声波测井方法主要特点对比表
- 格式:doc
- 大小:56.00 KB
- 文档页数:1
现代声波测井技术及其发展特点声波测井技术是一种通过声波在地层中传播的特性来获取地下信息的技术手段。
随着科技的不断发展,现代声波测井技术已经成为了勘探、开发和生产油气资源的重要工具,具有高分辨率、高精度、非侵入性等特点,在勘探领域具有极大的应用潜力。
声波测井技术的发展历程可以追溯到20世纪初,随着探测技术的不断发展,尤其是近年来随着计算机技术和声波科学的结合,声波测井技术取得了长足的进步。
早期的声波测井技术主要依靠声速测量和波幅测量,这些技术的应用范围受到了地层条件和井筒效应的限制,精度和可靠性较低。
近年来,随着超声波技术、频散成像等技术的应用,声波测井技术的应用范围得到了拓展,测井结果的精度和可靠性也有了较大提高。
现代声波测井技术的发展特点主要体现在以下几个方面:一、多种声波测井技术的融合应用现代声波测井技术已经不仅仅局限于声速测井和波幅测井,而是将超声波技术、频散成像等多种声波技术进行了有效的融合应用。
超声波技术具有更高的频率和更短的波长,适用于低孔隙度、低渗透率的油藏的测井,能够提高对地层细微结构和孔隙结构的分辨率。
频散成像技术能够对地层进行更加精细的成像,能够有效地克服地层条件和井筒效应的影响,提高了成像的准确性和稳定性。
多种声波测井技术的融合应用,使得测井结果更加全面、准确,为勘探开发提供了更加可靠的技术支持。
二、数字化与智能化技术的应用随着计算机技术的不断发展,现代声波测井技术已经趋向于数字化和智能化。
数字化技术能够提高数据采集和传输的速度和精度,使得数据采集和处理更加快速、准确。
智能化技术能够通过人工智能算法对数据进行自动分析和解释,大大提高了数据的解释效率。
数字化和智能化技术的应用,不仅提高了声波测井技术的数据采集和处理能力,同时也提高了数据的解释质量,为勘探开发提供了更加丰富的地质信息。
三、声波成像与地质解释的结合现代声波测井技术不再仅仅是对声波的物理参数进行测量,而是更多地涉及到声波成像和地质解释。
现代声波测井技术及其发展特点现代声波测井技术是一种采用声波钻孔测试的技术,是对地层的物性参数进行测定的重要手段。
该技术可以对地下岩石进行量化分析,从而获得其物理、化学和力学性质的定量数据。
声波测井技术在许多领域具有广泛应用,如石油勘探、地质勘探、水文学、环境科学等。
现代声波测井技术主要包括两种类型:长波测井和短波测井。
长波测井是一种通过观测声波在地层中传播,从而确定地层岩石和地下水层物性参数的方法。
它可以测量声波在地层中的传播时间和速度,根据这些数据计算出不同层段的密度、弹性模量、刚度等物性参数。
长波测井技术广泛应用于石油勘探、天然气资源评估、地质调查等领域。
1. 多种测量模式的应用。
现代声波测井技术已经从传统的单次测量模式发展到了多次测量模式。
在多次测量模式中,可以进行多角度、多波速、多成分的测量工作,进一步提高了测量精度。
2. 大数据分析的应用。
现代声波测井技术在测量过程中采集的数据量很大,需要进行数据分析处理。
借助于现代计算机及数据科学技术的快速发展,可以在极短的时间内完成数据的收集、传输、处理及存储工作,从而更好的支持声波测井技术的应用。
3. 聚焦于低侵扰性的储层评估技术。
现代声波测井技术逐渐趋向于低侵扰性测量技术,即通过对声波在地层中传播的信号进行分析,获得更加精细、更加准确的地层内部结构及物性参数,对储层进行更加全面、精细的评估工作。
4. 分析质量的提高。
现代声波测井技术的分析质量不断提高。
采用现代化的分析算法和方法,可以降低分析误差及测量误差,从而提高测量结果的准确性和可靠性。
