第4章__MEMS设计中的尺度效应
- 格式:ppt
- 大小:951.50 KB
- 文档页数:52
《微机电系统》复习参考题目1、微机电系统(MEMS)的英文全称?2、微机电系统得内涵和特点?3、LIGA技术包含内容?4、DEM技术包含内容?5、什么是MEMS微尺度效应?6、MEMS的设计涉及那些学科?简述MEMS的设计方法及特点7、工程系统设计通常有几种方法?其主要思路是什么?试举例说明。
8、集成电路基本制造基本程序?9、薄膜制备的方法有哪两类?10、什么是外延技术?常用的外延技术有哪几种?11、什么是掺杂工艺?有哪些方法?12、氮化硅的性质,用途和制备方法是什么?13、什么是光刻工艺?典型的光刻工艺流程?14、简述干法腐蚀的特点?15、MEMS制造工艺有哪两类主要技术?叙述各类技术的主要内容。
16、叙述硅刻蚀的湿法技术的主要工艺流程。
各向同性刻蚀的特点是什么?各向异性刻蚀的机理是什么?17、叙述硅刻蚀的干法技术主要工艺流程。
18、简要叙述电化学自停止腐蚀技术。
19、LIGA体微加工技术的组成部分是什么?及其主要工艺流程。
20、什么是微电铸工艺?微电铸工艺的难点是什么?如何解决?21、什么是微复制工艺及其工作原理?22、什么是阳极键合技术,其机理及阳极键合质量的影响因素。
23、目前加速度微传感器测试机理有几种?简述阵列式加速度微传感器的设计思路。
24、磁微传感器的基本特点? 举例说明磁微传感器应用?25、光微传感器的物理机理是什么?光纤传感器的特点?26、简述磁致伸缩金属的物理特性,为什么可以用做微执行器的材料。
27、记忆合金材料的特点是哪些?其应用方面有哪些?28、说明静电微马达的工作原理。
29、为何在宏观电机中主要采用电磁驱动,而在MEMS电机中主要采用静电力驱动?。
30、梳状微谐振器的结构和工作原理是什么?31、无阀微泵泵腔容积经过“吸入-排出”一个周期后,会沿泵的入口到出口形成流量,画出其工作原理示意图,说明其工作原理?其优点是什么?32、举例说明MEMS产品在军事或民用中的应用,它们的特点以及未来发展趋势。
mems传感器、执行装置等应用领域,关键技术与国内外发展概况MEMS传感器是采用微电子和微机械加工技术制造出来的新型传感器。
与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。
同时,微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。
第一个微型传感器诞生于1962年,至此开启了MEMS技术的先河。
此后,MEMS传感器作为MEMS技术的重要分支发展速度最快,长期受到美、日、英、俄等世界大国的高度重视,各国纷纷将MEMS传感器技术作为战略性技术领域之一,投入巨资进行专项研究。
随着微电子技术、集成电路和加工工艺的发展,传感器的微型化、智能化、网络化和多功能化得到快速发展,MEMS传感器逐步取代传统的机械传感器,占据传感器主导地位,并在消费电子、汽车工业、航空航天、机械、化工、医药、生物等领域得到了广泛应用。
1 MEMS传感器及分类从微小化和集成化的角度,MEMS(或称微系统)指可批量制作的、集微型机构、微型传感器、微型执行器以及信号处理和控制电路,直至接口、通讯和电源等于一体的微型器件或系统。
微机电系统(MEMS)是在微电子技术的基础上发展起来的,融合了硅微加工和精密机械加工等多种微加工技术,并应用现代信息技术构成的微型系统。
是20世纪末、21世纪初兴起的科学前沿,是当前十分活跃的研究领域,涉及多学科的交叉,如物理学、力学、化学、生物学等基础学科和材料、机械、电子、信息等工程技术学科。
该领域研究时间虽然很短,但是已经在工业、农业、机械电子、生物医疗等方面取得很大的突破,同时产生了巨大的经济效益。
2.1 MEMS传感器MEMS传感器是采用微机械加工技术制造的新型传感器,是MEMS 器件的一个重要分支。
依赖于MEMS技术的传感器主要有以下技术特点:1)微型化:体积微小是MEMS器件最为明显的特征,其芯片的尺度基本为纳米或微米级别。
