考研数学分析笔记
- 格式:doc
- 大小:6.40 MB
- 文档页数:181
目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。
考研数学分析重要考点归纳1.1考点归纳一、数列极限1.定义设{an}是一个数列,,对∀ε>0,∃正整数N,当时,有,则称{an}收敛于a,则a称为数列的极限,记作.(1)无穷小数列:;(2)无穷大数列:;(3)发散数列:若极限不存在,则称为发散数列;(4)收敛⇔的任何子列都收敛.2.性质(1)唯一性收敛数列{an}只有一个极限.(2)有界性若{an}收敛,则∃正数M,对∀n∈N*有.(3)保号性若(或<0)则对或(),∃正数N,当n>N时有an>a′(或an<a′).(4)保不等式性收敛数列{an}与{bn}.若∃正数N0,当n>N0时有a n≤bn,则(5)夹逼性设{an},{bn}都收敛于a,{cn}满足:∃正数N0,当n>N0时有则{cn}收敛,且3.四则运算4.单调有界定理单调且有界的数列一定存在极限.5.柯西收敛准则{an}收敛⇔对∀ε>0,∃正整数N,当n,m>N时有二、函数1.函数三要素定义域值域对应法则2.性质(1)有界性若∃正数M,对∀x∈D有则称f在D上有界.(2)单调性①单调递增对∀x1,x2∈D.当x1<x2时,f(x1)<f(x2);②单调递减对∀x1,x2∈D.当x1<x2时,f(x1)>f(x2).(3)奇偶性D关于原点对称①奇函数f(-x)=-f(x),图像关于原点对称;②偶函数f(-x)=f(x),图像关于y轴对称.(4)周期性若∃T>0,对一切x∈D,x+T∈D,有f(x+T)=f(x),称T为函数f的周期,T的最小值称为最小正周期.3.分类(1)复合函数形如y=f(g(x)),u=g(x)的函数称为复合函数,对于每一个x,经过中间变量u,都得到唯一确定的y值,其中u=g(x)的值域不能超过y=f(u)的定义域.(2)反函数设函数f:D→f(D)是单射,则它存在逆映射,称此映射为函数f的反函数.注:互为反函数的两个函数的图像关于直线y=x对称.三、函数极限1.概念(1)函数f在点x0的极限f定义在U°(x0;δ')上,A为定数.对∀ε>0,若∃正数δ(<δ'),当0<|x -x0|<δ时有|f(x)-A|<ε,则称函数f在点x0的极限为A,记作(2)函数f在x趋于∞时的极限f定义在[a,+∞)上,A为定数.对∀ε>0,若∃正数N(≥a),使得当x>N 时有则称函数f在x趋于∞时的极限为A,记作(3)左极限f定义在[x0,x0+η)上,A为定数.对∀给定的ε>0,总∃δ>0,当时,有则称A为f在点x0的左极限,记为(4)右极限f定义在(x0-η,x0]上,A为定数.对∀给定的ε>0,总∃δ>0,当时,有就称A为f在点x0的右极限,记为(5).2.性质(1)唯一性;(2)有界性;(3)保号性;(4)保不等式性;(5)夹逼性.注:函数极限性质同数列极限性质类似.3.归结原则f定义在上,存在⇔对任何含于且以x0为极限的数列,都存在且相等.4.单调有界定理f为定义在上的单调有界函数,则右极限存在.5.柯西准则f定义在上,存在⇔∀ε>0,∃正数,使得对,有6.两个重要极限7.无穷小量与无穷大量(1)无穷小①时的无穷小,得;②时的无穷小,得.(2)无穷小的性质若f(x)为无穷小量,g(x)为有界量,则它们的积f(x)g(x)也为无穷小量.(3)无穷大f(x)定义在U0(x0)上.对∀给定的正数M,总∃正数(或正数X),只要(或|x|>X),总有|f(x)|>M,则称f为当或()时的无穷大.8.相关无穷小的定义(1)高、低阶无穷小若,则称x→x0时f为g的高阶无穷小量(或称g为f的低阶无穷小量),记作(2)同阶无穷小f和g定义U0(x0)上,若∃正数K和L,满足则称f与g为当x→x0时的同阶无穷小量.(3)等价无穷小若,则称f与g是当x→x0时的等价无穷小量,记作注:常用的等价无穷小9.渐近线设曲线y=f(x)(1)斜渐近线y=kx+b(2)垂直渐近线若(或者左、右极限趋于无穷),则垂直渐近线为.(3)水平渐近线若(或者),则水平渐近线为y=b.四、函数的连续性1.概念(1)连续的定义f(x)定义在U(x0)上,若则f在点x0连续.2.性质(1)有界性;(2)保号性;(3)四则运算.3.间断点(1)定义函数f(x)在点x0处不连续,则称点x0为函数f(x)的不连续点或间断点.如果x0是函数f(x)的间断点,但左极限及右极限都存在,则x0称为函数f(x)的第一类间断点.不是第一类间断点的任何间断点,称为第二类间断点.(2)类型①第一类间断点a.可去间断点在间断点处函数左右极限相等.b.跳跃间断点在间断点处函数左右极限不相等.②第二类间断点a.无穷间断点在间断点处函数极限为无穷大(无穷小).b.