)每小题给出四个答案,其中只有一个符合题目的要求,请把选出的答案编号填在下面的答题表一内,否则不给分.1、在0,-1,1,2这四个数中,最小的数是()A、-1B、0C、1D、22、我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图,从图的左面看这个几何体的左视图是()A B C D3、方程x2 = 2x的解是()A、1=2-,x2= 0 C、x1=2,x2=0 D、x = 04、长城总长约为6700010米,用科学记数法表示是(保留两个有效数字)()A、6.7×105米B、6.7×106米C、6.7×107米D、6.7×108米5、函数y=xk(k≠0)的图象过点(2,-2),则此函数的图象在平面直角坐标系中的()A、第一、三象限B、第三、四象限C、A、第一、二象限D、第二、四象限6、图所列图形中是中心对称图形的为()A B C D7、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。
参加这个游戏的观众有三次翻牌的机会。
某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是()A、41B、61C、51D、2038、实数a、b在数轴上的位置如图所示,那么化简|a-b|-2a的结果是()A、2a-bB、bC、-bD、-2a+b9、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A、106元B、105元C、118元D、108元10、如图,AB是⊙O的直径,点D、E是半圆的三等分点,AE、BD的延长线交于点C,若CE=2,则图中阴影部分的面积是()A、334-πB、π32C、332-πD、π31二、填空题:(本大题共5小题,每小题3分,共15分,请将答案填入答题表二内,否则不给分)11、一组数据3、8、8、19、19、19、19的众数是________。
广东省深圳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B.C.D.62.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3.00分)图中立体图形的主视图是()A.B. C.D.4.(3.00分)观察下列图形,是中心对称图形的是()A. B.C.D.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,106.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2) B.(2,3) C.(2,4) D.(2,5)8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B.C.D.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16①△AOP≌△BOP;②S△AOPA.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9=.14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.18.(6.00分)先化简,再求值:,其中x=2.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:(1)总人数为人,a=,b=.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B.C.D.6【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)图中立体图形的主视图是()A.B. C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)观察下列图形,是中心对称图形的是()A. B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、+无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2) B.(2,3) C.(2,4) D.(2,5)【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B.C.D.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3,∴光盘的直径为6,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16①△AOP≌△BOP;②S△AOPA.①③B.②③C.②④D.③④【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,),∴BP=|﹣n|,∴S=|﹣n|×m=|12﹣mn|△BOP∵PA∥x轴,∴A(,n),∴AP=|﹣m|,∴S=|﹣m|×n=|12﹣mn|,△AOP=S△BOP,故②正确;∴S△AOP如图,过点P作PF⊥OA于F,PE⊥OB于E,=OA×PF,S△BOP=OB×PE,∴S△AOP∵S=S△BOP,△AOP∴OB×PE=OA×PE,∵OA=OB,∴PE=PF,∵PE⊥OB,PF⊥OA,∴OP是∠AOB的平分线,故③正确;如图1,延长BP交x轴于N,延长AP交y轴于M,∴AM⊥y轴,BN⊥x轴,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S=S△BNO=6,△AMO=4,∵S△BOP=S△PNO=2,∴S△PMO∴S=4,矩形OMPN∴mn=4,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=,∴S△APB=AP×BP=×2|n|×=8,故④错误;∴正确的有②③,故选:B.