MEMS设计中的尺度效应MEMS(微机电系统)是一种将微观尺度上的机电元件集成到微型芯片中的技术。
在MEMS设计中,尺度效应是一个重要的考虑因素。
尺度效应指的是当材料或结构的尺寸减小到微观尺度时,与宏观尺度相比会出现新的物理现象和行为。
本文将详细介绍MEMS设计中的尺度效应。
尺度效应在MEMS设计中有着广泛的应用。
一方面,尺度效应可以改变材料的力学特性。
例如,当材料尺寸减小到纳米尺度时,材料的力学刚度将会增加。
这是因为在小尺度下,表面效应变得更加重要,原子之间的相互作用力增强。
这种尺度效应在MEMS设计中需要考虑,因为它会直接影响到微弹性体的材料刚度和弹性模量。
另一方面,尺度效应也可以改变材料的电学和热学特性。
当材料尺寸减小到纳米尺度时,电子和热传输会受到限制,从而出现新的效应。
例如,纳米材料的电阻会随着尺寸的减小而增加,导致电流密度增大。
这种尺度效应在MEMS设计中需要考虑,因为它会影响到微电子元件的电性能和热性能。
此外,尺度效应还会改变材料的光学特性。
当材料尺寸减小到纳米尺度时,光在材料中的传播方式会发生变化。
例如,纳米颗粒会显示出新的光学性质,如表面等离子共振。
这种尺度效应在MEMS设计中需要考虑,因为它可以用于各种光学传感器和光学器件。
在MEMS设计中考虑尺度效应是非常重要的,因为它可以提供新的功能和性能。
例如,利用尺度效应改变材料的力学特性可以设计出更加敏感的力传感器和加速度计。
利用尺度效应改变材料的电学特性可以设计出更小、更快速的微电子器件。
利用尺度效应改变材料的光学特性可以设计出更高灵敏度的光学传感器和光学开关。
尺度效应还可以帮助设计出更稳定和可靠的MEMS器件。
由于尺度效应会改变材料的性质,因此可以利用它来减少MEMS器件的热漂移和机械失配问题。
例如,通过选择尺寸合适的材料,可以使MEMS器件在温度变化或振动环境下保持稳定的性能。
然而,尺度效应也会带来一些挑战。
首先,由于材料尺寸的减小,制造和测试过程变得更加困难。
第1、2xx习题及参考答案1.MEMS的设计涉及那些学科?简述MEMS的设计方法及特点。
MEMS综合了机、电、磁、光、声、热、液、气、生物、化学与多种学科而构成了一门独立的交叉学科。
它研究多种学科各自的特征参量相互之间的耦合关系,应用这些物理联系和耦合关系去分析和解决MEMS设计与制造中的问题。
MEMS研究多种学科各自的特征参量相互之间的耦合关系,应用这些物理联系和耦合关系去分析和解决MEMS设计与制造中的问题。
因此,在MEMS的设计中必须考虑系统设计方法,信息流程设计方法,建立统一物理特征参量设计方法。
1.MEMS设计与制造的研究和分析,MEMS产品分成系统,子系统、元件(元素)三个层次。
2.信息流程是指MEMS产品中各种信息或物理量传递的次序关系,这种传递关系是以程序形式表达的。
3.建立统一的物理特征参量,应该对所需设计对象涉及的各种物理特征参量都相对参照于同一概念的物理特征参量,即相对于系统能量变化而确定。
这样系统内各子系统和元件(元素)的物理特征都可以用相同的物理特征参量描述。
2.工程系统设计通常有几种方法?其主要思路是什么?试举例说明。
工程系统设计通常有:1.K.J法。
K.J法是由底向上处理大量数据之间关系的一种假设。
K.Jxx思路步骤:(1)标签制作:收集有关问题的所有事实和信息,并且在单个标签上或者纸片上书写每个事实。
(2)标签归类:对所有的标签进行分组,并仔细阅读。
相同属性的标签归在一起,不同属性的个别标签(孤独的狼)放在后面。
对每一组标签给定合适的名称,并把它放在面上。
在更高的水平上重复以及处理孤狼。
重复上述迭代过程,以及归类的类型数少于10个。
(3)范围制作:在恰当的空间图样内,仔细布阵最后确定的标签组,给出标签组结构总的了解,用符号描述标签组之间的关系。
对纸上图表进行转移排列,以同样的做法处理布阵子标签组。