振荡间断点在间断点处函数值在一个区间变化.4.定理(1)最值定理f为闭区间[a,b]上的连续函数,则f在[a,b]上有最大值与最小值.(2)有界性定理f为闭区间[a,b]上的连续函数,则f在[a,b]上有界.(3)介值性定理f为闭区间[a,b]上的连续函数,f(x)可以取介于最大值和最小值之间的任何值.(4)根的存在定理f为闭区间[a,b]上的连续函数,且f(a)·f(b)<0,则在(a,b)内至少有一点ξ,使得.5.一致连续(1)定义f定义在区间I上,如果对于∀给定的正数ε,总∃正数δ,使得对于区间I上的任意两点x1、x2,当时,有则称f在I上一致连续.(2)一致连续与连续的关系如果f(x)在区间I上一致连续,则f(x)在I上一定连续;当f(x)在区间I 上连续,f(x)在区间I上不一定一致连续.(3)一致连续性定理f为闭区间[a,b]上的连续函数,则f在[a,b]上一致连续.。
考研数学分析重点知识点总结数学分析是考研数学中非常重要的一门学科,它涉及到微积分、级数、极限等概念。
对于考生来说,掌握数学分析的重点知识点是提高成绩的关键。
本文将从微积分、级数、极限三个方面总结考研数学分析的重点知识点。
一、微积分微积分是数学分析的基础,也是考研数学分析中的重点内容。
在微积分部分,考生需要掌握以下几个重点知识点:1. 导数与微分:掌握导数和微分的定义和性质,熟练运用导数的几何意义和微分的物理意义来解决相关问题。
2. 高阶导数与高阶微分:理解高阶导数和高阶微分的定义和概念,能够求解高阶导数和高阶微分的相关问题。
3. 隐函数与参数方程:了解隐函数和参数方程的定义及其求导法则,能够应用隐函数与参数方程求导解题。
4. 极值与最值:熟悉极值与最值的判定条件和求解方法,能够应用极值与最值的知识解决相关问题。
5. 泰勒展开:理解泰勒展开的概念和应用条件,能够应用泰勒展开解决近似计算和误差估计的问题。
二、级数级数也是考研数学分析中的重点考点,它包括数列、数列极限和级数等概念。
在级数部分,考生需要掌握以下几个重点知识点:1. 数列极限与函数极限的关系:了解数列极限与函数极限的关系,能够利用数列极限与函数极限之间的关系解决相关问题。
2. 收敛级数与发散级数:能够判断级数的收敛性和发散性,熟悉判别法和判定条件。
3. 常见级数的性质与求和:掌握常见级数的性质与求和公式,如等比级数、调和级数等。
4. 级数收敛的判别法:熟悉级数收敛的判别法,如比较判别法、积分判别法等,能够灵活运用判别法解决问题。
三、极限极限是数学分析中的基础概念,也是考研数学分析的重点内容。
在极限部分,考生需要掌握以下几个重点知识点:1. 数列极限的定义与性质:了解数列极限的定义和性质,熟悉极限的四则运算规则。
2. 函数极限的定义与求解:掌握函数极限的定义和求解方法,理解函数极限与数列极限之间的关系。
3. 极限存在性的判定:熟悉极限存在性的判定法则,如夹逼定理、单调有界原理等。
大学数学学习提高群398643171大学《数学分析》笔记笔记:目标院校目标专业本科生笔记或者辅导班笔记讲义:目标院校目标专业本科教学课件期末题:目标院校目标专业本科期末测试题2-3套模拟题:目标院校目标专业考研专业课模拟测试题2套复习题:目标院校目标专业考研专业课导师复习题真题:目标院校目标专业历年考试真题,本项为赠送项,未公布的不送!目录第二模块笔记 (3)第一部分实数集与函数 (3)第二部分数列极限 (8)第三部分函数极限 (10)第四部分函数连续性 (15)第五部分导数与微分 (30)第六部分微分中值定理及其应用 (36)第八部分不定积分 (51)第九部分定积分 (54)第十部分定积分的应用 (60)第十一部分反常积分 (68)第十二部分数项级数 (72)第十三部分函数列与函数项级数 (90)第十四部分幂级数 (101)第十五部分傅里叶级数 (116)第十六部分多元函数的极限与连续 (131)第十七部分多元函数微分学 (136)第十八部分隐函数定理及其应用 (148)第十九部分含参量积分 (152)第二十部分曲线积分 (163)第二十一部分重积分 (166)第二十二部分曲面积分 (175)第二模块笔记第一部分实数集与函数§1实数数学分析研究的对象是定义在实数集上的函数,因此先叙述一下实数的有关概念一.实数及其性质:回顾中学中关于有理数和无理数的定义.有理数:若规定:则有限十进小数都能表示成无限循环小数。
例如:记为;0记为;记为实数大小的比较定义1给定两个非负实数其中为非负整数,。
若由1)则称与相等,记为2)若存在非负整数,使得,而,则称大于(或小于),分别记为(或)。
规定任何非负实数大于任何负实数;对于负实数,若按定义1有,则称实数的有理数近似表示定义2设为非负实数,称有理数为实数的位不足近似值,而有理数称为的位过剩近似值。