综上所述,现代声波测井技术是一种重要的地质勘探技术,通过多种测量模式、大数据分析、低侵扰性储层评估及分析质量的提高等技术手段,可以获得更加精准、全面的地质信息数据,并在各种领域中得到广泛应用。
现代声波测井技术及其发展特点声波测井技术是一种用声波对地层进行探测和分析的方法,它广泛应用于油田勘探开发、地质科研、环境监测等领域。
随着科技的不断进步,现代声波测井技术已经取得了长足的发展,为地质勘探和生产提供了更为准确和可靠的数据支持。
一、声波测井技术概述声波测井技术是指利用地下岩石对声波的传播和反射特性进行测量,从而获取有关地层岩石参数的一种地球物理勘探方法。
声波测井技术可分为传统声波测井和现代声波测井两大类。
传统声波测井是指利用声波在地层中的传播时间和幅度信息,通过分析地层中的含油气和水的分布状况,来判断岩石的渗透率、孔隙度、岩性等参数。
而现代声波测井技术则是在传统声波测井的基础上,结合先进的数学建模和数据处理技术,更加精确地研究地层中的声波反射、衍射、散射以及其它复杂特性,实现对地下储层精细成像和参数解释。
1. 高分辨率成像现代声波测井技术采用高频率、多频率声波的激发方式,结合高灵敏度的接收器和先进的信号处理技术,实现了地下储层的高分辨率成像。
利用现代声波测井技术,可以获取地层内部更为精细的信息,对孔隙结构、岩性分布、渗透率等参数进行更为准确的描述,为油田勘探开发提供了更丰富的数据支持。
2. 多参数同步解释现代声波测井技术不仅可以获取地下储层的声波速度、密度等基本参数,还可以获取地震波的频散,声波的衰减、偏振等复杂特性。
通过综合分析这些多参数数据,可以实现对地下储层的多角度解释,更好地理解地层结构和物性变化规律。
这种同步多参数解释方法,为油田勘探和生产提供了更为全面细致的地质描述和评价。
3. 多尺度三维成像现代声波测井技术结合了地震成像和声波测井的优势,可以实现对地下储层的多尺度三维成像。
无论是大尺度的地质构造还是小尺度的孔隙结构,现代声波测井技术都能够提供高分辨率的三维成像图像。
这种多尺度三维成像技术,使地质勘探人员可以更好地理解地下储层的空间分布和变化规律,为油田勘探开发提供了更为准确的地质模型。
测井方法的主要分类1. 电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。
2. 声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。
3. 核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。
中子测井具体包括:超热中子测井、热中子测井、中子寿命测井、中子伽马测井、C/O比测井、PND-S测井、中子活化测井等。
发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不同时间测量)。
4. 生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。
1生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。
工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。
产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。
5. 随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。
