2013年济宁市中考数学试卷及答案
- 格式:doc
- 大小:426.00 KB
- 文档页数:15
2013年初中毕业生中考数学试卷本试卷共5页,分二部分,共25小题,满分150分。
考试用时120分钟。
注意事项:1、答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考场试室号、座位号,再用2B铅笔把对应这两号码的标号涂黑。
2、选择题答案用2B铅笔填涂;将答题卡上选择题答题区中对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。
3、非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分选择题(共30分)一、选择题:1、比0大的数是()A -1 B12C 0D 12、图1所示的几何体的主视图是()(A)(B) (C) (D)正面3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y xC'图6ACB O A'B'A O 图7yx( 6, 0 )P已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里);(2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.AD图9BCPB A图10北东N M如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。
山东省济宁市2013年中考数学三模试卷一、选择题(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的),再求其算术平方根.=4题考查了算术平方根的概念.特别注意:应首先计算2.(3分)(2013•济宁三模)据萧山区旅游局统计,2012年春节约有359525人来萧旅游,4.(3分)(2013•济宁三模)如图,由几个小正方体组成的立体图形的俯视图是()B6.(3分)(2013•济宁三模)若式子有意义,则x的取值范围为()7.(3分)(2013•济宁三模)已知,且﹣1<x﹣y<0,则k的取值范围为()<﹣<k<1解得<<8.(3分)(2013•济宁三模)二次函数y1=ax2﹣x+1的图象与y2=﹣2x2图象的形状,开口方(﹣,﹣)(﹣,,),﹣)=,=∴顶点坐标为(﹣,9.(3分)(2013•济宁三模)如图,P1是反比例函数y=在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为()2﹣图象上的一点,利用待定系数×=)y=D=aay=•,±.1+2+2,210.(3分)(2013•济宁三模)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2012个正方形的面积为()B)AD=AB=AD=BC==,,B=×)=,×===)×)(()(二、填空题(本大题共5个小题.每小题3分,共15分.把答案填在题中横线上)11.(3分)(2013•济宁三模)分解因式:2x2+4x+2=2(x+1)2.12.(3分)(2013•济宁三模)当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为cm.AD=AB= AB=(cm故答案为:.13.(3分)(2013•济宁三模)化简的结果是m+1.1+÷+)÷••14.(3分)(2013•济宁三模)如图,在矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF=.AC=BD==5===)得,.=.15.(3分)(2013•济宁三模)将边长为8cm的正方形ABCD的四边沿直线l向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是16π+8πcm.π=4=4=4π三、解答题(本大题共8个小题.共55分.解答应写出文字说明、证明过程或演算步骤)16.(4分)(2013•济宁三模)计算:.|.×﹣17.(4分)(2013•济宁三模)解方程:18.(6分)(2013•济宁三模)(1)一个人由山底爬到山顶,需先爬45°的山坡200m,再爬30°的山坡300m,求山的高度(结果可保留根号).(2)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:×+300×+15010019.(6分)(2013•济宁三模)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?20.(7分)(2013•济宁三模)“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?地的概率为.=.则小王掷得数字不小于小李掷得数字的概率为.21.(9分)(2013•济宁三模)如图,反比例函数(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.AOB=,∴=,在双曲线,,解得,,,…EC=EM=22.(9分)(2013•济宁三模)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;(3)在(2)小题的条件下,AC与BG的交点为M,当AB=4,AD=时,求线段CM的长.AD=DE==2AE=1=4FCN==,ABM FCN=AM=AB==23.(10分)(2013•济宁三模)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B 两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.m=,=,即,,即,=,即=,即,==,)或(。
专题三双动点问题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1 以双动点为载体,探求函数图象问题例1 (2007年杭州市)在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1). 动点P,Q 同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿B C运动到点C停止,两点运动时的速度都是1cm/s. 而当点P到达点A时,点Q正好到达点C. 设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm)2(如图2). 分别以t,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.(1)分别求出梯形中BA,AD的长度;(2)写出图3中M,N两点的坐标;(3)分别写出点P在B A边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中y关于x的函数关系的大致图象.评析本题将点的运动过程中形成的函数解析式与其相应的函数图象有机的结合在一起,二者相辅相成,给人以清新、淡雅之感. 本题彰显数形结合、分类讨论、函数建模与参数思想在解题过程中的灵活运用. 解决本题的关键是从函数图象中确定线段AB、梯形的高与t的函数关系式,建立起y与t的函数关系式,进而根据函数关系式补充函数图象.2 以双动点为载体,探求结论开放性问题例2 (2007年泰州市)如图5,Rt△ABC中,∠B=90°,∠CAB=30°.它的顶点A的坐标为(10,0),顶点B的坐标为(5,53),AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.(1)求∠BAO的度数.(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图6),求点P的运动速度.(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P 沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.解(1)∠BAO=60°.(2)点P的运动速度为2个单位/秒.评析本题是以双点运动构建的集函数、开放、最值问题于一体的综合题. 试题有难度、有梯度也有区分度,是一道具有很好的选拔功能的好题. 解决本题的关键是从图象中获取P 的速度为2,然后建立S与t的函数关系式,利用函数的性质解得问题(3).本题的难点是题(4),考生要从题目的信息中确定建立以B为直角顶点的三角形,以B为临界点进行分类讨论,进而确定点的个数问题.3 以双动点为载体,探求存在性问题例3 (2007年扬州市)如图8,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N 同时从B点出发,分别沿B→A,B→C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.评析本题是以双动点为载体,矩形为背景创设的存在性问题.试题由浅入深、层层递进,将几何与代数知识完美的综合为一题,侧重对相似和梯形面积等知识点的考查,本题的难点主要是题(3),解决此题的关键是运用相似三角形的性质用t的代数式表示P M,进而利用梯形面积相等列等式求出t与a的函数关系式,再利用t的范围确定的a取值范围. 第(4)小题是题(3)结论的拓展应用,在解决此问题的过程中,要有全局观念以及对问题的整体把握.4 以双动点为载体,探求函数最值问题例4 (2007年吉林省)如图9,在边长为82cm的正方形ABCD中,E、F是对角线AC上的两个动点,它们分别从点A、C同时出发,沿对角线以1cm/s的相同速度运动,过E作EH垂直AC交Rt△A CD的直角边于H;过F作FG垂直AC交Rt△ACD的直角边于G,连结HG、EB.设HE、EF、FG、GH围成的图形面积为S 1,AE、EB、BA围成的图形面积为S 2(这里规定:线段的面积为0).E到达C,F到达A停止.若E的运动时间为x(s),解答下列问题:(1)当0<X(2)①若y是S 1与S 2的和,求y与x之间的函数关系式;(图10为备用图)②求y的最大值.解(1)以E、F、G、H为顶点的四边形是矩形,因为正方形ABCD的边长为82,所以AC=16,过B作BO⊥AC于O,则OB=89,因为AE=x,所以S 2=4x,因为HE=AE=x,EF=16-2x,所以S 1=x(16-2x),当S 1=S 2时,4x=x(16-2x),解得x1=0(舍去),x2=6,所以当x=6时,S 1=S 2.(2)①当0≤x<8时,y=x(16-2x)+4x=-2x2+20x,当8≤x≤16时,AE=x,CE=HE=16-x,EF=16-2(16-x)=2x-16,所以S 1=(16-x)(2x-16),所以y=(16-x)(2x-16)+4x=-2x2+52x-256.②当0≤x<8时,y=-2x2+20x=-2(x-5)2+50,所以当x=5时,y的最大值为50.当8≤x≤16时,y=-2x2+52x-256=-2(x-13)2+82,所以当x=13时,y的最大值为82.。
专题八 韦达定理应用探讨韦达定理说的是:设一元二次方程()2ax +bx+c=0a 0≠有二实数根12x x ,,则1212b c x +x =x x =a a-⋅,。
这两个式子反映了一元二次方程的两根之积与两根之和同系数a ,b ,c 的关系。
其逆命题:如果12x x ,满足1212b c x +x =x x =a a-⋅,,那么12x x ,是一元二次方程()2ax +bx+c=0a 0≠的两个根也成立。
韦达定理的应用有一个重要前提,就是一元二次方程必须有解,即根的判别式2=b 4ac 0∆-≥。
韦达定理及其逆定理作为一元二次方程的重要理论在初中数学教学和中考中有着广泛的应用。
可以将其应用归纳为:①不解方程求方程的两根和与两根积; ②求对称代数式的值; ③构造一元二次方程; ④求方程中待定系数的值; ⑤在平面几何中的应用;⑥在二次函数中的应用。
一、不解方程求方程的两根和与两根积:已知一元二次方程,可以直接根据韦达定理求得两根和与两根积。
典型例题:例1:(2012山东烟台3分)下列一元二次方程两实数根和为﹣4的是【 】 A .x 2+2x ﹣4=0 B .x 2﹣4x+4=0 C .x 2+4x+10=0 D .x 2+4x ﹣5=0【答案】D 。
【考点】一元二次方程根的判别式和根与系数的关系。
例2:(2012广西来宾3分)已知关于x 的一元二次方程x 2+x+m=0的一个实数根为1,那么它的另一个实数根是【 】A .-2B .0C .1D .2【答案】A 。
【考点】一元二次方程根与系数的关系。
【分析】设方程的另一个实数根为x ,则根据一元二次方程根与系数的关系,得x +1=-1,解得x=-2。
故选A 。
二、求对称代数式的值:应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。
所谓对称式,即若将代数式中的任意两个字母交换,代数式不变(()()f x y =f y x ,,),则称这个代数式为完全对称式,如2211x +y +x y,等。
济宁市2013年中考数学试题参考答案一、选择题1.A2.B3.B4.A5. C6. C7.D8.B9. C 10. D 二、填空题11. 2()21+x1m + 14.125 15.()16cm π+三、解答题 16.解:原式233331-+⨯-= 1-=17.解:愿方程可化为:x =3(x -2 )18.(1)(2)解:添加条件例举:AD =BC ;OC =OD ;∠C =∠D ;∠CAO =∠DBC 等.证明例举(以添加条件AD =BC 为例):∵ AB=AB ,∠1=∠2,BC =AD , ∴ △ABC ≌△BAD .∴ AC=BD .19.解:(1)设平均每次下调的百分率x ,则6000(1-x )2=4860.解得:x 1=0.1,x 2=1.9(舍去).(2)方案①可优惠:4860×100×(1-0.98)=9720元 方案②可优惠:100×80=8000元.答:平均每次下调的百分率10%,方案①更优惠. 20.解:(1)补全图1分,设D 地车票有x 张,则x =(x +20+40+30)×10%解得x =10.即D 地车票有10张.(2)小胡抽到去A 地的概率为2020403010+++=15.其中小王掷得数字比小李掷3),(2,421. 解:(1AOB =32,∴AB OB =32, ∴AB =3∴k =xy (2)∵DC 由AB 平移得到,点E 为DC 的中点,∴点E 的纵坐标为32,又∵点E 在双曲线6y x =上,∴点E 的坐标为(4,32) 设直线MN 的函数表达式为y =k 1x +b ,则1123342k b k b +=⎧⎪⎨+=⎪⎩, 解得13492k b ⎧=⎪⎪⎨⎪=⎪⎩- ,∴直线MN 的函数表达式为3942y x =-+.(3)结论:AN =ME理由:在表达式3942y x =-+中,令y =0可得x =6,令x =0可得y =92,∴点M (6,0),N (0,92) 解法一:延长DA 交y轴于点F ,则AF ⊥ON ,且AF =2,OF ∴NF =ON -OF =32,∵CM =6-4=2=AF ,EC =32=NF , ∴Rt △ANF ≌Rt △MEC , ∴AN =ME∴NF =∵CM =6∴AN =∵S △EOM =∴S △EOM ∵AN 和∴AN =ME22.解(1)∴AB=AC,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC, ∴∠BAD=∠CAF,在△BAD 和△CAF 中,∴△BAD≌△CAF(SAS ). ∴BD=CF.(2)证明:设BG 交AC 于点M . ∵△BAD≌△CAF(已证), ∴∠ABM=∠GCM. ∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°. ∴BD⊥CF.(3)过点F 作FN⊥AC 于点N .∵在正方形ADEF 中,AD=DE=, ∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC 中,AB=4, ∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN 中,tan∠FCN==.∴在Rt△ABM 中,tan∠ABM==tan∠FCN=.∴AM=AB=.∴CM=AC﹣23.解:(1,∴B (3,0). ∵A ∴y =(x -1)2(2≌△POC ,此时PO 设P (m ,-(m∴P (3)①如图,当∠Q 1AB =90°时,△DAQ 1∽△DOB ,∴1DQ ADOD DB ==,∴DQ 1=52, ∴OQ 1=72,即Q 1(0,72-); ②如图,当∠Q 2BA =90°时,△BOQ 2∽△DOB ,∴2OQ OB OD OB =,即2363OQ =, ∴OQ 2=32,即Q 2(0,32); ③如图,当∠AQ 3B =90°时,作AE ⊥y 轴于E , 则△BOQ 3∽△Q 3EA ,∴33OQ OB Q E AE =,即33341OQ OQ =-, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即Q 3(0,-1),Q 4(0,-3).综上,Q 点坐标为(0,72-)或(0,32)或(0,-1)或(0,-3).。