【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9=(a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8.【分析】根据正方形的性质得到AC=AF,∠CAF=90°,证明△CAE≌△AFB,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠FAB=90°,∵∠ABF=90°,∴∠AFB+∠FAB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE==,连接CF,∵AD平分∠CAB,BE平分∠ABC,∴CF是∠ACB的平分线,∴∠ACF=45°=∠AFE,∵∠CAF=∠FAE,∴△AEF∽△AFC,∴,∴AC===,故答案为.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×++1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)先化简,再求值:,其中x=2.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=把x=2代入得:原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:(1)总人数为100人,a=0.25,b=15.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠FAB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点,∵在Rt△ACH中,∠ACH=45°,∴,∴四边形ACDB的面积为:.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD是菱形是解此题的关键.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM 的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=BC=1,∵cosB==,在Rt△AMB中,BM=1,∴AB==;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴=,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得,即OP=FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y 轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点代入,解得:a=1,∴抛物线的解析式为:;(2)由知A(,﹣2),设直线AB解析式为:y=kx+b,代入点A,B的坐标,得:,解得:,∴直线AB的解析式为:y=﹣2x﹣1,易求E(0,1),,,若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴,设点P(t,﹣2t﹣1),则:解得,,由对称性知;当时,也满足∠OPM=∠MAF,∴,都满足条件,∵△POE的面积=,∴△POE的面积为或.(3)若点Q在AB上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2、ES=,由NE+ES=NS=QR可得﹣a+=2,解得:a=﹣,∴Q(﹣,);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(﹣,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(,2).综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。
深圳市近十年中考数学试题:《圆》一、选择题1.(深圳2003年5分)如图,已知四边形ABCD 是⊙O 的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题错误的是【】A 、△AED∽△BECB 、∠AEB=90ºC 、∠BDA=45ºD 、图中全等的三角形共有2对2。
(深圳2004年3分)已知⊙O 1的半径是3,⊙O 2的半径是4,O 1O 2=8,则这两圆的位置关系是【 】 A 、相交 B 、相切 C 、内含 D 、外离3.(深圳2004年3分)如图,⊙O 的两弦AB 、CD 相交于点M ,AB=8cm ,M 是AB 的中点,CM:MD=1:4,则CD=【】A 、12cmB 、10cmC 、8cmD 、5cm4.(深圳2004年3分)圆内接四边形ABCD 中,AC 平分∠BAD,EF 切圆于C,若∠BCD=120º,则∠BCE=【】 A 、30º B 、40º C 、45º D 、60º5。
(深圳2005年3分)如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长线交于点C ,若CE=2,则图中阴影部分的面积是【 】A 、334-πB 、π32C 、332-π D 、π316。
(深圳2009年3分)如图,已知点A 、B 、C 、D 均在已知圆上,AD//BC ,AC 平分∠BCD,∠ADC=120°,四边形ABCD 的周长为10cm .图中阴影部分的面积为【 】 A.32cm 2B 。
233π⎛⎫- ⎪⎝⎭cm 2 C. 23 cm 2D 。
43 cm 27.(2012广东深圳3分)如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内OB 上一点,∠BM0=120o,则⊙C 的半径长为【 】A .6B .5C .3D 。
32 二、填空题1。