2测井方法主要特征总结归类表方法发射接收记录显示纵向分层能力探测深度测量原理被测物理量的影响因素测井响应的影响因素主要应用自然伽马无NaI闪烁晶体探测器计数率强度(API)18英寸6-8英寸长半衰期的天然放射性同位素U、TH、K放射性同位素的丰度、地层密度泥浆密度井径泥浆性能地层密度地层划分与对比泥质定性与定量分析测量地层沉降示踪测量自然伽马能谱多道能谱计数器能谱U(PPM)、TH(PPM)K(%)18英寸6-8英寸利用232Th(2.62)238U( 1.76)、40K(1.46)特征能量放射性同位素的丰度、地层密度泥浆密度井径泥浆性能地层密度重晶石同上,附加沉积环境生油指示岩性与矿物组分粘土类型等成岩作用3自然电位井下点电极地面电极电位电位(mV)0.5m 6-8in薄膜电位扩散电位动电电位,通常可忽略地层水与泥浆滤液矿化度之差温度1)地层厚度2)地层的真电阻率3)侵入深度4)侵入带电阻率5)泥岩电阻率6)泥浆电阻率7)井眼直径8)所含流体性质划分储层地层对比估算泥质计算地层水电阻率声波速度2发2收4个首波时间时差()/(ftS(慢度)24英寸5英寸fV1f=20KHz声波反射、折射岩性、孔隙度、埋深、地层年代1)井眼不规则、扩径2)周波跳跃3)随机噪声4)天然气5)泥岩蚀变带地层对比孔隙度岩性地震时深转换识别气层和裂缝4长源距声波阵列声波2发2发2收2收8个阵列接收4个首波时间T1R1全波列多个波形双时差波形纵波、横波、撕通利波时差、波形36英寸12英寸声波反射、折射全波列:纵波、横波、瑞利波、撕通利波、泥浆波同上1)井眼不规则、扩径2)周波跳跃3)随机噪声4)天然气5)泥岩蚀变带地层对比孔隙度岩性地震时深转换岩石力学特性参数识别气层和裂缝(渗透率)中子测井(补偿)CNL 中子源双源距、双探测器双计数率石灰岩中子孔隙度(%)24英寸9-12英寸热中子的减速(含氢量)和扩散(双源距消掉了扩散的影响)地层中所有含氢物质井眼泥浆矿化度、地层水矿化度、骨架岩性等确定地层孔隙度、判断岩性、识别气层密度测井(补偿)FDC 伽马源双伽马探测器双计数率地层密度(3/cmg)18英寸6-9英寸康普顿散射效应-地层电子密度地层电子密度岩石骨架、孔隙度和孔隙流体类别、性质及含量、泥饼等确定岩性、计算孔隙度、确定泥质含量、划分裂缝带和气层5岩性密度测井LDT 伽马源双探测器(一个测量ρb、另一个测量Pe)总计数率伽马射线谱(光电区、散射区)ρbg/cm3Peb/e康普顿效应-地层密度、光电效应-岩性岩石矿物成分及含量、岩石孔隙度和孔隙流体类别、性质及含量-电子密度井眼的影响、泥饼自然放射性确定岩性、计算孔隙度、确定泥质含量、划分裂缝带和气层普通电阻率测井供电电极测量电极恒流供电测电极间电位差视电阻率m与电极距有关与电极距有关IUmnRa单极供电或双极供电岩石岩性、矿化度、孔隙度与孔隙结构、含油性及其分布1)井眼、2)电极距3)围岩与高阻邻层屏蔽影响4)侵入影响5)地层井眼倾斜的影响粗略区分油水层、划分岩性和确定岩层界面、估算Rt、地层对比6双测向主电极测量电极、辅助屏蔽电极(LLD)、监督电极供电电流回流电极(LLS)监督电极的电位变化视电阻率m0.6mLLD:115cmLLS:30-35cm1IUKRdll M深侧向与浅侧向同时测量岩石岩性、矿化度、孔隙度与孔隙结构、含油性及其分布同上计算Sw、判断油气、水层双感应发射线圈T接收线圈R6FF40-6线圈感应电动势视电导率a1.3mILD:1.7mILM:0.8m两个自成回路的线圈,即T和R,T(交变电流)-地层(涡流)-地层(交变电磁场)-R(感应电动势)井眼、侵入带、地层电导率;侵入带直径Di同上油田地质研究,如油层对比和油层非均质研究、划分裂缝带和有地阻环带的油气层微球形聚焦MSFL 长方形主电极A0测量电极M0 Rxo视电阻率m15cm 5cm??01IUR MoOMSFL探测冲洗带电阻率岩石岩性、矿化度、孔隙度与孔隙结构、含油性及其分布同上计算Rxo井径测井CAL 