济宁市2013年高中阶段学校招生考试数学试题--三题及解答(三题即:最后一道选择题、填空题、解答题)选择题第10题(3分)如图,以等边三角形ABC的边为直径画半圆,分别交AB、AC与点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G。
若AF的长为2,则FG的长为(A)4 (B)(C)6 (D)【解析】连接OD,则OD⊥DF。
显然DF⊥AB。
在Rt△ADF中,AD=2AF=4。
所以AB=AC=2AD=8,所以BF=AB-AF=6。
在Rt△BFG中,FG=BFsin60°=填空题第15题(3分)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层),请你算出塔的顶层有▲盏灯。
【解析】设顶层有x盏灯。
则x+2x+4x+8x+16x+32x+64x=381,解得x=3。
解答题第23题(12分)如图,直线142y x=-+与坐标轴分别交于A、B两点,与直线y x=交于点C。
在线段...OA..上.,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当P、Q其中一点停止运动时,另一点也停止运动。
分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF。
若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q除外)。
(1)求点P的运动速度是多少?(2)当t 为多少秒时,矩形PEFQ 是正方形?(3)当t 为多少秒时,矩形PEFQ 的面积最大?求出最大值。
【解析】(1)FQ OQ t ==。
设点P 的速度为每秒x 个单位长度,则AP xt =。
显然122xt EP AP ==。
由FQ EP =,得2xt t =,所以2x =。
(2)易知点88,33C ⎛⎫ ⎪⎝⎭,04t <≤。
当803t <<时,FQ OQ t ==;83PQ OA OQ AP t =--=-。
山东省济宁市2013年中考数学三模试卷一、选择题(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2013•济宁三模)的算术平方根为()A.2B.﹣2 C.±2 D.16考点:算术平方根分析:先计算,再求其算术平方根.解答:解:∵=4,4的算术平方根为2,∴的算术平方根为2,故选A.点评:本题考查了算术平方根的概念.特别注意:应首先计算的值,然后再求算术平方根.2.(3分)(2013•济宁三模)据萧山区旅游局统计,2012年春节约有359525人来萧旅游,将这个旅游人数(保留三个有效数字)用科学记数法表示为()A.3.59×105B.3.60×105C.3.5×105D.3.6×105考点:科学记数法与有效数字专题:计算题.分析:根据科学记数法与有效数字的定义将359525保留三个有效数字得到3.60×105.解答:解:359525≈3.60×105.故选B.点评:本题考查了科学记数法与有效数字:把一个数表示成a×10n(1≤a<10)叫科学记数法;从一个数的左边第一个不为零的数字数起,到最后一个数字止,所有数字都是这个数的有效数字.3.(3分)(2013•济宁三模)下列运算正确的是()A.﹣(a﹣1)=﹣a﹣1 B.(﹣2a3)2=4a6C.(a﹣b)2=a2﹣b2D.a3+a2=2a5考点:完全平方公式;合并同类项;去括号与添括号;幂的乘方与积的乘方专题:常规题型.分析:根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.解答:解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.故选B.点评:本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.4.(3分)(2013•济宁三模)如图,由几个小正方体组成的立体图形的俯视图是()A.B.C.D.考点:简单组合体的三视图分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得:有两列小正方形第一列有3个正方形,第二层最右边有一个正方形.故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,考查了学生细心观察能力,属于基础题.5.(3分)(2013•济宁三模)下列事件中确定事件是()A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上考点:随机事件分析:确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解答:解:A、掷一枚均匀的硬币,正面朝上是随机事件;B、买一注福利彩票一定会中奖是随机事件;C、把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,即确定事件;D、掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上是随机事件.故选C.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.注意确定事件包括必然事件和不可能事件.6.(3分)(2013•济宁三模)若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠3考点:二次根式有意义的条件;分式有意义的条件专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选D.点评:本题考查了二次根式有意义的条件和分式的意义.考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.7.(3分)(2013•济宁三模)已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1 D.<k<1考点:解一元一次不等式组分析:利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.解答:解:第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1k的取值范围为<k<1.故选D.点评:要求k的取值范围可以通过解方程组,得到关于k的不等式组解决.8.(3分)(2013•济宁三模)二次函数y1=ax2﹣x+1的图象与y2=﹣2x2图象的形状,开口方向相同,只是位置不同,则二次函数y1的顶点坐标是()A.(﹣,﹣)B.(﹣,)C.(,)D.(,﹣)考点:二次函数的性质分析:因为图象的形状,开口方向相同,所以a=﹣2.利用公式法y=ax2+bx+c的顶点坐标公式即可求.解答:解:根据题意可知,a=﹣2,又∵=﹣,=,∴顶点坐标为(﹣,).故选B.点评:此题考查了二次函数的性质.9.(3分)(2013•济宁三模)如图,P1是反比例函数y=在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为()A.2B.2﹣1 C.2D.2﹣1考点:反比例函数综合题分析:由于△P1OA1为等边三角形,作P1C⊥OA1,垂足为C,由等边三角形的性质及勾股定理可求出点P1的坐标,根据点P1是反比例函数y=图象上的一点,利用待定系数法求出此反比例函数的解析式;作P2D⊥A1A2,垂足为D.设A1D=a,由于△P2A1A2为等边三角形,由等边三角形的性质及勾股定理,可用含a的代数式分别表示点P2的横、纵坐标,再代入反比例函数的解析式中,求出a的值,进而得出A2点的坐标.解答:解:(1)因为△P1OA1为边长是2的等边三角形,所以OC=1,P1C=2×=,所以P1(1,).代入y=,得k=,所以反比例函数的解析式为y=.作P2D⊥A1A2,垂足为D.设A1D=a,则OD=2+a,P2D=a,所以P2(2+a,a).∵P2(2+a,a)在反比例函数的图象上,∴代入y=,得(2+a)•a=,化简得a2+2a﹣1=0解得:a=﹣1±.∵a>0,∴a=﹣1+.∴A1A2=﹣2+2,∴OA2=OA1+A1A2=2,所以点A2的坐标为(2,0).故选C.点评:此题综合考查了反比例函数的性质,利用待定系数法求函数的解析式,正三角形的性质等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.10.(3分)(2013•济宁三模)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2012个正方形的面积为()A.B.C.D.考点:相似三角形的判定与性质;坐标与图形性质;正方形的性质专题:压轴题;规律型.分析:首先设正方形的面积分别为S1,S2…S2012,由题意可求得S1的值,易证得△BAA1∽△B1A1A2,利用相似三角形的对应边成比例与三角函数的性质,即可求得S2的值,继而求得S3的值,继而可得规律:S n=5×()2n﹣2,则可求得答案.解答:解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,设正方形的面积分别为S1,S2 (2012)根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x,∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD==,∴AB=AD=BC=,∴S1=5,∵∠DAO+∠ADO=90°,∠DAO+∠BAA1=90°,∴∠ADO=∠BAA1,∴tan∠BAA1===,∴A1B=,∴A1C=BC+A1B=,∴S2=×5=5×()2,∴==,∴A2B1=×=,∴A2C1=B1C1+A2B1=+==×()2,∴S3=×5=5×()4,由此可得:S n=5×()2n﹣2,∴S2012=5×()2×2012﹣2=5×()4022.故选D.点评:此题考查了相似三角形的判定与性质、正方形的性质以及三角函数等知识.此题难度较大,解题的关键是得到规律S n=5×()2n﹣2.二、填空题(本大题共5个小题.每小题3分,共15分.把答案填在题中横线上)11.(3分)(2013•济宁三模)分解因式:2x2+4x+2=2(x+1)2.考点:提公因式法与公式法的综合运用分析:先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.解答:解:2x2+4x+2=2(x2+2x+1)=2(x+1)2.故答案为:2(x+1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.(3分)(2013•济宁三模)当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为cm.考点:垂径定理的应用;勾股定理专题:压轴题;探究型.分析:连接OA,过点O作OD⊥AB于点D,由垂径定理可知,AD=AB=(9﹣1)=4,设OA=r,则OD=r﹣3,在Rt△OAD中利用勾股定理求出r的值即可.解答:解:连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=AB=(9﹣1)=4cm,设OA=r,则OD=r﹣3,在Rt△OAD中,OA2﹣OD2=AD2,即r2﹣(r﹣3)2=42,解得r=cm.故答案为:.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.13.(3分)(2013•济宁三模)化简的结果是m+1.考点:分式的混合运算专题:计算题.分析:把原式括号中通分后,利用同分母分式的加法运算法则:分母不变,只把分子相加进行计算,同时将除式的分母利用平方差公式分解因式,并根据除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后即可得到结果.解答:解:(1+)÷=(+)÷=•=•=m+1.故答案为:m+1点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时若分子分母是多项式,应先将多项式分解因式后再约分.14.(3分)(2013•济宁三模)如图,在矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF=.考点:矩形的性质;相似三角形的判定与性质专题:动点型.分析:根据△AEP∽△ADC;△DFP∽△DAB找出关系式解答.解答:解:设AP=x,PD=4﹣x,由勾股定理,得AC=BD==5,∵∠PAE=∠CAD,∠AEP=∠ADC=90°,∴Rt△AEP∽Rt△ADC;∴=,即=﹣﹣﹣(1).同理可得Rt△DFP∽Rt△DAB,∴=﹣﹣﹣(2).故(1)+(2)得=,∴PE+PF=.另解:∵四边形ABCD为矩形,∴△OAD为等腰三角形,∴PE+PF等于△OAD腰OA上的高,即Rt△ADC斜边上的高,∴PE+PF==.点评:此题比较简单,根据矩形的性质及相似三角形的性质解答即可.15.(3分)(2013•济宁三模)将边长为8cm的正方形ABCD的四边沿直线l向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是16π+8πcm.考点:弧长的计算;正方形的性质专题:压轴题.