对于负实数的位不足近似值规定为:;的位过剩近似值规定为:比如,则1.4,1.41,1.414,1.4142,称为的不足近似值;1.5,1.42,1.415,1.4143,称为的过剩近似值。
考研数学分析知识点梳理数学分析是考研数学中的重要部分,也是许多考研学子最困惑的内容之一。
为了帮助大家更好地掌握数学分析的知识点,以下将对常见的数学分析知识点进行梳理。
本文按照数学分析的章节内容和考研的重点来划分,希望能帮助大家在备考中有所收获。
一、极限与连续1.数列极限数列极限是数学分析的基础,通过数列极限我们可以理解数学分析的许多概念。
例如极限的定义、数列极限的性质、夹逼准则、单调有界原理等。
2.函数极限函数极限是数学分析中的核心概念,包括无穷小量与无穷大量、函数极限的定义与性质、极限的四则运算法则等。
3.连续性连续性是数学分析中的重要概念,涉及到函数的连续性定义、连续函数的性质、间断点的分类、闭区间上连续函数的性质等。
4.一致连续性一致连续性是连续性的进一步推广,常用的证明方法有柯西收敛性和一致收敛性。
二、导数与微分1.导数的定义导数的定义是函数微分学的基础,涉及到导数的定义、可导与连续的关系、可导函数的性质等。
2.常见函数的导数常见函数的导数是考研数学中的重点,包括幂函数、指数函数、对数函数、三角函数等。
3.高阶导数与导数的应用高阶导数是导数的进一步推广,可以使用高阶导数求函数的极值、凹凸性、拐点等。
4.隐函数与参数方程隐函数与参数方程是函数的另一种表达形式,在求导过程中要注意相应的求导法则。
三、积分与微积分基本定理1.定积分定积分是微积分中的重要概念,包括定积分的定义、性质与运算法则、牛顿-莱布尼茨公式等。
2.不定积分不定积分是定积分的逆运算,包括不定积分的定义、性质与运算法则,常用的积分方法有换元积分法、分部积分法等。
3.微积分基本定理微积分基本定理将导数与积分联系起来,包括第一、第二微积分基本定理,以及与定积分相关的一些公式和性质。
四、级数1.数项级数数项级数是级数的基础,包括级数的定义、收敛与发散的判定、级数性质等。
2.幂级数幂级数是数学分析中的重要内容,包括幂级数的收敛半径、收敛区间、求和等。
2024考研数学满分笔记pdf一、数学分析1.极限与连续性极限的定义:对于数列的极限,若对于任意的ε>0,存在正整数N,当n>N时,|an - a| < ε,则称数列{an}收敛于a,记作lim(an) = a。
连续性的定义:若函数f在点x0处连续,则对于任意ε>0,存在δ>0,使得当|x - x0| < δ时,有|f(x) - f(x0)| < ε成立。
2.微分与积分微分的定义:函数f在点x0处可导,则存在常数A,使得当x→x0时,有Δf = f(x) - f(x0) ≈ A(x - x0)成立。
积分的定义:对于定积分∫[a,b]f(x)dx,若存在分点ξk∈[xk-1,xk],使得S = ∑(i=1)^n f(ξi)Δxi = limn→∞ Σ(i=1)^nf(ξi)Δxi成立,则称f在[a,b]上可积。
二、线性代数1.向量空间向量空间的定义:对于域F上的n维数组空间Vn(F),若满足以下条件,则称Vn(F)为F上的n维向量空间:(1)对于任意u、v∈Vn(F),有u+v∈Vn(F);(2)对于任意k∈F、u∈Vn(F),有ku∈Vn(F);(3)存在零向量0∈Vn(F)使得对于任意u∈Vn(F),有u+0=u;(4)对于任意u∈Vn(F),存在-u∈Vn(F),使得u+(-u)=0。
2.矩阵与行列式矩阵的定义:对于m×n矩阵A=(aij),其中aij∈F,则称A为m×n矩阵。
对于n×n矩阵A,若存在n阶单位矩阵En,使得EA=AE=A 成立,则称A为可逆矩阵。
行列式的定义:对于n阶行列式Det(A),其定义为Det(A)=Σα(i1i2...in)Ai1i1Ai2i2...Ainin,其中α(i1i2...in)为排列的符号,Ai1i1Ai2i2...Ainin为n个元素所组成的乘积。
三、概率论与数理统计1.随机变量与概率分布随机变量的定义:对于样本空间Ω上的实函数X(ω),若X(ω)是Ω上的一个实数值函数,则称X(ω)为随机变量。
1高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法则,对于00型和∞∞型的题目直接用洛必达法则,对于∞0、0∞、∞1型的题目则是先转化为00型或∞∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim0=→x x x 、e x x x =+→10)1(lim 、e x x x =+∞→)1(1lim ;4.夹逼定理。
1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分⎰+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答案中少写这个C 会失一分。
