当前位置:文档之家› 振动力学课程论文

振动力学课程论文

振动力学课程论文
振动力学课程论文

振动力学课程读书报告

学号:

姓名:

一、历史演变的简述

结构动力学作为振动理论在工程结构中的应用,是与振动理论的研究同时开始的,在这个领域内早期有影响的著作是德国K-Hohenemser和W-Prager的《结构动力学》,土建工程地震研究和飞机结构动力学是结构动力学早期应用的领域,后来这方面的论文和著作犹如雨后春笋,非常广泛和丰富。近几十年来结构动力学经过了深刻的变化,形成了现代结构动力学。

土木工程中历史上多次桥梁的重大事故使工程界很早就开始了桥梁的振动研究,建筑工程中地震灾害的惨痛教训迫使工程界一开始就把注意力集中到建筑物地震响应的预估上。航海事业的发展导致船舶结构动力学的形成,使人们开始研究板壳的振动。航空和航天工程中由于超声速高空飞行、导弹和航天器的特殊要求,已经把结构动力学作为飞机、火箭和航天器动力设计的基础。对于“结构”的概念,原来指土建的结构如梁、板、刚架、连续梁、拱、烟囱、水塔、厂房排架及筒仓等弹性体和塑性体构成的结构系统。接着扩展到航空的飞机结构、航海的船舶结构,包括了板壳及组合结构。后来又扩展到机械结构,例如轴、齿轮、连杆、支架及机架等三维元式的结构。随着振动理论在工程中应用的日益深入,在分析系统的动力学时把机器的机构以至整个机组系统都作为一个广义的结构系统来进行研究。此外,结构的概念也扩展到地质结构和岩石结构,甚至包括了各种接触问题。所以从现代结构动力学的观汽来看,只要可以从数学形式上可以抽象为弹性力学中一维元、二维元或三维元的系统都可以看作广义的结构系统。

组成结构的材料可以是弹性、塑性及脆性材料,如钢铁、有色金属、木材、橡胶、混凝土、钢筋混凝土、岩石、泥土、高分子聚合物及复合材料等。这些材料,有线性的也有非线性的,另外结构系统的组合特性也就是装配特性也有非线性和线性的差别,因此结构系统由其材料和装配特性决定可以是线性系统也可以是非线性系统,描述结构系统的微分方程也就有线性微分方程和非线性微分方程。结构动力学应包括线性振动和非线性振动。严格地说,工程结构系统的响应都是随机的,只是当随机的因素很微弱时才当作确定性振动来分析。

二、现代结构动力学的特点

七十年代随着有限元技术的蓬勃发展,出现了很多国际著名的通用结构分析有限元软件,这些程序和软件系统为结构动力学的分析和计算提供了极为方便的工具。同时,随着电子计算机技术的迅速发展,在实验方法方面过去很难处理的随机振动的测试数据和随机疲劳载荷谱的编制也都变得很方便了,从而为结构动力学的实验提供了有力的手段。这两方面的进展促进结构动力学发生了根木性的深刻变化。现代结构动力学研究结构的随机振动,包含激励、系统特性和响应三方面的问题,按照此三者中哪一个是未知的,可把结构动力学的问题分为三种类型:

1.“预测”问题,即激励和系统特性已知时求响应的各个统计信息,如建筑结构的地震响应、车辆的舒适性,机床的加工精度和枪炮的瞄准性等。

2.“测量”问题,或称动力环境的测定,即已知系统特性和响应时确定激励的统计特性,如飞机动力环境的测定。

3.“识别”问题,即已知激励和响应时对结构系统的动态特性识别,也就是系统识别和模态分析问题。

三、现代结构动力学的研究方法

现代大型复杂结构系统如核电站是不允许发生任何安全事故的,对它的所有的建筑结构、管道系统、机械设备都必须进行严密的动力分析。现代工程技术的尖端,宇航用的航天器的最合理有效载荷的确定,也必须通过系统动力特性的识别和响应的预测来进行动力优化设计。无论是响应的预测还是系统的识别,在分析中都要用到数值计算的方法。其中早期常用的差分法,由于电算法的促进也有了改进;现代应用最广泛的有效的方法是有限元法,最近引起人们注意的一种新方法叫边界元法,这方面的研究也很活跃,但仍不如有限元法成熟。

现代结构动力学的特点是研究大型复杂结构系统的随机振动,而研究随机振动离开实验测试是不可能进行的。现代结构动力学中的实验可分为三个方面,即动力环境测定实验、对结构设计制造进行验收的验收性实验和识别系统动态特性的模态实验。模态实验常用的方法有传统的多点激振实验和近代的单点激振实

验,有脉冲激励、随机试验及快速正弦扫描,采用FFT技术进行数据处理等,构成了结构动力学的现代实验方法。

综上所述,理论分析和实验研究乃是现代结构动力学研究中相互结合的两个方面,两者之间必须相关。用数值计算法(主要是有限元法)进行理论上的分析计算,必须要求所采用的数学力学模型能够真实地反映结构系统的实际特性;而在实验方面则要求实验是可以信赖的,采得的信息必须是真实和可靠的。如何证明它们是合理和可靠的只有通过实验与分析的相关来验证。提出了等效静力分析与等效静力实验相关和动力实验与动力分析相关的要求,也就是要求有限元计算的力学数学模型必须真实地反映结构系统和动力环境的实际特性。利用摄动法修改力学模型来逐次逼近实测的模态特性,引出了力学模型的机助设计和优化设计。把CAD技术用到力学模型设计中即计算机辅助力学分析,它包含人工智能的梢拟和最优化方法的应用。

四、现代结构动力学的机理

现代结构动力学三类问题中,动力环境的测量和系统识别是两个主要问题。动力环境测定主要靠实验;而模态分析系统动力特性的识别则必须通过实验与分析相关来完成,结构动力学的重要问题之一就是识别系统的问题。当前流行的方法是把实验中采样得到的数据经过数据处理后,在频率域或时间域中来识别系统的模态参数,机械阻抗法是模态识别的一种方法。