(4)说明:用简短动词说明,构筑问题的一般情况,依据简图的事实内容,试图用文字表达、描述简图,并仔细区别个性说明。
08’MEMS复习题1.MEMS的概念,MEMS产品应用。
MEMS(Micro-Electro-Mechanical Systems)是指微型化的器件或器件组合,把电子功能与机械的、光学的或其他的功能形结合的综合集成系统,采用微型结构(集微型传感器、微型执行器、信号处理和控制电路、接口电路、通信系统以及电源),使之能在极小的空间内达到智能化的功效。
MEMS 是Micro Electro Mechanincal System 的缩写,即微机电系统,专指外形轮廓尺寸在毫米级以下,构成它的机械零件和半导体元器件尺寸在微米至纳米级,可对声、光、热、磁、压力、运动等自然信息进行感知、识别、控制和处理的微型机电装置。
微机电系统(MEMS)主要特点在于:(1)体积小、精度高、质量轻;(2)性能稳定、可靠性高;(3)能耗低,灵敏度和工作效率高;(4)多功能及智能化;(5)可以实现低成本大批量生产。
民用:MEMS对航空、航天、兵器、水下、汽车、信息、环境、生物工程、医疗等领域的发展正在产生重大影响,将使许多工业产品发生质的变化和飞跃。
军用:精确化、轻量化、低能耗是武器装备的主要发展趋势,这些特点均需以微型化为基础。
微型化的单元部件广泛应用于飞行器的导航和制导系统、通信设备、大气数据计算机、发动机监测与控制、“智能蒙皮”结构和灵巧武器中。
由硅微机械振动陀螺和硅加速度计构成的MEMS惯性测量装置已用于近程导弹,并显著提高导弹的精确打击能力。
微型化技术在武器装备上的另一个重要发展是微小型武器,如微型飞行器、微小型水下无人潜水器、微小型机器人和微小型侦察传感器等。
具体应用:打印机喷嘴——用于打印机;微加速度计和角速度计——应用于汽车安全气囊;微加工压力传感器——用于进气管绝对压力传感器;由硅微振动陀螺和硅加速度计构成的MEMS惯性测量装置——用于军品中的近程导弹。
2.湿法刻蚀和干法刻蚀的概念,两者异同点以及在MEMS中的应用。
第一章微机电系统(MEMS)概论掌握MEMS的基本概念、尺度范围;w1-1 试给出微机电系统的定义。
微机电系统,是在微电子技术基础上结合精密机械技术发展起来的一个新的科学技术领域。
一般来说,MEMS是指可以采用微电子批量加工工艺制造的,集微型机械元件和微电子于一体的微型器件、微型系统。
从广义上讲,MEMS是指集微型传感器、微型执行器、信号处理和控制电路、接口电路、通信系统以及电源于一体的集成微器件、微系统。
典型MEMS器件的长度尺寸约在1um~1mm。
了解MEMS技术的发展过程掌握MEMS与微电子技术的对比特征;1.微型化Miniaturization 。
微米量级空间里实现机电功能,典型MEMS器件的长度尺寸约在1um~1mm。
2.集成化Microeletronics Integration ,从而提高功能密度。
3.规模化Mass Fabrication with Precision。
采用微加工,形成类似IC的高精度批量制造、低成本、低消耗特征MEMS的加工与一般传统加工方法的对比特征。
w1-4 微型机件的加工与一般传统加工方法的区别在哪里?1.两者设计与制作方法不同。
2.控制方法和工作方式不同。
3.与环境的关系不同。
4.不能忽略尺度效应。
理解MEMS微尺度效应的概念。
w1-5 尺度效应的概念。
传统机械材料是经过熔炼、压延、切削加工成形,微机械结构的加工使其物理性能与整体材料不同,其性能随构件结构和制造工艺参数变化很大。
尺寸微小化对材料的力学性能和系统的物理特性产生很大影响第二章MEMS材料掌握微机电系统主要材料——硅的晶体结构;二氧化硅、氮化硅、碳化硅基本物理性能、用途和制备方法晶体结构:硅属于立方晶体结构SiO2:1 作为选择性掺杂的掩模:SiO2膜能阻挡杂质(例如硼、磷、砷等)向半导体中扩散的能力。
2 作为隔离层:器件与器件之间的隔离可以有PN结隔离和SiO2介质隔离。
