初一数学 列方程解应用题精讲
- 格式:doc
- 大小:85.50 KB
- 文档页数:4
七年级方程应用题解题技巧
七年级方程应用题是数学学习中的一个重要部分,掌握解题技巧对于提高解题速度和准确性非常重要。
以下是一些七年级方程应用题的解题技巧:
1. 理解题意:首先,要仔细阅读题目,理解其背景和要求,找出关键信息,明确未知数和已知条件。
2. 建立方程:根据题意,用数学语言描述问题,建立方程。
方程可以是一个或多个,这取决于问题的复杂性。
3. 简化方程:如果方程过于复杂,可以尝试将其简化。
例如,合并同类项、移项、去括号等。
4. 求解方程:使用代数方法(如代入法、消元法、因式分解等)求解方程。
注意解的合理性,例如,解不能是负数或无意义的数。
5. 检验答案:最后,将解代入原方程进行检验,确保答案的正确性。
6. 总结反思:回顾解题过程,总结经验教训,提高解题能力。
下面是一个具体的例子:
题目:某班有男生27人,女生21人,男生人数是女生人数的几倍?
解题步骤:
1. 理解题意:找出关键信息,男生27人,女生21人。
2. 建立方程:设男生人数是女生人数的$x$倍。
则有方程 $27 = 21x$。
3. 简化方程:移项得 $21x = 27$。
4. 求解方程:除以21得 $x = \frac{27}{21}$。
5. 检验答案:将解代入原方程进行检验,确保答案的正确性。
6. 总结反思:回顾解题过程,总结经验教训。
通过掌握这些技巧,学生可以更好地理解和解决七年级的方程应用题。
完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。
①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。
求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。
2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。
3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。
现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。
你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。
4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。
解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。
七年级列方程解应用题技巧
引言
列方程解应用题是初中数学研究中的一个重要内容。
掌握了列方程的技巧,可以帮助我们更好地理解和解决实际生活和研究中的问题。
本文将介绍一些七年级列方程解应用题的常用技巧。
技巧一:读题仔细,理解问题
在解决列方程问题之前,我们首先要仔细阅读题目,理解问题的要求和限制条件。
有时候,一个关键的细节可能会影响到我们列方程的过程和方程的解。
技巧二:定义未知数
在列方程时,我们需要定义一个或多个未知数来表示问题中的未知量。
我们可以使用字母或其他符号来表示未知数,并结合题目信息设定其含义。
技巧三:利用问题中的已知条件
题目中往往会给出一些已知条件,我们可以利用这些条件列出方程,从而推导出未知数的值。
在列方程时,我们要根据已知条件设定等式的两边,并进行适当的运算。
技巧四:解方程求解未知数
列好方程后,我们可以通过解方程的方法来求解未知数。
常用的解方程方法有平衡法、代入法、加减消元法等。
根据题目的要求选择合适的方法进行求解,并得出未知数的值。
技巧五:检查解的合理性
在解决问题后,我们应该对得到的解进行检查,以确保解的合理性。
如果解符合题目的要求和已知条件,那么我们可以得出最终的答案;如果不符合,我们需要重新检查方程的列写和解方程的过程。
总结
通过掌握这些列方程解应用题的技巧,我们可以更好地解决七年级数学中的列方程问题。
在实际操作中,我们应该多做练,加强对技巧的熟练掌握,提高解决问题的能力。
文档结束。
一元一次方程解应用题题型归纳共乐初中詹洪列一元一次方程解应用题是初一年级数学教学中的一大重点,又是学生从小学升入初中后第一次接触到用代数的方法处理应用题,所以也是一大难点。
认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题、列不等式(组)解应用题及函数应用题大有帮助。
因此将列一元一次方程解应用题的步骤、几种常见题型及其特点归纳如下:一、列方程解应用题的步骤:(1)读懂题意,正确理解.(2)弄清数量关系:准确把握题目条件中的已知量和未知量,必要时可用图表辅助分析. (3)找出:正确找出等量关系。
(4)列方程:设出未知数,将题设条件中的语句都“翻译”成含有“字母”的代数式,根据等量关系列出方程。
(5)解方程并检验:检验所求的未知数的值是否是所列方程的解,受否符合题意;(6)答:根据题意写出答案.二、常见题型及其特点:A.和差倍分问题和差倍分在列方程时,即可表示运算关系,又可表示相等关系。