频率域分析法还可分为实模态参数识别和复模态参数识别法,时间域法则有Ibrahim法、最小二乘时域法、随机减量法、时间序列法和卡尔曼滤波法等。随着工程技术的发展,在求解大型复杂结构时要求采用精确的力学模型来进行整体结构的模态分析,这样,结构系统的有限元网格不能划分得太粗,整体结构的自由度数量大大增加,引起计算机CPU机时大幅度增加,还要求计算机有较大的存贮量。

五、现代结构动力学的目的

响应的分析是结构动力学研究的目的之一。基本的分析方法是瞬态响应计算

和响应谱分析两种方法。瞬态响应计算是在结构系统的模态参数已知条件下利用线性结构系统中模态正交的特性,把原结构系统的运动按模态基进行分解,取得一组模态坐标下的解棍方程式,求解得到各模态坐标上的响应贡献,再在模态基上迭加(也叫振型迭加法)以求出原结构物理坐标下的响应。响应谱分析也是在模态基上,利用各模态分量在给定的环境谱条件下的动力放大系数(或称振型参与系数),通过振型迭加和统计计算求得可能出现的最大响应。响应可以是结构系统的节点位移、速度、加速度、应变、应力……等,应变和应力为动强度的计算提供基础。现代结构动力学中的强度问题已经从过去的动荷系数法(等效静载荷)和初等的疲劳计算(安全系数法)发展到有限寿命设计——可靠性设计的阶段。结构动强度的概念是:结构在随机疲劳条件下具有所要求的疲劳寿命(持久性)。现代机械和结构的设计要求结构动强度的研究结果应该落实到随机疲劳上。结构强度的新概念就是结构的寿命估算,也就是根据随机疲劳的载荷谱进行可靠性设计,即有限寿命设计和疲劳寿命试验。工程上普遍采用的随机疲劳寿命估算方法由三部分组成:

1.动力环境——外载荷的确定,根据现场测试的随机性的载荷编制随机疲劳载荷谱。

2.材料特性的确定,用疲劳试验来取得材料的S一N曲线。

3.寿命估算,用累积损伤估算寿命和用程序加载试验来验证。

六、现代结构动力学发展动向

从国内外召开的结构动力学学术交流会的动向、发表的论文和著作、各著名大学的课程设置及各方面的研究工作来分析,可看出现代结构动力学研究课题的方向是:

1.结构(机械)系统动力参数分析及其优化设计。这是工艺方面的问题,如振动筛及输送机振动参数设计、汽车平顺性和操纵性研究…等。

2.结构动力学强度、刚度及稳定性分析;

3.结构动力学机理方面的研究:非平稳或非线性系统的随机振动;信号处理在振动工程中的应用;线性系统的模态分析及系统识别技术。

4.作为现代结构动力学发展前沿的动态子结构法的当前研究动向是:复模态综合;流固藕合系统的响应求解;非线性非保守系统的模态综合。5.结合我国国情,结构动力学在工程中的应用有下列各方面:故障监测和振动诊断;振动消除内应力;振动写噪声控制;隔振设计;旋转与往复机械动力学、转子动力学;工程系统与压力容器动力学;海洋工程、航空工程及航天工程动力学;人体响应;振动利用。当前,迅速普及现代结构动力学的研究方法是促进工程设计现代化的迫切需要。

汽车振动分析试题1

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2 1121y m T = m 2动能:2222222 22 222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 323 33)2 1(21))(21(212 1y m R y R m J T === ω 系统势能: 2 21)21(21)21( y k y g m gy m V + +-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =+ +-++= +2 212 321) 2 1(2 12 1)2 13 1(2 1 上式求导,得系统的微分方程为: E y m m m k y '=+ + +) 2 131(4321 固有频率和周期为: ) 2 131(43210m m m k + + = ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2 212 1x m T = 轮子与地面接触点为速度瞬心,则轮心速度为x v c 2 1= ,角速度为x R 21=ω,转过的角度为x R 21= θ。轮子动能: )83(21)41)(21(21)4 1( 2 12 1212 122 21212 2 12x m x R R m x m J v m T c =+= + = ω 系统势能: x

振动力学课程设计报告

振动力学课程设计报告-(2) 振动力学课程设计报告 课设题目:电磁振动给料机的振动分析与隔振设计 单位: 专业/班级: 姓名:

指导教师: 1、课题目的或意义 通过对结构进行振动分析或参数设计,进一步巩固和加深振动力学课程中 的基本理论知识,初步掌握实际结构中对振动问题分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力。 2、课题背景: 1、结构:本设计中,料槽底板采用16mm厚钢板焊接而成,再用筋板加强。料槽衬板采用20mm厚钢板。料槽材料全部采用镇静钢,能承受工作过程中由于振动产生的交变载荷,焊缝不易开裂。 2、工程应用前景:振动给料机用于把物料从贮料仓或其它贮料设备中均匀或定量的供给到受料设备中,是实行流水作业自动化的必备设备分敞开型和封闭型两种,本设计中电磁振动给料为双质体系统,结构简单,操作方便,不需润化,耗电量小;可以均匀地调节给料量为了减小惯性力,在保证强度和刚度的前提下, 应尽可能减轻振动槽体的质量。从而使其在实际工程应用中会有非常广泛的前景。 二、振动(力学)模型建立

1、结构(系统)模型简介

k4、C4分别为尼龙连接板得等效刚度和阻尼。 g为偏心块质量,m为给料槽体质量,m2激振器的振动质量。 m R —输送槽体(包括激振器)的质量,1500kg ;即g m 叫 m G —槽内物料的结合质量。 在实际中系统为离散的,而建立模型后将质量进行集中从而该系统可视为为连续系统,通过上网搜索资料以及书中知识总结并设计出如上所示电磁振动给料机力学模型,其组成为料槽、电磁激振器、减振器、电源控制箱等组成。 2、系统模型参数 (包括系统所必需的几何、质量、等效刚、激励等)