所以可以这样建立起二者之间的联系以加深印象:定积分⎰dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是⎰+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于⎰-aa dx x f )(型定积分,若f(x)是奇函数则有⎰-aa dx x f )(=0;若f(x)为偶函数则有⎰-aa dx x f )(=2⎰a dx x f 0)(;对于⎰20)(πdx x f 型积分,f(x)一般含三角函数,此时用x t -=2π的代换是常用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=⎰-a a 奇函数 、⎰⎰=-a aa 02偶函数偶函数。
上海市考研数学复习资料数学分析重点整理一、基本概念与定理1. 数列与数列极限的定义在数学分析中,数列是指按照一定规则排列的无穷多个数的集合。
数列极限表示数列在无穷项后的极限值,可以是有限的也可以是无限的。
2. 函数与函数极限的定义函数是指一个数集与另一个数集之间的集合映射关系。
函数极限表示当自变量趋近于某个值时,函数对应的因变量的极限值。
3. 连续与间断的概念连续表示函数在某一点上的极限与该点处的函数值相等,间断表示函数在某一点上的极限与该点处的函数值不相等。
4. 导数和微分的概念导数表示函数在某一点处的切线斜率,微分表示函数在某一点处的增量与自变量的增量之间的关系。
二、数列与级数1. 数列极限数列极限的计算方法有夹逼定理、单调有界准则、柯西准则等。
2. 数列极限的性质数列极限具有唯一性、有界性和保序性等性质。
3. 数列的收敛性与发散性若数列存在极限,则该数列收敛;若数列不存在极限,则该数列发散。
4. 级数收敛与发散的判定级数收敛的判定方法有比较判别法、积分判别法、根值判别法等。
三、函数与极限1. 函数的极限计算函数极限的计算方法有极限四则运算法则、洛必达法则、夹逼准则等。
2. 函数的连续性函数连续的条件有第一类连续、第二类连续以及可导连续等。
3. 函数的导数与微分函数导数的计算方法有导数四则运算法则、隐函数求导法则等。
四、一元函数微分学1. 可导函数的性质可导函数满足可导性定理、费马定理、韦尔斯特拉斯定理等性质。
2. 高阶导数的计算高阶导数的计算方法有多次求导法则、隐函数高阶导数计算法则等。
3. 需掌握的常用函数的导数常用函数的导数包括幂函数、指数函数、对数函数、三角函数、反三角函数等的导数计算。
4. 导数应用题导数的应用包括曲线的切线与法线、函数的极值点与拐点、函数的单调性与凹凸性等。
五、级数与泰勒展开1. 数项级数收敛性的判定数项级数收敛的判定方法有比较判别法、积分判别法、根值判别法等。
2. 泰勒展开及其应用泰勒展开是将函数在某一点附近展开为幂级数的方法,可以用于逼近函数值和计算函数的近似值。
伍胜健《数学分析》笔记和考研真题详解第17章含参变量积分17.1复习笔记一、含参变量定积分1.基本概念设函数在平面区域上有定义.(1)若对于定积分存在,则由此定义了区间[a,b]上的函数I(x)称为含参变量定积分(简称含参变量积分),其中x为参变量.(2)若对于存在,则也称J(y)为含参变量定积分,其中y为参变量.2.基本性质(1)连续性定理①设函数在区域上连续,则对于含参变量定积分存在,并且I(x)在区间[a,b]上连续.注:f(x,y)在D上连续只是I(x)连续的充分条件.②设函数在区域上连续,则有③设函数在区域上连续,则对变上限含参变量积分存在,并且二元函数I(x,u)在D上连续.对于变下限含参变量积分,也有类似的结论.(2)可积性定理①设函数f(x,y)在区域上连续,则函数和分别在区间[a,b]和[c,d]上可积,并且②设函数f(x,y)在区域上连续,则(3)可导性定理①设函数f(x,y)及其偏导数在区域上连续,则函数在区间[a,b]上可导,并且有②设函数f(x,y)及其偏导数在区域上连续,则求导数运算与积分运算是可交换顺序的.③设函数及其偏导数在区域上连续,且是满足的可微函数,则函数在区间上可导,并且二、含参变量广义积分1.含参变量无穷积分(1)含参变量无穷积分的定义设函数在上有定义,其中为一个集合.若对于广义积分收敛,则可得到E上的函数称该函数为含参变量无穷积分.(2)含参变量无穷积分的一致收敛①含参变量无穷积分的一致收敛的定义设函数在上有定义,其中是一个区间.若对于当时,对于有则称含参变量无穷积分在E上一致收敛.②含参变量无穷积分的绝对一致收敛的定义设函数在上有定义,其中是一个区间.若对于收敛,则称在E上绝对收敛.若在E上绝对收敛,则在E 上收敛.