在解决这类问题时,要特别注意关键词的含义,如:多、少、快、慢、提前、推迟、提高x%(几倍)、降低x%(几份之几)、提高到x%等。
用和、差、几倍、几分之几……它可以指导我们正确地列代数式或列方程。
例: 有一根铁丝,第一次用去了它的一半少1m,第二次用去了剩下的一半多1m,结果还剩2.5m,这根铁丝原来有多长?1、一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?2、某通信公司今年员工人均收入比去年提高20%,且今年人均收入比去年的1.5倍少了1200元,求去年人均收入?3.“希望工程”委员会将2000元奖金发给全校25名三好学生,其中市级三好学生每人得奖金200元,校级三好学生每人得奖金50元,问全校市级三好学生、校级三好学生各有多少人?4. 一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?5. 某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?6. 七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?7 .某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)8. 本市中学生足球赛中,某队共参加了8场比赛,保持不败的记录,积18分.记分规则是:胜一场得3分,平一场得1分,负一场得0分。
一元一次方程解应用题专项讲义一、和、差问题1. 2004年与1988年奥运会我国共获91枚奖牌,其中2004年比1988年的2倍多7枚,问:1988年我国获得几枚奖牌?2.一台拖拉机耕一块地,第一天耕了这块地的四分之一,第二天耕了这块地的五分之一,第三天耕了10亩,第四天耕了这块地的三分之一,这时还剩下3亩没耕完,求这块地共有多少亩?3.为了把2008年的北京奥运办成一届绿色奥运 ,五中和十中的同学积极参加绿化工程劳动,两校共绿化了290亩的土地,十中绿化的面积比五中绿化面积的2倍少10亩,这两所中学分别绿化了多少面积?二、调配问题(一)人数调配1.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?(二)物品调配1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?2、甲仓库储粮35吨 ,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?3、甲、乙两个仓库共有20吨货物,从甲仓库调出101到乙仓库后,甲仓库中的货物比乙仓库中的货物多16吨.问甲、乙两仓库中原来各有多少吨货物?三、分配问题:1.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
2.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?3.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。
四、配套问题:1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
七年级上册数学列方程解应用题题目 1:和差倍分问题。
某工厂三个车间共有 180 人,第二车间人数是第一车间人数的 3 倍多 1 人,第三车间人数是第一车间人数的一半还少 1 人,三个车间各有多少人?解析:设第一车间有x人,则第二车间有(3x + 1)人,第三车间有((1)/(2)x - 1)人。
根据题意,可列方程:x + (3x + 1) + ((1)/(2)x - 1) = 180x + 3x + 1 + (1)/(2)x - 1 = 180(9)/(2)x = 180x = 40第二车间人数:3x + 1 = 3×40 + 1 = 121(人)第三车间人数:(1)/(2)x - 1 = (1)/(2)×40 - 1 = 19(人)答案:第一车间 40 人,第二车间 121 人,第三车间 19 人。
题目 2:行程问题。
甲、乙两地相距 162 千米,甲地有一辆货车,速度为每小时 48 千米,乙地有一辆客车,速度为每小时 60 千米,求两车同时相向而行,多长时间相遇?解析:设两车相遇的时间为x小时。
根据路程 = 速度×时间,可得货车行驶的路程为48x千米,客车行驶的路程为60x千米。
两车相向而行,它们行驶的路程之和等于两地的距离,可列方程:48x + 60x = 162108x = 162x = 1.5答案:1.5 小时相遇。
题目 3:工程问题。
一项工程,甲单独做 20 天完成,乙单独做 30 天完成,两人合作多少天可以完成这项工程?解析:设两人合作x天可以完成这项工程。
把这项工程的工作量看作单位“1”,甲每天的工作效率为(1)/(20),乙每天的工作效率为(1)/(30)。
根据工作总量 = 工作时间×工作效率,可列方程:((1)/(20) + (1)/(30))x = 1(1)/(12)x = 1x = 12答案:12 天可以完成。