SiO2介质隔离比PN结隔离的效果好,它采用一个厚的场氧化层来完成。
考试范围:1,MEMS的定义应用。
2,光刻的过程,及相关工艺。
3,湿法刻蚀中的各向异性刻蚀工艺,及自终止技术。
4,CVD PVD工艺及其相关薄膜技术。
5,MEMS三大工艺:体加工,表面微加工,键合工艺。
相关过程和应用。
6,封装形式。
1.MEMS的概念,MEMS产品应用。
MEMS(Micro-Electro-Mechanical Systems)是指微型化的器件或器件组合,把电子功能与机械的、光学的或其他的功能形结合的综合集成系统,采用微型结构(集微型传感器、微型执行器、信号处理和控制电路、接口电路、通信系统以及电源),使之能在极小的空间内达到智能化的功效。
MEMS 是Micro Electro Mechanincal System 的缩写,即微机电系统,专指外形轮廓尺寸在毫米级以下,构成它的机械零件和半导体元器件尺寸在微米至纳米级,可对声、光、热、磁、压力、运动等自然信息进行感知、识别、控制和处理的微型机电装置。
微机电系统(MEMS)主要特点在于:(1)体积小、精度高、质量轻;(2)性能稳定、可靠性高;(3)能耗低,灵敏度和工作效率高;(4)多功能及智能化;(5)可以实现低成本大批量生产。
民用:MEMS对航空、航天、兵器、水下、汽车、信息、环境、生物工程、医疗等领域的发展正在产生重大影响,将使许多工业产品发生质的变化和飞跃。
军用:精确化、轻量化、低能耗是武器装备的主要发展趋势,这些特点均需以微型化为基础。
微型化的单元部件广泛应用于飞行器的导航和制导系统、通信设备、大气数据计算机、发动机监测与控制、“智能蒙皮”结构和灵巧武器中。
由硅微机械振动陀螺和硅加速度计构成的MEMS惯性测量装置已用于近程导弹,并显著提高导弹的精确打击能力。
微型化技术在武器装备上的另一个重要发展是微小型武器,如微型飞行器、微小型水下无人潜水器、微小型机器人和微小型侦察传感器等。
具体应用:打印机喷嘴——用于打印机;微加速度计和角速度计——应用于汽车安全气囊;微加工压力传感器——用于进气管绝对压力传感器;由硅微振动陀螺和硅加速度计构成的MEMS惯性测量装置——用于军品中的近程导弹。
《微尺度模型气体流动机理》篇一一、引言在物理学和工程学领域,微尺度模型气体流动机理的研究具有重要价值。
随着纳米技术和微电子机械系统(MEMS)的快速发展,对微尺度气体流动的理解和控制变得越来越关键。
微尺度下的气体流动不同于宏观尺度,其流动特性、传热传质以及相互作用机制均有所不同。
因此,本文旨在探讨微尺度模型气体流动的机理,为相关领域的研究和应用提供理论支持。
二、微尺度气体流动的基本特性微尺度气体流动具有以下基本特性:1. 尺度效应:在微尺度下,气体分子的平均自由程与流道尺寸相当,导致气体分子间的碰撞频率增加,流动呈现出明显的尺度效应。
2. 表面效应:微尺度流道内表面的粗糙度、润湿性等因素对气体流动产生显著影响,表面效应不可忽视。
3. 传热传质特性:微尺度下的气体流动往往伴随着传热传质过程,其传热传质特性与宏观尺度有所不同。
三、微尺度模型气体流动的机理微尺度模型气体流动的机理主要包括以下几个方面:1. 分子动力学模型:在微尺度下,气体分子的运动遵循分子动力学原理。
通过建立分子间的相互作用力模型,可以描述气体分子的运动轨迹和碰撞过程,进而分析气体流动的机理。
2. 滑移边界条件:在微尺度流道内,由于分子间的碰撞频率增加,导致气体分子在流道壁面附近的运动受到滑移边界条件的影响。
滑移边界条件的引入可以更准确地描述微尺度气体流动的特性。
3. 传热传质模型:微尺度下的气体流动往往伴随着传热传质过程。
通过建立传热传质模型,可以分析微尺度流道内的温度场、浓度场以及它们对气体流动的影响。
四、微尺度模型气体流动的应用微尺度模型气体流动的应用主要涉及以下几个方面:1. 微电子机械系统(MEMS):微尺度模型气体流动机理对于MEMS的设计和制造具有重要意义。
例如,在微流体控制、微传感器等领域,需要准确掌握微尺度气体流动的特性和机理。