另外,若在E上一致收敛,则在E上绝对一致收敛.(3)一致收敛的判别法则①柯西准则设函数在上有定义,其中是一个区间,则含参变量无穷积分在E上一致收敛的充分必要条件是:对当时,对,有②魏尔斯特拉斯定理设函数在上有定义,其中是一个区间.若存在函数使得对于及有并且收敛,则在E上绝对一致收敛.③狄利克雷判别法设函数在上有定义(其中是一个区间),并且满足:a.存在对于及有b.对任意固定的是y的单调函数,且对于当时,对一切有即当时,q(x,y)关于x一致趋于0,则含参变量无穷积分在E上一致收敛.④阿贝尔判别法设函数在上有定义(其中是一个区间,并且满足:a.在上一致收敛;b.对任意固定的是y的单调函数,并且存在常数对于及有则含参变量无穷积分在E上一致收敛.(4)基本性质①定理1设函数在上有定义,其中则含参变量无穷积分在上一致收敛的充分必要条件是:对任意的满足条件且的序列函数序列在E 上一致收敛.②定理2设函数在上连续,其中是一个区间,并且含参变量无穷积分在E 上一致收敛到函数I(x),则I(x)在E 上连续.③定理3设函数在上连续,且含参变量无穷积分在[a,b]上一致收敛,则有④定理4设函数f(x,y)及其偏导数在上连续,其中是一个区间,再设存在x 0∈E,使得收敛,并且在E 上一致收敛,则a.在E 上一致收敛;b.⑤狄尼定理设函数在上连续且不变号,设对于收敛,且I(x)在[a,b]上连续,则I(x)在[a,b]上一致收敛.2.含参变量瑕积分(1)定义设函数在上连续,当时,以c为瑕点.若对任意瑕积分(17-1)收敛,则I(x)在[a,b]上有定义.称I(x)为含参变量瑕积分.(2)基本性质利用变换可以将(17-1)式化成含参变量无穷积分从而得到含参变量瑕积分也有相应的一致收敛性以及其它的性质.三、函数与 函数1.函数(1)定义函数是指由如下含参变量积分定义的函数:(2)定义域。
欧阳光中《数学分析》笔记和考研真题详解第11章极限论及实数理论的补充11.1复习笔记一、Cauchy收敛准则及迭代法1.基本数列(1)基本数列的定义若,即对每个,都能找到一个自然数N,对一切n,m≥N成立不等式称{x n}为(Cauchy)基本数列.(2)引理1若{x n}收敛,则{x n}必是基本数列.2.数列极限的Cauchy收敛准则(1)引理2基本数列必有界.(2)Cauchy收敛准则是基本数列.3.实数系的完备性由实数所组成的基本数列{x n}必存在实数极限,这个性质称为实数系的完备性.注意:有理数域不具有完备性.4.函数极限的Cauchy收敛准则Cauchy收敛准则的两种叙述(1)设f在点a某个去心邻域有定义,则极限存在且为有限(2)ε-σ定义设f在点a某个去心邻域有定义,,当时,5.压缩映射原理(1)不动点的定义设是定义在[a,b]上的一个函数,方程的解称为的不动点.(2)不动点的存在性①不动点存在的必要条件取,递推式为,设一切,如果是连续函数且存在且为有限,则在式子两边令,可得.从而知是的一个不动点.②不动点存在的充分条件a.压缩映射的定义如果存在一个常数k,满足,使得对一切成立不等式则称是[a,b]上的一个压缩映射,显然,压缩映射必连续.b.压缩映射原理设是[a,b]上的压缩映射且由递推公式定义的[a,b],n=0,1,2,…,则在[a,b]上存在惟一的不动点,且.(3)不动点的惟一性设是[a,b]上的压缩映射且,则在[a,b]上存在惟一的不动点.6.牛顿迭代法(1)牛顿迭代公式设y=f(x)于[a,b]上可微,f'(x)≠0且f(a)f(b)<0,则f(x)在[a,b]上存在一实根,记为.同时,设x是根的一个近似值,x n下一步的近似值x n+1,则这个求近似值的迭代公式称为牛顿迭代公式.(2)压缩映射原理的推论若①f(x)于[a,b]两次可微且f'(x)≠0;②存在一个数,对一切,成立③存在,使得一切则f(x)在[a,b]上存在惟一实根,且二、上极限和下极限1.上(下)极限的定义若数列{x}的极限不存在且存在子列,其中a是有限数或或}的一个极限点.数列{x n}的最大(最小)极(不包括不定号无穷大),则称为a数列{x限点如果存在,则称为该数列的上(下)极限,并记为2.上(下)极限的存在性每个数列{x}的上极限和下极限必存在且惟一(有限或或),且3.上(下)极限和极限的关系(1)根据上(下)极限的定义,有}存在极限(包括或{x n}的上极限和下极限相同,即极限(2)定理{x点惟一,当条件满足时,三、实数系基本定理1.有限开覆盖定理(1)覆盖的定义[a,b]是一个给定的有界闭区间,{Oα}是一族开区间,若则称开区间族{Oα}覆盖了[a,b].(2)有限开覆盖定理若开区间族{Oα}覆盖了有界闭区间[a,b],则从{Oα}必可挑出有限个开区间Oα1,…,Oαn同样覆盖了[a,b]:2.