题目 4:销售问题。
某商品的进价是 1500 元,标价为 2500 元,商店要求以利润率不低于 5%的售价打折出售,售货员最低可以打几折出售此商品?解析:设售货员最低可以打x折出售此商品。
七年级一元一次方程应用题解题技巧总结在初中数学学习中,一元一次方程是一个基础且重要的内容。
在解一元一次方程的过程中,应用题是一个很关键的环节,需要掌握一定的解题技巧。
本文将总结七年级一元一次方程应用题解题技巧,帮助同学们更好地应对这类问题。
问题分析在解一元一次方程的应用题时,首先要将问题进行分析,明确问题的关键信息。
一般来说,应用题中会涉及到“未知数的设定”、“问题的条件”、“问题的要求”等内容。
我们需要将这些内容清晰地理解,并将其转化为数学语言。
步骤总结1.设定未知数:在遇到应用题时,首先明确未知数代表的意义,通常会直接用字母表示,如x,y等。
2.建立方程:根据问题的条件,建立方程。
根据关键信息,可以列出等式,将问题转化为方程。
3.解方程:根据方程的性质,进行化简和整理,找到方程的解。
可以通过合并同类项、移项、消项等方式求解方程。
4.验证解的正确性:解得方程后,要将所得的解代入原方程进行验证,确保解的正确性。
解题技巧1.仔细阅读题目:要仔细审题,理解问题的含义,注意问题的条件和要求。
2.逻辑清晰:在解题的过程中,逻辑要清晰,一步一步进行推理和求解,不要出现漏洞。
3.化繁为简:解题时可以适当化繁为简,简化问题的设定和条件,有助于更快地找到解题思路。
4.多练习:通过大量的练习,掌握应用题解题的技巧和思路,提高解题的速度和准确性。
实例演练实例一某个班级学生人数的2/5比3/4小15人,求这个班级学生的总人数。
解题过程: 1. 设这个班级学生的总人数为x,根据题意,可以得到方程:2/5x=3/4x−15。
2.化简方程,得到8x=15x−300。
3.移项整理,得到7x=300,解得x=300/7。
4.验证解,将x代入原方程验证,发现成立,得答案。
实例二某商店举办“满500减100”优惠活动,若小明在该商店买东西,总共花费480元,问他买了多少钱的商品。
解题过程: 1. 设小明买的商品总价为x,则根据题意,可以得到方程:x−100=480。
七年级一元一次方程应用题解题技巧在七年级的数学学习中,一元一次方程是一个非常重要的知识点。
它不仅是数学学习的基础,还在我们的日常生活中有着广泛的应用。
解决一元一次方程应用题需要我们掌握一定的解题技巧,下面我将详细介绍一些方法和技巧,希望能帮助大家更好地理解和掌握这一知识点。
一、理解题意,建立方程在解决一元一次方程应用题时,首先要仔细阅读题目,深入理解题意。
在理解题目的基础上,我们需要建立方程,这是解决问题的关键步骤。
建立方程需要根据题目中所描述的情景,将未知数表示出来,并根据题目中的条件建立等式。
如果题目中涉及到某个物品的价格和数量,我们可以用一个字母表示价格,用另一个字母表示数量,然后根据题目中的条件建立方程。
二、整理方程,求解未知数建立好方程之后,我们需要对方程进行整理,将同类项合并,化简方程。
我们就可以开始解方程,求解未知数。
在这一步,可以运用一些解方程的基本技巧,如去括号、去分母、合并同类项、移项变号等。
这些技巧在解决一元一次方程应用题时非常实用。
三、验证答案,总结回顾解出方程之后,我们需要将得到的解代入原方程中进行验证,确保得到的解是符合题意的。
如果验证结果正确,那么我们的答案就是正确的。
我们还需要对整个解题过程进行总结回顾,分析解题的思路和方法,总结解题的经验和技巧,这样才能更好地掌握解题的方法并且为以后的学习打下坚实的基础。
我的个人观点和理解通过学习一元一次方程应用题解题技巧,我深刻地认识到解题的重要性。
掌握这些解题技巧不仅能够帮助我们更好地理解和掌握数学知识,还能够培养我们的逻辑思维能力和解决问题的能力。
我相信,只要我们认真学习,多加练习,一定能够轻松地解决各种一元一次方程应用题。
总结通过本文的介绍,我们可以看到,解决一元一次方程应用题并不是一件困难的事情,只要我们掌握了解题的基本技巧,理解了解题的思路,相信每个人都能够轻松地完成这一任务。
希望大家能够在学习中多加练习,不断提高解题的能力,取得更好的成绩。
二元一次方程组的应用-销售利润问题【知识点】1. 列二元一次方程组解应用题的一般步骤(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设未知数:找出题中的两个关键的未知量,并用字母表示出来.(3)找:挖掘题目中的关系,找出两个等量关系;(4)列方程组:列出方程组.(5)求解.(6)检验作答:检验所求解是否符合实际意义,并作答.注意:设未知数的方法:直接设未知数与间接设未知数.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设未知数.2. 用方程解决实际问题的几个注意事项(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得 的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.(4)列方程组解应用题应注意的问题①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆;⑤在寻找等量关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验。