深圳市2017年初中毕业生学业考试数学试题解析第Ⅰ卷(共60分)一、选择题1.-2的绝对值是( ) A .-2 B .2 C .12-D .122.图中立体图形的主视图是( )A .B .C .D .3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( ) A .58.210⨯ B .58210⨯ C .68.210⨯ D .78210⨯ 4.观察下列图形,其中既是轴对称又是中心对称图形的是( )A .B .C .D .5.下列选项中,哪个不可以..得到12//l l ?( )A .12∠=∠B .23∠=∠C . 35∠=∠D .34180∠+∠=o6.不等式组32521x x -<⎧⎨-<⎩的解集为( )A .1x >-B .3x <C .1x <-或3x >D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .10%330x = B .(110%)330x -= C . 2(110%)330x -= D .(110%)330x += 8.如图,已知线段AB ,分别以A B 、为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得25CAB ∠=o ,延长AC 至M ,求BCM ∠的度数为( )A .40oB .50oC . 60oD .70o9.下列哪一个是假命题( ) A .五边形外角和为360oB .切线垂直于经过切点的半径C . (3,2)-关于y 轴的对称点为(3,2)-D .抛物线242017y x x =-+对称轴为直线2x =10.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60o,然后在坡顶D 测得树顶B 的仰角为30o,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA ..30 C . .4012.如图,正方形ABCD 的边长是3,BP CQ =,连接,AQ DP 交于点O ,并分别与边,CD BC 交于点,F E ,连接AE .下列结论:①AQ DP ⊥;②2OA OE OP =g;③AOD OECF S S ∆=四边形;④当1BP =时,13tan 16OAE ∠=.其中正确结论的个数是( )A .1B .2C .3D .4 二、填空题13.因式分解:34a a -= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 .15.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知21i =-,那么(1)(1)i i +-=g .16.如图,在Rt ABC ∆中,90ABC ∠=o,3AB =,4BC =,Rt MPN ∆,90MPN ∠=o,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP = .三、解答题17.计算22|2cos 45(1)--+-+o18.先化简,再求值:22()224x x xx x x +÷-+-,其中1x =-. 19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车等,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共__________人,x =__________,y =__________; (2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有___________人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别为多少? (2)能围成面积为200平方厘米的矩形吗?请说明理由. 21.如图一次函数y kx b =+与反比例函数(0)my x x=>交于(2,4)A 、(,1)B a ,与x 轴,y 轴分别交于点C D 、.(1)直接写出一次函数y kx b =+的表达式和反比例函数(0)my x x=>的表达式;(2)求证:AD BC =. 22.如图,线段AB 是O e 的直径,弦CD AB ⊥于点H ,点M 是弧CBD 上任意一点,2,4AH CH ==.(1)求O e 的半径r 的长度; (2)求sin CMD ∠;(3)直线BM 交直线CD 于点E ,直线MH 交O e 于点N ,连接BN 交CE 于点F ,求HE HF g 的值. 23.如图,抛物线22y ax bx =++经过点(1,0),(4,0)A B -,交y 轴于点C :(1)求抛物线的解析式(用一般式表示).(2)点D为y轴右侧抛物线上一点,是否存在点D使23ABC ABDS S∆∆=,若存在请直接给出点D坐标;若不存在请说明理由.(3)将直线BC绕点B顺时针旋转45o,与抛物线交于另一点E,求BE的长.。
........................优质文档..........................2006年深圳市初中毕业生学业考试数学试卷说明:1.全卷分第一卷和第二卷,共8页.第一卷为选择题,第二卷为非选择题.考试时间90分钟,满分100分.2.答题前,请将姓名、考生号、科目代号、试室号和座位号填涂在答题卡上;将考场、试室号、座位号、考生号和姓名写在第二卷密封线内.不得在答题卡和试卷上做任何标记.3.第一卷选择题(1-10),每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,凡答案写在第一卷上不给分;第二卷非选择题(11-22)答案必须写在第二卷题目指定位置上.4.考试结束,请将本试卷和答题卡一并交回.第一卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分)每小题给出4个答案,其中只有一个是正确的.请用2B 铅笔在答题卡上将该题相对应的答案标号涂黑.1.-3的绝对值等于A.3-B.3C.13-D.132.