无贴井壁测量井眼直径in(cm) ————极板贴井壁机械法直接测量井眼直径井眼垮塌、下井仪器的状态(如仪器偏心)井径大小、计算固井水泥量;测井解释环境影响校正;提供钻井工程所需数据7中子寿命测井NLL (热中子衰减时间测井TDT)脉冲中子源双伽马射线探测器双源距,不同时间的伽马射线计数率热中子寿命τ(us)、Σ(c.u.)18in 6-8in减速与俘获,主要τ和Σ的关系地层中各种元素的俘获伽马井眼影响、泥浆滤液侵入带、原状地层的影响、层厚影响、背景值影响研究地层性质特别是含油性、更适合与套管井中区分油气及研究开发动态(时间推移测井)电磁波传播测井发射天线、发射1.1GZ接收天线探测岩石极化性质激发激化电位(mv)双发双收井眼补偿T180R140R280T2(mm)地层介电常数εr泥浆、泥饼介电常数确定冲洗带含水孔隙度;冲洗带含水饱和度;区分油气、水、层;探测裂缝带井下声波电视BHTV 超声换能器1.3MHz超声换能器声波回波幅度与回波时间电压(mv) 6.5mm 6-20in脉冲-回波法反射与声衰减特性声阻抗井眼内泥浆特性、井壁岩性表面特性识别裂缝、地层分析、替代取心、套管检查、地应力测量核磁共振NMR 径向磁极产生均匀磁场探测系统横向驰豫时间T23in 1inCPMG脉冲序列法测量T2、反转恢复法测量T1流体含量;流体特性;孔径和孔隙度流体含量;流体特性;孔径和孔隙度地层孔隙度、渗透率、束缚水饱和度;识别稠油层、复杂岩性地层;低阻储层8微电阻率成像FMS 多排纽扣状电极公共回流电极直接记录每个电极的电流强度及所施加的电压由仪器系数换算出反映井壁四周的地层微电阻率,井壁成像5mm 1-2in极板紧贴井壁,小电极向地层发射同极性的电流,流出的电流通过扫描测量方式被记录(高频、低频、直流)泥浆滤液矿化度、井壁介质导电特性井壁介质导电特性研究岩石层理、岩石结构、岩石构造、替代取心、薄层分析9。
三种声波测井曲线预测方法对比分析随着科学技术的快速发展,煤矿地震检测技术也在不断的完善中。
为了能够提高检测的准确性,通过大量的实践经验总结,当前主要的检测方法包括经验公式法、神经网络法、地震属性分析法。
这三种方法的作用以及优势都各不相同,检测结果也不同,文章就从预测方法方面来阐述这三种检测手段的应用特点,以及检测结果的精确程度,希望能够给相关人士一定的借鉴。
标签:声波测井曲线;预测方法;分析以某煤田研究区为例,对比研究上述三种预测方法。
某煤田采区勘探面积为23.325km2。
主要研究煤层为13-1,11-2,8,6-2,1煤,其埋藏深度大致分布于500~900m之间,并作为此次研究的分析窗口。
研究区内共有64口测井,且均匀分布于研究区的各个位置。
经统计,每口井都有密度曲线,但只有29口井包含速度曲线,可以作为此次研究的训练样本和目标。
1 预测方法的应用1.1 经验公式法的应用因为所有的矿井都能够形成一定的密度曲线,而这种曲线能够反映出地层的状态,所以我们可以通过观察这些曲线了解地层的变化,预测出地震的情况。
我们可以对这二十个矿井通过Gardner公式法来计算出具体的密度曲线,并通过计算机的计算得到相应的预测值。
任意选择一口矿井,通过经验公式法来预测出声波曲线,把曲线的结果和原始的测算曲线放在一个窗口下进行分析,主要是看两个测算结果中速度的交汇点。
通过计算机来测量两个曲线之间的相关性,得出的系数为0.336。
从这个数值中我们可以看到二者之间的相关性是非常小的,可见这种测量方法的曲线精确度不高。
不过这种方法的优势就是操作比较简单,可以在一些地形比较复杂,误差可以在一定范围内的情况下使用。
1.2 地震属性分析法的应用利用地震属性预测声波曲线,首先需要导人三维地震数据体。
在本例中,地震数据体共包含1109条inline线和1819条crossline线,间隔为5m。