3. 商品销售利润问题:(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式: 利润=售价-成本(进价) 售价-进价利润率进价=100%利润=成本(进价)×利润率 标价=成本(进价)×(1+利润率);实际售价=商品标价×打折率注意:折扣中打几折就是按标价的十分之几或百分之几十销售(例如八折就是按标价的十分之八即五分之四或者百分之八十)【典型例题】1. 某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率为 .【考点】本题考查二元一次方程的应用,根据利润率得到相应的等量关系是解决本题的关键;设出所需的多个未知数并在解答过程中消去是解决本题的难点.【解答】解:设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元;若售出甲x 件,则售出乙1.5x 件.0.4ax+0.6b×1.5x ax+1.5bx =0.5,解得a =1.5b ,∴售出的乙种商品的件数比甲种商品的件数少50%时,甲种商品的件数为y 时,乙种商品的件数为0.5y . 这个商人的总利润率为0.4ay+0.6b×0.5y ay+0.5by =0.4a+0.3b a+0.5b =0.9b 2b =45%.故答案为:45%.2.“重百”、“沃尔玛”两家超市出售 同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.【考点】此题考查了二元一次方程组的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.【解答】解:(1)设一个保温壶售价为x 元,一个水杯售价为y 元.由题意,得:{x +y =602x +3y =130. 解得:{x =50y =10. 答:一个保温壶售价为50元,一个水杯售价为10元.(2)选择在“沃尔玛”超市购买更合算.理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元),在“沃尔玛”超市购买所需费用为:50×4+(15﹣4)×10=310(元),∵310<315,∴选择在“沃尔玛”超市购买更合算.【练习】1.华润苏果的账目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是元.2.2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.甲种商品与乙种商品的销售单价各多少元?3.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?4. 某专卖店有A,B两种商品.已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元;A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?5. 某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八五折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?6. 某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?【练习解析】1. 解:设一支牙刷收入x 元,一盒牙膏收入y 元,由题意,得39x +21y =396,∴13x +7y =132,∴52x +28y =528,故答案为:528.2. 解:设甲种商品的销售单价为x 元/件,乙种商品的销售单价为y 元/件,根据题意得:{2x =3y 3x −2y =1500,解得:{x =900y =600. 答:甲种商品的销售单价为900元/件,乙种商品的销售单价为600元/件.3. 解:设碳酸饮料在调价前每瓶的价格为x 元,果汁饮料调价前每瓶的价格为y 元,根据题意得:{x +y =73(1+10%)x +2(1−5%)y =17.5,解得:{x =3y =4. 答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.4. 解:设打折前A 商品的单价为x 元/件、B 商品的单价为y 元/件,根据题意得:{60x +30y =108050x +10y =840,解得:{x =16y =4, 500×16+450×4=9800(元),9800−19609800=0.8.答:打了八折.5. 解:(1)设随身听和书包的单价分别为x 元,y 元.由题意可得{x +y =452x =4y −8,解得{x =360y =92. 答:随身听和书包的单价分别为360元,92元;(2)A 超市需要:452×0.85=384.2(元);B 超市需要:先购买随身听花费360元,返券90元,还需要92﹣90=2(元),共花费360+2=362(元). 因为384.2>362,所以在B 超市购买省钱.6. 解:(1)设A种服装购进x件,B种服装购进y件,由题意,得{60x+100y=600040x+60y=3800,解得:{x=50y=30.答:A种服装购进50件,B种服装购进30件;(2)由题意,得:3800﹣50(100×0.8﹣60)﹣30(160×0.7﹣100)=3800﹣1000﹣360=2440(元).答:服装店比按标价售出少收入2440元.。