如图1所示,圆柱的俯视图是图1ABCD3.今年1—5月份,深圳市累计完成地方一般预算收入216.58亿元,数据216.58亿精确到A.百亿位B.亿位C.百万位D.百分位4.下列图形中,是.轴对称图形的为ABCD5.下列不等式组的解集,在数轴上表示为如图2所示的是A.1020xx->⎧⎨+≤⎩B.1020xx-≤⎧⎨+<⎩C.1020xx+≥⎧⎨-<⎩D.1020xx+>⎧⎨-≤⎩图26.班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家的学习时间如下表所示.那么这六位学生学习时间的众数与中位数分别是A.4小时和4.5小时B.4.5小时和4小时C.4小时和3.5小时D.3.5小时和4小时7.函数(0)ky kx=≠的图象如图3所示,那么函数y kx k=-的图象大致是图3A B C D8.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数学生姓名小丽小明小颖小华小乐小恩学习时间(小时)463458A.至多6人B.至少6人C.至多5人D.至少5人9.如图4,王华晚上由路灯A 下的B 处走到C处时,测得影子CD 的长为1米,继续往前走3米到达E处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于A.4.5米B.6米C.7.2米D.8米图410.如图5,在□ABCD 中,AB :AD =3:2,∠ADB=60°,那么cos A的值等于A.366-B.3226+C.366±D.3226±图5第二卷(非选择题,共70分)11.某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是答案请填在上面答题表一内.12.化简:22193m m m -=-+答案请填在上面答题表一内.13.如图6所示,在四边形ABCD 中,AB=BC=CD=DA ,对角线AC 与BD 相交于点O .若不增加任何字母与辅助线,要使得四边形ABCD 是正方形,则还需增加的一个条件是答案请填在上面答题表一内.图6A BCDOABCDABC DEF14.人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级……逐渐增加时,上台阶的不同方法的种数依次为1、2、3、5、8、13、21……这就是著名的斐波那契数列.那么小聪上这9级台阶共有答案请填在上面答题表一内种不同方法.15.在△ABC 中,AB 边上的中线CD=3,AB=6,BC+AC=8,则△ABC 的面积为答案请填在上面答题表一内.三、解答题(本大题有7题,其中第16、17题各6分;第18题7分;第19、20题各8分;第21、22题各10分,共55分)16.(6分)计算:2102452(3.14)π---+- 解:原式=17.(6分)解方程:21133x x x-=---解:别忘了验根哦!18.(7分)如图7,在梯形ABCD 中,AD ∥BC ,AD DC AB ==,120ADC ∠= .(1)(3分)求证:DC BD ⊥证明:(2)(4分)若4AB =,求梯形ABCD 的面积.解:19.(8分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类.在“深圳读书月”活动期间,为了解图书的借阅情况,图书管理员对本月各类图书的借阅量进行了统计,图8-1和图8-2是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表图书种类频数频率自然科学4000.20文学艺术10000.50社会百科5000.25数学ADBC图78006001000图8-2自然科学文学艺术社会百科数学借阅量/册4002000图书图8-1(1)(2分)填充图8-1频率分布表中的空格.(2)(2分)在图8-2中,将表示“自然科学”的部分补充完整.(3)(2分)若该学校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适?解:(4)(2分)根据图表提供的信息,请你提出一条合理化的建议.20.(8分)工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)(4分)该工艺品每件的进价、标价分别是多少元?(2)(4分)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?21.(10分)如图9,抛物线2812(0)y ax ax a a =-+<与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角,且恰使△OCA ∽△OBC .(1)(3分)求线段OC 的长.解:(2)(3分)求该抛物线的函数关系式.解:(3)(4分)在x 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.解:22.(10分)如图10-1,在平面直角坐标系xoy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A B 、两点,交y 轴于C D 、两点,且C 为 AE的中点,AE 交y 轴于G 点,若点A 的坐标为(-2,0),AE 8 (1)(3分)求点C 的坐标.解:(2)(3分)连结MG BC 、,求证:MG ∥BC 证明:(3)(4分)如图10-2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PFOF的比值是否发生变化,若不变,求出比值;若变化,说明变化规律.解:深圳市2007年初中毕业生学业考试数学试卷说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页.考试时间90分钟,满分100分.2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效.答题卡必须保持清洁,不能折叠.3.