分析:可先计算旋转周时,正方形的顶点A所经过的路线的长,可以看出是四段弧长,根据弧长公式计算即可.解答:解:第一次旋转是以点C为圆心,AC为半径,旋转角度是90度,所以弧长==4π;第二次旋转是以点D为圆心,AD为半径,角度是90度,所以弧长==4π;第三次旋转是以点A为圆心,所以没有路程;第四次是以点B为圆心,AB为半径,角度是90度,所以弧长==4π;所以旋转一周的弧长共=4π+8π.所以正方形滚动两周正方形的顶点A所经过的路线的长是16π+8π.点评:本题的关键是理清第一次旋转时的圆心及半径和圆心角的度数,然后利用弧长公式求解.三、解答题(本大题共8个小题.共55分.解答应写出文字说明、证明过程或演算步骤)16.(4分)(2013•济宁三模)计算:.考点:特殊角的三角函数值;实数的性质;零指数幂专题:计算题.分析:按照实数的运算法则依次计算,注意(﹣2)0=1,|﹣2|=2﹣.解答:解:原式=1﹣3×﹣(2﹣)=1﹣﹣2+=﹣1.点评:本题需注意的知识点是:任何不等于0的数的0次幂是1.负数的绝对值是正数.17.(4分)(2013•济宁三模)解方程:考点:解分式方程专题:计算题.分析:本题考查解分式方程的能力,观察可得方程最简公分母为x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边都乘以x(x﹣2)得x﹣3(x﹣2)=0,x﹣3x+6=0,﹣2x=﹣6,∴x=3,经检验x=3是原方程的根.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.(6分)(2013•济宁三模)(1)一个人由山底爬到山顶,需先爬45°的山坡200m,再爬30°的山坡300m,求山的高度(结果可保留根号).(2)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:考点:解直角三角形的应用-坡度坡角问题;全等三角形的判定与性质分析:(1)由已知可得到山的高度由两部分组成分别是45°和30°所对的高度,所以利用三角函数分别求得这两部分的值,此时山的高度就不难求了;(2)要使AC=BD,可以证明△ABC≌△BAD,从而得到结论.解答:(1)解:依题意,可得山高h=200sin45°+300sin30°=200×+300×=100+150(m)所以山高为(100+150)m.(2)解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明例举(以添加条件AD=BC为例):∵在△ABC与△BAD中,,∴△ABC≌△BAD(SAS).∴AC=BD.点评:(1)考查了坡度坡角的理解及解直角三角形的综合运用.(2)考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.19.(6分)(2013•济宁三模)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?考点:一元二次方程的应用专题:增长率问题;优选方案问题;压轴题.分析:(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.解答:解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.点评:本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.20.(7分)(2013•济宁三模)“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?考点:游戏公平性;条形统计图;概率公式;列表法与树状图法分析:(1)首先设D地车票有x张,根据去D地的车票占全部车票的10%列方程即可求得去D地的车票的数量,则可补全统计图;(2)根据概率公式直接求解即可求得答案;(3)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较是否相等即可求得答案.解答:解:(1)设D地车票有x张,则x=(x+20+40+30)×10%,解得x=10.即D地车票有10张.补全统计图如图所示.(2)小胡抽到去A地的概率为=.(3)不公平.以列表法说明:1 2 3 4小李掷得数字小王掷得数字1 (1,1)(1,2)(1,3)(1,4)2 (2,1)(2,2)(2,3)(2,4)3 (3,1)(3,2)(3,3)(3,4)4 (4,1)(4,2)(4,3)(4,4)或者画树状图法说明(如图)由此可知,共有16种等可能结果.其中小王掷得数字比小李掷得数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴小王掷得数字比小李掷得数字小的概率为=.则小王掷得数字不小于小李掷得数字的概率为=.∴这个规则对双方不公平.点评:本题考查的是用列表法或画树状图法求概率与概率公式得到应用.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)(2013•济宁三模)如图,反比例函数(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.考点:反比例函数综合题分析:(1)在直角△AOB中利用三角函数求得A的坐标,然后利用待定系数法即可求得k 的值;(2)已知E是DC的中点,则E的纵坐标已知,代入反比例函数的解析式即可求得E的坐标,然后利用待定系数法即可求得直线的解析式;(3)首先求得M、N的坐标,延长DA交y轴于点F,则AF⊥ON,利用勾股定理求得AN和EM的长,即可证得.解答:解:(1)由已知条件得,在Rt△OAB中,OB=2,tan∠AOB=,∴=,∴AB=3,∴A点的坐标为(2,3)…(1分)∴k=xy=6…(2分)(2)∵DC由AB平移得到,点E为DC的中点,∴点E的纵坐标为,…(3分)又∵点E在双曲线上,∴点E的坐标为(4,)…(4分)设直线MN的函数表达式为y=k1x+b,则,解得,∴直线MN 的函数表达式为.…(5分)(3)结论:AN=ME…(6分)理由:在表达式中,令y=0可得x=6,令x=0可得y=,∴点M(6,0),N(0,)…(7分)解法一:延长DA交y轴于点F,则AF⊥ON,且AF=2,OF=3,∴NF=ON﹣OF=,∴根据勾股定理可得AN=…(8分)∵CM=6﹣4=2,EC=∴根据勾股定理可得EM=∴AN=ME…(9分)解法二:连接OE,延长DA交y轴于点F,则AF⊥ON,且AF=2,∵S△EOM=,S△AON=…(8分)∴S△EOM=S△AON,∵AN和ME边上的高相等,∴AN=ME…(9分)点评:本题是待定系数法求一次函数的解析式,以及勾股定理的综合应用,求得E的坐标是关键.22.(9分)(2013•济宁三模)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;(3)在(2)小题的条件下,AC与BG的交点为M,当AB=4,AD=时,求线段CM的长.考点:四边形综合题分析:(1)根据△ABC是等腰直角三角形,四边形ADEF是正方形,根据角边角关系证出△BAD≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF;(2)先设BG交AC于点M,根据(1)证出的△BAD≌△CAF,可得∠ABM=∠GCM,又根据对顶角相等,得出△BMA∽△CMG,再根据根据相似三角形的对应角相等,可得∠BGC=∠BAC=90°,即可证出BD⊥CF;(3)首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN的长,又由等角的三角函数值相等,可求得AM的值,从而求出CM的值.解答:(1)解:BD=CF成立.理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF.(2)证明:设BG交AC于点M,∵△BAD≌△CAF,∴∠ABM=∠GCM,∵∠BMA=∠CMG,∴△BMA∽△CMG,∴∠BGC=∠BAC=90°,∴BD⊥CF.(3)过点F作FN⊥AC于点N,∵在正方形ADEF中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC中,AB=AC=4,∴CN=AC﹣AN=3,BC==4,∴在Rt△FCN中,tan∠FCN==,∴在Rt△ABM中,tan∠ABM=tan∠FCN=,∴AM=AB=,∴CM=AC﹣AM=4﹣=.点评:此题考查了四边形的综合,用到的知识点是相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的性质、矩形的性质、勾股定理以及三角函数等知识,此题综合性很强,难度较大,注意数形结合思想应用.23.(10分)(2013•济宁三模)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B 两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.考点:二次函数综合题专题:综合题;压轴题;数形结合;分类讨论.分析:(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=﹣x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.解答:解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).点评:本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、全等三角形与相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。
济宁市2013年中考数学试卷及答案绝密☆启用并使用完毕前试卷类型A 济宁市二〇一三年高中阶段学校招生考试数学试题注意事项:1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分,共6页.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第Ⅰ卷时,必须使用2B铅笔把答题卡上相应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.4.答第Ⅱ卷时,必须使用0.5毫米黑色签字笔在答题卡上书写.务必在题号所指示的答题区域内作答.答作图题时,要先用2B铅笔试画,无误后用黑色签字笔描黑.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作A.-10m B.-12m C.+10m D.+12m答案:A2.如果整式x n-2-5x+2是关于x的三次三项式,那么n等于A.3 B.4 C.5 D.6答案:C3.2013年国家财政支出将大幅向民生倾斜,民生领域里流量最大的开销是教育,预算支出将达到23 000多亿元.将23 000用科学记数法表示应为A.2.3×104B.0.23×106C.2.3×105D.23×104答案:A4.已知ab=4,若-2≤b≤-1,则a的取值范围是A.a≥-4 B.a≥-2 C.-4≤a≤-1 D.-4≤a≤-2答案:D5.(2013山东济宁,5,3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.当-1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大答案:B6.下列说法正确的是A .中位数就是一组数据中最中间的一个数B .8,9,9,10,10,11这组数据的众数是9C .如果x 1,x 2,x 3,…,x n 的平均数是x ,那么(x 1-x )+(x 2-x )+…+(x n -x )=0D .一组数据的方差是这组数据的极差的平方答案:C7.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多A .60元B .80元C .120元D .180元答案:C8.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是A .(0,0)B .(0,1)C .(0,2)D .(0,3)答案:D9.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为A .45cm 2B .85cm 2C .165cm 2D .325cm 2答案:B10.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG 的长为A.4 B.323C.6 D.3答案:B第Ⅱ卷共70分11.(2013山东济宁,11,3分)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为_____cm.答案:1812.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为________cm.答案:45π 13.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是________. 答案:3214.(2013山东济宁,14,3分)三棱柱的三视图如图所示,△EFG 中,EF=8cm ,EG=12cm ,∠EGF=30°,则AB 的长为_________cm .答案:615.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有________盏灯.答案:3三、解答题:本大题共8小题,共55分.16.(5分)计算:(2-3)2012·(2+3)2013-232--(2-)0. 解:原式=[(2-3)(2+3)]2012·(2+3)-3-1=2+3-3-1=1。