初一一元一次方程应用题解题技巧:
解决初一一元一次方程应用题的技巧可以总结为以下几点:
1.理解问题:首先要仔细阅读问题,理解问题所描述的具体场景,并确定问题
中涉及到的未知数及其含义。
2.建立方程:根据问题中的信息,建立起相应的一元一次方程。
关键是要将问
题中的文字描述转化成代数表达式,建立起方程模型。
3.整理方程:对建立的方程进行整理和简化,使其变成标准形式ax+b=c,其中
a、b、c是已知数,x是未知数。
4.求解方程:通过适当的运算,解出方程中的未知数x的值。
可以使用传统的
解方程的方法,比如移项、合并同类项等。
5.验证答案:将求得的未知数代入原方程中进行验证,确保求得的解是符合实
际情况的。
6.用文字回答问题:最后用文字清晰地回答问题,表达出未知数的意义以及最
终的解答结果。
举例来说,如果是一个关于两个数的和或者差的问题,可以通过设定一个数为x,另一个数为y,然后根据题目的描述建立方程,最终解出x和y的值。
这样的技巧可以帮助学生更好地理解并解决一元一次方程应用题。
一元一次方程的应用例题解析考点一列方程解应用题时设未知数的方法列方程解应用题,一般有三种设未知数的方法:(1) ;(2) ;(3) ;考点二寻找题目中的等量关系(重点)列方程解应用题的关键是寻找题目中的等量关系,如何找出题目中的等量关系呢?(1)利用基本的等量关系,如路程=速度×时间;(2)要善于分析问题中的不变量;(3)要善于用不同的方式表示同一个量;(4)要善于利用“总量等于各分量之和”的关系.考点三正确列出方程解应用题(重、难点)列一元一次方程解应用题的一般步骤可归纳为:审、设、列、解、检验、答.(1)“审”是指读懂题目,弄清题意,明确哪些是以已知量,哪些是未知量,以及它们之间的等量关系;(2)“设”就是设未知数;(3)“列”就是列方程,这是最关键的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程;(4)“解”就是解方程,求出未知数的值;(5)“检验”是指检验方程的解是否正确以及能否保证实际问题有意义;(6)“答”就是写出答案,有单位名称的要写上单位名称.题型一几何应用【例题1】一个长方形的周长是16cm,长与宽的差是2cm,那么长与宽分别是()A.9cm,7cmB.5cm,3cmC.7cm,5cmD.10cm,6cm【例题2】练习5.在长为10 m,宽为8 m的长方形空地中,沿平行于长方形各边的方向分割出三个完全相同的小长方形花圃,其示意图如图所示.求小长方形花圃的长和宽.【过关练习】1.一个长方形的周长是40cm,若将长减少8cm,宽增加2cm,长方形就变成了正方形,则正方形的边长为()A.6cmB.7cmC.8cmD.9cm2.一个长方形苗圃,长比宽多10cm,沿着苗圃走一圈要走40m,这个苗圃的占地面积为()A. B. C. D.3.一个三角形的三条边的长度之比为2:4:5,最长的边比最短的边长为6cm,求该三角形的周长.4.根据图中给出的信息,可得正确的方程是()A. B.C. D.5.欲将一个长、宽、高分别为150mm,150mm,20mm的长方体钢毛坯,锻造成直径为100mm的圆柱体零件,则圆柱体的高是()A. B. C. D.10.根据图中的信息,求梅花鹿和长颈鹿现在的高度.题型二打折销售应用【例题1】某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元。
一元一次方程解应用题的思路和解法一元一次方程应用题是初一数学学习的重点,也是一个难点。
主要困难体现在两个方面:一是难以从实际问题中找出相等关系,列出相应的方程;二是对数量关系稍复杂的方程,常常理不清楚基本量,也不知道如何用含未知数的式子来表示出这些基本量的相等关系,导致解题时无从下手。
事实上,方程就是一个含未知数的等式。
列方程解应用题,就是要将实际问题中的一些数量关系用这种含有未知数的等式的形式表示出来。
而在这种等式中的每个式子又都有自身的实际意义,它们分别表示题设中某一相应过程的数量大小或数量关系。
由此,解方程应用题的关键就是要“抓住基本量,找出相等关系”。
所以,我认为解题关键为:先找出等量关系,根据基本量设未知数。
一般是问什么设什么,但是一些特殊的题目为了使方程简便有时会设一些中间量为未知数。
初中一年级涉及到的一元一次方程应用题主要有以下几类:(1)行程问题;(2)工程问题;(3)溶液配比问题;(4)销售问题;(5)数字问题;(6)比例问题;(7)设中间变量的问题。