河海大学力学08级振动力学结构动力学试卷

一、 1.在单自由度振动系统中,结构振动响应的频率与外加荷载的频率无关(×) 2.在含有阻尼的单自由度振动系统中,结构振动的固有频率与阻尼无关(×) 3.对于图示简支梁,不计梁的质量,分别将物体M 从在距梁中点正上方高H1和H2处 自由释放,H1=2H2,则振动的频率是一样的(√) 二、 1.如图所示,除支撑不同外,其余均相同。(B ) A.图a 振动周期大 B.图b 振动周期大 C.振动周期一样 D.不能判断 2.一物体从高度为h 的地方落下,系统振动频率是(C ) A.h 越大,频率越大 B.h 越大,频率越小 C.与h 无关 D.不能断定 3.对于一个有阻尼的单自由度强迫振动系统来讲,振动响应频率(C ) A.仅由外荷载频率确定 B.仅由系统固有频率确定 C.在系统振动响应一段时间后,仅与外荷载频率有关 D.在系统振动响应一段时间后,仅与系统固有频率有关 4.对于多自由度系统来讲,假设无重频现象,则两个不同的振型φi 和φj 的关系为(C ) A.j T i φφ?一定为零 B.j T i φφ?一定不为零 C.j T i M φφ一定为零 D.j T i K φφ可能不是零 5.对于一个三自由度系统,设某阶段振型为[]T 1,2,1=φ,骑广义质量为4,则其正则振型为(A )

A.[]T 5,0,1,5.0=φ B.[]T 25.0,5.0,25.0=φ C. []T 1,2,1=φ D.[]T 2,4,2=φ 三、一个单自由度振动系统,自由振动试验测得经过6周后振幅降为原来的1/10,试求阻尼比和在简谐荷载作用下发生共振时的放大系数(15) 解:ξπδm y y m i i y 2ln '==+ m=6 ∴10ln ln 6 =+i i y y ∴0611.06210ln =?=πξ 197.821==ξ μ 四、试写出图示结构的运动方程和位移动力系数(EI 为常数, t F t F θsin )(=) 解:a 12=F a 2 11=F 2____ M 1____M EI a 38311=δ EI a 65312=δ )(16 5)(1112t F t F Fe ==δδ )(16 5t F ky y m =+?? 3 383)2(3a EI a EI k == 383ma EI m k ==ω 211βμ-= EI ma 322θω?β== 32833a m EI EI θμ-= 五、如图所示结构,层间高度均为L ,m1=m2=m ,求系统的固有圆

振动力学课程设计报告

振动力学课程设计报告 课设题目: 单位: 专业/班级: 姓名: 指导教师: 2011年12月22日

一、前言 1、课题目的或意义 振动力学课程设计是以培养我们综合运用所学知识解决实际问题为目的,通过实践,实现了从理论到实践再到理论的飞跃。增强了认识问题,分析问题,解决问题的能力。带着理论知识真正用到实践中,在实践中巩固理论并发现不足,从而更好的提高专业素养。为认识社会,了解社会,步入社会打下了良好的基础。 通过对GZ电磁振动给料机的振动分析与减振设计,了解机械振动的原理,巩固所学振动力学基本知识,通过分析问题,建立振动模型,在通过软件计算,培养了我们独立分析问题和运用所学理论知识解决问题的能力。 2、课题背景: 随着科学技术发展的日新月异,电磁振动给料机已经成为当今工程应用中空前活跃的领域,在生活中可以说是使用的广泛,因此掌握电磁振动给料机技术是很有必要的和重要的。 GZ系列电磁振动给料机广泛应用于矿山、冶金、煤炭、建材、轻工、化工、电力、机械、粮食等各行各业中,用于把块状、颗粒状及粉状物料从贮料仓或漏斗中均匀连续或定量地给到受料装置中去。特别适用于自动配料、定量包装、给料精度要求高的场合。例如,向带式输送机、斗式提升机,筛分设备等给料;向破碎机、粉碎机等喂料,以及用于自动配料,定量包装等,并可用于自动控制的流程中,实现生产流程的自动化。 GZ电磁振动给料机的工作原理: GZ电磁振动给料机的给料过程是利用电磁振动器驱动给料槽沿倾斜方向做直线往复运动来实现的,当给料机振动的速度垂直分量大于策略加速度时,槽中的物料将被抛起,并按照抛物线的轨迹向前进行跳跃运动,抛起和下落在1/50秒完成,料槽每振动一次槽中的物料被抛起向前跳跃一次,这样槽体以每分钟3000次的频率往复振动,物料相应地被连续抛起向前移动以达到给料目的。 GZ系列电磁振动给料机主要用途:

机械行业振动力学期末考试试题(doc-11页)(正式版)

… 2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角: 系统动能: % m 1动能: m 2动能: m 3动能: 系统势能: 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: 上式求导,得系统的微分方程为: E y m m m k y '=+++) 2 1 31(4321 固有频率和周期为: ~ ) 2 131(43210m m m k ++= ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2212 1 x m T = 轮子与地面接触点为速度瞬心,则轮心速度为x v c 21=,角速度为x R 21=ω,转过的角度为x R 21 = θ。轮子动能: )83 (21)41)(21(21)41(212121212221212212x m x R R m x m J v m T c =+=+=ω \ x

西工大结构试验技术 实验说明YE6251说明书

SINOCERA? YE6251振动力学实验系统 说 明 书 江苏联能电子技术有限公司

YE6251振动力学实验系统 一、系统概述 振动力学实验系统主要由YE6251振动力学实验仪、YE15000振动力学实验台、激振和传感器、数据采集卡及其采集和分析软件等组成。 1、振动力学实验仪:YE6251Y2扫频信号发生器、YE6251Y1功率放大器、YE6251Y3 阻尼调节器、YE6251Y4位移测量仪、YE6251Y5力测量仪、两通道YE6251Y6加速度测量仪、机箱及电源。 2、振动力学实验台:简支梁、固支梁、悬臂梁、薄板、复合阻尼梁、电磁阻尼器、 单自由度质量—弹簧—阻尼系统、两自由度质量—弹簧—阻尼系统、动力吸振器。 3、激振和传感器:YE15400电动式激振器、LC-01A冲击力锤(含CL-YD-303A力 传感器)、CL-YD-331A阻抗头、CWY-DO-502电涡流式位移传感器、CA-YD-107压电式加速度传感器。 4、数据采集卡及其采集和分析软件:A/D(D/A)采集卡、系统应用软件由数据采 集、数据预处理,时域处理,频域处理、模态分析,报告生成、在线帮助等模块组成。 二、YE6251振动力学实验仪主要技术指标 YE6251Y2扫频信号发生器 1、输出波形:正弦波 2、频率范围:对数模式下10Hz~1000Hz在一个连续量程之内 3、具有手动、自动两种频率控制方式 4、手动控制频率时,有粗调和微调两种方式 5、自动频率控制时,扫频范围:10Hz~1000Hz,扫频上、下限分档任意调节,扫频 比:100:1,扫频时间在0.1S~20S内任意调节 6、频率显示:采用4位7段LED数显 频率〈200Hz时:分辨率0.1Hz 频率≥200Hz时:分辨率 1Hz 7、频率显示精度:±1%±1 8、幅值线性度:10Hz~1000Hz频率范围内±0.2dB 9、失真度:≤0.5% 10、具有BNC信号输出端子; YE6251Y1功率放大器 1、恒流输出 2、功率输出:输出电流0~1A连续可调,最大输出电流大于1.2A