实数系基本定理小结(1)确界存在定理;(2)单调有界数列极限存在定理;(3)闭区间套定理;(4)Bolzano-Weierstrass定理;(5)Cauchy收敛准则;(6)有限开覆盖定理.以上这些定理是相互等价的.3.实数系的一种引进法(1)QD10函数在有理数集Q上定义的、值域为1,0两值的单调减少函数称为QD10函数,用R表示所有QD10函数所组成的集合,该集合中每个元素就是一个QD10函数.譬如,对每个有理数r,函数注意:①R中的元素可分两部分一类元素(见上)及余下其他元素;②在R中引进与函数相等概念稍不同的等于“=”概念:,称α=β,若函数α+(t)=β+(t),,显然这等价于α-(t)=β-(t),在这种等于的概念下,r+=r-(称为有理数),它们可与有理数r等同起来.③引进“≤”概念:若α+(t)≤β+(t),(等价于α-(t)≤β-(t),,则称是指且.显然关系式α<β,α=β,α>β有且仅有一个成立.(2)确界存在定理R中非空、上有界集A必存在上确界supA.11.2名校考研真题详解1.设为[0,1]上的一个连续函数列,若对任意的是有界数列.用闭区间套定理证明存在[0,1]的一个长度不为0的子区间及常数C,使得[南京理工大学2006研]证明:反证法假设在任何(非空)子区间上都不一致有界,则存在及的某个闭子区间上,恒使得又因连续,根据保号性,在含x有在上仍不一致有界,所以存在及,使得.根据连续保号性,存在闭子区间使得上恒有如此继续下去,便得一串闭区间在上恒有.利用闭区间套定理知,存在从而所以在处无界,与已知条件矛盾,结论得证.2.用有限覆盖定理证明有界性定理:闭区间上的连续函数必有界.[天津工业大学2006研]证明:设函数f(x)在闭区间[a,b]上连续,要证明f(x)在[a,b]上有界.由连续函数的局部有界性,对每一点都存在邻域及正数使得考虑开区间集。
数学分析2重要知识小结(考研及复习)第八章 不定积分1、基本公式(1)),1(11-≠++=+⎰ααααc x dx x (2)⎰+=c x dx x ln 1, (3)⎰+=,ln c aa dx a xx(4)⎰+=,c e dx e x x (5)⎰+=,sin 1cos c x xdx ααα (6),cos 1sin c x dx x +-=⎰ααα(7),tan cos 12c x dx x +=⎰(8),cot sin 12c x dx x+-=⎰ (9)⎰+=,sec tan sec c x xdx x (10) ⎰+-=,csc cot csc c x xdx x (11)⎰+=-,arcsin 12c x x dx (12) ⎰+=-,arcsin 22c a xx a dx(13) ⎰+=+,arctan 12c x x dx (14) ⎰+=+,arctan 22c a xxa dx(15)⎰++=,tan sec ln sec c x x xdx (16)⎰+-=,cot csc ln csc c x x xdx (17) ,ln 2222c a x x a x dx +±+=±⎰(18) ⎰++-=-,ln 2122c a x ax a ax dx (19) ⎰+-=c x x xdx )1(ln ln .注:应会用前面的公式及方法推出公式(13)-(19). 2、积分法(1) 公式法:直接用上面的公式及函数和与差的积分等于积分的和与差这一性质。
(2) 第一换元法(是将一个关于x 的函数换为一个变量) 若⎰⎰=))(())(()(x d x g dx x f ϕϕ,而⎰+=c u G du u g )()(,则 ⎰+=.))(()(c x G dx x f ϕ看到应想到:),(sin cos x d xdx = ),(cos sin x d xdx -=),(tan cos 2x d xdx= ),(cot sin 2x d x dx =-)1(2x d xdx =-,)(121x d n dx x n =-。
欧阳光中《数学分析》笔记和考研真题详解第5章连续函数和单调函数5.1复习笔记一、区间上的连续函数1.某点处连续和单侧连续(1)函数在一点的连续的定义函数f在点x0连续是指且f在x0和x0的某个邻域δ(x0)内有定义.(2)单侧连续的定义如果f(x)在x的某个右邻域0<x-x0<δ,左邻域(-δ<x-x0<0)中有定义,且,则称f在点x0右(左)连续.(3)单侧连续和某点处连续的关系若f在点x0连续.即:f在点x0连续在点x0既左连续又右连续.2.区间上的连续性(1)开区间上连续性的定义当a<b时,f(x)在(a,b)上每点都连续,则f(x)在开区间(a,b)上连续.(2)闭区间上连续性的定义f(x)在(a,b)连续且在点a右连续,在点b左连续,则f在闭区间[a,b]上连续.(3)连续函数类用记号C(I)表示由区间I上所有的连续函数所组成的集合.3.连续函数的四则运算(1)定理若是常数,则(分母g(x)≠0,)及也都属于C(I).(2)推论1若f∈C(I),则,并且有(n是自然数).(3)推论2多项式函数.4.连续函数的复合运算(1)定理连续,f(x)在点连续,则f(g(x))在点x0也连续.即设y=g(x)在点x连续函数的复合函数也连续.(2)推论仅单侧连续,f(x)在点连续,则f(g(x))于点①如果g(x)在点xx0也为相同的单侧连续.②初等函数都是连续函数。