然后,建立好几何网格,使得地震数据和测井曲线能位置统一。
浅谈声波测井技术的优缺点岩土工程勘察是查明拟建场地内及其附近有无影响场地稳定性的不良地质作用,划分场地土类型和建筑场地类别;查明场地范围内的地层结构及均匀性,提供各岩土层的物理力学指标等。
当前,随着数字测井技术的不断发展提高,声速测井作为一种重要的测井方法,在油田勘探和开发、工程物探等许多领域有广泛的应用。
采用声速测井技术,可用弹性波纵波速度划分岩体风化带、解释软弱夹层、评价岩体完整性、计算相关的动力学参数;可用弹性波横波速度判别沙土液化,参与计算岩土抗剪强度和相关动力学参数;其他动力学参数可用于评价地层的力学强度和结构特性。
2 声速测井的测试原理由于不同岩层有不同的声波传播速度,采用声速测井技术(一般测量纵波速度),由仪器发射晶体发射的声波耦合后在地层中传播,经地层传播的声波被仪器接收晶体接收。
因为发射晶体和接收晶体的间距是一定的,所测得的声波传播时差与传播速度成反比。
根据需要可以把传播时差换算为声波速度,结合其他物理参数,还可以计算出横波速度,从而进行钻孔岩性划分、岩层风化和氧化带的确定、解释裂隙和软弱夹层、弹性参数的计算等。
2.1根据不同的声波传播速度,结合电阻率、自然伽玛等参数,对钻孔岩性进行划分。
2.2由于岩石因风化、氧化,胶结程度会变差,疏松甚至破碎,在测得声波速度后,将其与新鲜完整岩石的声波速度进行比较,波速减小量反映了岩石的疏松、破碎程度,由此可确定岩层风化、氧化带。
2.3如果岩层有裂隙及软弱夹层,当声波传至此时会速度会有所降低,在测试时如声波出现异常,可据此来解释裂隙及软弱夹层。
2.4确定弹性参数。
根据弹性力学的知识,可根据介质密度ρ,介质中声波传播的纵波速度Vp与横波速度Vs确定介质的弹性参数:E=ρVs2(3 Vp2-4 Vs2)/(Vp2-Vs2)δ= Vp2-2 Vs2/2(Vp2-Vs2)μ=ρVs2k=ρ(Vp2-4/3 Vs2)式中:E为介质的弹性模量;k为体积模量;u为切变模量;δ为泊松比。
一、测井方法的主要分类
1)电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。
2)声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。
3)核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。
中子测井具体如下:超热中子测井、热中子测井、中子寿命测井、中子伽马
测井、C/O比测井、PND-S测井、中子活化测井等。
发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不
同时间测量)。
4)生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。
生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。
工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。
产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。
5)随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。
测井方法主要特征总结归类表。
现代声波测井技术及其发展特点【摘要】声波测井技术是一种通过声波来获取地下岩石信息的技术,在油田勘探和开发中具有重要意义。
本文首先介绍了声波测井技术的定义和重要性,然后详细解析了其基本原理、分类、发展历程以及在油田勘探中的应用。