因式分解典型例题例01 选择题:对n np mp m 22+++运用分组分解法分解因式,分组正确的是()(A )mp np n m +++)22( (B ))2()2(mp n np m +++(C ))()22(nm mp n m +++ (D )np mp n m +++)22(分析 本组题目用来判断分组是否适当.(A )的两组之间没有公因式可以提取,因而(A )不正确;(B )的两组,每一组第一次就没有公因式可提,故(B )不正确;(D )中两组也无公因式可提,故(D )不正确.(C )中第一组可提取公因式2,剩下因式)(n m +;第二组可提取p ,剩下因式)(n m +,这样组间可提公因式)(n m +,故(C )正确.典型例题二例02 用分组分解法分解因式:(1)x xy y x 21372-+-;(2)22441y xy x -+-.分析 本题所给多项式为四项多项式,属于分组分解法的基本题型,通过分组后提公因式或分组后运用公式可以达到分解的目的.解 ⑴x xy y x 21372-+- )3()217(2xy y x x +-+-=(合理分组))3()3(7-+-=x y x x (组内提公因式))7)(3(y x x +-=(组间提公因式)⑵22441y xy x -+- )44(122y xy x +--=(注意符号)2)2(1y x --=(组内运用公式)[][])2(1)2(1y x y x ---+=(组间运用公式))21)(21(y x y x +--+=说明 分组分解法应用较为灵活,分组时要有预见性,可根据分组后“求同”——有公因式或可运用公式的原则来合理分组,达到分解的目的.另外在应用分组分解法时还应注意:①运用分组分解法时,可灵活选择分组方法,通常一个多项式分组方法不只一种,只要能达到分解法时,殊途同归.②分组时要添加带“-”的括号时,各项要注意改变符号,如⑵的第一步.典型例题三例03 分解因式:315523+--x x x分析 本题按字母x 的降幂排列整齐,且没有缺项,系数分别为5,15-,1-,3.系数比相等的有31155-=-或31515-=-,因而可分组为)5(3x x -、)315(2+-x 或)155(23x x -、)3(+-x . 解法一 315523+--x x x )3()155(23+-+-=x x x (学会分组的技巧))3()3(52---=x x x)15)(3(2--=x x解法二 315523+--x x x )315()5(23+-+-=x x x)15(3)15(22---=x x x)3)(15(2--=x x说明 根据“对应系数成比例”的原则合理分组,可谓分组的一大技巧!典型例题四 例04 分解因式:x xy y x 21372-+-分析 本例为四项多项式,可考虑用分组分解法来分解.见前例,可用“系数成比例”的规律来达到合理分组的目的.解法一 x xy y x 21372-+- )3()217(2xy y x x +-+-=)3()3(7-+-=x y x x)7)(3(y x x +-=解法二 x xy y x 21372-+- )213()7(2x y xy x --++=)7(3)7(y x y x x +-+=)7)(3(y x x +-=说明 本例属于灵活选择分组方法来进行因式分解的应用题,对于四项式,并不是只要所分组的项数相等,便可完成因式分解.要使分解成功,需考虑到分组后能否继续分解.本小题利用“对应系数成比例”的规律进行巧妙分组,可谓思维的独到之处,这样避免了盲目性,提高了分解的速度.典型例题五例05 把下列各式分解因式:(1)222z yz y xz xy -+--;(2)122222+----a bc c b a ;(3)1424422+--++y x y xy x .分析 此组题项数较多,考虑用分组法来分解.解法 (1)222z yz y xz xy -+-- )2()(22z yz y xz xy +---=2)()(z y z y x ---=))((z y x z y +--=(2)122222+----a bc c b a )2()12(222c bc b a a ++-+-=22)()1(c b a +--=)1)(1(c b a c b a ---++-=(3)1424422+--++y x y xy x 1)42()44(22++-++=y x y xy x1)2(2)2(2++-+=y x y x2)12(-+=y x说明 对于项数较多的多项式合理分组时,以“交叉项”为突破口,寻找“相应的平方项”进行分组,这使分组有了一定的针对性,省时提速.如⑴中,“交叉项”为yz 2,相应的平方项为2y 、2z ;⑵中,“交叉项”为bc 2,相应的平方项为2b 、2c .典型例题六例06 分解因式:(1)652+-a a ;(2)1032-+m m .分析 本题两例属于pq x q p x +++)(2型的二次三项式,可用规律公式来加以分解.解 (1) )3()2(6-⨯-=,5)3()2(-=-+-,∴)3()2()32(6522-⨯-++-=+-a a a a(2) 5210⨯-=-,352=+-,∴=-+1032m m [])2()5()2(52-⨯++-++m m)2)(5(-+=n m .说明 抓住符号变化的规律,直接运用规律.典型例题七例07 分解因式:(1)4)(5)(2++++b a b a ;(2)22127q pq p +-.分析 对(1),利用整体思想,将)(b a +看作一个字母,则运用pq x q p x +++)(2型分解;对(2),将其看作关于p 的二次三项式,则一次项系数为p 7-,常数项为212q ,仍可用pq x q p x +++)(2型的二次三项式的规律公式达到分解的目的.解 (1)4)(5)(2++++b a b a )4)(1(++++=b a b a(2) )4()3(122q q q -⋅-=,q q q 7)4(3-=-+-, ∴22127q pq p +-22127q pq p +-=)4)(3(q p q p --=.典型例题八例08 分解因式:⑴134-+-x x x ;⑵q p q pq p 36522++++;⑶)1)(1()1)(1(-+--+b b b a a a ;⑷c c bc b a b a --+++-222424.分析 本组题有较强的综合性,且每小题均超过三项,因而可考虑通过分组来分解.解 ⑴法一:134-+-x x x )1()(34-+-=x x x)3)(2(--=a a)1()1(3-+-=x x x)1)(1(3+-=x x (13+x 可继续分解,方法很简单:)1()(3++-x x x ,对于13-x 方法类似,可以自己探索))1)(1)(1(2+-+-=x x x x法二:134-+-x x x)()1(34x x x +-+-=)1()1)(1(222--+-=x x x x)1)(1(22x x x -+-=)1)(1)(1(2+--+=x x x x法三:134-+-x x x)1()(34--++=x x x)1()1(33+-+=x x x)1)(1(3-+=x x)1)(1)(1(2-+-+=x x x x⑵q p q pq p 36522++++)3()65(22q p q pq p ++++=(看作ab x b a x +++)(2型式子分解))3()3)(2(q p q p q p ++++=)12)(3(+++=q p q p⑶)1)(1()1)(1(-+--+b b b a a a)1()1(22---=b b a ab b a a +--=33)()(33b a b a ---=)())((22b a b ab a b a --++-=)1)((22-++-=b ab a b a⑷c c bc b a b a --+++-222424 )2()44(222c b a c bc b a -+++--=)2()2(22c b a c b a -++--=[][])2()2()2(c b a c b a c b a -++---+=)2()2)(2(c b a c b a c b a -+++--+=)12)(2(++--+=c b a c b a说明 ⑴中,虽然三法均达到分解目的,但从目前同学们知识范围来看,方法二较好,分组既要合理又要巧妙,使分组不仅达到分解目的,又能简化分解过程,降低思维难度.⑵式虽超过四项,但通过分组仍可巧妙分解,只是分组后不是通常的提公因式或运用公式,而是利用了ab x b a x +++)(2型二次三项式的因式分解.将2265q pq p ++看做关于p 的二次三项式q q q 3262⋅=,2265q qp p ++q q p q q p 32)32(2⋅+++=. ⑶式表面看无法分解,既找不到公因式,又不符合公式特点,对待此类题目,应采用“先破后立”的方式来解决.即先做多项式乘法打破原式结构,然后寻找合适的方法.⑷式项数多,但仔细观察,项与项之间有着内在联系,可通过巧妙分组以求突破.但应注意:①不可混淆因式分解与整式乘法的意义.如⑶小题中做乘法的目的是为了分解因式,不可在分解中,半路再返回做乘法.②善于将外在形式复杂的题目看做熟悉类型,如⑵小题中2265q pq p ++.典型例题九例09 分解因式:(1)6)2)(1(---x x x ;(2))()1(222b a x x ab +++分析 本组两个小题既无公因式可提又不符合公式特点,原题本身给出的分组形式无法继续进行,达到分解的目的,对此类型题,可采用先去括号,再重新分组来进行因式分解.解 ⑴6)2)(1(---x x x 6)23(2-+-=x x x62323-+-=x x x (乘法运算,去括号))62()3(23-+-=x x x (重新分组))3(2)3(2-+-=x x x)2)(3(2+-=x x⑵)()1(222b a x x ab +++ x b x a ab abx 222+++=(乘法运算去括号))()(222x b ab x a abx +++=(重新分组))()(a bx b a bx ax +++=))((bx a b ax ++=说明 “先破后立,不破不立”.思维的独创性使表面看来无法分解的多项式找到最佳的分解方式.典型例题十例10 分解因式673+-a a 分析 因式分解一般思路是:“一提、二代、三分组、其次考虑规律式(十字相乘法)” .即:首先考虑是否有公因式可提,若有公因式,先提取公因式;其次考虑可否套用公式,用公式法分解;再考虑是否可以分组分解;对形如二次三项式或准二次三项式可以考虑用“规律式”(或十字相乘法)分解.按照这样的思路,本题首应考虑用分组分解来尝试.解 7176733+--=+-a a a a )77()1(3---=a a)1(7)1)(1(2--++-=a a a a)71)(1(2-++-=a a a)6)(1(2-+-=a a a)3)(2)(1(+--=a a a说明 当1=a 时,多项式673+-a a 值为0,因而)1(-a 是673+-a a 的一个因式,因此,可从“凑因子” )1(-a 的角度考虑,把6拆成71+-,使分组可行,分解成功.运用“凑因子”的技巧还可得出以下分解方法.法二:673+-a a 663+--=a a a)1(6)1()66()(23---=---=a a a a a a)1(6)1)(1(--+-=a a a a)6)(1(2-+-=a a a)3)(2)(1(+--=a a a法三:673+-a a14873+--=a a)147()8(3---=a a (凑立方项))2(7)42)(2(2--++-=a a a a)742)(2(2-++-=a a a)32)(2(2-+-=a a a)3)(1)(2(+--=a a a法四:673+-a a212773-+-=a a (与3a 凑立方项))217()27(3+-+=a a)3(7)93)(3(2+-+-+=a a a a (套用33b a +公式))793)(3(2-+-+=a a a)23)(3(2+-+=a a a)2)(1)(3(--+=a a a法五:673+-a a6343+--=a a a (拆a 7项))63()4(3---=a a a)2(3)4(2---=a a a)2(3)2)(2(---+=a a a a)32)(2(2-+-=a a a)3)(1)(2(+--=a a a法六:673+-a a6293++-=a a a (凑平方差公式变a 7-项))62()9(3++-=a a a)3(2)9(2++-=a a a)3(2)3)(3(++-+=a a a a)23)(3(2+-+=a a a)2)(1)(3(--+=a a a法七:令1+=x a 则(1-a 为多项式一个因式,做变换1+=a x )673+-a a 6)1(7)1(3++-+=x x67713323+--+++=x x x x (做乘法展开)x x x 4323-+=)4)(1()43(2+-=-+=x x x x x x)31)(21)(11(++-++-=x x x)3)(2)(1(+--=a a a (还原回a )说明 以上七种方法中,前六种运用了因式分解的一种常用技巧——“拆项”(或添项),这种技巧以基本方法为线索,通过凑因式、凑公式等形式达到可分组继而能分解的目的.“凑”时,需思、需悟、触发灵感.第七种运用了变换的方法,通过换元寻找突破点.本题还可以如下变形:673+-a a =)6)(1()1()67()(2223--+-=+-+-a a a a a a a a =……典型例题十一例11 若2542++kx x 是完全平方式,求k 的值.分析 原式为完全平方式,由22)2(4x x =,2525=即知为2)52(±x ,展开即得k 值.解 2542++kx x 是完全平方式 ∴应为2)52(±x又 25204)52(22+±=±x x x ,故20±=k .说明 完全平方式分为完全平方和与完全平方差,确定k 值时不要漏掉各种情况.此题为因式分解的逆向思维类,运用222)(2b a b ab a ±=+±来求解.典型例题十二例11 把下列各式分解因式:(1)1682++x x ; (2)63244914b b a a +-(3)1)2(6)2(92+---b a b a解:(1)由于16可以看作24,于是有 222442168+⋅⋅+=++x x x x2)4(+=x ;(2)由幂的乘方公式,4a 可以看作22)(a ,649b 可以看作23)7(b ,于是有 2332226324)7(72)(4914b b a a b b a a +⋅⋅-=+-232)7(b a -=;(3)由积的乘方公式,2)2(9b a -可以看作2)]2(3[b a -,于是有 1)2(6)2(92+---b a b a11)2(32)]2(3[2+⋅-⋅--=b a b a2]1)2(3[--=b a 2)136(--=b a说明(1)多项式具有如下特征时,可以运用完全平方公式作因式分解:①可以看成是关于某个字母的二次三项式;②其中有两项可以分别看作是两数的平方形式,且符号相同;③其余的一项恰是这两数乘积的2倍,或这两数乘积2倍的相反数. 而结果是“和”的平方还是“差”的平方,取决于它的符号与平方项前的符号是否相同.(2)在运用完全平方公式的过程中,再次体现换元思想的应用,可见换元思想是重要而且常用思想方法,要真正理解,学会运用.典型例题十三例12 求证:对于任意自然数n ,1322323+++-+-n n n n 一定是10的倍数.分析 欲证是10的倍数,看原式可否化成含10的因式的积的形式.证明 1322323+++-+-n n n n)22()33(132++++-+=n n n n)22(2)13(332+-+=n n102103⨯-⨯=n n)23(10n n -=)23(10n n -是10的倍数, ∴1322323+++-+-n n n n 一定是10的倍数. 典型例题十四例13 因式分解(1)y b x b y a x a 2222+++; (2)nx n mx mx --+2解:(1))()(22222222y b x b b a x a y b x b y a x a +++=+++)()(22y x b y x a +++=))((22b a y x ++=或 )()(22222222y b y a x b x a y b x b y a x a +++=+++)()(2222b a y b a x +++=))((22y x b a ++=;(2))()(22nx n mx mx nx n mx mx +-+=--+)1()1(x n x mx +-+=))(1(n mx x -+=或)()(22n nx nx mx nx n mx mx -+-=--+)()(n mx n mx x -+-=)1)((+-=x n mx说明:(1)把有公因式的各项归为一组,并使组之间产生新的公因式,这是正确分组的关键所在。
2013年数学中考试卷及答案2013年中考数学试卷包括三个部分:①阅读理解,②解答题,③计算题和填空题。
各部分题量如下:①阅读理解1道;②解答题1道;③计算题1道;④计算题2道。
其中填空1道、解答题1道。