5.不连续点(1)不连续点的定义设f(x)于x0的某个去心邻域中有定义.如果在点x0不满足连续性条件,则x0称为f(x)的不连续点(亦称间断点).(2)f(x)的间断点及其分类①第一类间断点f(x0+)和f(x0-)均存在且有限.a.可去间断点:b.跳跃间断点:②第二类间断点和至少有一个不存在.(无穷大属于不存在之列)(3)连续延拓原理设x0是f(x)的可去间断点,记其中,则于点x0连续.称为f(x)的连续延拓.二、区间上连续函数的基本性质1.零点存在定理(1)连续函数零点存在定理若且,则f(x)在[a,b]中至少存在一个零点.(2)定理的几何解释零点存在定理是说连续函数的图形穿过x轴时必与x轴有交点,这个交点的横坐标就是f(x)的零点.2.值域定理(1)值域定理有界闭区间上的连续函数的值域也必是有界闭区间.即,若[a,b]是有界闭区间,f∈C[a,b],则(2)推论①(连续有界定理)有界闭区间上的连续函数必有界;②(最值定理)有界闭区间上的连续函数必存在最大值与最小值;③(介值定理)对一切μ∈[m,M],必存在使得注意:如果f在[a,b]有一点不连续,那么f(x)的有界性、最值存在性均可能不成立.3.一致连续性(1)一致连续的定义①设f在〈a,b〉≡I上有定义,如果极限则称f(x)在区间I上一致连续.②设f在〈a,b〉≡I上有定义,若对,满足时,有注意:若f在(a,b)上一致连续,则f必在(a,b)连续.(2)不一致连续定义①f在(a,b)上不一致连续,使得②f(x)于(a,b)上不一致连续及数列,满足,使得注意:连续性一般推不出一致连续性.(3)Cantor定理有界闭区间上的连续函数必一致连续.三、单调函数的性质1.不连续点的性质(1)性质1在区间(a,b)上定义的单调函数f于(a,b)的不连续点必是第一类不连续点.(2)性质2单调函数的不连续点至多为可列个.2.值域性质性质3如果f在〈a,b〉上单调,则3.反函数存在定理性质4(严格单调连续函数的反函数存在定理)设y=f(x)在〈a,b〉上连续且严格单调增加,则值域是区间,反函数是区间I上的连续且严格单调增加函数.4.有界变差函数(1)有界变差函数的定义设g和h是有界闭区间上的两个单调增加函数,则称上的有界变差函数.上的有界变差函数的全体记为显然,上的单调函数必定是有界变差函数.(2)性质5有界变差函数f的内部不连续点必定是第一类不连续点.(3)性质6①若f在区间和上分别为有界变差函数,则f在上也为有界变差函数.②若可分成有限个子区间,在每个子区间上f(x)是单调的,则f必定是上的有界变差函数.(4)性质7若,则这里α是数.5.2名校考研真题详解1.设f(x)在[a,b]上连续,对任意的x∈[a,b],存在y∈[a,b],使,证明:存在,使得。
考研数学数学分析基础知识点总结数学分析是数学的一个重要分支,是考研数学中的基础知识点之一。
掌握数学分析的基础知识点对于考研数学的学习和应试至关重要。
本文将对考研数学分析的基础知识点进行总结和梳理,帮助考生们更好地掌握这部分内容。
一、极限与连续1. 极限的概念极限是数学分析中的重要概念,表示函数在某一点上的趋势。
若存在一个常数L,对于任意给定的ε>0,都存在一个正数δ>0,使得当函数的自变量x满足0<|x-a|<δ时,有|f(x)-L|<ε成立,则称函数f(x)当x趋于a时极限为L,记作lim(x→a)f(x)=L。
2. 极限的性质极限具有一些重要的性质,如四则运算法则、夹逼定理、局部有界性等。
考生们需要熟练掌握这些性质,以便能够灵活运用。
3. 连续函数的定义与性质连续函数是数学分析中的重要概念,表示函数在一定区间内无断点。
若函数f(x)在点a处连续,则有lim(x→a)f(x)=f(a)。
连续函数具有保号性、介值性和有界性等重要性质。
二、微分学1. 导数的概念与计算导数是微分学中的重要概念,表示函数在某一点上的变化率。
函数f(x)在点x处的导数记作f'(x),定义为lim(h→0)(f(x+h)-f(x))/h。
常见函数的导数计算规则包括常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。
2. 高阶导数与导数的应用除了一阶导数外,函数的高阶导数也是微分学的重要概念。
高阶导数表示导数的导数,常用符号表示。
导数在实际应用中有着广泛的应用,如求函数的极值、拐点等。