随着技术的不断创新,现代声波测井技术的发展趋势也逐渐清晰,越来越多的创新应用被推出。
结论部分总结了现代声波测井技术的重要性,并探讨了其发展特点和应用前景。
通过本文的介绍,读者将更深入地了解声波测井技术在油田勘探中的作用和未来发展方向,为油田工作提供技术支持和指导。
【关键词】声波测井技术, 现代技术, 发展特点, 应用前景, 油田勘探, 基本原理, 分类, 发展历程, 应用, 发展趋势, 重要性.1. 引言1.1 声波测井技术的定义声波测井技术是一种利用声波在地层中传播的特性来获取有关地下岩石构造、孔隙度、岩性和地层岩性参数等信息的技术方法。
声波测井技术通过向地层发送声波信号,然后接收并记录声波信号经过地层传播后的反射、折射以及散射等信息,从而分析地层结构和性质。
声波测井技术可以借助不同频率的声波来实现对地下不同深度和不同性质地层的探测,具有高分辨率、广覆盖、实时性强等优点。
声波测井技术在油田勘探、地质勘探、水文地质等领域具有重要的应用价值,为地下能源资源的勘探开发提供了有力的技术支持。
通过声波测井技术,可以实现对地下构造、岩性、孔隙度等参数的高精度、高效率的获取,为地下资源勘探和开发提供了重要依据。
1.2 声波测井技术的重要性声波测井技术可以提供对地下储层岩石性质和流体性质的准确识别和评价。
通过声波测井,可以获取地层的孔隙度、渗透率、岩石类型、地层构造等信息,为油田勘探和开发提供了重要的依据。
声波测井技术还可以为油田开发提供重要的参数和数据支持。
通过声波测井,可以实现对井眼周围地层的高分辨率成像,为油田开发定位研究区域、设计开发方案提供了重要的技术支撑。
声波测井技术在油田勘探和开发中的重要性不可忽视。
声波测井1.普通声波测井声波在不同介质中传播时,其速度、幅度衰减及频率变化等声学特性是不同的。
声波测井就是以岩石等介质的声学特性为基础而提出的一种研究钻井地质剖面、评价固井质量等问题的测井方法。
声波测井分为声速测井和声幅测井。
声速测井(也称声波时差测井)测量地层声波速度。
地层声波速度与地层的岩性、孔隙度及孔隙流体性质等因素有关。
因此,根据声波在地层中的传播速度,就可以确定地层孔隙度、岩性及孔隙流体性质。
1.1岩石的声学特性声波是一种机械波,它是由物质的机械振动而产生的,通过介质质点间的相互作用将振动由近及远的传递而传播的,所以,声波不能在真空中传播。
根据声波的频率(声波在介质中传播时,介质质点每秒振动的次数)可将声波分为:次声波(频率低于20Hz);可闻声波(20Hz至20kHz);超声波(频率大于20kHz)。
各类声波测井用的机械波是可闻声波或超声波。
1.1.1岩石的弹性1.1.1.1弹性力学的基本假设:1)物体是连续的,即描述物体弹性性质的力学参数及形变状态的物理量是空间的连续函数;2)物体是均匀,即物体由同一类型的均匀材料组成,在物体中任选一个体积元,其物理、化学性质与整个物体的物理、化学性质相同;3)物体是各向同性的,即物体的性质与方向无关;4)物体是完全线弹性的,在弹性限度内,物体在外力作用下发生弹性形变,取消外力后物体恢复到初始状态。
应力与应变存在线性关系,并服从广义的胡克定律。
满足以上基本假设条件的物体称为理想的完全线弹性体,描述介质弹性性质的参数为常数。
当外力取消后不能恢复到其原来状态的物体称为塑性体。
一个物体是弹性体还是塑性体,除与物体本身的性质有关外,还与作用其上的外力的大小、作用时间的长短以及作用方式等因素有关,一般情况下,外力小且作用时间短,物体表现为弹性体。
声波测井中声源发射的声波能量较小,作用在地层上的时间也很短,所以对声波速度测井来讲,岩石可以看作弹性体。
因此,可以用弹性波在介质中的传播规律来研究声波在岩石中的传播特性。
现代声波测井技术及其发展特点