这道试卷主要考查了学生的知识迁移能力,即学生在解决实际问题的过程中发现问题、解决问题能力,同时也考察了学生语言表达能力。
答题时间为45分钟。
①阅读理解2个大题、②解答题2个小题,③计算题1个小题。
要求学生能较熟练地运用所学知识解决问题,能从自己或他人熟悉的情境中发现新问题并提出不同观点、结论,以及能进行简单地推理、判断、证明。
一、试题主要考查了数形结合和空间想象能力。
这是对学生数形结合、空间想象能力的有力考查。
例如第2、3题有一个明显的特征,就是考查了关于物体的面积的计算;第8、9、10题考查了坐标系知识;第9、10、11题和第20题考查了椭圆的面积计算;第22题考查了圆锥曲线与圆锥坐标系之间的联系;第23题考查了三角形的面积计算两种方法中的一种;第24题解答了一道关于四线段的平行四边形的图形,用三角形的基本性质求直线(圆)与直角三角形(直角)的值;第25题在解答一道关于圆锥曲线的问题中,以圆上一个坐标为圆心,画出一个圆并作线段证明了这个圆的面积;第26题考查了一个关于抛物线的图形求点坐标的问题;第26题考查了一道利用图象(点)表示三角形内角的面积;第27题以圆为背景考查了一枚圆心和圆对称方程组)的求解过程、求圆面积的方法;这就涉及了圆锥曲线的画法和圆几何图形、圆与平行四边形等数学知识和概念的考查。
同时通过这些题目也让学生充分感受到学习数学的乐趣和快乐。
这体现了中考数学命题在知识考查中体现了回归教材这一特点。
特别是在一些重要章节与重点内容中体现了数形结合、空间想象等考查特点。
例如第1、2、3、5题分别考查了点的坐标及面积。
第3、5、6题考查了圆的面积计算和坐标系中相关公式的掌握或应用等。
二、考查了学生的运算能力,也包括空间想象能力。
浙江省嘉兴市2013年中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.(4分)(2013•嘉兴)﹣2的相反数是()A.2B.﹣2C.D.考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣2的相反数是2,故选:A.点评:此题主要考查了相反数,关键是掌握相反数的定义.2.(4分)(2013•嘉兴)如图,由三个小立方块搭成的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到两个相邻的正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(4分)(2013•嘉兴)据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数2500万用科学记数法表示为()A.2.5×108B.2.5×107C.2.5×106D.25×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2500万=25000000=2.5×107,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2013•嘉兴)在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是()A.1.71B.1.85C.1.90D.2.31考点:众数.分析:根据众数的概念:一组数据中出现次数最多的数据叫做众数求解即可.解答:解:数据1.85出现2次,次数最多,所以众数是1.85.故选B.点评:考查众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.(4分)(2013•嘉兴)下列运算正确的是()A.x2+x3=x5B.2x2﹣x2=1C.x2•x3=x6D.x6÷x3=x3考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可.解答:解:A、x2与x3不是同类项,不能直接合并,原式计算错误,故本选项错误;B、2x2﹣x2=x2,原式计算错误,故本选项正确;C、x2•x3=x5,原式计算错误,故本选项错误;D、x6÷x3=x3,原式计算正确,故本选项正确;故选D.点评:本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.6.(4分)(2013•嘉兴)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为()A.cm B.cm C.cm D.7πcm考点:弧长的计算.分析:根据题意得出圆的半径,及弧所对的圆心角,代入公式计算即可.解答:解:∵字样在罐头侧面所形成的弧的度数为45°,∴此弧所对的圆心角为90°,由题意可得,R=cm,则“蘑菇罐头”字样的长==π.故选B.点评:本题考查了弧长的计算,解答本题关键是根据题意得出圆心角,及半径,要求熟练记忆弧长的计算公式.7.(4分)(2013•嘉兴)下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A.①B.②C.③D.④考点:全面调查与抽样调查;方差;随机事件;概率的意义.分析:了解一批灯泡的使用寿命,应采用抽样调查的方式,普查破坏性较强,不合适;根据概率的意义可得②错误;根据方差的意义可得③正确;根据必然事件可得④错误.解答:解:①要了解一批灯泡的使用寿命,应采用抽样调查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖,说法错误;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定,说法正确;④“掷一枚硬币,正面朝上”是必然事件,说法错误,是随机事件.故选:C.点评:此题主要考查了抽样调查、随机事件、方差、概率,关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8.(4分)(2013•嘉兴)若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1B.直线x=﹣2C.直线x=﹣1D.直线x=﹣4考点:二次函数的性质;一次函数图象上点的坐标特征.分析:先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.解答:解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣1.故选C.点评:本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中.用到的知识点:点在函数的图象上,则点的坐标满足函数的解析式;二次函数y=ax2+bx+c的对称轴为直线x=﹣.9.(4分)(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D.2考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE 中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(4分)(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点考点:一次函数图象上点的坐标特征.专题:新定义.分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D (x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.解答:解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)(2013•嘉兴)二次根式中,x的取值范围是x≥3.考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.点评:本题考查的知识点为:二次根式的被开方数是非负数.12.(5分)(2013•嘉兴)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:∵布袋中装有3个红球和4个白球,∴从袋子中随机摸出一个球,这个球是白球的概率为:=.故答案为:.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(5分)(2010•鞍山)因式分解:ab2﹣a=a(b+1)(b﹣1).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,再运用平方差公式继续分解因式.解答:解:ab2﹣a,=a(b2﹣1),=a(b+1)(b﹣1).点评:本题考查了提公因式法与公式法分解因式,关键在于提取公因式后要进行二次因式分解,因式分解一定要彻底,直到不能再分解为止.14.(5分)(2013•嘉兴)在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O 按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为外切.考点:圆与圆的位置关系;旋转的性质.专题:计算题.分析:根据旋转的性质得到△OAB为等边三角形,则AB=OA=2,而⊙A、⊙B的半径都为1,根据圆与圆的位置关系即可判断两圆的位置关系.解答:解:∵⊙A绕点O按逆时针方向旋转60°得到的⊙B,∴△OAB为等边三角形,∴AB=OA=2,∵⊙A、⊙B的半径都为1,∴AB等于两圆半径之和,∴⊙A与⊙B外切.故答案为外切.点评:本题考查了圆与圆的位置关系:两圆的半径分别为R、r,两圆的圆心距为d,若d=R+r,则两圆外切.也考查了旋转的性质.15.(5分)(2013•嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.考点:由实际问题抽象出分式方程.分析:先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.解答:解:根据题意得:﹣=3;故答案为:﹣=3.点评:此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.16.(5分)(2013•嘉兴)如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P与正方形的边碰撞的次数为6,小球P所经过的路程为6.考点:正方形的性质;轴对称的性质.分析:根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置,从而可得反射的次数.再由勾股定理就可以求出小球经过的路径的总长度.解答:解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为G,在DA上,且DG=DA,第三次碰撞点为H,在DC上,且DH=DC,第四次碰撞点为M,在CB上,且CM=BC,第五次碰撞点为N,在DA上,且AN=AD,第六次回到E点,AE=AB.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球经过的路程为:+++++=6,故答案为:6,6.点评:本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的位置,从而可得反射的次数,由勾股定理来确定小球经过的路程,是一道学科综合试题,属于难题.三、解答题(本大题有8小题,第17~20题每题8分,第21题每题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)(2013•嘉兴)(1)计算:|﹣4|﹣+(﹣2)0;(2)化简:a(b+1)﹣ab﹣1.考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项利用负数的绝对值等于它的相反数化简,第二项利用平方根的定义化简,最后一项利用零指数幂法则计算,即可得到结果;(2)原式去括号合并即可得到结果.解答:解:(1)原式=4﹣3+1=2;(2)原式=ab+a﹣ab﹣1=a﹣1.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.(8分)(2013•嘉兴)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?考点:全等三角形的判定与性质.分析:(1)根据AAS即可推出△ABE和△DCE全等;(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.解答:(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.点评:本题考查了三角形外角性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.19.(8分)(2013•嘉兴)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)将A坐标代入一次函数解析式中求出k的值,确定出一次函数解析式,将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例解析式;(2)设一次函数与x轴交点为D点,过A作AE垂直于x轴,三角形ABC面积=三角形BDN面积﹣三口安排下ADE面积﹣梯形AECN面积,求出即可.解答:解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为y=;(2)设一次函数与x轴交于D点,令y=0,求出x=﹣1,即OD=1,∴A(1,2),∴AE=2,OE=1,∵N(3,0),∴到B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,∴B(3,4),即ON=3,BN=4,C(3,),即CN=,=S△BDN﹣S△ADE﹣S梯形AECN=×4×4﹣×2×2﹣×(+2)×2=.则S△ABC点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解析式,三角形、梯形的面积求法,熟练掌握待定系数法是解本题的关键.20.(8分)(2013•嘉兴)为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?考点:条形统计图;用样本估计总体;扇形统计图;中位数.分析:(1)零用钱是40元的是10人,占25%,据此即可求得总人数,总人数乘以所占的比例即可求得零用钱是20元的人数,则统计图可以作出;(2)求出零用钱是50元的所占的比例,乘以360度即可求得对应的扇形的圆心角,根据中位数的定义可以求得中位数;(3)首先求得抽取的学生的零用钱的平均数,平均数的一半乘以1000即可求解.解答:解:(1)随机调查的学生数是:10÷25%=40(人),零花钱是20圆的人数是:40×20%=8(人).;(2)50元的所占的比例是:=,则圆心角36°,中位数是30元;(3)学生的零用钱是:=32.5(元),则全校学生共捐款×32.5×1000=16250元.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)(2013•舟山)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).考点:解直角三角形的应用;菱形的性质.