答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好.4.本卷选择题1-10,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题11-23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内.5.考试结束,请将本试卷和答题卡一并交回.第一部分选择题(本部分共10小题,每小题3分,共30分.每小题给出4个选项,其中只有一个是正确的)1.2-的相反数是()A.12-B.2-C.12D.22.今年参加我市初中毕业生学业考试的考生总数为45730人,这个数据用科学记数法表示为()A.50.457310⨯B.44.57310⨯C.44.57310-⨯D.34.57310⨯3.仔细观察图1所示的两个物体,则它的俯视图是()正面图1A.B.C.D.4.下列图形中,不是..轴对称图形的是()5.已知三角形的三边长分别是38x ,,;若x 的值为偶数,则x 的值有()A.6个B.5个C.4个D.3个6.一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是()A.180元B.200元C.240元D.250元7.一组数据2-,1-,0,1,2的方差是()A.1B.2C.3D.48.若2(2)30a b -++=,则2007()a b +的值是()A.0B.1C.1-D.20079.如图2,直线a b ∥,则A ∠的度数是()A.28B.31C.39D.4210.在同一直角坐标系中,函数(0)ky k x =≠与(0)y kx k k =+≠的图象大致是()A.B.C.D.ABCDa b图270°31°A.xyB.xyC.xyD.xy第二部分非选择题填空题(本题共5小题,每小题3分,共15分)11.一个口袋中有4个白球,5个红球,6个黄球,每个球除颜色外都相同,搅匀后随机从袋中摸出一个球,这个球是白球的概率是.12.分解因式:2242x x -+.13.若单项式22m x y 与313n x y -是同类项,则m n +的值是.14.直角三角形斜边长是6,以斜边的中点为圆心,斜边上的中线为半径的圆的面积是.15.邓老师设计了一个计算程序,输入和输出的数据如下表:输入数据123456…输出数据1227314423534647…那么,当输入数据是7时,输出的数据是.解答题(本题共8小题,其中第16题5分,第17题6分,第18题6分,第19题6分,第20题7分,第21题8分,第22题9分,第23题8分,共55分)16.计算:01π3sin 4520073-⎛⎫+- ⎪⎝⎭17.解不等式组,并把它的解集表示在数轴上:2(2)3134x x x x ++⎧⎪⎨+<⎪⎩≤ ① ②18.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点,BAE MCE =∠∠,45MBE = ∠.(1)求证:BE ME =.(2)若7AB =,求MC 的长.图3A BCDME19.2007年某市国际车展期间,某公司对参观本次车展盛会的消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回.①根据调查问卷的结果,将消费者年收入的情况整理后,制成表格如下:年收入(万元) 4.867.2910被调查的消费者人数(人)2005002007030②将消费者打算购买小车的情况整理后,作出频数分布直方图的一部分(如图4).注:每组包含最小值不包含最大值,且车价取整数.请你根据以上信息,回答下列问题.(1)根据①中信息可得,被调查消费者的年收入的众数是______万元.(2)请在图4中补全这个频数分布直方图.(3)打算购买价格10万元以下小车的消费者人数占被调查消费者人数的百分比是______.图446810121416车价/万元人数/人4012020036020.如图5,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M 处,在点A 处测得某岛C 在北偏东60的方向上.该货船航行30分钟后到达B 处,此时再测得该岛在北偏东30的方向上,已知在C 岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.21.A B ,两地相距18公里,甲工程队要在A B ,两地间铺设一条输送天然气管道,乙工程队要在A B ,两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?图5北60°30°ABCM22.如图6,在平面直角坐标系中,正方形AOCB的边长为1,点D在x轴的正半轴上,且OD OB=,BD交OC于点E.(1)求BEC∠的度数.(2)求点E的坐标.(3)求过B O D,,三点的抛物线的解析式.(计算结果要求分母有理化.参考资料:把分255==;1=2=等运算都是分母有理化)AB COEDyx23.如图7,在平面直角坐标系中,抛物线2164y x =-与直线12y x =相交于A B ,两点.(1)求线段AB 的长.(2)若一个扇形的周长等于(1)中线段AB 的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少?(3)如图8,线段AB 的垂直平分线分别交x 轴、y 轴于C D ,两点,垂足为点M ,分别求出OM OC OD ,,的长,并验证等式222111OC OD OM +=是否成立.(4)如图9,在Rt ABC △中,90ACB =∠,CD AB ⊥,垂足为D ,设BC a =,AC b =,AB c =.CD b =,试说明:222111a b h+=.深圳市2008年初中毕业生学业考试数学试卷ABOyx图7ABO yx图8CD M 图9ABC Da bch说明:1、全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页。