不管是什么问题,关键是要了解各个具体问题所具有的基本量,并了解各个问题所本身隐含的等量关系,结合具体的问题,根据等量关系列出方程。
下面针对以上七项分别进行讲解。
1 行程问题行程问题中有三个基本量:路程、时间、速度。
等量关系为:①路程=速度×时间;;②速度=路程时间。
③时间=路程速度特殊情况是航行问题,其是行程问题中的一种特殊情况,其速度在不同的条件下会发生变化。
①顺水(风)速度=静水(无风)速度+水流速度(风速);②逆水(风)速度=静水(无风)速度-水流速度(风速)。
由此可得到航行问题中一个重要等量关系:顺水(风)速度-水流速度(风速)=逆水(风)速度+水流速度(风速)=静水(无风)速度。
例1:一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?此题的等量关系是:列车改变速度以后所用的总时间=原计划的时间。
一元一次方程应用题专题讲解一、列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?(二)等积变形问题等积变形是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=2r h②长方体的体积V=长×宽×高=abc例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?(三)数字问题1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9),则这个三位数表示为:100a+10b+c.2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n—1表示。
初一数学一元一次方程应用题技巧
初一数学的一元一次方程应用题,是数学学习中的一个重要内容。
以下是一些解题技巧和步骤:
1.读懂题目:首先,需要仔细阅读题目,理解题目所描述的情境和问题。
2.找出未知数:在一元一次方程中,通常会有一个未知数,这个未知数可能是某个物体的数量、某个变量的值等。
找出这个未知数是很重要的。
3.建立数学方程:根据题目,可以建立关于这个未知数的方程。
这个方程通常会涉及一些基本的数学运算,如加法、减法、乘法、除法等。
4.解方程:一旦建立了方程,就可以通过一些数学方法来解这个方程,找出未知数的值。
5.检查答案:最后,需要检查计算结果是否符合题目的要求,是否符合实际情况等。
以下是一些常见的解题步骤:
1.去分母:如果方程中出现了分母,需要先去掉分母,使方程变得更加简单。
2.去括号:如果方程中出现了括号,需要先去括号,使方程变得更加简单。
3.移项:如果方程中的项移动了位置,需要将其移回原来的位置。
4.合并同类项:如果方程中出现了同类项,需要将其合并起来。
5.系数化为一:如果方程中出现了系数,需要将其化为一。
在解一元一次方程时,需要灵活运用这些步骤,并根据实际情况选择合适的方法。
同时,也需要多练习,提高自己的解题能力。
相遇问题和追及问题解题技巧:1、画图分析2、速度×时间=路程3、根据路程列出方程例1、甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?例2、小明、小华两人在同一地点练习跑步,如果小华先跑10米,则小明跑6秒就可以追上乙。
如果小华先跑2秒,则小明跑4秒可以追上乙。
求小明和小华的速度1、甲、乙相距12km,两人同向而行,甲3小时可追上乙。
相向而行,2小时相遇。
二人的平均速度各是多少?2、甲、乙两人相距6千米,若两人同时相向而行,则出发1小时相遇。
若两人同时同向出发,则甲3小时可追上乙。
求两人的平均速度各是多少?3、甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶,出发后经3小时两人相遇。
已知在相遇时乙比甲多行驶了90千米,相遇后经1小时乙到达A地(1)问甲、乙行驶的速度分别是多少?(2)甲、乙行驶多少小时,两车相距30千米4、甲骑摩托车每小时行40千米,乙骑机动脚踏车每小时行20千米,上午7时他们相距140千米的A、B同时出发。
(1)相向而行,在什么时候相距20千米?(2)同向而行,什么时候他们相距20千米?5、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分钟相遇,相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机。
这时,汽车、拖拉机各自行驶了多少千米?6、学校组织学生去春游,小徐因赖床而没有赶上旅游车,于是他乘坐一辆出租车进行追赶。
小徐打电话给老师道歉。
老师对小徐说,你要是能答对我的问题,我就原谅你:“如果出租车每小时走80千米,则需要1.5小时追上旅游车。
如果每小时走90千米,则需要40分钟追上。
你知道旅游车的速度是多少吗?”请帮小徐回答这个问题。
武汉铭都教育培训中心(盘龙城校区)授课活页表年级七年级授课形式小班讲次第 12 讲
授课教师章杰授课科目数学授课时间11月23日17点- 19点学生姓名:汤天