振动力学课程设计题目

振动力学课程设计题目 采用MATLAB 对所选的问题进行数值计算和作图,采用高于MATLAB7.4(2007)版本所编写的程序需转换为文本(.txt )文件, 早于MATLAB7.4(2007)版本所编写的程序可直接采用M 文件传送至QQ :296637844。题目如下,其中1,2,3题为必做题,4-38选二题(第一轮:一班01号为第4题, 一班02号为第5题…一班28号为第25题, 二班01号为第26题,…二班17号为第38题, 二班18号为第4题,…二班27号为第13题;第二轮:一班01号为第14题…)。文件名采用自己的姓名。考核时间暂定于12月30日。 题目: 1. 编写MA TLAB 程序,根据书本公式(3.1-10)、(3.1-10)作出单自由度系统强迫振动的幅频特性曲线、相频特性曲线。0.1,0.2,0.3,0.5,0.7,1.0,1.2?=。 2. 根据书本图4.5-3,分析有阻尼动力减振器的特性。包括在不同的质量比,频率比,阻尼比条件下结构的响应。 3. 对于图2所示体系,用矩阵迭代法计算其固有频率及振型。 1231,2m m m ===,1230 c c c ===,1231,5,8k k k ===,1230,0,0F F F ===, 1231,1,1ωωω===。 4. 采用中心差分法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 5. 采用Houbolt 法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 6. 采用Wilson-θ法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 7. 采用Newmark-β法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 8. 采用中心差分法计算10105sin(/2)2sin()sin(2)x cx x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 9. 采用Houbolt 法计算10105sin(/2)2sin()sin(2)x cx x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 10. 采用Wilson-θ法计算10105sin(/2)2sin()sin(2)x cx x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 11. 采用Newmark-β法计算10105s in (/2)2s in ()s in (2 x c x x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 12. 采用卷积积分法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别 在()5(),5(),5sin(2)(),(02)F t N t N t N t s =≤≤作用下前10s 内的时间位移曲线。 13. 采用中心差分法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别在()5(),5(),5sin(2)(),(02)F t N t N t N t s =≤≤作用下前10s 内的时间位移曲线。 14. 采用Houbolt 法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别在 ()5(),5(),5sin(2)(),(02)F t N t N t N t s =≤≤作用下前 10s 内的时间位移曲线。 15. 采用Wilson-θ法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别

振动力学课程设计报告材料(2)

振动力学课程设计报告 课设题目:电磁振动给料机的振动分析与隔振设计单位: 专业/班级: 姓名: 指导教师:

一、前言 1、课题目的或意义 通过对结构进行振动分析或参数设计,进一步巩固和加深振动力学课程中的基本理论知识,初步掌握实际结构中对振动问题分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力。 2、课题背景: 1、结构:本设计中,料槽底板采用16mm厚钢板焊接而成,再用筋板加强。料槽衬板采用20mm厚钢板。料槽材料全部采用镇静钢,能承受工作过程中由于振动产生的交变载荷,焊缝不易开裂。 2、工程应用前景:振动给料机用于把物料从贮料仓或其它贮料设备中均匀或定量的供给到受料设备中,是实行流水作业自动化的必备设备分敞开型和封闭型两种,本设计中电磁振动给料为双质体系统,结构简单,操作方便,不需润化,耗电量小;可以均匀地调节给料量为了减小惯性力,在保证强度和刚度的前提下,应尽可能减轻振动槽体的质量。从而使其在实际工程应用中会有非常广泛的前景。 二、振动(力学)模型建立 1、结构(系统)模型简介

O 1 O 0 O 2 123123k k k c c c 、为隔振弹簧,为主振弹簧,、、分别为隔振和主振弹簧的阻尼 4k 、4c 分别为尼龙连接板得等效刚度和阻尼。 0m 为偏心块质量,1m 为给料槽体质量,2m 激振器的振动质量。 R m —输送槽体(包括激振器)的质量,1500kg ;即012R m m m m ++= G m —槽内物料的结合质量。 在实际中系统为离散的,而建立模型后将质量进行集中从而该系统可视为为连续系统,通过上网搜索资料以及书中知识总结并设计出如上所示电磁振动给料机力学模型,其组成为料槽、电磁激振器、减振器、电源控制箱等组成。 2、系统模型参数 (包括系统所必需的几何、质量、等效刚、激励等)

振动力学期末考试试题和答案

振动力学期末考试试题和答案 振动力学(试题) 2008 一、填空(每空2分) 1、设周期振动信号的周期为,则其傅里叶级数的展开的基频为,T ,,, 2、单自由度粘性阻尼系统的阻尼因子与阻尼系数的关系为,,, , 作用下系统响应的稳态振3、单自由度粘性阻尼系统在简谐力ptsin,0 动的幅值为,,, 4、粘性阻尼一周期内所消耗的能量与频率成,,,比。 5、无阻尼多自由度系统的主振型正交关系为,,,,,, 6、写出多自由度系统再频率域的输入与输出之间的关系,,,,, 7、写出瑞利商的表达式,,,,,, r8、多自由度系统中共存在个主固有频率,其相应的主振型,,, 正交。 9、无阻尼多自由度系统,利用里兹法计算出的主振型关于M、K是 否正交,,,,(答是或否) 10、写出如图T-1所示梁的左端边界条件,,,,,,,,,, y L x K 图T-1 二、(20分)系统如图T-2所示,杆AB为刚性、均质,长度为,总L 质量为,弹簧刚度为,阻尼系数为。求系统的固有频率及阻mck