分析:先求出校门关闭时,20个菱形的宽即大门的宽;再求出校门打开时,20个菱形的宽即伸缩门的宽;然后将它们相减即可.解答:解:如图,校门关闭时,取其中一个菱形ABCD.根据题意,得∠BAD=60°,AB=0.3米.∵在菱形ABCD中,AB=AD,∴△BAD是等边三角形,∴BD=AB=0.3米,∴大门的宽是:0.3×20≈6(米);校门打开时,取其中一个菱形A1B1C1D1.根据题意,得∠B1A1D1=10°,A1B1=0.3米.∵在菱形A1B1C1D1中,A1C1⊥B1D1,∠B1A1O1=5°,∴在Rt△A1B1O1中,B1O1=sin∠B1A1O1•A1B1=sin5°×0.3=0.02616(米),∴B1D1=2B1O1=0.05232米,∴伸缩门的宽是:0.05232×20=1.0464米;∴校门打开的宽度为:6﹣1.0464=4.9536≈5(米).故校门打开了5米.点评:本题考查了菱形的性质,解直角三角形的应用,难度适中.解题的关键是把实际问题转化为数学问题,只要把实际问题抽象到解直角三角形中,一切将迎刃而解.22.(12分)(2013•嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.考点:作图—应用与设计作图;平行线的性质;等腰三角形的性质.分析:(1)根据平行线的性质得出即可;(2)根据题意,有3个角与∠PAB相等.由等腰三角形的性质,可知∠PAB=∠PDA;又对顶角相等,可知∠BDC=∠PDA;由平行线性质,可知∠PDA=∠1.因此∠PAB=∠PDA=∠BDC=∠1;(3)作出线段AB的垂直平分线EF,由等腰三角形的性质可知,EF是顶角的平分线,故EF即为所求作的图形.解答:解:(1)PC∥a(两直线平行,同位角相等);(2)∠PAB=∠PDA=∠BDC=∠1,如图,∵PA=PD,∴∠PAB=∠PDA,∵∠BDC=∠PDA(对顶角相等),又∵PC∥a,∴∠PDA=∠1,∴∠PAB=∠PDA=∠BDC=∠1;(3)如图,作线段AB的垂直平分线EF,则EF是所求作的图形.点评:本题涉及到的几何基本作图包括:(1)过直线外一点作直线的平行线,(2)作线段的垂直平分线;涉及到的考点包括:(1)平行线的性质,(2)等腰三角形的性质,(3)对顶角的性质,(4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细阅读,理解题意,正确作答.23.(12分)(2013•嘉兴)某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?考点:二元一次方程组的应用;一元一次方程的应用.分析:(1)设年降水量为x万立方米,每人每年平均用水量为y立方米,根据储水量+降水量=总用水量建立方程求出其解就可以了;(2)设该城镇居民年平均用水量为z立方米才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可.解答:解:(1)设年降水量为x万立方米,每人每年平均用水量为y立方米,由他提议,得,解得:答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z立方米才能实现目标,由题意,得12000+25×200=20×25z,解得:z=34则50﹣34=16(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标.点评:本题是一道生活实际问题,考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用,解答时根据储水量+降水量=总用水量建立方程是关键.24.(14分)(2013•嘉兴)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m 的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?考点:二次函数综合题.专题:数形结合.分析:(1)将m=2代入原式,得到二次函数的顶点式,据此即可求出B点的坐标;(2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;(3)①根据点A和点B的坐标,得到x=2m,y=﹣m2+m+4,将m=代入y=﹣m2+m+4,即可求出二次函数的表达式;②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答.解答:解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABDP为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.点评:本题是二次函数综合题,涉及四边形的知识,同时也是存在性问题,解答时要注意数形结合及分类讨论.2013年山东省济宁市中考数学试卷(解析版)一.选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(2013济宁)一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作()A.﹣10m B.﹣12m C.+10m D.+12m考点:正数和负数.分析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解答:解:跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作﹣10m.故选A.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(2013济宁)如果整式x n﹣2﹣5x+2是关于x的三次三项式,那么n等于()A.3B.4C.5D.6考点:多项式.专题:计算题.分析:根据题意得到n﹣2=3,即可求出n的值.解答:解:由题意得:n﹣2=3,解得:n=5.故选C点评:此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.3.(2013济宁)2013年国家财政支出将大幅向民生倾斜,民生领域里流量最大的开销是教育,预算支出达到23000多亿元.将23000用科学记数法表示应为()A.2.3×104B.0.23×106C.2.3×105D.23×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:23000=2.3×104,故选A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2013济宁)已知ab=4,若﹣2≤b≤﹣1,则a的取值范围是()A.a≥﹣4B.a≥﹣2C.﹣4≤a≤﹣1D.﹣4≤a≤﹣2考点:不等式的性质.分析:根据已知条件可以求得b=,然后将b的值代入不等式﹣2≤b≤﹣1,通过解该不等式即可求得a的取值范围.解答:解:由ab=4,得b=,∵﹣2≤b≤﹣1,∴﹣2≤≤﹣1,∴﹣4≤a≤﹣2.故选D.点评:本题考查的是不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(2013济宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.当﹣1<x<3时,y>0C.c<0D.当x≥1时,y随x的增大而增大考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:A.抛物线的开口方向向下,则a<0.故本选项错误;B.根据图示知,抛物线的对称轴为x=1,抛物线与x轴的一交点的横坐标是﹣1,则抛物线与x轴的另一交点的横坐标是3,所以当﹣1<x<3时,y>0.故本选项正确;C.根据图示知,该抛物线与y轴交与正半轴,则c>0.故本选项错误;D.根据图示知,当x≥1时,y随x的增大而减小,故本选项错误.故选B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.6.(2013济宁)下列说法正确的是()A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n﹣)=0D.一组数据的方差是这组数据的极差的平方考点:方差;算术平均数;中位数;众数;极差.分析:根据中位数以及众数和平均数和极差、方差的定义分别判断得出即可.解答:解:A.当数据是奇数个时,按大小排列后,中位数就是一组数据中最中间的一个数,数据个数为偶数个时,按大小排列后,最中间的两个的平均数是中位数,故此选项错误;B.8,9,9,10,10,11这组数据的众数是9和10,故此选项错误;C.如果x1,x2,x3,…,x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n﹣)=x1+x2+x3+…+x n ﹣n=0,故此选项正确;D.一组数据的方差与极差没有关系,故此选项错误;故选:C.点评:此题主要考查了中位数以及众数和平均数和极差、方差的定义,根据定义举出反例是解题关键.7.(2013济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A.60元B.80元C.120元D.180元考点:一元一次方程的应用.分析:设这款服装的进价为x元,就可以根据题意建立方程300×0.8﹣x=60,就可以求出进价,再用标价减去进价就可以求出结论.解答:解:设这款服装的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.300﹣180=120,∴这款服装每件的标价比进价多120元.故选C.点评:本题时一道销售问题.考查了列一元一次方程解实际问题的运用,利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.8.(2013济宁)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C 是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C 的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)考点:轴对称-最短路线问题;坐标与图形性质.分析:根据轴对称做最短路线得出AE=BE,进而得出B′O=C′O,即可得出△ABC的周长最小时C点坐标.解答:解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(﹣3,0),AE=4,则BE=4,即BE=AE,。
数学试题第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作A.-10m B.-12m C.+10m D.+12m答案:A2.如果整式x n-2-5x+2是关于x的三次三项式,那么n等于A.3 B.4 C.5 D.6答案:C3.2013年国家财政支出将大幅向民生倾斜,民生领域里流量最大的开销是教育,预算支出将达到23 000多亿元.将23 000用科学记数法表示应为A.2.3×104B.0.23×106C.2.3×105D.23×104答案:A4.已知ab=4,若-2≤b≤-1,则a的取值范围是A.a≥-4 B.a≥-2 C.-4≤a≤-1 D.-4≤a≤-2答案:D5.(2013山东济宁,5,3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.当-1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大答案:B6.下列说法正确的是A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=0D.一组数据的方差是这组数据的极差的平方答案:C7.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多A.60元B.80元C.120元D.180元答案:C8.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是A .(0,0)B .(0,1)C .(0,2)D .(0,3)答案:D9.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为A .45cm 2B .85cm 2C .165cm 2D .325cm 2答案:B10.如图,以等边三角形ABC 的BC 边为直径画半圆,分别交AB 、AC 于点E 、D ,DF 是圆的切线,过点F 作BC 的垂线交BC 于点G .若AF 的长为2,则FG 的长为A .4B .33C .6D .32答案:B第Ⅱ卷 共70分11.(2013山东济宁,11,3分)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm ,到屏幕的距离为60cm ,且幻灯片中的图形的高度为6cm ,则屏幕上图形的高度为_____cm .答案:1812.如图,△ABC 和△A ′B ′C 是两个完全重合的直角三角板,∠B=30°,斜边长为10cm .三角板A ′B ′C 绕直角顶点C 顺时针旋转,当点A ′落在AB 边上时,CA ′旋转所构成的扇形的弧长为________cm .答案:45π 13.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是________. 答案:3214.(2013山东济宁,14,3分)三棱柱的三视图如图所示,△EFG 中,EF=8cm ,EG=12cm ,∠EGF=30°,则AB 的长为_________cm .答案:615.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有________盏灯.答案:3三、解答题:本大题共8小题,共55分.16.(5分)计算:(2-3)2012·(2+3)2013-232--(2-)0.解:原式=[(2-3)(2+3)]2012·(2+3)-3-1=2+3-3-1=1。
专题七专题七中考规律猜想专题其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,出现的形式可能以填空、选择或解答为主.现结合近年的中考试题来说明规律猜想题的酝酿与发现.一、在函数图象中酝酿与发现例1: (福州)如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为.思路点拨与解析:由直线,可知,得到,得到,可知的坐标为(2,0),同理可知的坐标为(4,0)…,的坐标为(,0)二、在生活图景中酝酿与发现例2:(湖北省恩施州)(1)计算:如图①,直径为的三等圆⊙O、⊙O、⊙O两两外切,切点分别为A、B、C,求O A的长(用含的代数式表示).(2)探索:若干个直径为的圆圈分别按如图②所示的方案一和如图③所示的方案二的方式排放,探索并求出这两种方案中层圆圈的高度和(用含、的代数式表示).(3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(≈1.73)思路点拨:有关两圆相切的问题,常作圆心距,在图①,通过添加辅助线构造等边三角形,O A恰好为等边三角形的高,借助勾股定理便可求解;在图③中,一层的高度恰好为,两层的高度恰好为+,三层的高度恰好为+,四层的高度恰好为+,层圆圈的高度=+。