2. 纳米技术:在纳米技术领域,微尺度模型气体流动机理对于纳米材料的制备、传输和操控具有重要意义。
微米尺度力学效应
微米尺度力学效应是一种特殊的力学现象,当材料或结构的尺寸降低到微米级别时,会出现明显的尺度效应。
以下是微米尺度力学效应的一些特点和影响:
界面影响:在微米尺度上,界面的影响范围显著增大,对材料的整体力学性能产生显著影响。
界面的存在会导致应力传递的不连续性,使得材料在受力时表现出不同于宏观尺度的力学行为。
应变梯度效应:应变梯度效应是微米尺度力学中的一个重要现象。
在微米尺度下,由于材料内部微观结构的变化,应变不再是一个均匀分布的量,而是呈现出梯度分布的特点。
这种应变梯度效应会对材料的力学性能和变形行为产生显著影响。
尺度相关性:微米尺度力学效应表现出强烈的尺度相关性。
材料的力学性能和变形行为不仅与加载条件有关,还与材料的特征尺寸密切相关。
随着特征尺寸的减小,材料的强度、硬度等力学性能会发生显著变化。
表面和界面效应:在微米尺度下,表面积与体积比急剧增大,表面和界面效应变得不容忽视。
表面张力、粘弹性力等宏观尺度下常被忽略的力和现象在微尺度下会产生重要影响。
这些表面和界面效应会对材料的力学性能和变形行为产生显著影响。
材料的强化:在微米尺度下,一些材料的强度会随着特征尺寸的减小而增强。
这种现象被称为“越小越强”的独特现象。
例如,颗粒增强复合材料在保持颗粒夹杂体积份数不变的情况下,材料的强度随着颗粒尺寸的降低而变强。
微米尺度力学效应对微纳米器件的设计、制造和性能评估具有重要意义。
在微纳米尺度下,结构的力学行为不再遵循宏观尺度下的连续介质假设,因此需要采用新的理论和方法来描述和预测微纳米结构的力学行为。
1.什么是MEMS?有哪些应用,列举三种以上MEMS产品及其应用。
答:MEMS是微机电系统(Micro-Electro-Mechanical Systems)的缩写。
MEMS是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。
MEMS特点:微型化;集成化;多学科交叉产品:压力传感器、加速度计、微陀螺仪、墨水喷嘴和硬盘驱动头等应用:2222①跟上发展步伐步程计。
它用于测量人行走时的速度或距离。
②让GPS更可靠:微加速度计。
在汽车安全气袋系统中,用于检测和监控前面和侧面的碰撞。
③为游戏应用提供更佳的控制能力:MEMS加速器。
在改善电子游戏的体验方面,改善控制盘和操纵杆的倾斜及运动敏感功能。
④微型医疗机器人:注入人体血管,进行测量、诊断以及做出相应的治疗。
⑤角速度计:用于车轮侧滑和打滚控制。
2.尺度效应的定义,在MEMS设计中如何利用尺度效应?答:尺度效应是指在微成形过程中,由于制品整体或局部尺寸的微小化引起的成形机理及材料变形规律表现出不同于传统成形过程的现象。
从微成形工艺系统角度出发,要分析微尺度效应的动态性和相关性;本构理论出发,要分析产生微尺度效应的原因。
MEMS中使用的材料结构为单晶体,在进行微观力学分析时,作为纯的单晶体,不考虑其内部的点缺陷,线缺陷和面缺陷的分布。
单晶硅的变形可用晶格理论来解释:在外力作用下,处于晶格格点位置上的原子偏起始所处的平衡位置,并在新的位置处于平衡。
由此计算该原子在外力作用下的位移。
3.湿法刻蚀和干法刻蚀的概念及其在MEMS中应用?答: 湿法刻蚀:将被腐蚀材料氧化,然后通过化学反应生成一种或多种氧化物再溶解。
这个过程有时在高温中以气相的形式完成刻蚀。
干法刻蚀:应用气态腐蚀介质,通过电场气态离子被加速到衬底上。
湿法刻蚀应用:砷化镓的湿法刻蚀;SiO2膜的湿法刻蚀;磷硅玻璃(PSG)湿法刻蚀;混合氧化物的湿法刻蚀;氮化硅的湿法刻蚀;多晶硅和半绝缘多晶硅的湿法刻蚀;硅化物薄膜的湿法刻蚀;金属薄膜的湿法刻蚀等。
小组成员:郑晨晨刘心纪辉强方璐刘超朱剑锋2011.05.31第二章1.MEMS的设计涉及哪些学科?简述MEMS的设计方法及特点。