现代声波测井技术是指利用声波在地下介质中的传播规律,通过测量声波各向同性介
质和各向异性介质中的声波速度、衰减和反射等物理参数,对地层结构、岩性、孔隙度、
饱和度等进行定量分析和评价的技术。
现代声波测井技术相对于传统的测井技术具有以下
发展特点:
1. 高精度和高解析度
现代声波测井技术通过提高测量精度和分辨率,能够实现对地层细节信息的精确获取
和分析。
例如,采用超声波测井技术可以获得更高的分辨率和更准确的井膜厚度、孔隙度
和饱和度等参数。
2. 高可靠性和广适性
现代声波测井技术可应用于各种地质环境和地层类型,具有高可靠性和较强的适应性。
例如,采用多次反射和散射方法的全波形声波测井技术可以有效提高测量精度和可靠性,
并可在不同介质中应用。
3. 多参数联合解释
现代声波测井技术可以同时获得不同物理参数,如赛曼衰减率、弹性系数、泊松比、
密度等,从而可以对地层结构、岩性、孔隙度和饱和度等多个参数进行联合分析,提高评
价准确度。
4. 多功能集成化
现代声波测井技术可以集成多种功能,例如,在探测地表水地下渗、地质构造分析和
钻孔质量检测方面均有广泛应用。
同时,声波测井技术还可以集成其他测量工具,如电测井、核磁共振、光电等,提高差异性测量参数和方法的多层面评价。
综上所述,现代声波测井技术在石油勘探开发、水资源调查、工程地质和环境地质等
领域的应用日益广泛,并在国内外产生了广泛的研究和开发活动,具有重要的科学研究和
应用价值。
77在现阶段油田测井过程中,声波测井作为重要的测井技术,在实际应用中取得了积极效果。
从声波测井技术的分类来看,这种测井技术主要分为带井眼补偿的声波速度测井、声波全波列测井、超声成像测井以及多极子阵列声波测井。
这几种测井技术在技术原理方面存在差异,在应用中也各有侧重,如何选择测井技术,除了要根据地层的实际情况进行选择之外,也要根据测井的要求进行选择。
因此,应当重点了解声波测井技术的原理特点及具体应用情况,为声波测井技术的全面应用提供有力支持。
1 带井眼补偿的声波速度测井1.1 技术原理声波测井技术在应用中,为了减少误差提高声波的测量效果,往往会进行井眼补偿,以减少声波在井中传输过程中造成的误差。
为了避免误差扩大,减少测量的影响因素,在声波测量中通过井眼的补偿,能够实现测量声速曲线上的提高,保证声速曲线的测量准确性,带井眼补偿的声波速度测井消除了井下变化以及下井仪倾斜所造成的影响,对提高测井的准确率和消除声波的误差具有重要作用,能够提高声波的传输质量和测量效果。
因此,带井眼补偿的声波速度测井,在实际测井中得到了有效的应用,并成为重要的测井方式,满足了测井要求。
目前基于在井眼补偿的声波速度测井设备成为了测井的主要选择[1]。
1.2 应用及现状带井眼补偿的声波速度测井技术在应用中,可以实现对误差的纠正。
例如,在某井段的声波时差曲线上,进行矫正前后油基泥浆及水基泥浆声波曲线的对比可以看出,利用了带井眼补偿的声波速度测井能够最大的消除声波误差,在声波误差的控制方面,比其他的测量方式具备一定的优势。
同时,在具体测量中,带井眼补偿的声波速度测井,整个测量的范围较大,在静稳定的阶段,曲线不发生变化,在层段两端的测量也相对较小,比普通的测量方法具有较大的优势。
因此,对于测井而言,带井眼补偿的声波速度测量方式能够满足测量需要,提高测量的准确性[2]。
2 声波全波列测井2.1 技术原理声波全波列测井是在发射声脉冲以后,一次记录先后到达接收器的滑行纵波、横波,伟瑞丽波,以及广波的波形,通过速度和幅度来判断地层性质,这一声波测井方式,由于通过波形的记录来判断地层的具体情况,因此在声波发射过程中,应当对声波的发射时间、声波的类型以及声波的序号进行标记,提高声波的标记效果,实现对声波的标记和测量,对提高声波的测量效果和满足声波的测量需要具有重要意义。