解析:(1)∵⊙O、⊙O、⊙O两两外切,∴O O=O O=O O=a,又∵O A= O A ∴O A⊥O O,∴O A= = ,(2)=,=,(3) 方案二装运钢管最多。
即:按图10③的方式排放钢管,放置根数最多.根据题意,第一层排放31根,第二层排放30根,设钢管的放置层数为n,可得解得,∵为正整数,∴=35钢管放置的最多根数为:31×18+30×17=1068(根)三、在图形的叠加中酝酿与发现例3:(湖南衡阳)如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由个基础图形组成.四、在数列或等式中酝酿与发现例4:(广东中山)阅读下列材料:,,,由以上三个等式相加,可得读完以上材料,请你计算下列各题:(1)(写出过程);(2)= ;(3)= .思路点拨与解析:在所给的一系列等式中,既要观察横向的变化规律,也要观察纵向的变化规律:等式左边的第一列数比第二列数小1,等式右边的第一列数为常量,括号内的列数也依次递增1。
济宁市2013年中考数学试题第I 卷(选择题 共30分)一、选择题(本大题共 10个小题•每小题 3分,共30分•在每小题给出的四个选项中, 只有一项是符合题目要求的) 1. 4的算术平方根为()2. 据济宁市旅游局统计,2012年春节约有359525人来济旅游, 个有效数字)用科学计数法表示为()A • 3.59 X 105B . 3.60 X 105C . 3.5 X 1053•下列运算止确的是 ()A. a 1a 1B.3262a42 2 2C. a ba bD.325a a 2a4•如图,由几个小正方体组成的立体图形的左视图是 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有,2 ,3 ,4 ,5 , 6的均匀正方体骰子,骰子停止转动后奇数点朝上6.若式子 x 2x 3A.x > 2有意义,则x 的取值范围为 (> 2 )且X M 3B.x丰 3C.x> 2 或 x 丰 3 D.xA. 2B. 2C. 2D. 16将这个旅游人数(保留三5D . 3.6 X 10□/ A.B.5.下列事件中确定事件是()B.买一注福利彩票一定会中奖 A.掷一枚均匀的硬币,正面朝上” x 2y7.已知y2x y 4k,2k且1 x y1, 则k的取值范围为()A. 1 k 12B. 0 k12C. 0 k 1D.1k 128.二次函数力ax2 x 1的图像与y2x2图像的形状、开口方向相同,只是位置不同,则二次函数y1的顶点坐标是( )「19 19)C.(81 9、,)D.(4 81 9,)4 89.如图,P i是反比例函数k—(k>0)x 在第一象限图像上的一点,点A i的坐标为A. 2B. 2-110. 在平面坐标系中,正方形ABCD 勺位置如图所示,点A 的坐标为(1, 0),点D 的坐标 为(0,2),延长CB 交x 轴于点A ,作正方 形ABCC,延长CB i 交x 轴于点 A ,作正方形 A 2B 2CC 1, 按这样的规律进行下去,第2012个正方形的面积为( )A. 5 (3)2010B.5 (9)20102 4 C.5 (9)2012 D.5 (-)402242C. 2D. 2-1注意事项:1 •第n 卷共6页•用0.5mm 黑色墨水签字笔答在答题卡上.2•答卷前将密封线内的项目填写清楚•考试期间,一律不得使用计算器.第II 卷(非选择题共70 分)得 分 评卷人 二、填空题(本大题共 5个小题•每小题3分,共15分•把答案填在题中横线上)211. 分解因式:2x + 4x + 2= ____________ •12. 当宽为3cm 的刻度尺的一边与圆相切时, 另一边与圆的两个交点处的读数如图所示(单位: 的半径为 cm •等于ABCD 的四边沿直线I 向右滚动(不滑动),当正方形滚动两周时,cm三、解答题(本大题共 8个小题•共55分•解答应写出文字说明、证明过程或演算步骤)13.化简1; 的结果是m 2 114.如图,在矩形 ABCD中, AB=3, AD=4,点 P 在 AD 上,PE ± AC 于 E , PF 丄 BD 于 F ,贝U PE+PF 15.将边长为8cm 的正方形正方形的顶点A 所经过的路线的长是D (B) (A) A DI得分评卷人3tan30 v3 2AB C (D) B C16. (4 分)计算:(2)0求山的高度(结果可保留根号)⑵(3 分)如图,△ABD 中,AD 与BC 相交于O 点,/仁/ 2,请你添加一个条 件(不再添加其它线段,不再标注或使用其他字母 你添加的条件是: ____________ •得分 评卷人17.(4分)解方程: 得分评卷人(本题满分6分)(1) (3分)一个人由山底爬到山顶,需先爬45°的山坡200m ,再爬30°的山坡300m ,),使AC=BD 并给出证明18.证明:19.(本题满分6分)9某楼盘准备以每平方米 6000元的均价对外销售,由于国务院有关房地产的新政策出台 后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以 每平方米4860元的均价开盘销售.(1) 求平均每次下调的百分率;(2) 某人准备以开盘价均价购买一套 100平方米的住房,开发商给予以下两种优惠方案 以供选择:①打 9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?了前往各地的车票•下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列 问题: (1)若去D 地的车票占全部车票的10%请求出D 地车票的数量,并补全统计图;(2) 若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、 质地完全相同且充分洗匀),那么员工小胡抽到去 A 地的概率是多少?(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有 1,2,3,4 的 正四面体骰子的方法来确定,具小李” 的方法分析,这个规则对双方是否公平?得分评卷人(本题满分7分)“五•一”假期,某公司组织部分员工分别到 A B C 、D 四地旅游,公司按定额购买 20..试用“列表法或画树状图”21.(本题满分9分)10得分评卷人k如图,反比例函数 y —(x > 0)的图象经过线段 0A 的端点A , O 为原点,作 AB 丄x 轴x3 于点B,点B 的坐标为(2 , 0), tan / AOB=_ . 2 (1) 求k 的值;k(2) 将线段AB 沿x 轴正方向平移到线段 DC 的位置,反比例函数y _(x >0)的图象恰好x经过DC 的中点E ,求直线AE 的函数表达式;(3) 若直线AE 与x 轴交于点 M 与y 轴交于点N,请你探索线段 AN 与线段ME 的大小关 系,写出你的结论并说明理由 •23.(本题满分11分)得分评卷人如图〔,△ ABC是等腰直角三角形,四边形ADEF是正方形,D F分别在AB AC边上, 此时BD=CF BDL CF成立.(1) 当正方形ADEF绕点A逆时针旋转0 (0°<0< 90°)时,如图2, BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2) 当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BDL CF;A D B§11(3) 在⑵ 小题的条件下,AC与BG的交点为M 当AB=4, AD=]{时,求线段CM的长.23.(本题满分12分)y=kx-6与抛物线y =ax 2+bx+c 相交于 A , B 两点,且点 A (1, -4 )为抛 物线的顶点,点 B 在x 轴上.(1) 求抛物线的解析式;(2) 在(1)中抛物线的第二象限图象上是否存在一点卩,使厶POB 与厶POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且△ ABQ 为直角三角形,求点 Q 的坐标.得分评卷人如图,已知直线9.12.13V 2 1 200 30022150 100、、2(m)所以山高为(150 100\2)m .⑵ 解:添加条件例举: AD= BC; OC= OD / C =Z D;/ CAO=/ DBC 等.证明例举(以添加条件 AD = BC 为例):•/ AB=AB,/ 1 = / 2, BC = AD,••• △ ABC^A BAD••• AC=BD.19•解:(1)设平均每次下调的百分率 x ,则 6000 (1 — x ) 2 = 4860. 解得:X 1 = 0.1 , x 2 = 1.9 (舍去).、选择题 1. A 2.B 3.7. D 8.B 二、填空题 11. 2 x 1 1214.15. 5三、解答题16.解: 原式济宁市2013年中考数学试题参考答案B 4.25 616 5. 10.13.C 6. Ccm3子17.解:愿方程可化为:x = 3(x — 2 )x = 3经检验:x = 3是原方程的解. 所以原方程的解是x =318.(1)解;依题意,可得山高h 200sin 45o 300sin 30o⑵万案①可优惠:4860X 100X ( 1-0.98 )= 9720元 方案②可优惠:100X 80= 8000元.答:平均每次下调的百分率 10%方案①更优惠.20.解:(1)补全图1分,设 D 地车票有 x 张,贝U x =( x +20+40+30 )X 10% 解得x = 10.即D 地车票有10张.(2)小胡抽到去 A 地的概率为 20 20 40 30 10李掷得数字 小王掷得数字 12 3 41 (1, 1) (1 , 2) (1, 3) r (1, 4) 2(2, 1) (2, 2) (2, 3) (2 , 4) 3 (3, 1) (3, 2) (3, 3) r (3 , 4)4 (4, 1) (4, 2) (4, 3) (4 , 4)或者画树状图法说明(如右下图) 列表或图 由此可知,共有16种等可能结果•其中小王掷得数字比小李掷 得数字小的有 6种:(1, 2),( 1,3),( 1,4),( 2,3), (3)以列表法说明•••小王掷得数字比小李掷得数字小的概率为 16 3 5则小王掷得数字不小于小李掷得数字的概率为1 3 = 58 8所以这个规则对双方不公平。
2013年山东省济宁市中考数学试卷(解析版)一.选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(2013济宁)一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作()A.﹣10m B.﹣12m C.+10m D.+12m考点:正数和负数.分析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解答:解:跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作﹣10m.故选A.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(2013济宁)如果整式x n﹣2﹣5x+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.6考点:多项式.专题:计算题.分析:根据题意得到n﹣2=3,即可求出n的值.解答:解:由题意得:n﹣2=3,解得:n=5.故选C点评:此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.3.(2013济宁)2013年国家财政支出将大幅向民生倾斜,民生领域里流量最大的开销是教育,预算支出达到23 000多亿元.将23 000用科学记数法表示应为()A.2.3×104B.0.23×106C.2.3×105D.23×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:23 000=2.3×104,故选A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2013济宁)已知ab=4,若﹣2≤b≤﹣1,则a的取值范围是()A.a≥﹣4 B.a≥﹣2 C.﹣4≤a≤﹣1 D.﹣4≤a≤﹣2考点:不等式的性质.分析:根据已知条件可以求得b=,然后将b的值代入不等式﹣2≤b≤﹣1,通过解该不等式即可求得a的取值范围.解答:解:由ab=4,得b=,∵﹣2≤b≤﹣1,∴﹣2≤≤﹣1,∴﹣4≤a≤﹣2.故选D.点评:本题考查的是不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(2013济宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.当﹣1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:A.抛物线的开口方向向下,则a<0.故本选项错误;B.根据图示知,抛物线的对称轴为x=1,抛物线与x轴的一交点的横坐标是﹣1,则抛物线与x轴的另一交点的横坐标是3,所以当﹣1<x<3时,y>0.故本选项正确;C.根据图示知,该抛物线与y轴交与正半轴,则c>0.故本选项错误;D.根据图示知,当x≥1时,y随x的增大而减小,故本选项错误.故选B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.6.(2013济宁)下列说法正确的是()A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n﹣)=0D.一组数据的方差是这组数据的极差的平方考点:方差;算术平均数;中位数;众数;极差.分析:根据中位数以及众数和平均数和极差、方差的定义分别判断得出即可.解答:解:A.当数据是奇数个时,按大小排列后,中位数就是一组数据中最中间的一个数,数据个数为偶数个时,按大小排列后,最中间的两个的平均数是中位数,故此选项错误;B.8,9,9,10,10,11这组数据的众数是9和10,故此选项错误;C.如果x1,x2,x3,…,x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n﹣)=x1+x2+x3+…+x n﹣n=0,故此选项正确;D.一组数据的方差与极差没有关系,故此选项错误;故选:C.点评:此题主要考查了中位数以及众数和平均数和极差、方差的定义,根据定义举出反例是解题关键.7.(2013济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A.60元B.80元C.120元D.180元考点:一元一次方程的应用.分析:设这款服装的进价为x元,就可以根据题意建立方程300×0.8﹣x=60,就可以求出进价,再用标价减去进价就可以求出结论.解答:解:设这款服装的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.300﹣180=120,∴这款服装每件的标价比进价多120元.故选C.点评:本题时一道销售问题.考查了列一元一次方程解实际问题的运用,利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.8.