尼因子。 图T-2 三、系统如图T-3所示。求系统的固有频率与主振型。 k k k k k m m m X X X 123 图T-3 四、 五、(20分)简支梁如图T-5所示,弹性模量为E,质量密度为,, 横截面积为A,截面惯性矩为J。求梁在中央受集中弯矩M下的响应。(假设梁的初始状态为零)

图T-5 答案 一、填空(每空2分) 1、周期振动信号的周期为,则其傅里叶级数的展开的基频为 T2/,T 2、单自由度粘性阻尼系统的阻尼因子与阻尼系数的关系为, c ,, 2mk 作用下系统响应的稳态振3、单自由度粘性阻尼系统在简谐力ptsin,0 p10动的幅值为 ,,B222k,,,,,(1)(2) 4、粘性阻尼一周期内所消耗的能量与频率成,正,比。 5、无阻尼多自由度系统的主振型正交关系为加权(M,K)正交: 0()ij,0()ij,,,TTTT ,,,,M,K,,,ijijMij(),Kij(),pipi,, 6、写出多自由度系统在频率域的输入与输出之间的关系 21,其中 xHP()()(),,,,HKMiC()(),,,,,, TXKX7、写出瑞利商的表达式 ()RX,TXMX r8、多自由度系统中共存在个重固有频率,其相应的主振型,,加 权(M,K)正交。 MK9、无阻尼多自由度系统,利用里兹法计算出的主振型关于、是

土木工程试验与检测学习心得

《土木工程结构试验与检测》学习心得 本学期院内开设了一门《土木工程结构试验与检测》的专业选修课,根据自身今后的目标工作定位和实际情况,我有幸选择了这门课程进行修读。通过一个学期课程的学习与现场试验的认知,感觉自己受益匪浅。通过课程学习,明白了结构试验的原理及不同情况下试验的基本方法和对试验数据的处理、分析。通过现场试验的了解与认知,更加清晰的了解了土木工程结构试验与检测的大致实际操作、分析方法。 结构试验既是一门科学又是一种技术,是研究和发展土木工程新结构、新材料、新工艺以及检验结构分析和设计理论的重要手段,在结构工程科学研究和技术创新等方面起着重要作用。 结构试验一般分为研究性试验和鉴定性试验。通过研究性试验,我们不仅可以验证结构计算理论或通过结构试验创立新的结构理论,还可以制定工程技术标准。而作为直接的生产性目的和具体的工程对象的鉴定性试验,我们通过结构试验检验结构、构件或结构部件的质量,确定已建成结构的承载能力,验证结构设计的安全度。故综上所述,我们从结构试验的目的了解到了其不仅为结构理论提供必要的依据,更为实际工程建设的安全、可靠度提供了直接的检测。 在课程理论学习方面,老师从结构静载、动载、非破损检验等方面进行了介绍。而通过理论知识学习,我们从试验规划与设计、试验技术准备、试验仪器的了解、试验实施过程、试验数据处理等方面加强了自身的知识储备。 在通过近14周的理论课程学习之后,我们有幸来到厦门大学漳州校区结构试验室,参观、了解部分建筑结构试验仪器,并在老师的带领下学习使用部分仪器。 结构实验室内拥有振动力学实验台、非金属超声检测分析仪、混凝土回弹仪、单自由度振动台等结构试验仪器。以下就举两个例子做简要说明。 非金属超声检测分析仪为工程检测仪器,为了保证其测量的准确,在测量物表面涂上耦合剂,通过超声波传播的波速就能来进行检测。其主要用于检测岩体及结构混凝土强度、内部缺陷、损伤层厚度、裂缝深度等,可扩展为声波透射法桩基完整性检测仪及混凝土厚度测试仪。而我们通过现场对其的了解和实际操作,让我进一步了解了其工作机理。我认为更为重要的是我明白了如果将我们平时在其它课程