3. 微分学中的中值定理中值定理是微分学中的重要定理,具有介值性的概念。
常见的中值定理包括拉格朗日中值定理、柯西中值定理等,这些定理帮助我们理解函数的性质和推导一些重要结论。
三、积分学1. 定积分与不定积分积分学是微积分的重要内容,由定积分和不定积分两部分组成。
定积分是曲线与坐标轴之间的面积,通过求极限得到。
数学考研数学分析重点梳理一、数列与极限1. 数列的概念与性质数列的定义、数列的极限、数列的有界性等2. 数列极限的判定方法夹逼准则、单调有界准则、卡氏准则等3. 无穷级数无穷级数的概念、收敛性与发散性、常见级数等4. 函数的极限函数的概念、函数极限的定义、函数极限的性质等二、连续函数与一元函数微分学1. 连续函数与间断点连续函数的概念、间断点的分类、连续函数的性质等2. 闭区间上连续函数的性质零点存在性、介值定理、最值定理等3. 一元函数微分学的基本概念导数的定义、函数的可导性、导数的几何意义等4. 导数的计算和应用导数的四则运算法则、高阶导数、隐函数求导、极值问题等三、多元函数微分学1. 多元函数及其图像多元函数的定义、多元函数的图像、多元函数的性质等2. 偏导数与全微分偏导数的定义和计算、全微分的定义、全微分的计算等3. 多元函数的连续性与偏导数存在性多元函数的连续性、混合偏导数的存在性、 Schwarz 定理等4. 多元函数的极值与条件极值二元函数的极值、拉格朗日乘子法、约束条件的处理等四、一元函数积分学1. 不定积分不定积分的定义、基本积分表、换元积分法等2. 定积分定积分的定义、定积分的性质、常用积分公式等3. 定积分的计算方法牛顿-莱布尼茨公式、分部积分法、曲线长度与旋转体体积等4. 应用问题平面向量的应用、物理问题与几何问题等五、多元函数积分学1. 二重积分二重积分的定义、二重积分的计算方法、极坐标下的二重积分等2. 二重积分的应用质量、质心、转动惯量、面积等应用问题3. 三重积分三重积分的定义、三重积分的计算方法、球坐标下的三重积分等4. 三重积分的应用质量、质心、转动惯量、体积等应用问题以上便是数学考研数学分析的重点梳理,希望对你的学习有所帮助。
通过对这些重点知识的掌握和学习,相信你能够顺利应对数学分析的考试。
加油!。
欧阳光中《数学分析》笔记和考研真题详解第15章Fourier级数15.1复习笔记一、Fourier级数1.相关概念(1)三角级数的定义形如一类的函数项级数,称为三角级数.(2)三角多项式上述三角级数前n项和称为(n次)三角多项式.(3)Fourier级数假定周期为2π的函数f(x)能展开成上一致收敛的三角级数:其中称系数由上式所确定的三角级数为f(x)的Fourier级数,系数称为f(x)的Fourier系数,并记2.正弦级数和余弦级数(1)设周期为2π的函数f(x)于上绝对可积,如果f(x)是奇函数,则从而这就是正弦级数.(2)当f(x)为偶函数时,必有,这时可得余弦级数3.一般周期函数的Fourier级数设f(x)是周期为T且在[0,T]上绝对可积的函数,f(x)在[0,T]上的Fourier级数:其中4.复数形式下的Fourier级数f(x)在复数形式下的Fourier级数复的Fourier系数二、Fourier级数的收敛性1.Riemann引理(1)Riemann引理设f(x)在(有界或无界)区间〈a,b〉上绝对可积,则(2)推论在[0,T]上绝对可积函数的Fourier系数2.Fourier级数收敛的充要条件(局部性定理)周期为2π的局部绝对可积函数f(x)的Fourier级数在点x的敛散情况及收敛时的极限值仅与f在该点任意指定小的邻域上的值有关,与此邻域外的值无关.3.Dini判别法(1)Dini判别法若于上绝对可积,则,即f的Fourier级数在点x收敛到S:(2)推论f是2π周期的局部绝对可积函数,若于x点存在左右极限f(x±)及所示的有限单侧导数,则Fourier级数于x点成立4.Jordan判别法设f在上单调(或有界变差),(1)若,则(2)若则三、Fourier级数的性质1.逐项积分定理设周期为2π的函数f(x)局部绝对可积且则收敛,且逐项积分公式成立:.2.Fourier级数逐项求导问题假定f(x)是周期为2π的连续可微函数,且的Fourier级数:其中表示的Fourier系数.由此可得故周期为2π的连续可微函数f的Fourier级数必可逐项求导,求导后得的Fourier级数.3.最佳平方逼近(1)定理设为f的Fourier系数,并设是f的Fourier级数前n项和,当且仅当时,平方误差最小,且最小值为(2)Besse1不等式(3)Parseva1等式四、用多项式逼近连续函数1.引理为2π周期、分段线性的连续函数,则的Fourier级数必一致收敛到2.Weierstrass定理(a,b有限)多项式p(x),使得15.2名校考研真题详解。