答:MEMS的设计涉及到系统设计、微传感器设计、微执行器设计、接口设计和能量供给的设计。
3种设计方法:(1)从系统功能设计开始,展开到系统设计。
在进行系统设计时,将元件及功能模块作为一个黑盒子,只对其影响特性进行分析。
(2)从系统设计展开到子系统、元器件设计。
对于系统优化设计应该由系统设计转向子系统、元器件设计。
首先确定系统应该完成的功能、技术条件;其次是确定功能模块的功能要求、技术条件;最后确定元器件的技术条件。
(3)中间相遇法(Meet-in-the-Middle)。
它利用宏观模块,对于元件简化模型进行分析,只要模型能描述不同物理状态中的特性,就能够在系统中进行合理的仿真。
2.工程系统设计通常有几种方法?其主要思路是什么?试举例说明。
答:通常有五种方法:J.Kawasaki法简称KJ法。
KJ法是由底向上处理大量数据之间关系的一种假设,对于复杂问题进行分析,使用这种方法,可以使问题得到满意的解决。
它还可以应用来处理其他类型的问题,这种问题可以是个别的群体,单一的或者连续的;M.Nakayama法简称NM法。
NM法是在自然是日常生活中寻找比拟法创造和开发新技术观点,应用到不同的问题模式中。
NM法是根据人脑功能的一种假设,在Nakayama的“人脑计算机模型(HBC)”中描述。
这种方法试图解释当问题如理性思考,存在僵局,情感思考,演绎和引导等解决的时候,人类思想行为的模式;Key-Needs法,中文称为关键需要法,它是一种创造与使用者需要一致的新产品概念的工具。
这种方法用列出日常生活的需要,以及不被满足原因的描述,用于产品观点的发明。
关键需要法是实用主义,具有需要分析和概念评估技术的扩展。
为了消费者取得好感,而且不受限制,关键需要法几乎不是根据人类需要的任何理论或者寻找任何概念,而是从实际经验中得到;Kepener-Tregoe法分析问题、解决分析、位能问题分析和位置评价的4种技术结合。
MEMS考试复习题(占80%)第一章 绪论1.微电子工业与MEMS的关系(网上搜索)教材总结:微电子工业与MEMS的关系主要有以下几点:1)对于MEMS的发展而言,微电子工业集成电路技术是起始点,集成电路产业按照摩尔定律一直发展到今天,推动着信息社会的迅速发展。
2)电子器件小型化和多功能集成是微加工技术的推动力。
3)MEMS是由集成电路技术发展而来的。
它经过了大约20年的萌芽阶段,在萌芽时期,主要是开展一些有关MEMS的零散研究。
PPT:1)微系统是从微传感器发展而来的,已有几次突破性的进展。
70年代微机械压力传感器产品问世,80年代末研制出硅静电微马达,90年代喷墨打印头,硬盘读写头、硅加速度计和数字微镜器件等相继规模化生产,充分展示了微系统技术及其微系统的巨大应用前景。
2)MEMS用批量化的微电子技术制造出尺寸与集成电路大小相当的非电子系统,实现电子系统和非电子系统的一体化集成,从根本上解决信息系统的微型化问题,实现许多以前无法实现的功能。
3)今天的MEMS与40年前的集成电路类似,MEMS对未来的社会发展的推动已经逐步显现,它也是21世纪初一个新的产业增长点。
2.几种主要的商业化MEMS器件及其优点(列举两到三种)1)MEMS压力传感器 优点:具有较高的测量精度、较低的功耗和极低的成本。
2)喷墨打印头 优点:廉价,性能好,可以提供高品质的彩色打印。
(高分辨率,高对比度)3)数字光处理器(DLP) 优点:与LCD投影相比,DLP具有更高的像素填充因子,更高的亮度、灰度和对比度,光利用效率高,对比度和色彩平衡的长期稳定性好。
4)集成惯性传感器(高灵敏度,低噪声,低使用成本,满足了汽车市场使用的需要)5)加速度传感器(对地震监测的超高灵敏度,高可靠性与长期稳定性)3.热墨喷头的结构(组成)和工作原理结构组成:喷墨嘴、加热条、墨汁腔热喷墨技术其工作原理是通过喷墨打印头(喷墨室的硅基底)上的电加热元件(通常是热电阻),在3微秒内急速加热到300摄氏度 ,使喷嘴底部的液态油墨汽化并形成气泡,该蒸汽膜将墨水和加热元件隔离,避免将喷嘴内全部墨水加热。