教学内容:一元一次方程实际问题专题
本节重点:一元一次方程的相关应用题,数字问题,利润问题,工程问题,储蓄问题,行程问题等问题的解题思路及解法。
教学设计:
引言:列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。
因此我们要努力学好这部分知识。
列方程解应用题的主要步骤:(审、设、找、列、解、验、答)
1. 认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系;
2. 用字母表示题目中的未知数,并用这个字母和已知数一起组成表示各数量关系的代数式;
3. 利用这些代数式列出反映某个等量关系的方程(注意所使用的单位一定要统一);
4. 求出所列方程的解;
5. 检验所求的解是否使方程成立,又能使应用题有意义,并写出答案。
专题讲解
一.数字问题:
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数)则这个三位数表示为:100a+10b+c。
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2N+2或2N—2表示;奇数用2N+1或2N—1表示。
例1. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数
例2. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两
位数比原两位数大36,求原来的两位数。
二. 工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
经常在题目中未给出工作总量时,设工作总量为单位1。
例3. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?
例4. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
[分析]设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
例5. 一蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?
三. 行程问题:
[解题指导]
(1)行程问题中的三个基本量及其关系:路程=速度×时间。
(2)基本类型有:1)相遇问题;
2)追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例7. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?
例8. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,
已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B 两地之间的路程。
[分析]这属于行船问题,这类问题中要弄清:
(1)顺水速度=船在静水中的速度+水流速度;(2)逆水速度=船在静水中的速度-水流速度。
四. 利润问题
1)销售问题中常出现的量有:进价、售价、标价、利润等
2)有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价×折扣率
例9. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?
例10. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
五. 储蓄问题
1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税
2)利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)
例11. 某同学把250元钱存入银行,整存整取,存期为半年。
半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)
六. 日历中的方程
例13. 1)在一份日历中,任意框出一个竖列上相邻的四个数,观察他们之间是什么关系?如果框出
的四个数的和为58,这四天分别是几号?
2)如果用一个正方形所圈出的4个数的和为76,这四天分别是几号?
注意:虽然我们分了几种类型对应用题进行了研究,但实际生活中的问题是千变万化的,远不止这几类问题。
因此我们要想学好列方程解应用题,就要学会观察事物,关心日常生产生活中的各种问题,如市场经济问题等等,要会具体情况具体分析,灵活运用所学知识,认真审题,适当设元,寻找等量关系,从而列出方程,解出方程,使问题得解。
教务老师签字:
(备注:授课老师应在课前认真填写授课活页,教务老师签字后方可上课。
)
年月日学生评价:
1、上这个老师的课你开不开心?
□开心学生签名:
□一般学生签名:
听这个老师讲课能不能学到知识?
□能学生签名:
□还好学生签名:
教师评价:
学生课上掌握情况:□较好□一般□不好。