工程力学专业课程设计改革的探索和实践

工程力学专业课程设计改革的探索和实践 ◆林金保 陈艳霞崔小朝马崇山 (太原科技大学) 课程设计是工程力学专业一个重要的实践性教学环节,是理论和工程联系的桥梁。针对我校工程力学专业课程设计改革中存在 的问题和不足进行分析,并提出了改革的思路和方法,以期提升工程力学专业学生的工程素质及驾驭实际工程的能力,增强学生就业的 竞争力。 工程力学课程设计工程素质 力学是自然科学的七大基础学科之一,是联系工程和科学的桥梁,是工程科学的基础,其发展横跨理工,与各行业的结合非常密切。随着时代的进步和社会的发展,特别是近20年来国际上科学综合性趋势的发展,力学同其他基础学科和技术学科之间产生交叉学科,使得力学专业人才的知识结构逐渐变宽,因此工程力学专业对人才培养必须坚持扎实基础与重视实践相结合的指导思想。然而,目前大多数高校的工程力学专业课程设置和专业培养没有具体的工程背景,直接导致了学生的工程意识薄弱,这也是工程力学专业培养方面面临的最大问题,因此,提高工程力学专业学生的工程素质及解决实际问题的能力,强化实践教学环节尤为重要。 课程设计是高等学校本科专业人才培养方案中一个重要的实践性教学环节,但与毕业设计相比,重视程度远远不够。就目前我校工程力学专业课程设计现状而言,由于开设时间较短,相关经验不丰富,课程设计仍然存在许多缺陷和不足,笔者就此展开了广泛的调研和有益的探索,并提出一些关于课程设计改革的思路和方法,以期有效促进本校工程力学专业课程设计质量上新台阶,进而提升工程力学专业学生的工程素质及驾驭实际工程的能力,增强学生就业的竞争力。 一、工程力学专业课程设计改革现状 力学系列课程现行的教学方法大多是通过各种手段将这些课程的知识传授给学生,最后通过考前复习和考试对其归纳提高。在此过程中,学生多数处于被动、应付状态,难以摆脱从理论到理论,理论脱离实际模式的束缚。学生理论联系实际、独立分析问题、解决实际问题的能力差,这与培养2l世纪人才模式很不适应,力学系列课程的教学改革已是当务之急。目前国内外许多大学的力学相关课程设置了课程设计实践环节,课程设计的数量有所增加。如中南大学的结构力学课程设计,吉林大学的材料力学课程设计,湖南大学的振动力学课程设计,美国的斯坦福大学在理论力学增设了实践环节等,都取得了较好的效果。在增加课程设计数量的同时,一些高校更较重视课程设计内容的改革,如南京航空航天大学的有限元课程设计是针对实际的索拉桥进行分析,在提高学生理论联系实际、独立分析问题与解决实际问题的能力方面作了有益的探索。 我校工程力学专业所设课程主要有CAD/CAM软件应用、.net程序设计、理论力学、材料力学、流体力学、振动力学、机械设计基础、结构力学、弹性力学、有限元和工程分析软件及应用等课程,其逻辑性和系统性对于培养学生的分析问题的能力非常有利,但在力学学习过程中,教师和学生会经常遇到一些没有见过的实际问题或力学模型,工程意识和分析、解决实际问题能力较弱的人,往往思前想后不得其解,以至于束手无策;反之,工程意识和分析、解决实际问题能力较强的人则往往能自如应对一切难题。为了培养和提高学生的工程意识和分析解决问题的能力,2006年开始,我校力学专业开设了课程设计实践教学环节,如“有限元软件应用课程设计”和“工程力学课程设计”,2011年又增设了“结构优化设计”和“CAM/FEM软件应用课程设计”。但总的来讲,力学专业的课程设计综合性较差,特色不明显,课程设计题目的难度、涉及的知识面、能力的培养均有待改进。 二、工程力学专业课程设计改革中存在的问题 目前我校课程设计改革中存在的问题主要表现在以下几个方面:一是课程设计题目和任务书拟定方面,均由指导教师事先确定分派给学生,由于指导教师所掌握的工程资料有限,课程设计的内容和范围局限性较大,题目类型较少,研究方向也较集中,学生并不能根据自身的特点和兴趣爱 好,去选择他们感兴趣的题目进行设计,而是一味进行强迫式学习,完成所谓的设计任务。学生目前经过课程设计后并不能应对就业后工作过程中复杂多样的技术难题。二是课程设计研究内容与工程实际问题有偏差。课程设计都是承接基础理论与工程实际的重要环节,学生非常希望将自己所学的理论应用于实际,在实际中检验自己的知识,但由于学生体会不到理论与实际的联系,课程设计并不能充分调动学生学习主动性和创造性。三是课程设计时间在安排上与课堂教学存在一定的时间间隔。在课程设计过程中,对于理论知识不够扎实的部分学生来说,会有一种惧怕且无从下手的感觉,很难投入足够的精力和时间认真完成课程设计。而课程设计形式基本上是以小组为单位,小组成员围绕一个核心题目完成不同方面的设计任务。由于学生的理论基础和解决实际问题的能力存在差异,“能者多劳”的现象就会出现。如果指导教师指导不到位,检查力度稍低,就很容易出现个别学生不做或少做设计内容,甚至还出现抄袭他人成果的现象。由此可见,工程力学专业课程设计改革的空间较大。 三、工程力学专业课程设计改进的思路与方法 一方面,课程设计应选取具有一定的工程或社会实际背景,体现应用性、先进性、综合性的题目,可以使学生对工程实际问题的复杂性有一个初步认识,检验学生对该课程理论基础知识的理解和掌握程度,培养学生通过综合运用该课程和相关课程的基本理论知识来分析和解决工程实际问题的能力。另一方面,能使学生树立起正确的设计思想,养成实事求是、严肃认真、高度负责的工作作风和严谨、谦虚的科学学风,更能使学生在自主性、探索性、创造性和合作性方面得到培养。 首先,指导教师应该重视课程设计题目和内容的选择。斯滕豪斯明确指出:教师的身份是“和学生一起学习的学习者”,只有这样,才能通过发现法和探究法而不通过传授法进行教学。在课堂教学过程中,教师不仅要教授理论知识,还要注意理论联系工程实际,通过列举工程实例、设置问题情境等多种方法,让学生感受到理论学习是手段,实际应用才是真正目的。随着社会发展,各种资讯日新月异,教师不能仍保持传统的观念,而必须在教学生涯中通过不断学习搜集和处理更多关于课程内容的相关资讯,熟悉教育改革趋势和重点,更新补充专业知识,提高专业能力;了解该专业学生的学习特点和兴趣爱好。这样,教师才能根据课程内容确定适合教学目标和学生感兴趣的课程设计题目,并且真正做到理论与工程实际的联系、对知识的综合应用、全方位的展开学生的思维和最大限度地解放学生的思想,才能充分调动学生学习的主动性、积极性和创造性,培养学生解决实际问题的能力和应变思维能力。 其次,课程设计应与工程实际相结合,针对不同课程内容及培养目标采用多种形式的课程设计方法。比如枟理论力学枠,它是一门理论性较强的专业技术基础课程,教师在讲解过程中多是针对抽象化理想的力学模型,学生在课堂学习中通常感觉理论知识很好懂,但自己动手练习的时候却无从下手,理论和实际总是联系不到一起。为此,教师在讲授过程中可采用工程实例教学法,即选择一些具有代表性、启发性、时代性的实例,通过学习和讨论,使学生对知识有更深层次的理解,从而激发学生应用知识的热情。教师可以通过布置相关知识的小论文,学生通过查阅资料、撰写小论文的形式,深刻理解力学知识和工程实际问题间的联系。枟材料力学枠课程除可设置实验教学环节外,还可以确定一些简单 (下转第120页) 3 21

上海交通大学2008年振动力学期末考试试题

上海交通大学2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C的质量m1,匀质杆AB的质量m2,长为L,匀质轮O的质量m3,弹簧的刚度系数k。当AB杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C的位移y作为系统的广义坐标,在静平衡位置时y=0,此时系统的势能为零。 AB转角: 系统动能: m1动能: m2动能: m3动能: 系统势能: 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而 有: 上式求导,得系统的微分方程为:

固有频率和周期为: 2、质量为m1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过 定滑轮A连在质量为m2的物块B上;轮心C与刚度系数为k的水平弹簧相连;不计滑轮A,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求 系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B的位移x作为系统的广义坐标,在静平衡位置时x=0,此时系统的势能为零。 物体B动能: 轮子与地面接触点为速度瞬心,则轮心速度为,角速度为,转过的角度为。轮子动能: 系统势能: 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,有:上式求导得系统的运动微分方程:

固有频率为: 第二题(20分) 1、在图示振动系统中,重物质量为m,外壳质量为2m,每个弹簧的刚度系数均为k。设外壳只能沿铅垂方向运动。采用影响系数方法:(1)以x1和x2为广义坐标,建立系统的微分方程;(2)求系统的固有频率。 解: 系统为二自由度系统。 当x1=1,x2=0时,有:k11=2k,k21=-2k 当x2=1,x2=1时,有:k22=4k,k12=-2k 因此系统刚度矩阵为: 系统质量矩阵为: 系统动力学方程为: 频率方程为: 解出系统2个固有频率: ,

振动实验报告

振动力学实验报告 学院:___________________ 班级:___________________ 学号:___________________ 姓名:___________________ 山东科技大学

单自由度系统振动实验报告 实验者姓名:________ 院系:_______系_______专业_______班_______组实验日期:________年________月________日 自由振动法测量单自由度系统的参数 一、实验目的 二、实验对象和装置 三、实验步骤 四、实验数据记录和整理 1、无阻尼单自由度自由振动系统实验测量:

计算单自由度振动的振动频率、周期、固有频率、衰减系数、相对阻尼系数周期、频率和阻尼系数: 2、有阻尼单自由度自由振动系统实验测量: 计算单自由度振动的振动频率、周期、固有频率、阻尼系数、相对阻尼系数: 五、简答 1、上述无阻尼自由振动实验中,为什么振动曲线呈现衰减状态? 2、简述阻尼对于自由振动周期、频率的影响。

用冲击激励法测量系统的频率响应函数 实验者姓名:________ 院系:_______系_______专业_______班_______组实验日期:________年________月________日 一、实验目的 二、实验对象和装置 三.实验步骤

四、实验数据记录和整理 1、无阻尼单自由度自由振动系统实验测量: 2、有阻尼单自由度自由振动系统实验测量: 五、简答 1、力锤施加力的大小是否影响单自由度系统的振动频率和阻尼,为什么? 2、实验过程中,力锤敲击质量块时应注意什么?

振动力学课程设计

振动力学课程设计 3k 3m 4m 7m k 5k x1 x2 x3 4k 年级:工程力学09级02班 姓名:陶昶 学号:20091210220

振动力学课程设计(大作业)的内容如下: 1.在图示振动系统中, k k k k k k k k m m m m m m 3,,4,5,7,4,34321321=======建立系统的振动微分方程,要求写出详细的过程。 2.求系统的振动固有频率。 3.计算系统的振动模态,绘制主振型的示意图。 4.计算系统的主质量、主刚度和简正振型矩阵。 5.初始条件为: T 0T 0} 0.5 0, 0, { ,} 0.03 0, 0, {==x x ,位移单位为m,速度单位为m/s 。求系统自由振动的响应。 6.在质量为m 1的物体上作用简谐力 sin )(t F t f ω=,求系统强迫振动的响应。 7.在质量为m 3的物体上作用非周期激励力 )()(t Fu t f =, )(t u 为单位阶跃函数,求系统强迫振动的响应。 8.在固定端和第1个物体之间安装一个阻尼系数为 1c 的阻尼器,在第1个和第2个物体之间安装一个阻尼系数为 2c 的阻尼器,在第2个和第3个物体之间安装一个阻尼系数为 c 3的阻尼器,在第3个物体和固定端之间安装一个阻尼系数为 c 4的阻尼器。已知: c c c c c c c c 3 , 6 , ,2 4321====。建立系统的有阻尼振动微分方程,计算系 统的阻尼矩阵、模态阻尼矩阵。 9.用瑞利法估算系统的基频。 10.用传递矩阵法计算系统的固有频率。 m 2 m 1 m 3 k 2 k 1 k 4 k 3

2008年期末振动力学考试试题

2008年振动力学期末考试试题 大学期末考试https://www.doczj.com/doc/422823132.html, 第一题(20分) 1、在图示振动系统中,已知:重物C的质量m1, 匀质杆AB的质量m2,长为L,匀质轮O的质量 m3,弹簧的刚度系数k。当AB杆处于水平时为 系统的静平衡位置。试采用能量法求系统微振 时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C的位移y作为系统的广义坐标,在静平衡位置时y=0,此时系统的势能为零。 AB转角: 系统动能: m1动能: m2动能: m3动能: 系统势能: 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有:

上式求导,得系统的微分方程为: 固有频率和周期为: 2、质量为m1的匀质圆盘置于粗糙水平面上,轮缘 上绕有不可伸长的细绳并通过定滑轮A连在质量 为m2的物块B上;轮心C与刚度系数为k的水平 弹簧相连;不计滑轮A,绳及弹簧的质量,系统自 弹簧原长位置静止释放。试采用能量法求系统的固 有频率。 解:系统可以简化成单自由度振动系统,以重物B的位移x作为系统的广义坐标,在静平衡位置时x=0,此时系统的势能为零。 物体B动能: 轮子与地面接触点为速度瞬心,则轮心速度为,角速度为,转过的角度为。轮子动能: 系统势能:

在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,有: 上式求导得系统的运动微分方程: 固有频率为: 第二题(20分) 1、在图示振动系统中,重物质量为m,外壳质量为2m, 每个弹簧的刚度系数均为k。设外壳只能沿铅垂方向运 动。采用影响系数方法:(1)以x1和x2为广义坐标, 建立系统的微分方程;(2)求系统的固有频率。 解: 系统为二自由度系统。 当x1=1,x2=0时,有:k11=2k,k21=-2k 当x2=1,x2=1时,有:k22=4k,k12=-2k 因此系统刚度矩阵为: 系统质量矩阵为:

振动力学课程设计任务书

振动力学课程设计任务书 一、课程设计的目的 振动力学课程设计是工程力学专业集中实践环节的内容之一。学生运用所学的基础理论和专业知识通过课程设计的实践,巩固和掌握振动力学课程的知识。通过课程设计使学生了解结构振动研究的过程,培养学生的计算和分析能力。 二、课程设计的要求 学生需认真阅读课程设计任务书,参考有关资料,在规定的时间内独立完成课程设计任务。课程设计要求计算准确、文字通顺、图形精致。课程设计(含任务书和计算程序等)应装订成册。 三、课程设计的内容 振动力学课程设计的内容如下: 题目1: 1.图示振动系统,建立系统的振动微分方程,要求写出详细的过程。 2.求系统的振动固有频率。 3.计算系统的振动模态,绘制主振型的示意图。 4.计算系统的主质量、主刚度和简正振型矩阵。 5.初始条件为:,位移单位为m,速度单位为m/s。求系统自由振动的响应。

6.在左侧第一个物体上作用简谐力,求系统强迫振动的响应。 7.在固定端和第1个物体之间安装一个阻尼系数为 c1的阻尼器,在第1个和第2个物体之间安装一个阻尼系数为 c2的阻尼器,在第2个和第3个物体之间安装一个阻尼系数为 c3的阻尼器,在第3个物体和固定端之间安装一个阻尼系数为 c4的阻尼器。已知:c1=2c,c2=5c, c3=c,c4=3c。建立系统的有阻尼振动微分方程,计算系统的阻尼矩阵、模态阻尼矩阵。 8.用瑞利法估算系统的基频。 9.用矩阵迭代法计算系统的固有频率。 题目2: 1.图示振动系统,建立系统的振动微分方程,要求写出详细的过程。 2.求系统的振动固有频率。 3.计算系统的振动模态,绘制主振型的示意图。 4.计算系统的主质量、主刚度和简正振型矩阵。 5.初始条件为:,位移单位为m,速度单位为m/s。求系统自由振动的响应。

一端固定一端弹簧支承的梁的振动特性

沈阳航空航天大学 振动力学课程设计任务书课程设计的内容及要求: (一)基本要求 1、学会查阅资料和使用相关设计手册; 2、学习运用Matlab等数学软件; 3、熟练掌握梁结构弯曲自由振动的分析过程; 4、按照课程设计相关规定编写设计说明书。 (二)课设内容 (1)设定均匀梁的具体参数(长度;单位体积的质量;抗弯刚度,弹簧刚度); (2)根据给定的参数运用数学物理方法建立一端固定一端弹簧支承均匀梁的弯曲振动运动微分方程; (3)然后根据振动运动微分方程,通过边界条件求解梁的固有频率和振型; (4)分析弹簧刚度对梁的固有频率和振型的影响; (5)最后写出本次课程设计的总结。 (三)主要参考书 (1)、金基铎,王克明,机械振动基础 [M],沈阳:沈阳航空工业学院,2001年2月;(2)、方同,薛璞,振动理论及应用 [M],西安:西北工业大学出版社,1998年5月;(3)、蒲俊,Matlab工程数学解题指导 [M],上海:浦东电子出版社,2001年7月;(4)、罗建军,杨琦,MATLAB教程 [M],北京:电子工业出版社,2005年7月 (四)评语

(五)成绩 负责教师 学生签名

振动力学课程设计说明书 一端固定一端弹簧支承的均匀梁的弯曲振动特性 沈阳航空航天大学 2011年1月

沈阳航空航天大学课程设计说明书摘要 摘要 目前,振动分析已成为工程设计与研究中必不可少的环节。本文采用了理论分析的方法,对一端固定一端弹簧支承均匀梁的振动特性进行研究,求出它的固有频率和主振型,并计算受迫响应,在理论和实用上都具有重要意义。在本文中,只讨论梁的弯曲振动,讨论了一些参数对梁固有频率和主振型的影响。 关键词一端固定一端弹簧支承均匀梁弯曲自由振动主振型固有频率

《振动力学》课程作业

《振动力学》2015春节学期作业 一、无阻尼自由振动 1、如图所示,T型结构可绕水平轴O作微小摆动,已知摆动部分的质量为w,机构绕O轴的转动惯量为J,两弹簧的弹簧系数均为k,且当=0 ?时(即机构处于平衡位置时),两弹簧无伸缩,试求该机构的摆动频率。 (答案:ω) 2、如图所示,长度为L的刚性杆件,在O点铰支,自由端固定一质量为m 的小球。在距离铰支端a处,由两个刚度系数为k/2的弹簧将刚性杆件支持在铅垂面内。求该系统的固有频率。(忽略刚性杆件和弹簧的质量) (答案:ω)

的质量块,弹簧刚度为k,求系统的固有频率。 (答案:ω=) 微摆动,求其固有角频率。 (答案:ω=)

5、如图所示,抗弯刚度为62 EI=??的梁AB,借弹簧支撑于A,B两 3010(N m) 点处,弹簧系数均为300(/) =。忽略梁的质量,试求位于B点左边3m k N m 处,重量为1000() =的物块自由振动的周期。 W N (答案:T=0.533s) 6、一个重W的水箱,借助四根端点嵌固的竖置管柱支撑着。每根柱子的长为L,抗弯刚度为EI。试求该水箱顺水平方向自由振动的周期。(管柱的质量忽略不计) (答案:2 T=) 7、《结构动力学基础》,第2章课后习题,第1题、第2题、第8题 二、有阻尼自由振动 1、如图所示,库伦曾用下述方法测定液体的粘性系数'c:在弹簧上悬挂

一薄板A ,先测出薄板在空气中的振动周期1T ,然后测出在待测粘性系数的液体中的振动周期2T 。设液体对薄板的阻力等于2A 'c v ,其中2A 为薄板的表面面积,v 为薄板的速度。如薄板重W ,试有测得的数据1T 和2T ,求出粘性系数'c 。空气对薄板的阻力不计。 (答案:'c =) 2、物体质量为2kg ,挂在弹簧下端。弹簧常数k=48.02N/cm,求临界阻尼系数。 (答案:196Ns/m ) 3、挂在弹簧下端的物体,质量为1.96kg ,弹簧常数k=0.49N/cm,阻尼系数c=0.196Ns/cm 。设在t=0时刻将物体从平衡位置向下拉5cm ,然后无初速度地释放,求此后的运动。 (答案:55(15t)cm t x e -=+ ) 4、《结构动力学基础》,第2章课后习题,第12题 三、简谐荷载作用下的强迫振动 1、如图所示,一无重简支梁,在跨中有重W=20kN 的电机,电机偏心所产

相关主题
文本预览
相关文档 最新文档