(2013济宁)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)考点:轴对称-最短路线问题;坐标与图形性质.分析:根据轴对称做最短路线得出AE=BE,进而得出B′O=C′O,即可得出△ABC的周长最小时C点坐标.解答:解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(﹣3,0),AE=4,则BE=4,即BE=AE,∵C′O∥AE,∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故选:D.点评:此题主要考查了利用轴对称求最短路线以及平行线的性质,根据已知得出C点位置是解题关键.9.(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B 的面积为()A.cm2B.cm2C.cm2D.cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.10.(2013济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B. C.6 D.考点:切线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理;圆周角定理.专题:计算题.分析:连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60°,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30°所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,由AB﹣AF求出FB的长,在直角三角形FBG中,利用30°所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长.解答:解:连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴OD∥AB,又O为BC的中点,∴D为AC的中点,即OD为△ABC的中位线,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=AB﹣AF=8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选B点评:此题考查了切线的性质,等边三角形的性质,含30°直角三角形的性质,勾股定理,熟练掌握切线的性质是解本题的关键.二.填空题(共5小题,每小题3分,满分15分)11.(2013济宁)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为cm.考点:相似三角形的应用.分析:根据题意可画出图形,再根据相似三角形的性质对应边成比例解答.解答:解:∵DE∥BC,∴△AED∽△ABC∴=设屏幕上的小树高是x,则=解得x=18cm.故答案为:18.点评:本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.12.(2013济宁)如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为cm.考点:旋转的性质;弧长的计算.分析:根据Rt△ABC中的30°角所对的直角边是斜边的一半、直角三角形斜边上的中线等于斜边的一半以及旋转的性质推知△AA′C是等边三角形,所以根据等边三角形的性质利用弧长公式来求CA′旋转所构成的扇形的弧长.解答:解:∵在Rt△ABC中,∠B=30°,AB=10cm,∴AC=AB=5cm.根据旋转的性质知,A′C=AC,∴A′C=AB=5cm,∴点A′是斜边AB的中点,∴AA′=AB=5cm,∴AA′=A′C=AC,∴∠A′CA=60°,∴CA′旋转所构成的扇形的弧长为:=(cm).故答案是:.点评:本题考查了弧长的计算、旋转的性质.解题的难点是推知点A′是斜边AB的中点,同时,这也是解题的关键.13.(2013济宁)甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙二人相邻的情况,再利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,甲、乙二人相邻的有4种情况,∴甲、乙二人相邻的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.14.(2013济宁)三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.考点:由三视图判断几何体.分析:根据三视图的对应情况可得出,△EFGFG上的高即为AB的长,进而求出即可.解答:解:过点E作EQ⊥FG于点Q,由题意可得出:FQ=AB,∵EG=12cm,∠EGF=30°,∴EQ=AB=×12=6(cm).故答案为:6.点评:此题主要考查了由三视图解决实际问题,根据已知得出FQ=AB是解题关键.15.(2013济宁)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有盏灯.考点:一元一次方程的应用.分析:根据题意,假设顶层的红灯有x盏,则第二层有2x盏,依次第三层有4x盏,第四层有8x盏,第五层有16x盏,第六层有32x盏,第七层有64x盏,总共381盏,列出等式,解方程,即可得解.解答:解:假设尖头的红灯有x盏,由题意得:x+2x+4x+8x+16x+32x+64x=381,127x=381,x=3(盏);答:塔的顶层是3盏灯.故答案为:3.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.三.解答题:本大题共8小题,共55分.16.(2013济宁)计算:(2﹣)2012(2+)2013﹣2﹣()0.考点:二次根式的混合运算;零指数幂.分析:根据零指数幂、绝对值、整数指数幂、二次根式的混合运算,分别进行计算,再把所得的结果合并即可.解答:解:(2﹣)2012(2+)2013﹣2﹣()0=[(2﹣)(2+)]2012(2+)﹣﹣1=2+﹣﹣1=1.点评:此题考查了二次根式的混合运算,用到的知识点是零指数幂、绝对值、整数指数幂、二次根式的混合运算,关键是熟练掌握有关知识和公式.17.(2013济宁)以“光盘”为主题的公益活动越来越受到社会的关注.某校为培养学生勤俭节约的习惯,随机抽查了部分学生(态度分为:赞成、无所谓、反对),并将抽查结果绘制成图1和图2(统计图不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共抽查了多少名学生?(2)将图1补充完整;(3)根据抽样调查结果,请你估计该校3000名学生中有多少名学生持反对态度?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据赞成是130人,占65%即可求得总人数;(2)利用总人数减去另外两项的人数,求得反对的人数,从而作出统计图;(3)利用3000乘以持反对态度的比例即可.解答:解:(1)130÷65%=200名;(2)200﹣130﹣50=20名;(3)3000×=300名.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(2013济宁)钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19)考点:解直角三角形的应用-方向角问题.分析:过点B作BD⊥AC交AC于点D,根据方向角分别求出∠DAB和∠DCB的度数,然后在Rt△ABD 和Rt△BCD中,分别解直角三角形求出AD、CD的长度,然后根据时间=路程÷速度即可求出需要的时间.解答:解:过点B作BD⊥AC交AC于点D,由题意得,∠DAB=180°﹣47°﹣79°=54°,∠DCB=47°﹣36°=11°,在Rt△ABD中,∵AB=5.5,∠DAB=54°,=cos54°,=sin54°,∴AD=5.5×0.59=3.245,BD=4.445,在Rt△BCD中,∵BD=4.445,∠DCB=11°,∴=tan11°,∴CD==23.394,∴AC=AD+CD=3.245+23.394≈26.64(km),则时间t=26.64÷30≈0.90(h).答:需要0.90h到达.点评:本题考查了解直角三角形的应用,难度适中,解答本题的关键是构造直角三角形并解直角三角形,19.(2013济宁)人教版教科书对分式方程验根的归纳如下:“解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”请你根据对这段话的理解,解决下面问题:已知关于x的方程﹣=0无解,方程x2+kx+6=0的一个根是m.(1)求m和k的值;(2)求方程x2+kx+6=0的另一个根.考点:解分式方程;根与系数的关系.专题:阅读型.分析:(1)分式方程去分母转化为整式方程,由分式方程无解,故将x=1代入整式方程,即可求出m的值,将m的值代入已知方程即可求出k的值;(2)利用根与系数的关系即可求出方程的另一根.解答:解:(1)分式方程去分母得:m﹣1﹣x=0,由题意将x=1代入得:m﹣1﹣1=0,即m=2,将m=2代入方程得:4+2k+6=0,即k=﹣5;(2)设方程另一根为a,则有2a=6,即a=3.点评:此题考查了解分式方程,以及根与系数的关系,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.(2013济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP 与NQ是否相等?并说明理由.考点:正方形的性质;全等三角形的判定与性质.专题:证明题.分析:(1)根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后与(1)相同.解答:(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则与(1)的情况完全相同.点评:本题考查了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.21.(2013济宁)阅读材料:若a,b都是非负实数,则a+b≥.当且仅当a=b时,“=”成立.证明:∵()2≥0,∴a﹣+b≥0.∴a+b≥.当且仅当a=b时,“=”成立.举例应用:已知x>0,求函数y=2x+的最小值.解:y=2x+≥=4.当且仅当2x=,即x=1时,“=”成立.当x=1时,函数取得最小值,y最小=4.问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).考点:反比例函数的应用;一元一次不等式的应用.分析:(1)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可;(2)经济时速就是耗油量最小的形式速度.解答:解:(1)∵汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.∴y=x×(+)=(70≤x≤110);(2)根据材料得:当时有最小值,解得:x=90∴该汽车的经济时速为90千米/小时;当x=90时百公里耗油量为100×(+)≈11.1升,点评:本题考查了反比例函数的应用,解题的关键是读懂题目提供的材料.22.(2013济宁)如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.(1)求证:线段AB为⊙P的直径;(2)求△AOB的面积;(3)如图2,Q是反比例函数y=(x>0)图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D.求证:DO•OC=BO•OA.考点:反比例函数综合题.分析:(1)∠AOB=90°,由圆周角定理的推论,可以证明AB是⊙P的直径;(2)将△AOB的面积用含点P坐标的表达式表示出来,容易计算出结果;(3)对于反比例函数上另外一点Q,⊙Q与坐标轴所形成的△COD的面积,依然不变,与△AOB的面积相等.解答:(1)证明:∵∠AOB=90°,且∠AOB是⊙P中弦AB所对的圆周角,∴AB是⊙P的直径.(2)解:设点P坐标为(m,n)(m>0,n>0),∵点P是反比例函数y=(x>0)图象上一点,∴mn=12.如答图,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则OM=m,ON=n.由垂径定理可知,点M为OA中点,点N为OB中点,∴OA=2OM=2m,OB=2ON=2n,∴S△AOB=BO•OA=×2n×2m=2mn=2×12=24.(3)证明:若点Q为反比例函数y=(x>0)图象上异于点P的另一点,参照(2),同理可得:S△COD=DO•CO=24,则有:S△COD=S△AOB=24,即BO•OA=DO•CO,∴DO•OC=BO•OA.点评:本题考查了反比例函数的图象与性质、圆周角定理、垂径定理等知识,难度不大.试题的核心是考查反比例函数系数的几何意义.对本题而言,若反比例函数系数为k,则可以证明⊙P在坐标轴上所截的两条线段的乘积等于4k;对于另外一点Q所形成的⊙Q,此结论依然成立.23.(2013济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.考点:一次函数综合题.分析:(1)根据直线y=﹣x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度;(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.解答:解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴==,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则∵OQ=FQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴8﹣3t=t,解得:t=2,如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8﹣2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴t=3t﹣8,解得:t=4;(3)如图1,当Q在P点的左边时,∵OQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,当t=﹣=时,S矩形PEFQ的最大值为:=4,如图2,当Q在P点的右边时,∵OQ=t,PA=2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴S矩形PEFQ=QP•QE=(3t﹣8)•t=3t2﹣8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴0≤t≤4,当t=﹣=时,S矩形PEFQ的最小,∴t=4时,S矩形PEFQ的最大值为:3×42﹣8×4=16,综上所述,当t=4时,S矩形PEFQ的最大值为:16.点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键.。